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Abstract

In this project, a novel unified beam formulation and a modified couple stress theory (MCST) that

considers a variable length scale parameter in conjunction with the neutral axis concept are proposed

to study bending and dynamic behaviors of functionally graded (FG) micro beam. New first and

sinusoidal beam theories together with the classical beam theory can easily formulated from this

approach. The Mori–Tanaka homogenization technique is used to predict all effective material

properties of the FG micro beams – including the length scale parameter – which are assumed to vary

in the thickness direction. The constructed models include the physical length scale parameter which

can introduce the size effect. Some results are presented to show the effects of the material length

scale parameter, the power law index, and shear deformation on the bending and dynamic behaviors of

FG micro beams.

Keywords: Resins; Vibration; Micro-mechanics; Analytical modeling; Modified couple stress theory
1. Introduction

Functionally graded materials (FGMs) are widely used in a variety of industries due to their important

physical properties that vary as a power-law distribution, continuously as a function of position along

certain dimensions. Such materials were included to gain benefits of the desired physical properties of

each constituent material without interface problems.

In view of the increasing interest in using FGMs in the modern technology, such materials have been

widely used recently in micro/nanoelectromechanical systems (MEMS/NEMS), such as the

components in the form of shape memory alloy thin films with a global thickness in micro- or nano-

scale [1–3], electrically actuated MEMS devices [4–6], and atomic force microscopes (AFMs) [7].

Furthermore, the practical investigations demonstrate as the thickness of the structures becomes on the

magnitude of microns and sub-microns, the size effect of material plays a great role in mechanical

responses of such structures [8, 9]. Consequently, the classical continuum theories are unsuitable to

analyze the behavior of micro-scale structures and the use of size-dependent theories (i.e., strain

gradient elasticity and couple stress theories) having internal material length scale parameters is

necessary.  However,  since  the  classical  couple  stress  theory  introduces  two  separate  material  length

scale parameters [8, 9]; a great problem is found to experimentally asses the micro-structural material

length scale parameters. Because of the encountered problems in assessing the micro-structural
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material length scale parameters, Yang et al. [10] developed a modified couple stress model, which

could investigate micro systems with only one material length scale parameter. The modified couple

stress model has been employed widely nowadays. Park and Gao [11] investigated Euler-Bernoulli

beams, by employing the mentioned model. Kong et al. [12] analyzed also the size-dependent natural

frequency of these beams. Furthermore, Ma et al. [13, 14] have illustrated size-dependent Timoshenko

and Reddy- Levinson beam models based on modified couple stress theory.

Recently, study of micro-scale functionally graded (FG) beams, by employing modified couple stress

model, has attracted several researchers. Asghari et al. [15, 16] studied the bending and dynamic

responses of FG Euler-Bernoulli and Timoshenko beam theories neglecting Poisson’s effect. Ke and

Wang [17] analyzed size effect on dynamic stability of FG micro beams. Using different beam

theories, Nateghi et al. [18] investigated size-dependant buckling behavior of FG micro beams. Reddy

[19] studied size-dependant nonlinear response of FG micro beams. However, in all works on FG

micro-beams mentioned above, the length scale parameters employed in the formulation are

considered as constants. The only work in the open literature that takes into consideration the

variations in the length scale parameters seems to be that by Kahrobaiyan et al. [20]. In this paper, the

authors present a formulation based on the strain gradient elasticity theory in conjunction with the

Euler-Bernoulli beam model. However, Euler-Bernoulli model neglects the shear deformation effect

and consequently it underestimates deflections and overestimates the natural frequencies in case of

thick beams where shear deformation effects are significant.

In this work, a new modified couple stress theory is developed to study the bending and vibration

responses of FG micro-beams having a variable length scale parameter on the basis on a unified beam

formulation in conjunction with the neutral axis concept. Contrary to the other high order beam

theories, the transverse displacement in this formulation is assumed to consist of bending and shear

components. As a result, a new first beam theory (NFBT) and a new sinusoidal beam theory (NSBT)

together  with the classical  beam theory (CBT) are easily created.  In addition,  this  micro-scale  beam

model introduces the material length scale parameter which can capture the size effect. The material

properties of the FG micro-scale beams including the length scale parameter are assumed to vary in

the thickness direction and are assessed through the Mori–Tanaka homogenization technique and the

classical rule of mixture. Since, the material properties of FG micro-scale beam vary through the

thickness direction; the neutral axis of such micro-scale beam may not coincide with its geometric

middle plane [21 – 26]. In addition, Bouremana et al [22] and Yahoobi and Feraidoon [21] show that

the stretching – bending coupling in the constitutive equations of an FG beam does not exist when the

coordinate system is located at the physical neutral axis of the beam. The governing equations and the

related boundary conditions are deduced by employing the Hamilton’s principle. The effects the

material length scale parameter, different material compositions, shear deformation on the bending and

free vibration response of FG micro-scale beams are investigated in this work. The present results are

also compared with previously published results to establish the validity of the present formulation.
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2 Theoretical formulations

In this work a FG micro-scale beam of length L , width b , and thickness h  is considered. The

Cartesian coordinate system, (x, z), with the origin at the left end of the micro-scale beam is employed

in this study. The x axis is chosen to be the undeformed centroidal axis of the beam and the z axis is

perpendicular to the x axis.  Due  to  asymmetry  of  material  properties  of  FG  beams  with  respect  to

median axis, the stretching and bending equations are coupled. But, if the origin of the coordinate

system is suitably selected in the thickness direction of the FG micro-scale beam so as to be the neutral

axis,  the  properties  of  the  FG  micro-scale  beam  being  symmetric  with  respect  to  it.  To  specify  the

position  of  neutral  axis  of  FG  micro-scale  beams,  two  different  axis  are  considered  for  the

measurement of z , namely, msz  and nsz  measured from the centroidal axis and the neutral axis of the

micro-scale beam, respectively, as depicted in Figure 1.

The volume-fraction of ceramic CV  is expressed based on msz  and nsz  coordinates as
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where k  in Eq. (1) is the volume fraction exponent, also referred to as the gradient index and 0z  is the

distance of neutral axis from the centroidal axis. According to Mori–Tanaka homogenization scheme,

the effective Bulk Modulus ( K ) and the effective shear modulus ( G ) are given by [27 – 29]:
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Here, the subscripts c  and m  refer to the ceramic and metal phases, respectively.

The effective Young’s modulus E  and  Poisson’s  ratio n  can be computed from the following

expressions:

GK
KGE
+

=
3

9

( )GK
GK

+
-

=
32

23n

(2a)

(2b)

(3)

(4a)

(4b)

(1)



  

4

The effective mass density r  and and length scale parameter l  are given by the rule of mixtures as

[30 – 34]:
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The physical neutral axis of an FG beam can be expressed as function of Láme’s constants (l  and m )

by
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It can be noted that distance ( 0z ) becomes zero for homogeneous beams.

2.1. The modified couple stress theory

Based on the modified couple stress model [10], the strain energy, U , for a linear elastic material

occupying region W  is related to strain and curvature tensors and can be expressed as
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In which s , e , m  and c  are  Cauchy  stress  tensor,  classical  strain  tensor,  deviatoric  part  of  the

couple stress tensor and symmetric curvature tensor, respectively The strain and the curvature tensors

are defined by:
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where ijd  is the Kronecker delta, l  is the material length scale parameter which reflects the effect of

couple stress, l  and m  are Láme’s constants given by
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Based on the same formulation presented by Ould Larbi et al [23] where the transverse displacement is

divided with two components (the bending part bw  and the shear part sw ), the axial displacement, xu ,

and the transverse displacement of any point of the beam, zu , are given as

),(),(),,(
0),,(

)(),(),,( 0

txwtxwtzxu
tzxu

x
wzf

x
wztxutzxu

sbnsz

nsy

s
ns

b
nsnsx

+=

=
¶
¶

-
¶
¶

-=

where

· For the classical beam theory (CBT)
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By using Eq. (8a) and Eqs. (12), the non-zero strains of the present refined beam theory are obtained

as
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In addition, equations (8b) and (12) lead to the following expression:
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Substitution of Eq. (15) into (8b) leads to the following expression for the non-zero components of the

symmetric curvature tensor
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2.2. The governing equations
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Hamilton’s principle is used in this work to derive the equations of motion. The principle can be stated

in analytical form as

( ) 0
0
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where Ud  is the virtual variation of the strain energy; Vd  is the virtual variation of the work done

by the external applied forces; and Kd  is the virtual variation of the kinetic energy. The variation of

the strain energy of the beam can be stated as
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where L  is the length of the micro-scale beam and the following stress resultants are expressed as
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The variation of work done by the external applied forces can be expressed as
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where dot-superscript convention indicates the differentiation with respect to the time variable t ;

)( nszr  is the mass density; and ( 0I , 1I , 1J , 2I , 2J , 2K ) are the mass inertias defined as
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Substituting the expressions for Ud , Vd , and Kd  from Eqs. (18), (20), and (21) into Eq.(17) and

integrating by parts versus both space and time variables, and collecting the coefficients of 0ud ,

bwd , and swd , the following equations of motion of the FG micro beam are obtained
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By employing Eqs. (19) and (23), the equations of motion of FG micro beam in terms of the

displacements are obtained as
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where 11A , 11D , etc., are the beam stiffness, defined by
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3. Analytical solution
In this work, the Navier solution method for a simply-supported microbeam is adopted to determine

the analytical solution. Thus, the following expansions of displacements ( 0u , bw , sw ) are assumed

as:
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where nU , bnW , and snW  are arbitrary parameters to be determined, w  is the eigenfrequency

associated with n th eigenmode, and Ln /pl = . The transverse load q  is also expanded in Fourier

series as
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Substituting the expansions of sb wwu ,,0 and q  from Eqs (27) and (28) into the equations of motion

Eq (25), the analytical solutions can be determined from the following equations:
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Moreover, substituting Eqs (14) into Eq (10a) with the use of Eq (27), one can determine the stress

components in terms of Láme’s constants and the arbitrary parameters nU , bnW , and snW  as follows:
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4. Numerical results
In the numerical results, static bending and free vibration of FG microbeams are presented based on

the modified couple stress theory and neutral surface-based formulation. The FG microbeams are

composed of metal (Al: mE  = 70 GPa, mr  = 2702 kg/m3, mn  = 0.3) and ceramic (SiC: cE = 427 GPa,

cr = 3100 kg/m3, cn  = 0.17) [35].

In the literature studies, it is found that the material length scale parameter is predicted experimentally

as 17.6 mm  for homogeneous epoxy beam by Lam et al. [9]. Ke and Wang [17] assumed a constant

value of 15 mm  for functionally graded materials. In this work, we take the length scale parameter of

the metallic component ml  as 15 mm . In a number of parametric examples cl  value is taken as 22.5

mm ; and in the other cases the ratio mc ll /  is changed so as to show the effect of the variation of the

length scale parameter. The shear correction factor required in the present first shear deformation

beam theory is specified as 5/6. The computed values for the bending analysis are obtained by

employing 100 terms in series in Eqs. (27) and (28). The employed non-dimensional quantities are:

· Non-dimensional transverse deflection:

3100
PL

IEww m=   for point load

4
0

100
Lq
IEww m=   for uniform load

(31)

(32)

(33a)

(33b)
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· Non-dimensional stresses:

· ÷
ø
ö

ç
è
æ=

P
A

P
A xzx

xzx
ts

ts ,),(   for point load

· Non-dimensional frequency:

m

m

Eh
L rw

w
2

=

4.1 Validation of the results

In order to check the validity and the accuracy of the aforementioned formulations, comparison studies

for static and free vibration behaviors using the present theory, have been performed out with the

results of the available published works.

4.1.1 Example 1: Bending of a homogeneous micro-beam

The first example is performed for the bending of a homogeneous micro-beam. In Fig. 2, the variation

of the transversal displacement and the rotation as against to the normalized beam length is presented

and the results are compared with those of Ma et al [13]. The following parameters are employed in

calculating the numerical results: =P 100 mN, =E 1.44 GPa, =n 0.38, =r 1220 kg/m3, hL 20= ,

hb 2= , == lh 17.6 mm (where b  and h  are the width and the thickness of the beam, respectively).

From the results plotted in Fig. 2, it can be seen that the results computed via the present theory are in

good agreement with those of Ma et al [13].

4.1.2. Example 2: Free vibration of a homogeneous microbeam

The next verification is performed for the natural frequency of the homogeneous microbeam. For this

purpose, the variation of the natural frequency is plotted versus the dimensionless material length scale

parameter ( lh / ) in Fig. 3 and the results are compared with those of Ma et al [13]. Again, the

computed results are found to be in excellent agreement with those of Ma et al [13].

4.1.3. Example 3: Free vibration of an FG micro-beam

The last example is presented for the dimensionless natural frequencies of FG micro-beam. Indeed, the

non-dimensional natural frequencies of FG micro-beam are compared with those of Ansari et al [35]

by inserting the material properties used in this reference. Computations in this section are carried out

according to the first and sinusoidal shear deformation beam theory in conjunction with the modified

couple stress theory and the neutral axis concept. To regenerate the results provided by Ansari et al

[35], we set lll mc ==  in Eq. (5b). The dimensionless frequencies 11000 / AILwl =  are employed,

where 00I  and 110A  are the values 0I  and 11A  of homogeneous metal micro-beam. In Table 1, the

non-dimensional fundamental frequency of FG micro-beam with =k  2 is tabulated for different data

of the beam thickness. Table 2 presents non-dimensional fifth vibration frequencies of FG micro-beam

for various values of the power law index ( k ) and for lh / = 2, hL / = 10. The comparisons illustrated

in these tables show that the present frequencies are in good agreement with those of the existing
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literature. However, the small difference between the results computed using the present new

sinusoidal beam theory (NSBT) and the first shear deformation beam theories (Timoshenko beam

theory [35] and the present NFBT) is due to the use of a constant shear correction factor for any values

of power law index k .

4.2. Results for static responses

Tables 3 and 4 tabulate nondimensionalized vertical deflections of the FG micro-beam based on the

present unified formulation for various values of the volume fraction exponent k , the ratio mc ll / , and

two different values of the aspect ratio ( hL / = 10, 100). Results are provided for the point load and

uniform load. It is seen that the effect of the shear deformation becomes noticeable for the thick micro-

beams (i.e., hL / = 10). When mc ll / =  1,  the  length  scale  parameter  of  the  FG  micro-beam  is  a

constant according to Eq. (5b). The same equation also implies that, for the other remaining cases for

which ¹mc ll /  l, the length scale parameter changes within the thickness. Thus, the ratio mc ll /

indicates the degree of the length scale parameter variation across the beam. It is seen that the increase

in the length scale parameter ratio mc ll /  leads  to  a  decrease  of  deflection  and  the  results  are

significantly  different  to  the  case  where  the  length  scale  parameter  is  assumed  to  be  a  constant

( mc ll / =1). This observation is also a validation of the premise of this work that the variation of the

length scale parameter needs to be taken into consideration in the investigation of FG micro-beams. In

addition, it is noted as the volume fraction exponent ( k ) increases, the increase of the deflection will

be occur at the same conditions (length scale parameter ratio mc ll / , slenderness ratio hL /  and loads).

In what follows, the results are computed by using the present NSBT. In Fig. 4, the

nondimensionalized transverse deflections are presented as a function of the ratio ( mlh / ) for different

length scale parameter ratio mc ll /  with considering hL / = 10 and k = 2. It can be seen clearly from

Fig. 4 that the vertical deflections predicted by the classical beam model are independent of the

material length scale parameter ( mlh / ) and they are always larger than those computed using the non-

classical beam model with the couple stress. This shows that the introduction of couple stress effect

makes  a  beam  stiffer,  and  hence,  leads  to  a  reduction  of  deflection.  However,  this  effect  can  be

neglected when the material length scale parameter ( mlh / ) becomes larger as is shown in Fig. 4. In

addition, it can be indicated that as the length scale parameter of the ceramic component gets larger

compared to that of the metallic component, the deflection of the FG micro-beam becomes smaller

considerably.

Fig. 5 depicts the variation of the nondimensionalized vertical deflections with the volume fraction

exponent ( k ) and the length scale parameter ratio mc ll /  for two different values of the

nondimensionalized material parameter mlh /  and for hL / = 10.  It can be seen that the increase of
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the volume fraction exponent leads to an increase in the vertical deflection. However, the effect of the

length scale parameter ratio mc ll /  on the vertical deflection is not obvious for mlh / = 8 comparatively

to the case where mlh / = 1. Thus, the sensitivity of the nondimensionalized vertical deflection to the

variations in mlh /  becomes rather remarked as this ratio becomes smaller.

In Fig. 6, the variation of the nondimensionalized axial normal stress ),2/( zLxs  of the FG micro-

beam with hL / = 10 across the thickness is illustrated for different values of the length scale

parameter ratio mc ll /  and for mlh / = 1 and 8. The axial normal stresses are in compressive state at the

top surface of the micro-beam and in tensile state at the bottom side of the beam. Nondimensionalized

axial normal stress decreases as the ratio mlh /  is increased from 1/3 to 2. The decrease is much more

significant when mlh / = 1, i.e., the ratio is relatively smaller.

The variation of nondimensionalized transverse stress ),0( zxzt  through the thickness of the FG

micro-beam for different values of the length scale parameter ratio mc ll /  and for mlh / = 1 and 8, is

plotted in Fig. 7. It can be seen that the transverse stress increases as the length scale parameter ratio

mc ll /  decreases. This finding proves also the need to take into consideration the variation of the

length scale parameter l  across the micro-beam in the analysis of small-scale FG beams.

4.3. Results for free vibration responses

Numerical results on the free vibration behavior of FG micro-beams are given in Table 5 and Figs. 8

and 9. Table 5 lists the dimensionless fundamental frequency corresponding to the transverse

deformation mode calculated for various values of the volume fraction exponent ( k ) and the ratio the

length  scale  parameter  ratio  ( mc ll / ).  It  can  be  seen  that  the  effects  of  both k  and mc ll /  are

significant. For each value of the power law index k , dimensionless frequency decreases considerably

as the ratio mc ll /  is reduced. On the other hand, the decrease in the volume fraction exponent k  leads

to an increase in the dimensionless frequency. Again, from Table 5 it can be shown the need to

consider the change of the length scale parameter l  across the micro-beam in the free vibration

analysis of small-scale FG beams.

In Fig. 8, both the first and the third nondimensionalized frequency are plotted versus the ratio ( mlh / )

for different length scale parameter ratio mc ll /  with considering hL / = 10 and k = 1. It can be shown

clearly from Fig. 8 that the frequency predicted by the classical beam model are independent of the

material length scale parameter ( mlh / ) and they are always lower than those computed using the non-

classical beam model with the couple stress. This shows that the inclusion of couple stress effect

makes  a  beam  stiffer,  and  hence,  leads  to  an  increase  of  frequency.  However,  this  effect  can  be

neglected when the material length scale parameter ( mlh / ) becomes larger as is shown in Fig. 8. In
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addition, it can be indicated that as the length scale parameter of the ceramic component gets larger

compared to that of the metallic component, the fundamental frequency of the FG micro-beam

becomes larger considerably.

Fig. 9 presents the variation of the nondimensionalized first frequency against the volume fraction

exponent ( k ) and the length scale parameter ratio mc ll /  for two different values of the

nondimensionalized material parameter mlh /  and for hL / = 10. It can be shown that the increase of

the volume fraction exponent leads to a decrease in the frequency, but for 5³k  all of the curves

become flatter. However, the sensitivity of the nondimensional frequency to the variations in mc ll /

becomes rather pronounced when the ratio mlh /  gets smaller e.g., mlh / =1 as is  shown in Fig.  9a.

The extensive literature on the topic in now available and we can only mention a few recent interesting

investigations in refs. [36 – 40].

5. Conclusions

This project presents a novel size-dependent unified beam formulation based on the modified couple

stress theory for the bending and free vibration responses of FG micro-beams, that consider a variable

length scale parameter. In this formulation, the vertical displacement is decomposed into both bending

and shear components in such a way that, the proposed approach make it easy to provide results

regarding three different beam models, which are classical beam theory (CBT), new first beam theory

(NFBT), and new sinusoidal beam theory (NSBT). Mori–Tanaka homogenization method is employed

to predict the material properties of the FG micro-beam. Hamilton’s principle in conjunction with the

neutral surface concept is employed to determine the equations of motion. The results obtained using

the present size-dependent unified neutral surface-based beam formulation, are compared with the

existing theoretical results to prove the validity of the present approach. This work justifies also the

development of a general approach for the analysis of FG micro-beams having a variable length scale

parameter. It was confirmed that the parameter showing the degree of length scale parameter variation,

i.e. mc ll / , considerably affects both the bending and the free vibration behaviors of a FG micro-beam.

In addition, the findings of this work showed that the inclusion of couple stress effect makes a micro-

beam stiffer, and hence, leads to a reduction of the vertical displacement and an increase of frequency.

This fact proves the insufficient precision of classical theory in predicting the mechanical response of

micro-beams and shows the need of employing non-classical theories.
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Fig. 1: The position of centroidal axis and neutral axis for a FG beam.

Fig. 2: Comparison of the normalized static deflections and rotations of the simply supported
microbeam subjected to a point load at the middle for P = 100 mN, hL 20= , hb 2= , 38.0=n .
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Fig. 8: Variation of the dimensionless frequencies of the FG micro-beam for different values of the
length scale parameter ratio mc l/l , 10h/L = , m15lm m= , 1h/b = , 1=k .(a) the first frequency.
(b) the third frequency.
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h (mm) 15 30 45 60 75 90 120
Present (NSBT) 0.8151 0.5140 0.4357 0.4047 0.3894 0.3809 0.3723
Present (NFBT) 0.7982 0.5099 0.4340 0.4040 0.3893 0.3811 0.3727
Ansari et al [35] 0.7983 0.5100 0.4341 0.4041 0.3894 0.3811 0.3728

Model Ceramic k = 0.1 k = 0.6 k =1.2 k = 2 k =10 Metal
Present (NSBT) 17.9097 15.9659 12.7215 11.4024 10.5845 8.8607 7.7223
Present (NFBT) 16.4670 14.7264 11.6880 10.3916 9.5585 7.8452 6.9885
Ansari et al [35] 16.4672 14.7194 11.6879 10.3919 9.5590 7.8479 7.0831

Table 1: Comparison of the dimensionless fundamental frequencies of the FG micro-scale beam with k = 2, L = 10 h
(the first mode, n = 1).

Table 2: Comparison of the dimensionless fifth frequencies of the FG micro-scale beam with lh / = 2, L = 10 h  (the
fifth mode, n = 5).

Fig. 9: Variation of the first dimensionless frequencies of the FG micro-beam versus the volume
fraction exponent for 10h/L = : (a) 1/ =mlh . (b) 8/ =mlh .
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mc l/l
Beam theory

10/ =hL 100/ =hL
k =0.3 k =1 k =3 k =10 k =0.3 k =1 k =3 k =10

1/3
CBT 0.4225 0.5426 0.6206 0.6939 0.4225 0.5426 0.6206 0.6939

NFBT 0.4349 0.5599 0.6454 0.7263 0.4227 0.5427 0.6209 0.6942
NSBT 0.4331 0.5570 0.6403 0.7155 0.4227 0.5427 0.6208 0.6941

1
CBT 0.2394 0.3564 0.4909 0.6302 0.2394 0.3564 0.4910 0.6302

NFBT 0.2473 0.3690 0.5116 0.6603 0.2395 0.3566 0.4912 0.6305
NSBT 0.2437 0.3628 0.5011 0.6452 0.2394 0.3565 0.4910 0.6304

3/2
CBT 0.1542 0.2526 0.3959 0.5712 0.1542 0.2526 0.3959 0.5712

NFBT 0.1605 0.2629 0.4138 0.5993 0.1543 0.2527 0.3961 0.5715
NSBT 0.1565 0.2560 0.4018 0.5823 0.1542 0.2527 0.3959 0.5713

2
CBT 0.1041 0.1824 0.3163 0.5098 0.1041 0.1824 0.3163 0.5098

NFBT 0.1094 0.1913 0.3321 0.5358 0.1041 0.1825 0.3165 0.5101
NSBT 0.1054 0.1844 0.3197 0.5174 0.1041 0.1825 0.3164 0.5099

Classical
theory

CBT 0.5313 0.7587 0.9383 1.1245 0.5316 0.7587 0.9383 1.1245
NFBT 0.5470 0.7828 0.9753 1.1760 0.5315 0.7589 0.9387 1.1250
NSBT 0.5470 0.7848 0.9826 1.1826 0.5315 0.7590 0.9387 1.1251

mc l/l
Beam theory

10/ =hL 100/ =hL
k =0.3 k =1 k =3 k =10 k =0.3 k =1 k =3 k =10

1/3
CBT 0.2641 0.3391 0.3879 0.4337 0.2641 0.3391 0.3879 0.4337

NFBT 0.2704 0.3480 0.4007 0.4505 0.2642 0.3392 0.3880 0.4338
NSBT 0.2695 0.3465 0.3981 0.4449 0.2641 0.3392 0.3880 0.4338

1
CBT 0.1496 0.2228 0.3069 0.3939 0.1497 0.2228 0.3069 0.3940

NFBT 0.1538 0.2293 0.3176 0.4095 0.1497 0.2228 0.3069 0.3940
NSBT 0.1519 0.2261 0.3123 0.4020 0.1497 0.2228 0.3069 0.3940

3/2
CBT 0.0964 0.1579 0.2474 0.3570 0.0964 0.1579 0.2474 0.3570

NFBT 0.0996 0.1632 0.2568 0.3716 0.0964 0.1579 0.2475 0.3572
NSBT 0.0975 0.1597 0.2505 0.3628 0.0964 0.1579 0.2475 0.3571

2
CBT 0.0650 0.1140 0.1977 0.3186 0.0650 0.1140 0.1977 0.3186

NFBT 0.0678 0.1187 0.2059 0.3322 0.0651 0.1141 0.1978 0.3188
NSBT 0.0657 0.1150 0.1995 0.3226 0.0651 0.1140 0.1977 0.3187

Classical
theory

CBT 0.3321 0.4742 0.5864 0.7028 0.3321 0.4742 0.5864 0.7028
NFBT 0.3399 0.4863 0.6050 0.7286 0.3322 0.4743 0.5866 0.7031
NSBT 0.3400 0.4874 0.6089 0.7323 0.3322 0.4743 0.5867 0.7031

Table 3: Dimensionless transverse deflections of the FG micro-beam for point load. 15lm = , 2l/h m = , 1h/b = .

Table 4: Dimensionless transverse deflections of the FG micro-beam for uniform load. 15lm = , 2l/h m = , 1h/b = .
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mc l/l
Beam theory

10/ =hL 100/ =hL
k =0.3 k =1 k =3 k =10 k =0.3 k =1 k =3 k =10

1/3
CBT 5.9695 5.3625 5.1021 4.8828 5.9954 5.3878 5.1262 4.9039

NFBT 5.8987 5.2933 5.0198 4.7902 5.9947 5.3871 5.1253 4.9029
NSBT 5.9090 5.3043 5.0362 4.8203 5.9948 5.3872 5.1255 4.9033

1
CBT 7.9307 6.6159 5.7362 5.1231 7.9651 6.6471 5.7633 5.1453

NFBT 7.8233 6.5211 5.6383 5.0237 7.9640 6.6461 5.7623 5.1442
NSBT 7.8722 6.5670 5.6876 5.0731 7.9645 6.6466 5.7628 5.1448

3/2
CBT 9.8817 7.8588 6.3882 5.3815 9.9246 7.8959 6.4185 5.4048

NFBT 9.7187 7.7289 6.2710 5.2742 9.9229 7.8945 6.4172 5.4036
NSBT 9.8225 7.8152 6.3490 5.3384 9.9240 7.8955 6.4181 5.4043

2
CBT 12.0283 9.2477 7.1465 5.6963 12.0805 9.2914 7.1804 5.7209

NFBT 11.7780 9.0658 7.0021 5.5783 12.0778 9.2894 7.1788 5.7197
NSBT 11.9658 9.2077 7.1153 5.6611 12.0798 9.2910 7.1801 5.7206

Classical
theory

CBT 5.3280 4.5348 4.1494 3.8353 5.3511 4.5561 4.1691 3.8519
NFBT 5.2654 4.4775 4.0848 3.7661 5.3505 4.5555 4.1684 3.8512
NSBT 5.2649 4.4723 4.0719 3.7564 5.3504 4.5555 4.1682 3.8511

Table 5: Dimensionless fundamental frequency of the FG microbeam. 15lm = , 2l/h m = , 1h/b = .




