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PREFACE

Statistical Mechanics is the extended version of my earlier text, Statistical Thermo-
dynamics, whose Preface is reprinted following these pages. The present volume is
intended primarily for a two-semester course or for a second one-semester course in
statistical mechanics. Whereas Statistical Thermodynamics deals principally with equi-
librium systems whose particles are either independent or effectively independent,
Statistical Mechanics treats equilibrium systems whose particles are strongly inter-
acting as well as nonequilibrium systems. The first eleven chapters of Statistical
Thermodynamics form also the first eleven chapters of Statistical Mechanics. Chapter
15, Imperfect Gases, becomes Chapter 12 of the present volume, and the next ten
chapters, 13-22, are completely new. Chapter 13 deals with the radial distri-
bution function approach to liquids, and Chapter 14 is a fairly detailed discussion of
statistical mechanical perturbation theories of liquids. These theories were developed
in the late 1960s and early 1970s and have brought the numerical calculation of the
thermodynamic properties of simple dense fluids to a practical level. A number of the
problems at the end of Chapter 14 require the student to calculate such properties
and compare the results to experimental data. Chapter 15, on ionic solutions, is the
last chapter on equilibrium systems. Section 15-2 is an introduction to the recent
(1970s) advances in ionic solution theory that now allow one to calculate the thermo-
dynamic properties of simple ionic solutions up to concentrations of 2 molar.
Chapters 16-22 treat systems that are not in equilibrium. Chapters 16 and 17 are
meant to be somewhat of a review, although admittedly much of the material, par-
ticularly in Chapter 17, will be new. Nevertheless, these two chapters do serve as a
background for the rest. Chapter 18 presents the rigorous kinetic theory of gases as
formulated through the Boltzmann equation, the famous integro-differential equation
whose solution gives the nonequilibrium distribution of a molecule in velocity space.
The long-time or equilibrium solution of the Boltzmann equation is the well-known
Maxwell-Boltzmann distribution (Chapter 7). Being an integro-differential equation,
it is not surprising that its solution is fairly involved. We only outline the standard
method of solution, called the Chapman-Enskog method, in Section 19-1, and the
next two sections are a practical calculation of the transport properties of gases. In the
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last section of Chapter 19 we discuss Enskog’s ad hoc extension of the Boltzmann
equation to dense hard-sphere fluids. Chapter 20, which presents the Langevin equa-
tion and the Fokker-Planck equation, again is somewhat of a digression but does
serve as a background to Chapters 21 and 22.

The 1950s saw the beginning of the development of a new approach to transport
processes that has grown into one of the most active and fruitful areas of nonequi-
librium statistical mechanics. This work was initiated by Green and Kubo, who showed
that the phenomenological coefficients describing many transport processes and time-
dependent phenomena in general could be written as integrals over a certain type of
function called a time-correlation function. The time-correlation function associated
with some particular process is in a sense the analog of the partition function for
equilibrium systems. Although both are difficult to evaluate exactly, the appropriate
properties of the system of interest can be formally expressed in terms of these func-
tions, and they serve as basic starting points for computationally convenient approxi-
mations. Before the development of the time-correlation function formalism, there
was no single unifying approach to nonequilibrium statistical mechanics such as Gibbs
had given to equilibrium statistical mechanics.

Chapters 21 and 22, two long chapters, introduce the time-correlation function
approach. We have chosen to introduce the time-correlation function formalism
through the absorption of electromagnetic radiation by a system of molecules since
the application is of general interest and the derivation of the key formulas is quite
pedagogical and requires no special techniques. After presenting a similar application
to light scattering, we then develop the formalism in a more general way and apply
the general formalism to dielectric relaxation, thermal transport, neutron scattering,
light scattering, and several others.

There are also eleven Appendixes. The first three are from Statistical Thermo-
dynamics, but the rest are new and are meant to supplement the textual material. Of
particular interest is Appendix D, which lists a FORTRAN program for the hard-
sphere radial distribution. This program allows one to apply the equations of Chapter
14 (perturbation theories of liquids) with ease and is central to a new, practical approach
to the theory of liquids.

As in Statistical Thermodynamics, the intention here is to present a readable intro-
duction to the topics covered rather than a rigorous, formal development. In addition,
a great number of problems is included at the end of each chapter in order either to
increase the student’s understanding of the material or to introduce him or her to
selected extensions. Generally, this volume is an extension of Statistical Thermo-
dynamics to more complex and more interesting systems, but the spirit and level of
the two are comparable.

Donald A. McQuarrie



Preface to
Statistical Thermodynamics

Statistical Thermodynamics represents the expansion of notes for a one-semester,
first-year graduate course in statistical mechanics. The present volume comprises the
first 15 chapters of a larger work entitled Statistical Mechanics that is to be published
in 1976. There is intentionally more material in the present volume than should be
necessary for a single semester; additional topics have been included in an attempt
to recognize each instructor’s personal prejudices. It is assumed that students have had
a standard course in physical chemistry but have not previously had a serious course
in quantum mechanics. The mathematical prerequisite of the book is, at most, a
knowledge of linear differential equations with constant coefficients. All of the neces-
sary mathematical techniques have been developed within the book itself, either in the
main text, in problems, or in Appendix B.

There is no doubt that the term statistical thermodynamics” or statistical
mechanics” either frightens or brings forth scorn from many people. To eradicate
this attitude, a serious attempt has been made to write this book with the experi-
mentalist in mind, whether he be instructor or student. There are extensive appli-
cations of the formal equations to experimental data both in the text itself and in the
numerous applied problems. For example, a large number of figures and tables in the
book compare theoretical predictions to experimental results for a variety of real
systems. This has, I hope, not been done at the expense of a sensible degree of rigor or
logical clarity; I have tried to achieve a balance in this respect. What I ask of the
student is to make a serious effort to conceptualize and abstract for the first few
chapters, because from then on he will find that practical results and rewards come
quite rapidly and easily.

The first chapter is called a review, but no doubt much of the material will be
new to many students. The topics included here are particularly those points of
classical mechanics, quantum mechanics, and mathematics that play a central role
in the development of statistical mechanics. Chapter 2 introduces the fundamental
postulates and concepts of statistical mechanics with particular reference to the
so-called canonical ensemble, in other words, to thermodynamic (macroscopic) sys-
tems with fixed volume, temperature, and number of particles. This chapter is fairly
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formal, but it concludes with problems that anticipate the utility of the formal
equations derived in the chapter.

The approach used to develop satistical mechanics can be credited (at least in
the textbook literature) to T. L. Hill’s Introduction to Statistical Thermodynamics
(1960). There are basically two reasons for this choice: It is the most appealing ap-
proach from both a logical and pedagogical point of view, but probably more to the
point, I was a student of Hill shortly after the publication of his book and grew up
statistical-mechanically with his approach.

Chapter 3 extends the formal development of Chapter 2, and Chapter 4 illustrates
how the equations of Chapters 2 and 3 may be reduced to very practical formulas
that are applicable to an amazing variety of systems. These applications, in fact,
largely constitute the balance of this volume. The common feature of the systems dis-
cussed in Chapters 5 through 14 is this: Atoms or molecules making up these systems
are either independent or “ effectively ”’ independent. This results in equations that are
not only easy to use but lead to comparisons with experiment that are usually quite
decent and rewarding.

The final chapter investigates imperfect gases, the simplest system in which atoms
or molecules cannot be treated as independent or even effectively independent. Here
the intermolecular potential begins to emerge as a major complicating factor. A prin-
cipal goal of this chapter is the introduction of one of the more advanced techniques
that can be used to treat complicated systems. Chapters 13 through 15 of the larger
volume Statistical Mechanics (which might be covered in the first weeks of a second
semester) treat other systems in which the intermolecular potential plays a central
role. The inclusion of Chapter 15 on imperfect gases in the present volume is to assure
the skeptical student that statistical mechanics is quite capable of treating general
nonindependent systems—and possibly to entice him into a more challenging and much
more exciting second semester when he can, in fifteen weeks, be brought close to a
“literature level” in statistical mechanics.

Although this book has evolved from teaching a course in statistical mechanics
for several years, much effort has been made to produce a book that is equally suitable
for self-study. (I have also kept in mind the apprehensive instructor who is not a pro-
fessional theoretical chemist.) To this purpose, there is a fairly extensive and specific
bibliography available at the end of each chapter to direct either student or instructor
to other treatments of the material covered. Obviously no book of this type is written
in a vacuum, and the bibliography represents those sources that were particularly
useful to me.

One of the most important and useful features of this book is the extensive collec-
tion of problems presented after each chapter. The only way to learn statistical
mechanics, or any other physical chemical subject, is to work a great many problems.
Consequently, there are over 450 problems in the book, ranging in difficulty from
“plug in the number and get an answer > to those that require little writing but much
ingenuity. A few of the problems fill in steps leading from one equation to another,
while others extend material to research papers in the literature. Most of the problems,
however, are intended as applications of the equations and concepts presented in
chapters. It is primarily the problems that dictate the level of a course such as statistical
mechanics, and the variety and number included here allow an instructor to present a
straightforward application-oriented course that should be perfectly reasonable for
seniors or a fairly demanding introductory course for theoretical graduate students.

D. A. M.
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CHAPTER 1

INTRODUCTION
AND REVIEW

1-1 INTRODUCTION

Statistical mechanics is that branch of physics which studies macroscopic systems
from a microscopic or molecular point of view. The goal of statistical mechanics is
the understanding and prediction of macroscopic phenomena and the calculation of
macroscopic properties from the properties of the individual molecules making up the
system.

Present-day research in statistical mechanics varies from mathematically sophis-
ticated discussions of general theorems to almost empirical calculations based upon
simple, but nevertheless useful, molecular models. An example of the first type of
research is the investigation of the question of whether statistical mechanics, as it is
formulated today, is even capable of predicting the existence of a first-order phase
transition. General questions of this kind are by their nature mathematically involved
and are generally beyond the level of this book. We shall, however, discuss such
questions to some extent later on. On the other hand, for many scientists statistical
mechanics merely provides a recipe or prescription which allows them to calculate the
properties of the physical systems which they are studying.

The techniques of statistical mechanics have been used in attacking a wide variety
of physical problems. A quick glance through this text will show that statistical
mechanics has been applied to gases, liquids, solutions, electrolytic solutions, polymers,
adsorption, metals, spectroscopy, transport theory, the helix-coil transition of DNA,
the electrical properties of matter, and cell membranes, among others.

Statistical mechanics may be broadly classified into two parts, one dealing with
systems in equilibrium and the other with systems not in equilibrium. The treatment
of systems in equilibrium is usually referred to as statistical thermodynamics, since it
forms a bridge between thermodynamics (often called classical thermodynamics) and
molecular physics.

Thermodynamics provides us with mathematical relations between the various
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experimental properties of macroscopic systems in equilibrium. An example of such
a thermodynamic relation is that between the molar heat capacities at constant
pressure and at constant volume,

OE (1%
-G = A RLES 1-1
&-c=[r+(F), ), -0
Another, and one that we shall use in the next chapter, is
O0E 6p)
7 - T\+= = - 1-2
(av),,,,, (6T M (-2

Note that thermodynamics provides connections between many properties, but does
not supply information concerning the magnitude of any one. Neither does it attempt
to base any relation on molecular models or interpretations. This, in fact, is both the
power and weakness of thermodynamics. It is a general discipline which does not
need to recognize or rely upon the existence of atoms and molecules. Its many relations
would remain valid even if matter were continuous. In addition, there are many systems
(such as biological systems) which are too complicated to be described by an acceptable
molecular theory, but here again the relations given by thermodynamics are exact.
This great generality, however, is paid for by its inability to calculate physical proper-
ties separately or to supply physical interpretations of its equations. When one seeks
a molecular theory which can do just this, one then enters the field of statistical
thermodynamics. Thus thermodynamics and statistical thermodynamics treat the same
systems. Thermodynamics provides general relations without the need of ever consider-
ing the ultimate constitution of matter, while statistical thermodynamics, on the other
hand, assumes the existence of atoms and molecules to calculate and interpret thermo-
dynamic quantities from a molecular point of view.

Statistical thermodynamics itself may be further divided into two areas: first, the
study of systems of molecules in which molecular interactions may be neglected (such
as dilute gases), and second, the study of systems in which the molecular interactions
are of prime importance (such as liquids). We shall see that the neglect of intermolec-
ular interactions enormously simplifies our problem. Chapters 4 through 11 of the
book are devoted to the treatment of systems in which these interactions either may
be ignored or highly simplified. This is the kind of statistical thermodynamics to which
most undergraduates have been exposed and, to some extent, represents typical
statistical thermodynamical research done in the 1930s. The more interesting and
challenging problems, however, concern systems in which these molecular interactions
cannot be neglected; Chapters 12 through 15 of the present volume are devoted to the
study of such systems. It is in this latter area that a great deal of the research of the
1940s, 1950s, and 1960s was carried out. There are, of course, many important
problems of this sort still awaiting attack. The theory of concentrated electrolyte
solutions and the proof for the existence of first-order phase transitions are just two
examples.

The most difficult branch of statistical mechanics, both mathematically and con-
ceptually, is the study of systems not in equilibrium. This field is often referred to as
nonequilibrium statistical mechanics. This is presently a very active area of research.

There are still some important unsolved conceptual problems in nonequilibrium
statistical mechanics. Nevertheless, in the 1950s great strides were made toward the
establishment of a firm basis for nonequilibrium statistical mechanics, commensurate
with that of equilibrium statistical mechanics, or what we have called statistical
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thermodynamics. Chapters 16 through 22 of Statistical Mechanics present an intro-
duction to some of the more elementary of these fairly new and useful concepts and
techniques.

In Chapter 2 we shall introduce and discuss the basic concepts and assumptions of
statistical thermodynamics. We shall present these ideas in terms of quantum mechan-
ical properties such as energy states, wave functions, and degeneracy. Although it
may appear at this point that quantum mechanics is a prerequisite for statistical
thermodynamics, it will turn out that a satisfactory version of statistical thermo-
dynamics can be presented by using only a few quantum mechanical ideas and results.
We assume that the student is familiar with only the amount of quantum mechanics
taught in most present-day physical chemistry courses. About the only requirement of
the first few chapters is an understanding that the Schrédinger equation determines
the possible energy values E; available to the system and that these may have a
degeneracy associated with them which we denote by Q(E)).

Before discussing the principles, however, we shall present in this chapter a discus-
sion of some of the terms or concepts that are particularly useful in statistical thermo-
dynamics. In Section 1-2 we shall treat classical mechanics, including an introduction
to the Lagrangian and Hamiltonian formalisms. In Section 1-3 we shall briefly review
the main features of quantum mechanics and give the solutions of the Schrddinger
equation for some important systems. The only new material in this section to most
students probably will be the discussion of the eigenvalues or energy levels of a many-
body system. Then in Section 1-4 we shall review thermodynamics briefly, since it is
assumed that the reader is familiar with the three laws of thermodynamics and the
tedious manipulations of partial derivatives. Two important topics that are not
usually discussed in elementary physical chemistry texts are introduced, however.
These two topics are the Legendre transformation and Euler’s theorem, both of which
are useful in studying statistical thermodynamics. Finally, in Section 1-5 we shall
discuss some mathematical techniques and results that are particularly useful in statis-
tical thermodynamics. Much of this section may be new material to the reader.

1-2 CLASSICAL MECHANICS

NEWTONIAN APPROACH

Everyone knows the equation F = ma. What this equation really says is that the
rate of change of momentum is equal to the applied force. If we denote the momentum
by p, we have then a more general version of Newton’s second law, namely,

dp _ .
7 =p=F (1-3)
If the mass is independent of time, then dp/dt = mdk/dt = mi = ma. If F is given as a
function of position F(x, y, z), then Eq. (1-3) represents a set of second-order differen-
tial equations in x, y, and z whose solutions give x, y, and z as a function of time if
some initial conditions are known. Thus Eq. (1-3) is called an equation of motion. We
shall consider three applications of this equation.

Example 1. Solve the equation of motion of a body of mass m shot vertically
upward with an initial velocity v, in a gravitational field.

If we choose the x-axis (positive in the upward direction) to be the height of the
body, then we have

mX = —mg
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where mg is the magnitude of the force. The negative sign indicates that the force is
acting in a downward direction. The solution to this differential equation for x is then

x(t) = —3gt2 + vyt + x, (1-4)

with x, equal to x(0), which in our case is 0. This then gives the position of the body
at any time after it was projected. The extension of this problem to two dimensions
(i.e., a shell shot out of a cannon) and the inclusion of viscous drag on the body are
discussed in Problems 1-1 and 1-2.

Example2. Set up and solve the equation of motion of a simple harmonic oscillator.

Let x, be the length of the unstrained spring. Hooke’s law says that the force on
the mass attached to the end of the springis F = —k(x — xo). If we let £ = x — x,, we
can write

2
% + s =0 (1-5)
whose solution is
&(t) = A sin wt + B cos wt (1-6)
The quantity
o = (kfm)'? (-7

is the natural vibrational frequency of the system. Equation (1-6) can be written in an
alternative form (see Problem 1-5)

&(t) = Csin(wt + ¢) (1-8)

This shows more clearly that the mass undergoes simple harmonic motion with
frequency w. Problems 1-3 through 1-5 illustrate some of the basic features of simple
harmonic motion.

Example 3. Two-dimensional motion of a body under coulombic attraction to a
fixed center.

In this case the force is F = — Kr/r3, that is, it is of magnitude —Kir? and directed
radially. Newton’s equations become

. Kx
mx = Fx = — _—(xz +y2)3/2
K
mj = F, = Y (1-9)

- (xz + yz)s/z
Unlike our previous examples, these two equations are difficult to solve. Since the

force depends, in a natural way, on the polar coordinates r and 0, it is more convenient
for us to set the problem up in a polar coordinate system. Using then

x=rcosf
y=rsin0

and some straightforward differentiation, we get

{m(i' —0%r) + :—i,cos 6 — m(rf + 207)sin 6 = 0 (1-10a)

K ,
‘m(i‘ -6+ r—z}sin 0 + m(rf + 26i)cos 6 = 0 (1-10b)
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By multiplying the first of these equations by cos § and the second by sin 6 and then
adding the two, one gets

m(f—-ézr)+’1_<—z=0 (1-11)

But this is just the term in braces in Eq. (1-10), which leads us to the result that
m(rf + 267) = 0 (1-12)

as well. Equation (1-12) can be written in the form
1d, ,
- = = -13
-5 (mr?6) =0 (1-13)

which implies that
mr?6 = constant (1-14)

This quantity, 7r26, which maintains a fixed value during the motion of the particle,
is called the angular momentum of the particle and is denoted by . The angular
momentum is always conserved if the force is central, that is, directed along r (see
Problem 1-10).

Equation (1-14) can be used to eliminate 6 from Eq. (1-11) to give an equation in r
alone, called the radial equation:

. P K
mr————3+;—2=0 (1-15)

This equation can be solved (at least numerically) to give r(t), which together with
Eq. (1-14) gives 0(1).

Even though the solution in this example is somewhat involved using polar coordi-
nates, it is nevertheless much easier than if we had used Cartesian coordinates. This
is just one example of many possibilities, which show that it is advantageous to
recognize the symmetry of the problem by using the appropriate coordinate system.

This example was introduced, however, to illustrate another important point.
Notice that Eq. (1-15) for r can be written as a Newtonian equation (i.e., in the form
F = ma)

mi = — "3 + mT‘
if we interpret the term 12/mr® as a force. This force is the well-known centrifugal
force and must be introduced into the equation for m¥.

This constitutes the main disadvantage of the Newtonian approach. The form of
the equation mij = F, (where 1 is some general coordinate) is useful only in Cartesian
systems, unless we are prepared to define additional forces, such as the centrifugal
force in the above example. At times these necessary additional forces are fairly
obscure.

There exist more convenient formulations of classical mechanics which are not tied
to any one coordinate system. The two formulations that we are about to introduce
are, in fact, independent of the coordinate system employed. These are the Lagrangian
and the Hamiltonian formulations.
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LAGRANGIAN APPROACH
Let K be the kinetic energy of a particle. In Cartesian coordinates

K(, §, ) =2 (2 + 52 + £)

Let the potential energy be U. In many problems U is a function of position only, and
so we write U(x, y, z). Newton’s equations are

mi=——
ox

with similar equations for y and z. Now introduce a new function
ux’ Y, 2, x’ }." Z.) = K(x’ j’r Z.) - U(x’ Vs Z)

This function is called the Lagrangian of the system. In terms of L, we have

oL 0K _
ox 0%
oL U
ox  ox

and we can write Newton’s equations in the form
d (6L) _ oL

(== 1—
ai\ax) " ox (1-16)

with similar equations for y and z. These are Lagrange’s equations of motion in
Cartesian coordinates. The remarkable and useful property of Lagrange’s equations
is that they have the same form in any coordinate system. If the x, y, z are transformed
into any other system, say q, ¢, , g3, Lagrange’s equations take the form

d[oL\ oL
CE)=E 21,23 1217
dr(aq,) 2, 7 (-7

This can be proved by writing x = x(g;, 42, 43), ¥ = (91592, 93), and z = z(¢;, 45 , 43)
and then transforming Eq. (1-16) into Eq. (1-17). (See Problem 1-13.)

Lagrange’s equations are more useful than Newton’s equations in many problems
because it is usually much easier to write down an expression for the potential energy
in some appropriate coordinate system than it is to recognize all the various forces.
The Lagrangian formalism is based on the potential energy of the system, whereas the
Newtonian approach is based on the forces acting on the system.

To illustrate the utility of the Lagrangian approach, we shall redo Example 3, the
two-dimensional motion of a particle in a coulombic force field.

Example 3'. The kinetic energy is

K=% (% + 51 =2 (1 + 16
2 2
and the potential energy is U = — K,r. The Lagrangian, then, is

L(r, 0, 7, 0) = -'27—1 (F + r26%) + I; (1-18)
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The two Lagrangian equations of motion are

d aL) oL
di (af ~or
4y i
dt\ob) — a6
or using Eq. (1-18) for L,

d, . , K

%(mrzé) =0

These two equations are just Egs. (1-11) and (1-13). Note, however, that they were
obtained in a much more straightforward manner than were Egs. (1-11) and (1-13).
Problems 1-10 through 1-12 further illustrate the utility of the Lagrangian formula-
tion. Other problems involve the motion of one and two particles in central force fields.

Equations (1-17) are three second-order ordinary differential equations. To com-
pletely specify the solutions, we need three initial velocities ¢,(0), §,(0), 1(0), and three
initial positions ¢,(0), g,(0), g3(0). These six initial conditions along with Lagrange’s
equations completely determine the future (and past) trajectory of the system. If there
were N particles in the system, there would be 3N Lagrange equations and 6N initial
conditions.

There is another formulation of classical mechanics that involves 6N first-order
differential equations. Although this formulation is not as convenient as Lagrange’s
for solving problems, it is more convenient from a theoretical point of view, partic-
ularly in quantum mechanics and statistical mechanics. This is the Hamiltonian
formulation.

HAMILTONIAN APPROACH
We define a generalized momentum by

oL

=— j=12,...,3N (1-19)
04;

Pp;j
This generalized momentum is said to be conjugate to g;. Note that Eq. (1-19) is
simply p, = mx, and so on, in Cartesian coordinates.

We now define the Hamiltonian function for a system containing just one particle
(for simplicity) by

3
H(py, P2 P3» 91,925 93) =.le, d; = L(d1> 425 435 91,92, 95) (1-20)
-

It is understood here that the §;’s have been eliminated in favor of the p,’s by means
of Eq. (1-19).

An important difference between the Lagrangian approach and the Hamiltonian
approach is that the Lagrangian is considered to be a function of the generalized
velocities ¢; and the generalized coordinates g;, whereas the Hamiltonian is con-
sidered to be a function of the generalized momenta p; and the conjugate generalized
coordinates ¢;. This may appear to be a fine distinction at this point, but it will turn
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out to be important later on. It also may seem, at this time, that the definition
Eq. (1-20) is rather obscure, but we shall give a motivation for its form in Section 1-4.
(See Problem 1-38.)

For the kinds of systems that we shall treat in this book, the kinetic energy is of the
form

3N
K =zla,-(q., 925 --+> q;m)é,-z (1-21)
i=

that is, a quadratic function of the generalized velocities. The coefficients a; are, in
general, functions of generalized coordinates but not an explicit function of time. If,
furthermore, the potential energy is a function only of the generalized coordinates,
then the p; occurring in Eq. (1-20) are given by

where the last equality comes from Eq. (1-21). Substituting this into Eq. (1-20) gives
the important result

H = K + U = total energy (1-22)

We shall now show that if the Lagrangian is not an explicit function of time, then
dH dt = 0. We begin with the definition of H, that is, Eq. (1-20).

. . oL . oL
dH =Y §;dp; +3,p;dg; — Y ~——dg; — 3 ——dg;
7 7 04, oq;

But if we use Egs. (1-17) and (1-19), we see that

dH = 4;dp;— ) p;dq; (1-23)
The total derivative of H is (assuming no explicit dependence on time)
oH OH
dH =} (—) dp; —) dg; 1-24

Comparing Egs. (1-23) and (1-24), we get Hamilton’s equations of motion:

0H 0H ] .

6p_,-_qi %, b, Ji=1,2...,3N (1-25)
Hamilton’s equations are 6N first-order differential equations. It is easy to show from
Egs. (1-24) and (1-25) that dH/dt = 0. (See Problem 1-14.) This along with Eq. (1-22)
says that energy is conserved in such systems.

Since the Hamiltonian is so closely related to the energy, and it is the total energy
which is usually the prime quantity in quantum and statistical mechanics, the Hamil-
tonian formalism will turn out to be the most useful from a conceptual point of view.
Fortunately, however, we shall never have to solve the equations of motion for. macro-
scopic systems. The role of statistical mechanics is to avoid doing just that.

1-3 QUANTUM MECHANICS

In the previous section we have seen that a knowledge of the initial velocities and
coordinates of a particle or a system of particles was sufficient to determine the future
course of the system if the equations of motion, essentially the potential field that the
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system experiences, are known. If the state (its velocities and coordinates) of the
system is known at time ¢,, then classical mechanics provides us with a method of
calculating the state of the system at any other time ¢,.

By the 1920s it was realized that such a calculation was too detailed in principle.
The Heisenberg uncertainty principle states that it is impossible to precisely specify
both the momentum and position of a particle simultaneously. Consequently, the
prescription given by classical mechanics had to be modified to include the principle of
uncertainty. This modification resulted in the development of quantum mechanics.

There are a number of levels of introducing the central ideas of quantum mechanics,
but for most of the material in this text, we need consider only the most elementary.
A fundamental concept of quantum mechanics is the so-called wave function ‘¥(q, t),
where q represents the set of coordinates necessary to describe the system. The wave
function is given the physical interpretation that the probability that at time ¢ the
system is found between g, and ¢, + dq,, g, and ¢, + dg,, and so on, is

Y*(q, t)\V(q,t) dq, dq, - - - dgsy

We shall often write dg, - - - dgsy as dq. The uncertainty principle dictates that ‘Y(q, t)
is the most complete description of the system that can be obtained. Since the system
is sure to be somewhere, we have

[¥*(a. 0%, 0 dg=1 (1-26)

If Eq. (1-26) is satisfied, ¥ is said to be normalized.

A central problem of quantum mechanics is the calculation of ‘¥(q, t) for any
system of interest. We denote the time-independent part of \¥(q, t) by ¥/(q). The state
of the system described by a particular /(q) is said to be a stationary state. Through-
out this book we shall deal with stationary states only.

For our purpose, the wave function y is given as the solution of the Schrodinger
equation

HY = EyY (1-27)

where 3 is the Hamiltonian operator, and E is a scalar quantity corresponding to the
energy of the system. The Hamiltonian operator is
hz az az az
‘# = x5 a.2 N2 U I £)
Zm(i)x2 + oy? + azz) +Ux»2)
hz
= —— V24 U(x, y, 1-28
5V T UG 2) (1-28)

where h is h2r, that is, Planck’s constant divided by 2z. The first term here corre-
sponds to the kinetic energy, and the second term is the potential energy. The Hamil-
tonian operator, then, corresponds to the total energy. There is a quantum mechanical
operator and an equation similar to Eq. (1-27) corresponding to every quantity of
classical mechanics, but we shall need only the one for the energy, namely, the
Schrodinger equation.

Given certain physical boundary conditions of the system, a knowledge of 5# alone
is sufficient to determine y and E. The wave function i is called an eigenfunction of
the operator 3, and E is called an eigenvalue. There will usually be many ¢’s and
E’s that satisfy Eq. (1-28), and this is indicated by labeling i and E with one or more
subscripts. Generally, then, we have

HY;=E;y; (1-29)
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Equation (1-29) is a partial differential equation for ;. The application of the
boundary conditions often limits the values of E; to only certain discrete values. Some
simple examples are

1. a particle in a one-dimensional infinite well:

hz az

2m ox?
hn?
= Smd?

2. a simple harmonic oscillator:

n=1,2 ... (1-30)

n ot 1
= T ama 3
eg,=m+dHho n=0,1,2,... (1-31)

where o = (k:m)*/2.
3. a rigid rotor (see Problem 1-21):

2 2
H = h{l a(sin0‘3)+1 6}

~ 21 \sin 6 90 36) " sin? 6 0¢2
JJ + Dh?
q:i—%l— J=0,1,2,... (1-32)

Here I is the moment of inertia of the rotor (see Problem 1-15 for a treatment of the
classical counterpart of this system).

The rigid rotor illustrates another important concept of quantum mechanics,
namely, that of degeneracy. It happens that there may be a number of eigenfunctions
or states of the system having the same eigenvalue or energy. The number of eigen-
functions having this energy is called the degeneracy of the system. For the rigid rotor,
the degeneracy, w;, is 2J + 1. The particle in a one-dimensional infinite well and the
simple harmonic oscillator are nondegenerate, that is, the , are unity. The concept
of energy states and degeneracy plays an important role in statistical thermodynamics.

Consider the energy states of a particle in a three-dimensional infinite well. These
are given by

2
Cnsnys = 5 n2+n?+n?  n,n,n,=123,... (1-33)

The degeneracy is given by the number of ways that the integer M = 8ma®e/h* can
be written as the sum of the squares of three positive integers. In general, this is an
erratic and discontinuous function of M (the number of ways will be zero for many
values of M), but it becomes smooth for large M, and it is possible to derive a simple
expression for it. Consider a three-dimensional space spanned by n,, n,, and n, . There
is a one-to-one correspondence between energy states given by Eq. (1-33) and the points
in this n,, n,, n, space with coordinates given by positive integers. Figure 1-1 shows a
two-dimensional version of this space. Equation (1-33) is an equation for a sphere of
radius R = (8maZe/h?)'/? in this space

8ma’e

-

n2+n?+n?=
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Figure 1-1. A two-dimensional version of the (n., n,, n.) space, the space with the quantum numbers
Ny, Ny, and n. as axes.

We wish to calculate the number of lattice points that are at some fixed distance from
the origin in this space. In general, this is very difficult, but for large R we can proceed
as follows. We treat R or ¢ as a continuous variable and ask for the number of lattice
points between € and € + Ae. To calculate this quantity, it is convenient to first calculate
the number of lattice points consistent with an energy <e. For large ¢, it is an excellent
approximation to equate the number of lattice points consistent with an energy <e
with the volume of one octant of a sphere of radius R. We take only one octant,
because n,, n,, and n, are restricted to be positive integers. If we denote the number
of such states by ®(g), we can write

4nR3\ = (8ma’e\3/?
O(e) = ( 3 ) = E(T) (1-34)

The number of states between ¢ and ¢ + Ae (Ae’e € 1) is
(e, Ag) = B(e + Ae) — D(e)

h2

If we take e = 3kT/2, T = 300°K, m = 10722 g, g = 10 cm, and Ae to be 0.01¢ (in
other words a 1%, band around &), then w(e, A¢) is O(10%8).* So even for a system
as simple as a particle-in-a-box, the degeneracy can be very large at room tem-
perature.

For an N-particle system, the degeneracy is tremendously greater than 0(10%%).
To see this, consider a system of N noninteracting particles in a cube. The energy of
this system is

hz
- 8ma

2\ 3/2
o (sma ) e aa + O (1-35)

z
Qo2 Z("xj +"w +"lj Smaz 2 Sj

where n,;, n,;, n,;, and s; are positive integers. The degeneracy of this system can be
calculated by generalizing the above derivation for one particle. Using the volume of

* We use the notation O(1028) say, to mean of the order of magnitude 1028, This differs from standard
mathematical notation, but there should be no confusion.
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an N-dimensional sphere from Problem 1-24, the number of states with energy <E is*
1 2nma*E\3"?
(N + DI[3N2) + 1] ( h? )

where I'(n) here is the gamma function. (See Problem 1-58.) The number of states
between E and E + AE is

1 (27rma2
TN+ DIGN 2\ #2

In this case, E=3NkT:2. If we take T =300°K, m=10"22 g, a=10 cm,
N = 6.02 x 1023, and AE equal to 0.01E, we get Q(E, AE) to be O(10") (see Problem
1-23), an extremely large number. This shows that as the number of particles in the
system increases, the quantum mechanical degeneracy becomes enormous. Although
we have shown this only for a system of noninteracting particles confined to a cubical
box, that is, an ideal gas, the result is generally true. We shall see in the next chapter
that the concept of the degeneracy of a macroscopic system is very important.
There is another quantum mechanical result that we shall use later on. It often
happens that the Hamiltonian of a many-body system can be written either exactly or
approximately as a summation of one-particle or few-particle Hamiltonians, that is,

O(E) = (1-36)

3N/2
Q(E, AE) = ) EGNZ"D AE (1-37)

Ho=Hog+ Hg+ H,+ (1-38)

Let the eigenvalues of #’; be ¢;, and the eigenfunctions be y;, where j= o, 8, v, ...
To solve the many-body Schrédinger equation, we let ¢ = y,yp¥, ... . Then

HY =(Hot+ Hp+Hy+  Walp¥,
=Ypy  HaWa+ Val, HpPp+ -
=Yp¥yeala+ Valyepp+
=(e,+ 8+ " Walp¥, " =E¢y (1-39)

In other words, the energy of the entire system is the sum of the energies of the indi-
vidual particles if they do not interact. This is a very important result and will allow
us to reduce a many-body problem to a one-body problem if the interactions are weak
enough to ignore, such as in the case of a dilute gas. We shall see a number of cases
where, even though the interactions are too strong to be ignored (such as in a solid), it
is possible to formally or mathematically write the Hamiltonian in the form of
Eq. (1-38). This will lead to defining quasi-particles like phonons and photons.

The last quantum mechanical topic we shall discuss here is that of the symmetry of
wave functions with respect to the interchange of identical particles. Consider a system
of N identical particles, described by a wave function (1, 2, 3, ..., N), where 1
denotes the coordinates of particle 1, and so on. If we interchange the position of any
two of the particles, say particles 1 and 2, the wave function must either remain the
same or change sign. (See Problem 1-26.) Thus if we let P,, be an operator that
exchanges the two identical particles 1 and 2, then

P12¢(192’3a-”9N)=¢(2, 1,3,...,N)
=+y¥(1,2,3,...,N) (1-40)

* The extra factor of I'(V + 1) occurs here because of the indistinguishability of the N particles. This will
be discussed fully in Chapter 4.
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It turns out that whether the wave function remains the same or changes sign is a
function of the nature of the two identical particles that are exchanged. For particles
with an integral spin (such as the He-4 nucleus, photons, ...), the wave function
remains the same. In this case the wave function is called symmetric, and such particles
are called bosons. For particles with half-integral spin (such as electrons, ...), the
wave function is called antisymmetric, and the particles are called fermions. Chapter
4 considers the consequences of this symmetry requirement of wave functions.

1-4 THERMODYNAMICS

In this section we shall not attempt to review thermodynamics, but shall simply state
the three laws and briefly discuss their consequences. Problems 1-27 through 1-36
review some of the equations and manipulations that arise in thermodynamics. Two
topics that are not often treated in elementary physical chemistry are presented here,
namely, Legendre transformations and Euler’s theorem. Both of these topics will be
used later on.

The pressure-volume work done by a system on its surroundings in going from
state A to state B is

w= f:p dv

where p is the pressure exerted by the surroundings on the system. The differential
quantity éw is positive if dV is positive.

The heat absorbed by the system from the surroundings during the change of the
system from state A4 to state B is

q= f:éq

The first law of thermodynamics states that even though w and g depend upon the
path taken from 4 to B, their difference does not. Their difference, then, is a function
only of the two states A and B, or, namely, is a state function. This function is called
the internal energy or thermodynamic energy and is denoted by E.

The first law of thermodynamics is

AE=EB—EA=q—W
B B
=[sq—[ pav (1-41)
A A

For simplicity, we consider only p-V work.

A reversible change is one in which the driving force (a difference in pressure, a
difference in temperature, and so on) is infinitesimal. Any other change is called
irreversible or spontaneous. Problem 1-27 asks the reader to show that for an iso-
thermal Process, Weey > Wirrey and Grev > Girrev -

The first law of thermodynamics is nothing but a statement of the law of conserva-
tion of energy. The second law is somewhat more abstract and can be stated in a
number of equivalent ways. One of them is: There is a quantity S, called entropy, which
is a state function. In an irreversible process, the entropy of the system and its surround-
ings increases. In a reversible process, the entropy of the system and its surroundings
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remains constant. The entropy of the system and its surroundings never decreases. The
system and its surroundings are often referred to as the universe.

The mathematical expression for the difference in entropy between states 4 and B
of a system is given by

dqrev
— rev 1-4
AS = J- T ( 2)

Note that the heat appearing here is that associated with a reversible process. To
compute AS between two states A and B, we must take the system from A to Bin a
reversible manner.

Another statement of the second law is: Along any reversible path, there exists an
integrating factor T, common to all systems such that

_ ey
T

is an exact differential, that is, that S is a state function. Thus

ds (1-43)

- (%

For all other processes

where T is the temperature of the surroundings.

The third law of thermodynamics states: If the entropy of each element in some
crystalline state be taken as zero at the absolute zero of temperature, every substance
has a finite positive entropy, but at the absolute zero of temperature, the entropy may
become zero, and does become so in the case of perfect crystalline substances.

The second law is concerned with only the difference in the entropy between two
states. The third law allows us to calculate the absolute entropy of a substance by
means of the expressions

T MI’CV
S - So = J-o T and So = 0 (1—44)
Problem 1-36 asks you to calculate the absolute entropy of gaseous nitromethane at its

boiling point.
For simple one-component systems, the first law can be written in the form

dE=T dS —pdV (1-45)
This implies that
OE oE
=) =7 =) =- -
(6S)y and (6V)s D (1-46)

The simplicity of these partial derivatives implies that E is a “ natural >’ function of S
and V. For example, if we were to consider E to be a function of ¥V and T (see
Problem 1-30), we would get

op

dE = [T(a—T)v - p] dv + C, dT
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X X

(a) (b)

Figure 1-2. (a) shows the function y(x) and (b) shows a family of functions, all of which give the same
value of y for any fixed value of p.

Note that in this case the coefficients of dV and dT are not as simple as the coefficients
of dV and dS obtained when E is expressed as a function of S and V. The “ simplicity *’
of the expression dE = T dS — p dV suggests that S and V are the “ natural ” variables
for E. The quantities S and V (especially S) are difficult to control in the laboratory
and consequently are not always the most desirable independent variables. A more
useful pair might be (7, V) or (T, p). An important question that arises, then, is the
existence of other thermodynamic state functions whose natural variables are (T, V)
or (T, p), and so on. Furthermore, how would one find them if they do exist. This
leads us to the topic of Legendre transformations.

We shall discuss a function of one variable in some detail and then simply present
the generalization to a function of many variables. Consider a function y = y(x), and
let its slope be p = p(x). We wish to describe the function y(x) in terms of its slope.
Figure 1-2, however, shows that the slope alone is not sufficient to completely specify
y(x). Figure 1-2(a) shows the curve y(x), and Fig. 1-2(b) shows a family of curves, all
of which give the same value of y for any one value of p. In order to uniquely describe
the curve in Fig. 1-2(a), we must select one member of the family of curves in
Fig. 1-2(b). We do this by specifying the intercepts of the tangent lines with the y-axis.
Let the intercept be ¢(p). Instead of describing the curve in Fig. 1-2(a) by y versus x,
then, we can equally well represent it by specifying the slope at each point along with
the intercept of the slope with the y-axis. Figure 1-3 shows these two representations.
One sees that either representation can be used to describe the function. The relation
between the two representations can be obtained by referring to Fig. 1-4. This figure
shows that the slope p at any point is given by

_r=9¢

P x—-0

The result that we are after is

d(p)=y—px (1-47)

The function ¢(p) is the Legendre transformation of y. It is completely equivalent to
y(x), but considers p to be the independent variable instead of x. This may not be
clear from the notation in Eq. (1-47), but it is understood there that y and x have been
eliminated in favor of p by using the equations y = y(x) and x = x(p).

Let us apply this to the thermodynamic energy E(S, V). We seek a function of
T and V that is completely equivalent to E. Equation (1-46) shows that T = (0E/0S)y,
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(a) »-x representation (b) ¢-p representation

Figure 1-3. In(a), the function is represented by the locus of points, y versus x. In (b), the same function
is given by the envelope of its tangent curves.

and so we are in a position to apply Eq. (1-47) directly. This can be treated as a one-
variable problem, since V is held fixed throughout. Therefore the Legendre transfor-
mation of E that considers T and V to be the independent variables is E — T'S. Of
course, this is the Helmholtz free energy

AT, V)=E-TS (1-48)
whose differential form is
dA=—-SdT —pdVv (1-49)

This shows that the natural variables of 4 are Tand V. Another motivation for saying
this is that the condition for equilibrium at constant T and V is that 4 assume its
minimum value, or that A4 < 0 for a spontaneous process at constant 7 and ¥ To
prove this, write
dA=dE—TdS —SdT
=6q_pdV_6qtev_SdT
= 6q - 6qrev (1-50)

e ————

g

Figure 1-4. The diagram used to derive the connection between the y-x representation and the <;b—p
representation.
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at constant T and V But g < éq,., (see Problem 1-27), and so A4 <0 at constant
Tand V

In elementary physical chemistry, the function A = E — TS is often presented as
an a priori definition. But it should be apparent now that this form is dictated by the
Legendre transformation if one specifies T and ¥V to be the independent variables.

A function, whose natural variables are S and p, can be obtained in the same
manner. Equation (1-46) shows that p = —(9E:dV)g, so Eq. (1-47) gives that E + pV
is a thermodynamic state function, whose natural variables are S and p. This function
is, of course, the enthalpy.

The generalization of Eq. (1-47) to more than one variable is simply

¢(P)=}’_2ijj (1-51)

where the x;’s are the independent variables of y, and p; = (dy;dx;). We can use
Eq. (1-51) to construct a thermodynamic state function, whose natural variables are
Tand p. Using Egs. (1-46) and Eq. (1-51), we see that such a functionis E — T'S + pV,
the Gibb’s free energy. Its differential form dG = —S dT + V dp and the fact that
AG < 0 for a spontaneous change at constant T and p suggest that T and p are the
natural variables of G.

Up to this point we have considered only closed one-component systems. In general,
E, H, A, and G depend upon the number of moles or molecules of each component. If
we let N; be the number of moles of component j, we have

OE
dE=TdS — )/ av + (—) dNJ- (1-52)
J aNJ S,V,Nk, j#x
=TdS—pdV +Y u;dN, (1-63)
J

where the second line defines u;. By adding d(pV) to both sides of Eq. (1-53), we get
dH=TdS+Vdp+) p;dN; (1-54)
j

If we subtract d(T'S) from both sides of Eq. (1-53), we get
dA=—SdT —pdV + ) p;dN; (1-55)
7

Similar manipulations give

dG= —-SdT +Vdp+) p;dN; (1-56)
j

Equations (1-52) through (1-56) show that

_(aE) _(aH) _(aA) _(66) (1-57)
K ON;/s,v, ... ON,/s,p,.. aNj v, T,.. aNj 2T, ..

The quantity p; is called the chemical potential.

There is a mathematical theorem, called Euler’s theorem, which is very useful in
thermodynamics. Before discussing Euler’s theorem, however, we must define exten-
sive and intensive variables. Extensive properties are additive; their value for the
whole system is equal to the sum of their values for the individual parts. Examples are
the volume, mass, and entropy. Intensive properties are not additive. Examples are
temperature and pressure. The temperature of any small part of a system in equili-
brium is the same as the temperature of the whole system. Euler’s theorem deals with
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extensive and intensive variables. If
f(lxl, lx:, eeny lxN)=)~’_lf(xl, xz, ...,xN) (1—58)

fis said to be a homogeneous function of order n. The functions f(x) = 3x* and
f(x, y, 2) = xy* + z® — 6x*[y are homogeneous functions of degree 2 and 3, respec-
tively, whereas f(x) =x? + 2x —3 and f(x, y) = xy — ¢ are not homogeneous.
Euler’s theorem states that if f(xy, ..., xy) is a homogeneous function of order n, then

g ) g
nf(xl,...,xN)=x15x—l+xza—){2+"'+xN-a—;; (1-59)

The proof of Euler’s theorem is simple. Differentiate Eq. (1-58) with respect to A:

ot ) 5) (L)) o G

=% (ajil) +x: (agz) ot "”(aj];,,)

Euler’s theorem is proved by letting 4 = 1.
Extensive thermodynamic variables are homogeneous of degree 1. Let us apply
Euler’s theorem to the Gibb’s free energy.

G(T’ ps )'Nl’ A'NZ» '“) = )“G(T’ D, NI’NZ’ "')
The variables T and p here can be treated as constants. Equation (1-59) gives that
G
G=) N;,|—
z J (aNl)

Jj i/ T, pyeee

=§:Nj#j (1-60)

Taking the derivative of this at constant T and p,
dG =Y N;dp;+) p;dN; (constant T and p)
7 7

But using Eq. (1-56) at constant T and p, we have
Y N;du;=0  (constant T and p) (1-61)
J

This is called the Gibbs-Duhem equation and is very useful in the thermodynamic
study of solutions. (See Physical Chemistry, 4th ed., by W. J. Moore, p. 235, under
“Additional Reading,” for a simple application of the Gibbs-Duhem equation.)

We shall conclude this section on thermodynamics with a brief discussion of the
application of thermodynamics to chemical equilibria. Consider the general reaction

VaA+vgB+ - vp D+ vgE 4 - (1-62)

The capital letters represent the formulas of the compounds, and the v; represent
stoichiometric coefficients. It is more convenient to write Eq. (1-62) mathematically as

vpD + VvgE+ -+ —vA—vgB—+--=0 (1-63)
Define the extent of reaction 4, such that dN; = v; dA for all j, where the v’s for pro-

ducts are positive, and those for reactants are negative.
At constant T and p, we have

dG =Y p;dN;= (Z Uj v,-) d\  (constant T and p)
i

j
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At equilibrium, G must be a minimum with respect to 4, so we write
Zﬂjvj=vnﬂn+ VEHE+ " — Vapy — vpup— =0 (1-64)
J

at equilibrium. The equilibrium between phases can be considered to be a chemical
reaction of the form 4= B, and so Eq. (1-64) gives that u, = u from the equilibrium
condition between two pure phases.

Now consider the application of Eq. (1-64) to a chemical reaction between gases
dilute enough to be considered ideal. Let the reaction be v,4 + vgB=v:C + v;,D.
At constant temperature,

dG=Vdp (constant T)
and so
P ? NkT P
G—-G°=| Vdp=| ——dp=NkTIn— (1-65)
fpo fpo p Po

In this equation G° is the standard free energy of the gas, the standard state being the
gas at a pressure p,. Usually p, is taken to be 1 atmosphere. If we take N to be 1
mole, then G and G° become p and u°. Each component in the reactive gas mixture
will have an equation of the form of Eq. (1-65), and so we have

ui(T, p) = p,°%T) + RT In % (1-66)

0j

The total free energy change is

Ap=vcpc+ Vpup — Vala— VBl
(pc’)“(pp’)™®

() *(ps)"

In this equation the (p’)’s are p/p,, that is, they are the pressures relative to the
standard states. These (p’)’s are unitless. The argument of the logarithm here has the
form of an equilibrium constant, but is not equal to the equilibrium constant unless
the pressures are those which exist at chemical equilibrium. Equation (1-67) gives the
change in free energy of the conversion of reactants at arbitrary pressures to products

at arbitrary pressures.
At equilibrium, Ay = 0, and we have

(Pc')vc(PD')vD]

A 0 — —RTIn ['—,——,—

K (P4)*(P5)"® ] cquitibrivm

= —RTIhK, (1-68)

= A’ + RTIn (1-67)

There are extensive tabulations of u®’s, and so Au° is a simple matter to calculate. We,
see that if Au® < 0, then K, > 1, that is, the conversion of reactants in their standard
states to products in their standard states proceeds spontaneously. On the other hand,
if Au® >0, then K, < 1, and we conclude that the reaction does not proceed spon-
taneously. It should be understood, however, that this applies only to reactants and
products in their standard states. In general, it is Ay along with Eq. (1-67) that deter-
mines the extent of a chemical reaction. (See Problem 1-34.)
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1-5 MATHEMATICS

In this section we shall discuss several mathematical techniques or results that are
repeatedly used in statistical thermodynamics. The topics we shall discuss here are
random variables and distribution functions, Stirling’s approximation, the binomial
and multinomial coefficients, the Lagrange method of undetermined multipliers, and
the behavior of binomial and multinomial coefficients for large numbers.

PROBABILITY DISTRIBUTIONS

Let u be a variable which can assume the M discrete values u,, u,, ..., u, with
corresponding probabilities p(u,), p(4;), ..., p(up). The variable u is said to be a
discrete random variable, and p(u) is said to be a discrete distribution. The mean, or
average, value of u is

i = 21 1 u p(
z_i=l p(u_,)

Since p(u;) is a probability, p(u;) must be normalized, that is, the summation in the
denominator must equal unity. The mean of any function of u, f(u), is given by

—_— M
S =j)=:lf(u,-)p(u,-) (1-69)

If f(u) = u™, f(u) is called the mth moment of the distribution p(x). If f(u) = (u — @)™,
f(u) is called the mth central moment, that is, the mth moment about the mean. In
particular, the mean of (u — #)? is called the variance, and is a measure of the spread
of the distribution. The square root of the variance is the standard deviation.

A very commonly occurring and useful discrete distribution is the Poisson distribu-
tion:

ame”°

P(m) = m=0,1,2,... (1-70)
This distribution has been applied to shot noise in electron tubes, the distribution of
galaxies in space, aerial search, and many others.* (See Problem 1-42.)

If the random variable U is continuous rather than discrete, then we interpret
p(u) du as the probability that the random variable U lies between the values » and
u + du. The mean of any function of U is

£ = [ £@p() du (1-71)

The limits of the integral are over the entire range of U.
The most important continuous probability distribution is the Gaussian distribu-
tion:

2
p(x)= @n 2)mexp{ & x)} —0<x<Lw® (1-72)

The quantity o2, which is the variance, controls the width of the Gaussian distribution.
The smaller the o, the narrower the Gaussian distribution becomes. In the limit ¢ — 0,
Eq. (1-72) becomes a delta function (this is one representation of a delta function of
Appendix B). Problems 1-43 through 1-45 involve some important results based on
Eq. (1-72).

* See Modern Probability Theory and Its Applications by E. Parzen (New York: Wiley, 1960).
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STIRLING’S APPROXIMATION

In statistical thermodynamics we often encounter factorials of very large numbers,
such as Avogadro’s number. The calculation and mathematical manipulation of
factorials become awkward for large N. Therefore it is desirable to find an approxima-
tion for N! for large N. Problems of this sort occur often in mathematics and are
called asymptotic approximations, that is, an approximation to a function which
improves as the argument of that function increases. Since N! is actually a product, it
is convenient to deal with In N'! because this is a sum. The asymptotic approximation
to In N! is called Stirling’s approximation, which we now derive.

Since N!= N(N — 1)(N —2) --- 2)(1), In N! is

N
InN!'=) Inm (1-73)
m=1

Figure 1-5 shows In x plotted versus x. The sum of the areas under these rectangles
up to N is In N!. Figure 1-5 also shows the continuous curve In x plotted on the same
graph. Thus In x is seen to form an envelope to the rectangles, and this envelope
becomes a steadily smoother approximation to the rectangles as x increases. We can
approximate the area under these rectangles by the integral of In x. The area under
In x will poorly approximate the rectangles only in the beginning. If N is large enough
(we are deriving an asymptotic expansion), this area will make a negligible contribu-
tion to the total area. We may write, then,

N N
InN!= Z lnmzf Inxdx=NInN—-N (N large) (1-74)
m=1 1

which is Stirling’s approximation to In N!. The lower limit could just as well have
been taken as 0 in Eq. (1-74), since N is large. (Remember that x In x —» 0 as x - 0.)

A more refined derivation of Stirling’s approximation gives In N!~ NInN— N
+ In(2nN)'/2, but this additional term is seldom necessary. (See Problem 1-59.)

3.0 __‘P—ﬁ’ﬁ"\—TTTT
ﬂ%
e
1l
2o A
Inx %FZ
1.0
5 10 is 2 2 3

X

Figure 1-5. A plot of In x versus x, showing how the summation of In m can be approximated by the
integral of In x.
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BINOMIAL AND MULTINOMIAL DISTRIBUTION

During the course of our discussion of the canonical ensemble, we shall encounter
the problem of determining how many ways it is possible to divide N distinguishable
systems into groups such that there are n, systems in the first group, n, systems in
the second group, and so on, and such that n, + n, + = N, that is, all the systems
are accounted for. This is actually one of the easiest problems in combinatorial
analysis. To solve this, we first calculate the number of permutations of N distin-
guishable objects, that is, the number of possible different arrangements or ways to
order N distinguishable objects. Let us choose one of the N objects and place it in
the first position, one of the N — | remaining objects and place it in the second posi-
tion, and so on, until all N objects are ordered. Clearly there are N choices for the first
position, N — 1 choices for the second position, and so on, until finally there is only
one object left for the Nth position. The total number of ways of doing this is then the
product of all the choices,

N(N-=1D(N—-2)---(2)(1) =N! (distinguishable objects)

Next we calculate the number of ways of dividing N distinguishable objects into
two groups, one group containing N, objects, say, and the other containing the remain-
ing N — N,. There are N(N — 1) --- (N — N; + 1) ways to form the first group, and
N,!=(N — N,)! ways to form the second group. The total number is, then, the
product

(N —N)!

But this has overcounted the situation drastically, since the order in which we place
N; members in the first group and N, in the second group is immaterial to the problem
as stated. All N,! orders of the first group and N,! orders of the second group corre-
spond to just one division of N objects into N, objects and N, objects. Therefore the
desired result is

N1 N!
N,\(N — N,)! N,!N,!

NN —1)--(N=N,+ 1) x (N—N)! = x (N —Np)!=N!

(1-75)

Since the combination of factorials in Eq. (1-75) occurs in the binomial expansion,

N NixN~Niyh N1xNiyN2
X + P = —yx* V- 1-76
G+ =Y NN N e, NIN,! (=79
NUN, YN — N,)!is called a binomial coefficient. The asterisk on the second summa-
tion in Eq. (1-76) signifies the restriction N; + N, = N.
The generalization of Eq. (1-75) to the division of N into r groups, the first con-
taining N,, and so on, is easily seen to be

N! N!
NyIN,1---N,! [[5=1 N;!

where N; + N, + -+ + N, = N. This is known as a multinomial coefficient, since it
occurs in the expansion

(1=77)

N N N N!x Nl...er
(g +x3 4+ +x)V = *» 01 T
e " N|z=:0 sz=:o 1g:=o | A (1-78)

[
z

where this time the asterisk signifies the restriction N; + N, +--- + N,
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There are a number of other combinatorial formulas that are useful in statistical
thermodynamics, but Eq. (1-77) is the most useful for our purposes. Combinatorial
formulas can become rather demanding to derive. We refer to Appendix AVII of
Mayer and Mayer* which contains a collection of formulas.

METHOD OF LAGRANGE MULTIPLIERS

It will be necessary, later, to maximize Eq. (1-77) with the constraint
N;+ N, + - + N, =constant. This brings us to the mathematical problem of
maximizing a function of several (or many) variables f(x;, x5, ..., x,) when the
variables are connected by other equations, say g,(x,, ..., x,) =0, g,(x, ..., x,) =0,
and so on. This type of problem is readily handled by the method of Lagrange un-
determined multipliers.

If it were not for the constraints, g;(x,, X2, ..., X,) = 0, the maximum of f(x,, ..., x,)
would be given by

of = Z(Zb{) x; =0 (1-79)

where the zero subscript indicates that this equation equals zero only when the r
partial derivatives are evaluated at the maximum (or minimum) of f. Denote these
values of x; by x;° If there were no constraints, each of the 6x; would be able to be
varied independently and arbitrarily, and so we would conclude that (9f/0x;) = 0 for
every j, since 0f must equal zero. This would give r equations from which the values
of the rx;° could be obtained.

On the other hand, if there is some other relation between the x’s, such as
g(xyq, X5, ..., x,) =0, we have the additional equation

r ag
69 = (_) 6x;=0 (1-80

g _,;]_ ax j’ 0 4 )
This equation serves as a constraint that the dx; must satisfy, thus making one of them
depend upon the other r — 1. In the Lagrange method, one multiplies Eq. (1-80) by
some parameter, say 4, and adds the result to Eq. (1-79) to get

r ag
; ( ax,.)o ox;=0 (1-81)
The 6x; are still not independent, because of Eq. (1-80), and so they cannot be varied
independently. Equation (1-80), however, can be treated as an equation giving one
of the dx; in terms of the other r — 1 independent ones. Pick any one of the r éx;
as the dependent one. Let this be dx,,.

The trick now is that we have not specified 1 yet. We set it equal to (9f]0x,),/
(99/0x,), , making the coefficient of éx, in Eq. (1-81) vanish. The subscript zero
here indicates that (9f/dx,) and (dg/0x,) are to be evaluated at values of the x;
such that fis at its maximum (or minimum) under the constraint of Eq. (1-80). Of
course, we do not know these values of x; yet, but we can nevertheless formally define
A in this manner. This leaves a sum of terms in Eq. (1-81) involving only the inde-
pendent dx;, which can be varied independently, yielding that

(_‘?L) _1(92) =0 j=L2,...,u—Lu+1,...,r

* See Mayer and Mayer, Statistical Mechanics (New York: Wiley, 1940).



24 INTRODUCTION AND REVIEW

If we combine these r — 1 equations with our choice for 1, we have

o 69)
L) L) = 1-82
(axj)o (axj 0 0 ( )

for all j.

As we said above, the choice of 1 here is certainly formal, since both (9f/0x,), and
(9g/0x,) must be evaluated at these values of x; which maximizes f, but these are
known from Eq. (1-82) only in terms of A. But this presents no difficulty, since in
practice 2 is determined by physical requirements. Examples of this will occur in the
next two chapters.

Lagrange’s method becomes no more difficult in the case in which there are several
constraints. Let g,(x,, ..., X,), g2(xy, --., X,), ... be a set of constraints. We introduce

a Lagrange multiplier for each g;(x,, ..., x,) and proceed as above to get
of 99, 99,
A [t W W SR 1-83
ox; lox; T ox; 0 (1-83)

BINOMIAL DISTRIBUTION FOR LARGE NUMBERS

Lastly, there is one other mathematical observation we need here in order to
facilitate the discussion in the next chapter. This observation concerns the shape of
the multinomial coefficient [Eq. (1-78)] as a function of the N,’s, as the N;’s become
very large. To simplify notation, we shall consider only the binomial coefficient, but
this will not affect our conclusions. Let us first find the value of N; for which
S(N;) = N!/N;1(N — N,)! reaches its maximum value. Since N; and N are both
very large, we treat them as continuous variables. Also since In x is a monotonic
function of x, we can maximize f(N,) by maximizing In f(N,). This allows us to use
Stirling’s approximation. The maximum of f(N,) is found, then, from

dlnf(N,)
dN,

to be located at N,* = N/2. Let us now expand In f(N,) about this point. The Taylor
expansion is

0

(d2 In f(N,)

1
Inf(N,) = In f(N;*) + » : ) (Ny — N¥) 4 - (1-84)
le Ni=N*

2
The linear term in N; — N,* is missing, because the first derivative of In f(N) is zero
at N; = N;*. The second derivative appearing in Eq. (1-84) is equal to —4/N. Thus
if we ignore higher-order terms (see Problem 1-53), Eq. (1-84) can be written in the
form of a Gaussian curve

2(N; — N;*)?
5N = fv exp| - X (1-85)
Comparison of this with the standard form of the Gaussian function
1 (x — x*)?
S(x)= @ro?)? exp‘ - T, (1-86)

shows that the standard deviation is of the order of N'/2. Equation (1-85) is, there-
fore, a bell-shaped function, centered at N,* = N/2 and having a width of a few
multiples of N'/2. Problem 1-43 establishes the well-known fact that a Gaussian
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function goes essentially to zero when x differs from x* by a few ¢’s. Since we are
interested only in large values of N, (or N), say numbers of the order of 102°, we have
a bell-shaped curve that is contained between 10?° + a few multiples of 10'°, which, if
plotted, would for all practical purposes look like a delta function centered at
N,* = N/2. Thus we have shown that the binomial coefficient peaks very strongly at
the point N, = N, = N 2. This same behavior occurs for a multinomial coefficient
as well. If there are s N ’s, the multinomial coefficient has a very sharp maximum at the
point N, = N, =---= N, = N'/s. (See Problem 1-50.) This peak becomes sharper as
the N;’s become larger, and become a delta function in the limit N; — oo for all j.

MAXIMUM TERM METHOD

Another important result, which is a consequence of the large numbers encountered
in statistical mechanics, is the maximum-term method. It says that under appropriate
conditions the logarithm of a summation is essentially equal to the logarithm of the
maximum term in the summation. To see how this goes, consider the sum

M
S=ZTN
N=1

where Ty > 0 for all N. Since all the terms are positive, the value of S must be greater
than the value of the largest term, say T;..,, and less than the product of the number
of terms and the value of the largest term. Thus we can write

Tmax < S < M Tmax
Taking logarithms gives
nT,,, ., <InS<InT,,,+InM

We shall see that it is often the case in statistical mechanics that 7, will be O(e™).
Thus we have

OM)<InS<OM)+InM

For large M, In M is negligible with respect to M itself, and so we see that In S is
bounded from above and below by In T, , and so

InS=InT,,,

This is a rather remarkable theorem, and like a number of other theorems used in
statistical mechanics, its validity results from the large numbers involved.
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PROBLEMS

1-1. Solve the equation of motion of a body of mass m dropped from a height A. Assume
that there exists a viscous drag on the body that is proportional to and in the opposite direction
to the velocity of the body. (Let the proportionality constant be y.) Solve for the so-called
terminal velocity, that is, the limiting velocity as  — co.

1-2. Calculate the trajectory of a shell shot out of a cannon with velocity v, , assuming no
aerodynamic resistance and that the cannon makes an angle 8 with the horizontal axis.

1-3. Remembering that the potential energy is given by

Vo) = — [ F) df = phx?

for a simple harmonic oscillator, derive an expression for the total energy as a function of
time. Discuss how the kinetic and potential energy behave as a function of time.

1-4. Solve the equation for a harmonic oscillator of mass m and force constant k that is
driven by an external force of the form F(t) = Fo COS wo I-

1-5. Show that

&(1) = A sin wt + B cos wt
can be written as
&) = Csin(wt + ¢)

1-6. Show that the total linear momentum is conserved for a system of N particles with an
interaction potential which depends only on the distance between particles.

1-7. When does p — 2L/2g but #2K/24?

1-8. Consider a system of two-point particles with masses m, and m. moving in two
dimensions. It is very common for their potential of interaction to depend upon their relative
coordinates (x; — x,, y1 — y2) only. Thus the total energy is

m; . ma . .
=“2"(-f12 + 312+ 7(-"72z + 92+ U(xs — X2, y1 — y2)

Now introduce four new variables

X = myxy + mz x; __ My +mzy:
my, + m; my + m;
X12 = X1 — X2 Y12 =Y1—Y2

and show that this two-body problem can be reduced to two one-body problems, one involv-
ing the center of mass of the system and one involving the relative motion of the two particles.
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Give a physical interpretation of the ratio mim;[(m, + m.) that arises naturally in the relative
motion. What is this quantity called? This result is easily extended to three dimensions.

1-9. Extend the development of Problem 1-8 to the case in which each particle also ex-
periences an external potential energy, say U(x,, i, z;) and U(xz, y2, z2). Interpret the result-
ing equations.

1-10. Derive Lagrange’s equations for a particle moving in two dimensions under a central
potential u(r). Which of these equations illustrates the law of conservation of angular mo-
mentum ? Is angular momentum conserved if the potential depends upon 6 as well ?

1-11. For a particle moving in three dimensions under the influence of a spherically sym-
metrical potential U = U(r), write down the Lagrangian and the equations of motion in
spherical coordinates (r, 8, ¢). Show that H = K + V from

H=ZP:4: —L

for this potential.

1-12. Solve the equation of motion of two masses m; and m, connected by a harmonic
spring with force constant k.

1-13. Start with Lagrange’s equations in Cartesian coordinates, that is,

d (oL oL

dr\ox)  ox
and so on. Now introduce three generalized coordinates g,, g., and g5 which are related
to the Cartesian coordinates by x = x(g1, g2, g3), and so on. Show that by transforming

Lagrange’s equations from x, X, y, y, z, and z as independent variables to gy, 4y, 42,42, qs,
and 43 we get

d (aL) L
dt \o4,]  og,

and so on.

1-14. If H, the classical Hamiltonian, does not depend explicitly on time, show that
dH/[dt = 0. What does this mean physically? Is this true if H does depend explicitly upon
time?

1-15. Consider the rotation of a diatomic molecule with a fixed internuclear separation /
and masses m, and m. . By employing center of mass and relative coordinates, show that the
rotational kinetic energy can be written in spherical coordinates as

$1(6% + $2sin? 6)

and from this derive the rotational Hamiltonian
1 Do’
Hnt = A7 (p02 + —= d )

In these equations, I = ul?, where p is the reduced mass. This Hamiltonian is useful for
studying the rotation of diatomic molecules.

1-16. Show that the motion of a particle under a central force law takes place entirely in
a single plane.

1-17. What is the expectation (average) value for the linear momentum p, of a particle in
a one-dimensional box p.2? Briefly discuss your results.

1-18. Show that the energy eigenvalues of a free particle confined to a cube of length a
are given by

2

£E= 2+ n?2 + n?) Re,ny,ne=1,2, ...

8ma*
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1-19. Show that the energy eigenvalues of a free particle confined to a rectangular paral-
lepiped of lengths a, b, and ¢ are given by
h? (m.,2 n? n?

:’87"' —+_+_) ”x:”y’”zslaz,-n

£
a®  b*  ¢*

1-20. Calculate the energy eigenvalues of a particle confined to a ring of radius a.

1-21. Show that the Hamiltonian operator of a rigid rotor is given by Eq. (1-32).

1-22. Calculate the degeneracy of the first few levels of a free particle confined to a cube of
length a.

1-23. Verify the calculation that follows Eq. (1-37) which shows that the quantum
mechanical degeneracy of a macroscopic system is O(10").

1-24. We need to know the volume of an N-dimensional sphere in order to derive Eq.
(1-36). This can be determined by the following device. Consider the integral

o«
—x12 4222 4-ue
1=f fe 12 4x22 442 fye oy oe e dxy
-

FirstshowthatI #"/2, Now one can formally transform the volume element dx, dx. - - - dxn
to N-dimensional spherical (hyperspherical) coordinates to get

f dx,dxsz - dxy—>r""'Sydr

angles

where Sy is the factor that arises upon integration over the angles. Show that S, — 27 and
S5 =4m. Sy can be determined for any N by writing I in hyperspherical coordinates:

(- o]
I f e "rV-18, dr
0

Show that I = SyI'(N/2)/2, where I'(x) is the gamma function (see Problem 1-58). Equate
these two values for I to get
2mNI2
S =TV
Show that this reduces correctly for N =2 and 3. Lastly now, convince yourself that the
volume of an N-dimensional sphere of radius a is given by

a2

@:}

and show that this reduces correctly for N =2 and 3.

1-25. Derive an expression for the density of translational quantum states for a two-
dimensional ideal gas.

1-26. Prove that a many-body wave function must be either symmetric or antisymmetric
under the interchange of any two particles. Hint: Apply the exchange operation twice.

1-27. Show for an isothermal process that wiev > Wicrev aNd Grev > Girrev -

1-28. Derive the thermodynamic equation

e-a=[r+(2) |(2),

and evaluate this difference for an ideal gas and a gas that obeys the van der Waals equation.
1-29. Derive the thermodynamic equation of state

oF T@p
av).” ‘\er), =P

aN

VN =f Snr"" dr=
]
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1-30. Derive the equation

op
dE = [T(a_T)y —p] dv+ CvdT
and from this show that (8E/2V)r = a/V? for a van der Waals gas.
1-31. Show that

(aE) ! ( o ) B
V) ur.ur T\AAID)),yzv P

1-32. Derive an expression for 2 In K/2T in terms of AH, the heat of reaction, and in terms
of C,, the heat capacity at constant pressure.
1-33. Consider the ‘ water-gas reaction

CO + H.0(g) - H, + CO.
where
Py, Pco,
K,=—"——
i Pco Pujo

and given the following data:

Substance (kcal/mole) a bx 103 cx 107 AHZ5g(kcal/m)
Cco —32.81 6.42 1.67 1.96 —26.4157
H.O(g) —54.64 7.26 2.30 2.83 —57.7979

CO, 94.26 6.21 10.40 —35.45 —94.0518

H. 0.00 6.95 —0.20 4.81 0.00

where the heat capacity of the gases in cal deg—! mole~* is given by
C,=a+ bT+ cT?
Calculate K, at 298°K and 800°K.

1-34. Calculate the free energy change at 700°C for the conversion of carbon monoxide
at 10 atm and water vapor at 5 atm to carbon dioxide and hydrogen at partial pressures of
1.5 atm each. The equilibrium constant K, for this reaction is 0.71. Is this process theoretically
feasible ?

1-35. It is illustrated in Chapter 17 that the speed of sound ¢, propagated through a
gas is

1/2

Co = (mpks)_

where «;s is the adiabatic compressibility

_ 1 v
Ks—_V 3p s

Show that this is equivalent to

_ y ap 1/2
co= V{‘M (aV)r}

where y = C,/Cy, and M is the molecular weight of the gas. Using the above result, show that

RT\ 2
co=(v37)

for an ideal gas.
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1-36. Jones and Giauque obtained the following values for C, of nitromethane.

K 15 20 30 40 50 60 70 80 90 100
Cr 089 2.07 4.59 6.90 8.53 9.76 10.70 11.47 12.10 12.62

°K 120 140 160 180 200 220 240 260 280 300
Cr 13.56 14.45 15.31 16.19 17.08 17.98 18.88  25.01 2517 2535

The melting point is 244.7°K, heat of fusion 2319 cal/mole. The vapor pressure of the liquid
at 298.1°K is 3.666 cm. The heat of vaporization at 298.0°K is 9147 cal/mole. Calculate the
third-law entropy of CH,NO, gas at 298.1°K and 1 atm pressure (assuming ideal gas behavior).

1-37. Derive the Legendre transformation of E in which S —7 and N — p.

1-38. Apply a Legendre transformation to the Lagrangian L(g,, ¢4,) to eliminate the
generalized velocities in favor of generalized momenta, defined by p; = 8L/84,. What function
does this turn out to be?

1-39. Find the natural function of ¥, E, and n. Hint: Start with the natural function of ¥,
E, and N, namely, S, and transform N — p.

1-40. Derive the Legendre transformation of E in which $ -7, N - pu, and ¥V —p. What
peculiar thing happens when all the extensive variables are transformed out ?

1-41. Show that (x — X)? = x* — x2.

1-42. Show that the Poisson distribution P(m) = a™e ~°/m! is normalized. Calculate /7 and
the variance. What is the significance of the parameter a?

1-43. Sketch the Gaussian distribution as o (or even o/x) becomes smaller and smaller.
To what type of distribution does a Gaussian go in the limit o — 0. Discuss the meaning of
this distribution.

1-44. For the Gaussian distribution p(x) show that
(a)

fjo p(x)dx=1

(b) Calculate the nth central moment where n =0, 1, 2, and 3.

(c) In the limit o —0 what kind of distribution is approached where
1 (x — x)?

oV 2w exp 20?

1-45. The quantity (x — x)’ is called the jth central moment. Show that all odd central
moments of a Gaussian vanish. What about the even ones? Relate the j = 2 central moment
to the parameter o.

1-46. Let f(x, y) be a joint probability density, that is, f(x, y) dx dy is the probability that
X lies between x and x + dx and Y lies between y and y + dy. If X and Y are independent, then

f(x, y) dx dy = fi(x)f>(y) dx dy

If X and Y are independent, show that the mean and variance of their sum is equal to the sum
of the means and variances, respectively, of X and Y; that is, show that if W = X + Y, then

W=X+Y
(W—Wy=X—X)*+(Y—7?)

1-47. Let X be a random variable on the positive numbers, 0 < x < oo, and let p(x) be its
probability density function. The function ¢(s) defined by

p(x) =

©

(s) = J e~**p(x) dx

0
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is called the characteristic function of p(x). Find the relation between ¢(s) and the moments
of p(x). Is knowledge of all the moments of p(x) (assuming they exist) sufficient to specify
p(x) itself? Why or why not?

1-48. Show that the characteristic function of the density function of the sum of two
independent random variables is the product of the characteristic functions of the densities
of the two random variables themselves. What is the density function of W= X+ Y?

1-49. Maximize

N

!
W(Nl,Nz,...,Nm)iﬁ—rN—;
J=14Yj=

with respect to each N, under the constraints that

Y N,=N = a fixed constant
Y E; N, = & = another fixed constant

Hint: Consider the N,’s to be continuous, large enough to use Stirling’s approximation of
N,!, and leave your answer in terms of the two undetermined multipliers.

1-50. Show that the maximum of a multinomial distribution is given when Ny = N, =---
N.= N/s.

1-51. Use the method of undetermined multipliers to show that

N
_Z P,lnP_,
j=1

j=

subject to the condition

N
2 Py=1
=1

j=

is a maximum when P; = constant.
1-52. Consider the sum

M Mix®
N=o N{(M — N)!

where x = O(1), and M and N are O(102°). First show that In Z = M In (1 4+ x) exactly, and
then calculate the logarithm of the maximum term. Hint: Remember the binomial expansion.
1-53. Show that the higher terms that were dropped in the expansion of In f(V) in Eq.
(1-84) are completely negligible for large values of N and M.
1-54. The Planck blackbody distribution law

do — # w? dw
ple, T) deo = 72c® exp (Bhw) — 1

gives the blackbody radiation energy density between frequencies w and w + dw. (= hf2m7,
w =27y, and & = hv = fiw.) Substitute this into

E @
,—,=fo ple, T) dew

to derive the temperature dependence of E/¥. Do this by expressing your result as a group of
factors multiplying a dimensionless integral. You do not need to evaluate this integral.
1-55. Show that e*/(1 4 €*)? is an even function of x.
1-56. The heat capacity of the Einstein model of a crystal is given by

OpIT

O\ 2 e
Cv =3Nk T (?m
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where ©f is the * characteristic temperature of the crystal. Determine both the high- and
low-temperature limiting expressions for the heat capacity. Do the same thing for the Debye
model of crystals, in which

T 3
Cv =9Nk (—)

©nIT y4ex dx
o.) J

o (e—1)

where O, is the Debye temperature of the crystal.
1-57. Recognizing it as a geometric series, sum the following series in closed form:

a
S= ) e-
n=0
Compare this result to
(o]
1= f e dn
0

Under what conditions are these two results the same?

1-58. One often encounters the gamma function in statistical thermodynamics. It was
introduced by Euler as a function of x, which is continuous for positive values of x and which
reduces to n! when x — », an integer. The gamma function I'(x) is defined by

I'(x) = fo e ‘>~ dt

First show by integrating by parts that
T'(x+ 1) =xI'(x)
Using this, show that I'(n + 1) = n! for n an integer. Show that

@) =Vn
Evaluate I'(2) using the recurrence formula I'(x + 1) = xI'(x). Lastly show that

1 1-3:--(2n—1) 1
P("+5)=—_z~ F(z)

= 221
For a discussion of the gamma function, see G. Arfken, Mathematical Methods for Physicists,
2nd ed. (New York: Academic, 1970).
1-59. We can derive Stirling’s approximation from an asymptotic approximation to the
gamma function I'(x). From the previous problem
Lo

I‘(N+1)=N!=f e~ *xN dx
(o]

(o]
= f e dx
0

where g(x) = In x — x/N. If g(x) possesses a maximum at some point, say xo, then for large
N, exp(INg(x)) will be extremely sharply peaked at x,. Under this condition, the integral for
N will be dominated by the contribution of the integrand from the point x, . First show that
g(x) does, in fact, possess at maximum at the point x, = N. Expand g(x) about this point,
keeping terms only up to and including (x — N)? to get
(x —N)?
g(x)zg(N)—_z- + -
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Why is there no linear term in (x — N)? Substitute this expression for g(x) into the integral
for N! and derive the asymptotic formula

In N!'~ NIn N— N+ In(2nN)*/?

1-60. Verify the energy conversion factors in Appendix A. (The one labeled “ temperature >
means that temperature required to give an energy equal to kT, where k is the Boltzmann
constant.)

1-61. An integral that appears often in statistical mechanics and particularly in the kinetic
theory of gases is

(=]
I, = f x"e="** dx
0

This integral can be readily generated from two basic integrals. For even values of n, we first
consider

o0
Io = f e dx
0

The standard trick to evaluate this integral is to square it, and then transform the variables
into polar coordinates.

®© po0
Io? —-f J. e~ *le-»? dx dy
(o] (o]

[T e erarat
™

4a

lwllz
©=3(3)

Using this result, show that for even »

_1.3.5...(,,__0 o\ /2
"T T 2Qay (‘)

a

neven

For odd values of n, the basic integral I, is easy. Using I, show that

n+1
r( 2 )

2a(l|+ 1)/2

1-62. Show that a Gaussian distribution is extremely small beyond a few multiples of o.
1-63. Another function that occurs frequently in statistical mechanics is the Riemann zeta
function, defined by

=23 Kk
k=1
First show that {(1) = co, but that {(s) is finite for s > 1. Show that another definition of
L(s) is

1 °x""'dx

W=t ), @=n
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that is, show that this is identical to the first definition. In addition, show that

= B (—1r-%r = -2 )0

]

)= 2 @k+1)*=01—-279s)
k=0

The evaluation of I(s) for integral s can be done using Fourier series, and some results are
{(2) = =2/6 and {(4) = =*/90.

For a discussion of the Riemann zeta function, see G. Arfken, Mathematical Methods for
Physicists, 2nd ed. (New York: Academic, 1970).



CHAPTER 2

THE CANONICAL
ENSEMBLE

In this chapter we shall introduce the basic concepts and assumptions of statistical
thermodynamics, and then apply them to a system which has fixed values of ¥ and N
and is in thermal equilibrium with its environment. We shall derive the fundamental
connection between the quantum mechanical energy levels available to an N-body
system and its thermodynamic functions. This link is effected by a function, called the
partition function, which is of central importance in statistical thermodynamics. In
Section 2-4 we discuss the relevance of the statistical thermodynamic equations to
the second and third laws of classical thermodynamics.

2-1 ENSEMBLE AVERAGES

Our goal is to calculate thermodynamic properties in terms of molecular properties.
Given the structure of the individual molecules of our system and the form of the
intermolecular potential, we wish to be able to calculate thermodynamic properties,
such as entropy and free energy. We shall do this first with respect to mechanical
properties (such as pressure, energy, volume), which are quantum mechanical or
classical mechanical quantities, and then we shall bring nonmechanical thermodynamic
variables (such as entropy, free energy) into our discussion by appealing to the equa-
tions of thermodynamics. One useful distinction between mechanical and non-
mechanical properties is that mechanical properties are defined without appealing
to the concept of temperature, whereas the definitions of nonmechanical properties
involve the temperature.

Consider some macroscopic system of interest, such as a liter of water or a salt
solution. From a macroscopic point of view, we can completely specify a system by a
few parameters, say the volume, concentration or density, and temperature. Regard-
less of the complexity of the system, it requires only a small number of parameters to
describe it. From a microscopic point of view, on the other hand, there will be an
enormous number of quantum states consistent with the fixed macroscopic properties.
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We saw in Chapter 1 that the degeneracy of an isolated N-body system is of the order
of 10" for all but the very lowest energies. This means that the liter of water or the salt
solution could be in any one of the order of 10" possible quantum states. It would be
impossible for us to ever determine which of the order of 10V possible states the
system is in. The state of the system must be known, however, in order to calculate a
mechanical thermodynamic property, such as the pressure, since the values of that
property in each of the possible quantum states would, in general, be different. Thus
we are faced with what appears to be an impossible task.

It is at this point that we appeal to the work of Maxwell, Boltzmann, and particularly
Gibbs. The modern (postquantum) version of their approach is that in order to cal-
culate the value of any mechanical thermodynamic property (say, the pressure), one
calculates the value of that mechanical property in each and every one of the quantum
states that is consistent with the few parameters necessary to specify the system in a
macroscopic sense. The average of these mechanical properties is then taken, giving
each possible quantum state the same weight. We then postulate that this average
mechanical property corresponds to a parallel thermodynamic property. For
example, we postulate that the average energy corresponds to the thermodynamic
energy and that the average pressure corresponds to the thermodynamic pressure. It
turns out that the calculation of a mechanical property averaged over all the consistent
quantum states can be readily performed. Before doing this, however, we shall intro-
duce some concepts that will make this procedure clearer.

We first discuss the concept of an ensemble of systems, first introduced by Gibbs.
An ensemble is a (mental or virtual) collection of a very large number of systems, say
&, each constructed to be a replica on a thermodynamic (macroscopic) level of the
particular thermodynamic system of interest. For example, suppose the system has a
volume V, contains N molecules of a single component, and is known to have an
energy E. That is, it is an isolated system with N, V, and E fixed. Then the ensemble
would have a volume /¥, contain &/N molecules, and have a total energy & = &/E.
Each of the systems in this ensemble is a quantum mechanical system of N interacting
atoms or molecules in a container of volume V The values of N and V, along with the
force law between the molecules, are sufficient to determine the energy eigenvalues
E; of the Schrodinger equation along with their associated degeneracies Q(E;). These
energies are the only energies available to the N-body system. Hence the fixed energy
E must be one of these E;’s and, consequently, there is a degeneracy Q(E). Note that
there are Q(E) different quantum states consistent with the only things we know about
our macroscopic system of interest, namely, the values of N, V, and E. Although all
the systems in the ensemble are identical from a thermodynamic point of view, they
are not necessarily identical on a molecular level. So far we have said nothing about
the distribution of the members of the ensemble with respect to the Q(E) possible
quantum states.

We shall further restrict our ensemble to obey the principle of equal a priori prob-
abilities. That is to say, we require that each and every one of the Q(E) quantum states
is represented an equal number of times in the ensemble. Since we have no information
to consider any one of the Q(E) quantum states to be more important than any other,
we must treat each of them equally, that is, we must utilize the principle of equal
a priori probabilities. All of the Q(E) quantum states are consistent with the given
values of N, V, and E, the only information we have about the system. Clearly, the
number of systems in the ensemble must be an integral multiple of Q(E). The number
of systems in an ensemble is a very large number and can be made arbitrarily large by
simply doubling, tripling, and so on, the size of the ensemble. An alternative inter-
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pretation of the principle of equal a priori probabilities is that an isolated system
(N, V. and E fixed) is equally likely to be in any of its Q(E) possible quantum states.

We now define an ensemble average of a mechanical property as the average value
of this property over all the members of the ensemble, utilizing the principle of equal
a priori probabilities. We postulate that the ensemble average of a mechanical property
can be equated to its corresponding thermodynamic property.

There are two complications in the above treatment that we should mention;
neither of them, fortunately, is of any practical consequence. We have assumed that
the isolated system that we have been using as an example has precisely the energy
E. We know, however, from quantum mechanics that there always exists a small
uncertainty AE in the value of E. For all thermodynamic purposes, this complication
is completely inconsequential, and we shall therefore ignore it. The explanation of the
other complication involves a greater knowledge of quantum mechanics than is
generally required in this book. We have assumed that the systems of the ensemble
are in one of the Q(E) degenerate eigenstates having the eigenvalue E. The choice of
these Q(E) eigenfunctions, however, is somewhat arbitrary since any linear combina-
tion of these is also an eigenfunction with energy E. Moreover, a quantum mechanical
system will, in general, not be in one of the Q(E) selected states, but will be some linear
combination of them. Thus we have tacitly assumed.that any system with N, V, and E
given will be a * pure state,” whereas a system with N, V, and E given will most likely
be in a “ mixed state,” that is, in a state described by a linear combination of the pure
states we have chosen. In any event, this complication need not be considered, since
the results do not differ appreciably from those obtained from the simpler and more
naive point of view which we have presented above and now adopt.

Let us summarize this section by stating that we wish to calculate the ensemble
average of some mechanical property, and then show that this can be set equal to the
corresponding thermodynamic property. We have stated above that the calculation
of the ensemble average is not difficult, and now we shall address ourselves to that
problem. As Schrédinger says in his book:* “ There is, essentially, only one problem
in statistical thermodynamics, the distribution of a given amount of energy E over
identical systems. Or perhaps better, to determine the distribution of an assembly of
identical systems over the possible states in which the system can find itself, given that
the energy of the assembly is a constant E.”

So far, in this section, we have focused our attention on an ensemble whose members
have N, V, and E fixed. This is called the microcanonical ensemble and is useful for
theoretical discussions. For more practical applications, however, we consider not
isolated systems, but those in which the temperature rather than the energy is fixed.
The most commonly used ensemble in statistical thermodynamics is the canonical
ensemble, in which the individual systems have N, V, and T fixed. The remainder of
this chapter will deal with the canonical ensemble. There are many other types of
ensembles, in fact, one for each set of thermodynamic variables that are used to specify
an individual member of the ensemble. We shall discuss some of these other ensembles
in the next chapter.

2-2 METHOD OF THE MOST PROBABLE DISTRIBUTION

Consider an experimental system with N, V, and T as its independent thermodynamic
variables. We can mentally construct an ensemble of such systems in the following
manner. We enclose each system in a container of volume V with walls that are heat

* E. Schrédinger, Statistical Thermodynamics (Cambridge: Cambridge University Press, 1952).
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conducting but impermeable to the passage of molecules. The entire ensemble of
systems is then placed in a very large heat bath at temperature T. When equilibrium
is reached, the entire ensemble is at a uniform temperature T. Since the containing
walls of each system are heat conducting, each and every system of the ensemble has
the same fixed values of N, V, and T. Now, the entire ensemble is surrounded by
thermal insulation, thus making the ensemble itself an isolated system with volume
&V, number of molecules &N, and some total energy &. (The actual value of & is
not important.) Each of the &/ members of the canonical ensemble finds itself in a
large heat bath at temperature T

Because each of the systems of the canonical ensemble is not isolated but is at a
fixed temperature, the energy of each system is not fixed at any set value. Thus we
shall have to consider the entire spectrum of energy states for each member of the
canonical ensemble. Let the energy eigenvalues of the quantum states of a system be
E,(N, V), E(N, V) ..., ordered such that E;,, > E;. It is important to understand
here that any particular energy, say E;, is repeated according to its degeneracy, that
is, occurs Q(E;) times. Any particular system might be found in any of these quantum
states. We shall show later that the average energy or the probability that some system
has a certain energy depends upon the temperature; however, any of the set of energies
{E,} is possible, and so must be considered.

We can specify a state of the entire ensemble by saying that a,, a,, a;, of the
systems are in states 1, 2, 3, ..., respectively, with energies E,, E,, E5, ... . Thus we
can describe any one state of the ensemble by writing

State No. 1, 2, 3, l...
Energy E, E,,E,,....,E...
Occupation No. ay, Gy, A3, ..., Q;...

Occupation Number means the number of systems of the ensemble in that particular
state. The set of occupation numbers is called a distribution. We shall often denote
the set {a;} by a.

Of course, the occupation numbers satisfy the two conditions:

Ya=o (2-1)
J
Y aE;=¢ (2-2)
J

The first condition simply accounts for all the members of the ensemble, and the
second represents the fact that the entire canonical ensemble is an isolated system,
and hence has some fixed energy &.

Since the canonical ensemble has been isolated from its surroundings by thermal
insulation, we can apply the principle of equal a priori probabilities to this isolated
system. In the form that we wish to use here, the principle of equal a priori probabili-
ties says that every possible state of the canonical ensemble, that is, every distribution
of occupation numbers q,, a,, consistent with Egs. (2-1) and (2-2) is equally
probable and must be given equal weight in performing ensemble averages.

The number of ways W(a) = W(ay, a,, a,, ...) that any particular distribution of
the a;’s can be realized is the number of ways that &/ distinguishable objects can be
arranged into groups, such that g, are in the first group, a, in the second, and so on
[see Eq. (1-77)]:

! K4

W(a) = ==
al!az!as!"' Hka“!

(2-3)
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The systems are distinguishable since they are macroscopic systems, which we could,
in principle, furnish with labels.

In general, there are very many distributions which are consistent with Egs. (2-1)
and (2-2). In any particular distribution, a;/.s/ is the fraction of systems or members
of the canonical ensemble in the jth energy state (with energy E;). The overall probabil-
ity P; that a system is in the jth quantum state is obtained by averaging a;/</ over all
the allowed distributions, giving equal weight to each one according to the principle
of equal a priori probabilities. Thus P; is given by

p,= & 1 L W@aa o)

In Eq. (2-4), the notation a;(a) signifies that the value of a; depends upon the distribu-
tion, and the summations are over all distributions that satisfy Egs. (2-1) and (2-2).
We shall later let &/ — oo, but the ratio a;/&/ will remain finite since @; — oo as well.

Given the probability that a system with fixed values of N, V, and T is in the jth
quantum state, one can calculate the canonical ensemble average of any mechanical
property from

M= ; M;P; (2-5)

where M is the value of M in the jth quantum state. Thus the prescription for calculat-
ing the ensemble average of any mechanical property is given by Egs. (2-4) and (2-5)
and is, in principle, complete. The summations involved in Eq. (2-4), however, are
very difficult to perform mathematically, and thus in practice Egs. (2-4) and (2-5)
are too complicated to use.

The fact that we can let &/ — oo, however, allows us to appeal to the results of
Section 1-5. We have seen there that multinomial coefficients, such as W(a), are
extremely peaked about their maximum value if all the variables a; are large. In
Egs. (2-1) through (2-4), each of the a;’s can be made arbitrarily large since &/ can
be made arbitrarily large. Thus we can use an argument here very similar to that used
in Section 1-5. We need make only one modification or extension. We have shown that
W(a) is a maximum when all the a;’s are equal, under the one constraint Eq. (2-1). We
have now an additional constraint Eq. (2-2) on the a;’s. So instead of peaking at the
point at which all the a;’s are equal, it will peak at some other set of a;’s but the spread,
nevertheless, will be arbitrarily small. We shall determine this set of a;’s shortly. Let us
denote this distribution by a* = {a;*}.

The spread of W(a) about its maximum value can be made arbitrarily narrow by
taking the a;, that is, &, to be arbitrarily large. Thus the W(a) in Eq. (2-4) at any
set of a;’s other than the set a*, which maximizes W(a), are completely negligible. We
can replace the summations in Eq. (2-4) over all distributions by just one term,
evaluated at a*. Thus we can write
_ 1 Y. W@aya 1 Wa*)a* a* .
Pj—.szl Y. W) “Z wah o (lim a; - o) (2-6)
where a;* is the value of a; in that distribution that maximizes W (a), that is, the most
probable distribution. The name of this section, the method of the most probable
distribution, is derived from Eq. (2-6). Comparing Egs. (2-6) with (2-4), we have

P,=—1="L (2-7)
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Thus, to calculate the probabilities to be used in ensemble averages, we need determine
only that distribution a* that maximizes W(a) under the two constraints Egs. (2-1)
and (2-2). This is the problem to which we now turn.

As this is a problem of maximizing a function of many variables with given con-
straints on the variables, we have a direct application of Lagrange’s method of undeter-
mined multipliers. Following Section 1-5, the set of a,’s that maximizes W (a), subject
to Egs. (2-1) and (2-2), is found from

illnW(a)—ozZa,‘—BZa,‘E,‘}=O, j=12 ... (2-8)
da; K k

J

where a and f are the undetermined multipliers. Using Eq. (2-3) for W(a) along with
Stirling’s approximation (which is exact here since each of the a;s can be made
arbitrarily large), one gets

—Ing*—a—1-BE;=0 j=12,... (2-9)
or

aj* = e ¥e PE; j=12,... (2-10)

where o' = a + 1. (See Problem 2-3.) This gives us the most probable distribution in
terms of a and B. We now evaluate o’ and f by using Egs. (2-1) and (2-2) along with
physical arguments.

2-3 THE EVALUATION OF THE
UNDETERMINED MULTIPLIERS, o AND g

We can obtain an expression for a (or «”) in terms of f by summing both sides of
Eq. (2-10) over j and using Eq. (2-1) to get

.1
et = ”; Z e PE; (2-11)
J

Equation (2-7) thus becomes
a* e " PE/N,V)

i _ -
oAy e PR (212

Substituting this into Eq. (2-5), with E; taken to be the mechanical property, gives

E{(N, V)e™ PEAN.V) pts
Y e PEANY) (2-13)

E=EWN,V, B)=Zj

According to the postulate of the ensemble method of Gibbs, this average energy
E(N, V, PB) corresponds to the thermodynamic energy E.

The pressure is another important mechanical variable. When a system is in the
state j, dE; = —p; dV is the work done on the system when its volume is increased
by dV (keeping the number of particles in the system fixed). Thus the pressure in the
state j is given by

-
pj_ aVN (_ )



THE EVALUATION OF THE UNDETERMINED MULTIPLIERS, o AND B a

The canonical ensemble average of p; is

aEJ' ~BE;
ZJ' (av)e

D= . o — 2—
p=2pF; S 7% (2-15)

We postulate that p corresponds to the thermodynamic pressure.
The sum in the denominator of Egs. (2-13) and (2-15) occurs throughout the equa-
tions of the canonical ensemble. Let this be denoted by Q(N, V, B):

O(N, V, B) =) e PEN.Y) (2-16)
J

We shall see that this function Q(N, V, p) is the central function of the canonical
ensemble.
We have made two connections with thermodynamics:

g:% (ensemble postulate of Gibbs)

Equation (2-13) gives E as a function of §. In principle, one could solve this equation
for B as a function of E, but in practice this is not feasible. Fortunately f turns out to
be a more convenient quantity than E, so much so that it is preferable to have E as a
function of B rather than the inverse. We shall now evaluate f in two different ways.

We differentiate Eq. (2-13) with respect to V, keeping N and p fixed:
oE —
—) = —p+BEp—BEp 2-17
(av)N,,, P+ BEp — PEp (2-17)

In this equation,

OE;
Y ASE)E e 5
E Y p;Eje ™ "(3V) i€
p: =

0 - 0
and
Ep= Y, Ejet® ] Y;pie
Q Q
Similarly, we can differentiate Eq. (2-15) to get
op - —
= =Ep—Ep (2-18)
(0B NV
From Egs. (2-17) and (2-18) we get
oE ) (ap _
oYy + B\ 5z =—-p (2-19)
(aV N,p aﬁ N,V

Note that E is a function of N, V, and B, whereas the E;’s are functions of N and V
only. This is an important distinction, that should be clearly and completely under-
stood.

Let us now compare Eq. (2-19) with the purely thermodynamic equation. (See
Problem 1-29.)

0 6p)
- — i - - 2-20
(av)m T(aT vy P (@=20)
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which we rewrite in terms of 1/T instead of T':

@% +lt@) ——p (2-21)
oVinyr T \OUT/y,y

A comparison of Eq. (2-19) with Eq. (2-21) allows us to deduce that = const/T.
It is customary to write § = 1/kT, where k is a constant, whose value could possibly
vary from substance to substance. We shall show now, however, that k has the same
value for all substances, that is, k is a universal constant.

Consider two closed systems 4 and B, each having its own kind of particles and
energy states, but in thermal contact with each other and immersed in a heat bath of
temperature T. We now construct a canonical ensemble of systems AB (as shown in
Fig. 2-1) representative of a thermodynamic 4B system at temperature T and apply
the method of the most probable distribution to the 4B system. Let the number of
molecules and volume of the 4 and B systems be N,, V,, and Ng, Vg, respectively,
and let their energy states be denoted by {E;,} and {E;p}. If a; denotes the number of
A systems in state E;,, and b; denotes the number of B systems in state E;, then the
number of states of the AB ensemble with compound distribution {a;} and {5} is

" A B
@0 =172 T

where o and & (& = ) are the number of 4 and B system, respectively. Equation
(2-22) turns out to be a product of the separate 4 and B factors, because we can arrange
the A systems over their possible quantum states independently of the B systems, and
vice versa. The a;’s and b;’s must satisfy the three relations:

(2-22)

Zaj = ﬂ

J
Z (@;Eja+b;E;jp) =6 (2-23)
J

We now apply the method of the most probable distribution to Eqgs. (2-22) and
(2-23) to get Problem 2-9 for the simultaneous probability that the AB system has its
A part in the ith quantum state and its B part in the jth quantum state:

e—ﬂEM e—ﬂEjn

Py = 0, '_QB_=PiAPjB (2-24)
where
Q =Y e PEa and Qp=7) e PE= (2-25)
% %
A B A B Al B
A B A B A B

Figure 2—1. Canonical ensemble of composite AB systems.
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Thus we have shown that two arbitrary systems in thermal contact have the same f.
But we have seen from Egs. (2-19) and (2-21) that g = 1/kT, and so the two systems
must have the same value of k. Since the nature of the two systems is completely
arbitrary, k must have the same value for all systems. Thus k is a universal constant
and can therefore be evaluated using any convenient system. The most convenient is
an ideal gas, and one can determine from the equation of state of an ideal gas
[¢f. Eq. (5-18)] that k = 1.3806 x 10~ !¢ erg-deg ™!, where the temperature is in units
of degrees Kelvin.

There is an alternative way to determine B which utilizes the fact that 1/T is an
integrating factor of dg,.,. We shall present this argument here, since it will bring the
nonmechanical property of entropy into our formalism.

The argument based around Fig. 2-1 shows that if two systems are in thermal
contact at equilibrium, they have the same value of f. Since the two systems can be
quite arbitrary, this implies that § must be some function of the temperature. We shall
now show that g dg,., is an exact differential.

Consider the function f = In Q. We regard f as a function of § and all the E;’s:

fB,E,E,y..)=In {Z e‘”"} (2-26)
J
The total derivative f'is

The partial derivatives occurring here are determined from Eq. (2-26) to be

(gl) _ X B
B s 0

Thus Eq. (2-27) becomes
df=—EdB—B) P;dE;
J

which can be written as
J

We now subject the ensemble of systems to the following physical process. We
change the volume of all the systems by dV, changing, of course, the E;’s for all
of them alike in order to still have an ensemble of macroscopically identical systems.
We also change the temperature of the ensemble by dT by coupling it with a large heat
bath (of the same temperature), changing the temperature slightly and then isolating
the ensemble from the heat bath.

If initially there were a; systems of the ensemble in the energy state j with energy
E;, then a; dE; is the work done on all these systems in changing the energy from
E; to E; + dE;. The total work done on the ensemble is ) a; dE; and ) ; P, dE;
is the ensemble average reversible work that we do on the systems. And since dE is
the average energy increase, the term enclosed in parentheses on the right-hand side
of Eq. (2-28) is the average reversible heat supplied to a system. Thus Eq. (2-28) is

d(f+ BE) = B 6., (2-29)
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which says that g dq,., is the derivative of a state function, that is, that fis an integrating
factor of 8¢, . One statement of the second law of thermodynamics says that § must
be equal to constant/7, or 1/kT.

The left-hand side of Eq. (2-29), therefore, must be dS/k, and so we can write that

+ k In Q + constant (2-30)

~|

S =

where the constant is independent of T and of the parameters (N, V, and so on) on
which the E;’s depend. Since thermodynamics deals with AS only, the constant will
always drop out of any calculations of entropy changes for chemical and/or physical
changes. We shall, therefore, set this constant to zero and discuss the implications of
this at the end of the chapter.

In the above argument that f was an integrating factor of d¢,., , we used the fact that
the average work done on a system was ) ; P; dE;. We do work, then, by changing the
energies slightly, but keeping the population of these states fixed (the P;’s do not
change). A molecular interpretation of thermodynamic work, then, is a change in the
quantum mechanical energy states of the system, keeping the population over them
fixed. That a molecular interpretation of the absorption of heat is the inverse of this
can be seen from

dE=Y E;dP; +Y P;dE;
J J

= 6qrev - 6wrev

Thus when a small quantity of heat is absorbed from the surroundings, the energy
states of the system do not change (N and V are fixed), but the population of these
states does.

24 THERMODYNAMIC CONNECTION

We now complete the connection between thermodynamics and the canonical
ensemble. Equation (2-13) for E can be written as (see Problem 2-10):

dln Q
E=k 2(——) 2-31
™\or )y (2-31)
and we can also easily derive (see Problem 2-10)
dln Q
= 2—-
from Eq. (2-15). Equation (2-30) is an equation for the entropy S in terms of Q:
dln Q
=k kl 2—
S T( aT )N,V+ n Q (2-33)

We have E, p, and S now as functions of Q, and so it is possible to derive expressions
for all the thermodynamic functions in terms of Q. The function Q is the central
statistical thermodynamic function of the canonical ensemble (N, V, and T fixed) and
is called the canonical (ensemble) partition function:

Q(N, V, T) =Y e EAN.VIKT (2-34)
J
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The partition function serves as a bridge between the quantum mechanical energy
states of a macroscopic system and the thermodynamic properties of that system. If
we can obtain Q as a function of N, V, and T, we can calculate thermodynamic
properties in terms of quantum mechanical and molecular parameters. Although the
E ;s are the energy states of an N-body system and consequently appear to be unobtain-
able in practice, we shall see that in a great many cases, we shall be able to reduce the
N-body problem to a one-body, two-body, three-body problem, and so on, or approxi-
mate the system by classical mechanics. Both of these routes turn out to be very useful.
For now, however, we need only assume that there is such a set of energies.

We can derive an equation for the Helmholtz free energy A4 in terms of Q by using
Egs. (2-31) and (2-33) along with the fact that A = E — TS. The result is

A(N,V,T)= —kTIn Q(N, V, T) (2-35)

Notice that of all the thermodynamic functions, it is 4 that is directly proportional to
In Q(N, V, T), and that 4 is the thermodynamic potential whose natural independent
variables are those of the canonical ensemble. Equation (2-35) can be considered to
be the most important connection between thermodynamics and the canonical'parti-
tion function, since it is possible to derive many equations starting with its differential
form (see Problem 2-11). Table 3-1 contains a summary of the formulas of the
canonical ensemble.

In this chapter, we have developed the connection between thermodynamics and
the quantum mechanical states available to a macroscopic system characterized by
N, V, and T. This connection can be summarized by Eq. (2-35). Before concluding
this chapter, we shall discuss the second and third laws of thermodynamics from a
statistical thermodynamic point of view. A statement of the second law of thermo-
dynamics for closed, isothermal systems is that A4 < 0 for a spontaneous process. We
wish to derive this inequality starting with Eq. (2-35). To do this, we first write
Eq. (2-34) in a slightly different form

Consider Eq. (2-34) for Q(N, V, T). The summation is over all the possible quantum
states of the N-body system. In carrying out the summation, a particular value of
exp(—E;/kT) will occur Q(E;) times, where Q(E;) is the degeneracy. Instead of listing
exp(—E;/kT) Q(E;) times, we could simply write Q(E;)exp(—E;/kT), and then sum
over different values of E. If we do this, Eq. (2-34) is

O(N,V,T)=Y Q(N, V, E)e” B VIkT (2-36)
E

where we have dropped the no longer necessary j subscript of E;. In Eq. (2-34), we
sum over the states of the system. In Eq. (2-36) we sum over levels. Equation (2-36)
is a more useful form for discussing the second law of thermodynamics.

Consider a typical spontaneous processes, such as the expansion of a gas into a
vacuum. Figure 2-2 shows the initial and final states of such a process. For simplicity,
we consider the entire system to be isolated. Initially the gas might be confined to one
half of the container. After removing the barrier, the gas occupies the entire container.

Figure 2-2. The initial and final states of the expansion of a gas into a vacuum.
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Equation (1-36) for Q(N, V, E) of an ideal gas shows that the number of states is
proportional to V". For the process illustrated in Fig. 2-2, the gas goes from a thermo-
dynamic state of energy E, number of particles N, and volume V/2 to one with the
same energy E (the system is isolated), the same number of particles N, but with
volume V Thus according to Eq. (1-36), the number of quantum states available or
accessible to the system is increased.

Another example of a spontaneous process is the following. Initially we have an
isolated system containing a mixture of hydrogen and oxygen gases. Although hydrogen
and oxygen react to form water, in the absence of a catalyst the reaction is so slow
that we can ignore it. Since the rate of this reaction (uncatalyzed) is very slow com-
pared to any thermodynamic measurement, we can consider the mixture of hydrogen
and oxygen to be simply a mixture of two gases in equilibrium. If we now add a small
amount of catalyst to the system, the hydrogen and oxygen will readily form water, so
that the system contains hydrogen, oxygen, and water. Thus the addition of a small
amount of catalyst makes all the energy states associated with water molecules available
or accessible to the system, and, hence, the system proceeds spontaneously to populate
these states. Since the originally accessible states are still accessible (there is still some
hydrogen and oxygen in the system), this spontaneous process is associated with an
increase in the number of states accessible to the system by the removal of some
constraint. In this case, the constraint was a high activation energy barrier, which was
removed by the addition of the catalyst.

Both of the spontaneous processes that we have discussed occurred, because some
restraint, inhibition, or barrier was removed which made additional quantum states
accessible to the system. In general, any spontaneous process in an isolated system
can be viewed in this manner. The removal of some constraint allows a greater number
of quantum states to be accessible to the system, thus the “flow” of the system into
these states is observed as a spontaneous process.

The above discussion is limited to isolated systems. In order to discuss the condition
AA <0, we must now consider isothermal processes. When a system is in a heat bath
rather than isolated, we must include all possible energy states or levels of the system.
When a restraint is removed, the number of accessible quantum states of each and every
energy E cannot decrease, and will usually increase, since the original states are still
available. Thus we have that Q,(N, V, E) > Q,(N, V, E) for all E, where the subscripts
1 and 2 denote the initial and final states, respectively. We now use this inequality
along with Eq. (2-36) to show that A4 < 0. Since no term can be negative and many
are positive, we have

0— 0= z {Q,(N, V, E) — Q(N, V, E)}e” ¥ > 0 (2-37)
E

In Eq. (2-37) we sum over all the levels available to the final state. It follows im-
mediately from the inequality in Eq. (2-37) that

AAd = A, — Ay = —kT 2 <o (2-38)

O

for a spontaneous isothermal process, and thus we have written the second law of
thermodynamics in terms of Eq. (2-35).

Lastly, we consider the implications of putting the *“ constant” of Eq. (2-30) equal
to zero. We shall see that this gives us a statistical thermodynamic version of the third
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law of thermodynamics. If we write Eq. (2-33) for S more explicitly, we get
Y, Byl

_ — E;IkT _

S—kln;e g +T——Z,-e_£f’" (2-39)
We wish to study the behavior of this equation as T — 0. Assume for generality that
the first n states have the same energy (E, = E, = --- = E,) and that the next m states
have the same energy (E,,, = E,,, =--- =E,,,,), and so on. Then in the limit of
small T, Eq. (2-39) becomes (see Problem 2-19):

S—kinn 4 K o= Enei-EONT I (E,,, — E )e~Ens1=EOKT

n nT "

and so

limS=kilnn (2-40)

T-0

Thus as T — 0, S is proportional to the logarithm of the degeneracy of the lowest level.
Unless n is very large, Eq. (2-40) says that S is practically zero. For example, if the
system were a gas of N-point particles, and the degeneracy of the lowest level were of
the order of N, k In N would be practically zero compared to a typical order of magni-
tude of the entropy, namely, Nk. Thus setting the “ constant” of Eq. (2-30) equal to
zero is equivalent to adopting the convention that the entropy of most systems is
zero at the absolute zero of temperature [cf. Eq. (1-44)].
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PROBLEMS
2-1. From statistical mechanics we have shown

)., o).~

and from the thermodynamics we have

oE - op _
oV )wr \oT)wy~ P

Why can’t B be linearly proportional to the temperature? That is, 8 = constant x T.

2-2. To investigate the replacement of 7, by n,*, that is, the replacement of the average
number of systems in state j by the most probable number in state j, consider the simple
example in which Q(n) is just a binomial distribution

n!

Qm) = ny! (n— ny)!
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and actually calculate »,* and 7,. Hint: Recall that

n nix™
A0 = 2 oo —ml

2-3. Show that Eq. (2-9) follows from Eq. (2-8). Note that in deriving this result, we have
writtenIn W(a) as &/ In &/ —f — >, a;In a,+ &/ and have considered .o/ to be a constant.
Show that Eq. (2-10) is independent of this assumption, that is, derive Eq. (2-10) treating &/
as z 14j.

2-4. Starting with Eq. (2-31), prove that the Boltzmann constant & must be positive, using
the fact that the heat capacity Cy is always positive.

2-5. Show that the entropy can be written as

S=—kZP_,lnP,
j

where P, is given by Eq. (2-12).
2-6. Maximize the function defined as “ information” in information theory.

I=2PJ]nPJ
J

subject to the two constraints
z P 1= 1
J
and
z E _,-P 1= E = ﬁxed
J

Compare this result to that of Problem 1-51.

2-7. Obtain the most probable distribution of N molecules of an ideal gas contained in
two equal and connected volumes at the same temperature by minimizing the Helmholtz free
energy for the two systems.

2-8. Differentiate Eq. (2-16) with respect to B to derive Eq. (2-13).

2-9. Derive Eq. (2-24).

2-10. Derive Egs. (2-31) and (2-32).

2-11. Derive Eqgs. (2-31) through (2-33) by starting with 4 = —kT'In Q.

2-12. We can derive Eq. (2-36) directly by the method of Lagrange multipliers. We label
the levels rather than the states by a subscript .. The degeneracy of the /th level, whose energy
is E,, is Q;. The number of ways of distributing systems over levels, with degeneracy Q, is

1

K74
W(a) = mﬂ. /!

where a; is the number of systems in the /th level. Maximize this, subject to the constraints
2 a = d
1

Za,E. =é’
1

to get
Q, e~ E1kT
a* = Z' Q, e~ E1kT
2-13. Show that for a particle confined to a cube of length a that

_2E,
Pi=3Yy
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By taking the ensemble average of both sides, we have

If we use the fact that E = 3$NkT (to be proved in Chapter 5), we get the ideal gas equation of
state.
2-14. We shall show in Chapter 5 that the partition function of a monatomic ideal gas is

1 [2amkT\ 372 N
Q(N,V.T)=m e V

Derive expressions for the pressure and the energy from this partition function. Also show
that the ideal gas equation of state is obtained if Q is of the form f(T) V¥, where f(T) is any
function of temperature.

2-15. In Chapter 11 we shall approximate the partition function of a crystal by

e—lllekT 3N
0= eVolkT
l — e—hvlk‘r

where hv/k = O is a constant characteristic of the crystal, and U, is the sublimation energy
of the crystal. Calculate the heat capacity from this simple partition function and show that
at high temperatures, one obtains the law of Dulong and Petit, namely, that Cy — 3Nk as
T 0.

2-16. In Chapter 13 of this author’s textbook Statistical Thermodynamics, it is shown that
the partition function of an ideal gas of diatomic molecules in an external electric field & is

lg(¥, T, OHI"

Q(N’ v, T9é’)= N1

where

2amkT\ 3'? (87*IkT “hvizkT ()T &
o= (R () o)

h? h J(A —e ™y \ué kT

Here I is the moment of inertia of the molecule; v is its fundamental vibrational frequency;
and p is its dipole moment. Using this partition function along with the thermodynamic
relation,

dA=—SdT —pdV — Mdé

where M = Np, where [ is the average dipole moment of a molecule in the direction of the
external field &, show that

rorfon ()2

Sketch this result versus & from & =0 to & = c and interpret it.
2-17. In Chapter 14 we shall derive an approximate partition function for a dense gas,
which is of the form

1 (2amkT\ 312 2
e B
where a and b are constants that are given in terms of molecular parameters. Calculate the
equation of state from this partition function. What equation of state is this? Calculate the
thermodynamic energy and the heat capacity and compare it to Problem 1-30.

2-18. From electrostatics, the displacement vector D is given by D = & + 4nP, where & is

the electric field, and P is the polarization, i.e., the total dipole moment M per unit volume.
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The dielectric constant ¢ is defined by D = &&. In the simple case of a parallel plate capacitor,
D is the field produced by a set of charges on the plates, and so we can consider it to be
external field; M is the total moment (both permanent and induced) of the substance between
the plates; and & is the field between the plates, that is, the force that an infinitesimal change
would feel. If only a vacuum existed between the plates, D and & would be the same. A real
substance modifies D such that D = & + 4=(M]V), where V is the volume. Since D, &, and M
are all in the same direction (at least for simple fluids), D must be >&, which says that
e=>1.
When an external electric field D is present, the first law of thermodynamics becomes

dE=TdS—pdV—MdD + pu dN

Problem: Describe concisely how one would calculate ¢ (at least in principle) from statistical
mechanics.
2-19. Derive equation 2-40.



CHAPTER 3

OTHER ENSEMBLES
AND FLUCTUATIONS

In Chapter 2 we considered an ensemble in which N, V, and T are held fixed for each
system. This ensemble is one of many possible ensembles that can be constructed. For
example, if we allow the walls of the containers to be permeable to molecular trans-
port, N is no longer fixed for each system, and we no longer have a canonical ensemble.
The ensemble in this case is called a grand canonical ensemble and is discussed in
Section 3-1. In Section 3-2 we discuss two other ensembles that are often used in
statistical thermodynamics: the microcanonical ensemble, in which N, V, and E
are fixed, and the isothermal-isobaric ensemble, in which N, T, and p are fixed. The
last section, Section 3-3, is devoted to an investigation of fluctuations in statistical
thermodynamics.

One of our basic assumptions is that the ensemble average of a mechanical property
can be equated to the corresponding thermodynamic function; hence it is important
that we investigate the expected spread about the mean value. We show in Section 3-3
that for macroscopic systems the probability distribution of observing some mechan-
ical property is a very narrow Gaussian distribution whose mean is the ensemble
average. One important deduction from this result is that the various ensembles
are essentially equivalent and that one can choose to work with a partition function
on the basis of mathematical convenience rather than on the basis of which thermo-
dynamic variables are used to specify the system of interest.

3-1 GRAND CANONICAL ENSEMBLE

In the previous chapter we treated the canonical ensemble, in which each system
is enclosed in a container whose walls are heat conducting, but impermeable to the
passage of molecules. The entire ensemble is placed in a heat bath at temperature T
until equilibrium is reached, and then is isolated from its surroundings. Each system
of the ensemble is specified by N, V, and T. In this section we shall treat a grand
canonical ensemble. In a grand canonical ensemble, each system is enclosed in a
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container whose walls are both heat conducting and permeable to the passage of
molecules. The number of molecules in a system, therefore, can range over all possible
values, that is, each system is open with respect to the transport of matter. We con-
struct a grand canonical ensemble by placing a collection of such systems in a large
heat bath at temperature T and a large reservoir of molecules. After equilibrium is
reached, the entire ensemble is isolated from its surroundings. Since the entire ensemble
is at equilibrium with respect to the transport of heat and matter, each system is
specified by V, T, and p, where p is the chemical potential. (If there is more than one
component, the chemical potential of each component is the same from system to
system.) Figure 3~1 shows a schematic picture of a grand canonical ensemble.

We proceed now in the same manner as in the treatment of the canonical ensemble.
In this case, however, we must specify a system not only by which quantum state it is
in but also by the number of molecules in the system. For each value of N, there is a
set of energy states {Ey;(V)}. We let ay; be the number of systems in the ensemble that
contain N molecules and are in the state j. Each value of N has a particular set of
levels associated with it, so we first specify N and then j. The set of occupation numbers
{ay;} is a distribution. By the postulate of equal a priori probabilities, we assume that
all states associated with all possible distributions are to be given equal weight or
equal probability of occurrence in the ensemble. Each possible distribution must
satisfy the following three conditions:

YYay=o (3-1)
NJ
Y'Y ayjEy;j=¢€ (3-2)
NJ
; YayN=A (3-3)
J

The three symbols &, &, and A" denote the number of systems in the ensemble, the
total energy of the ensemble (the ensemble is isolated), and the total number of
molecules in the ensemble.

For any possible distribution, the number of states is given by

KAl

Wdan) = m—~—=—— (3-4)
J.
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Figure 3-1. A schematic picture of a grand canonical ensemble. Each system has a fixed volume and
temperature, but is open with respect to molecular transport.
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As in the treatment of the canonical ensemble, the distribution that maximizes W
subject to the appropriate constraints completely dominates all others. Thus we
maximize Eq. (3-4) under the constraints of Egs. (3-1) through (3-3), respectively, and
we get (see Problem 3-1)

ay* = e e  PEngm N (3-5)
As before, the parameter o is easily determined in terms of the other parameter(s).
We sum both sides of Eq. (3-5) over N and j and use Eq. (3-1) to get
* e~ BENAV) g—¥N

ayn;
PNj(V’B7y)= L= = —
o e~ FENJV) =N
3

(3-6)

where Py;(V, B, y) is the probability that any randomly chosen system contains N
molecules and be in the jth energy state, with energy Ey;(V).
The averages of the mechanical properties E, P, and N are

= 1
E(V,B.y) =Y. Y Exj(V)e PEN®Iem N
7

— N
oln=E
- ‘( op ) e
V,7r
= _1 OEn; —BENy(V) ,— N
AN =5 T3 (- Gt
_ 1 (6 In E) g
B p ov B,y ( )
N, B9 =3 % T Nepemie
=N j
oln=
(59
V.B
where
EV.p.y) =3 ) e e (3-10)
J

We now determine B and y. In our treatment of the canonical ensemble, one of the
methods used to determine § was to derive an equation that related (0E/0V)y, ; to
(0p/oB)y,v and to compare this with a purely thermodynamic equation relating
(OE[0V)y, r to (Op/0T)y,y [cf. Egs. (2-17) to (2-21)]. This comparison suggested
that B was proportional to 1/T. We then showed that any two systems at the same
temperature have the same value of f, thus proving that = 1/kT, where k is a
universal constant. We can do the same thing here (Problem 3-2), but it is not
necessary.

A grand canonical ensemble can be considered to be a collection of canonical
ensembles in thermal equilibrium with each other but with all possible values of N.
Each of the systems has the same value of f, regardless of the number of molecules
it contains. That f has the same value as in the canonical ensemble can be seen by
imagining that we suddenly make the walls of the containers impermeable to the
molecules but still heat conducting. This gives us a collection of canonical ensembles
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with ¥V, N, and T fixed, and the arguments of Chapter 2 can be used to show that
B=1/kT

The value of y can be found by using the same method that we used in Chapter 2
to show that f§ was an integrating factor of d¢,.,. Consider the function

f(ﬁ» ?» {ENJ(V)}) =lnE=1In 2 z e_BENJ(V)e—rN
N7

As the notation indicates, we regard fto be a function of f, y, and the Ey;’s. The total
derivative of f is

7 ) (&)

daf = | = g+ | = dy + dEy;
f (aﬁ ¥, {Eny) ﬁ a’)’ By {Eny) Y ;; aENj B, 7, Enys N
Using Egs. (3-7) through (3-10), we have

df= —EdB~Ndy—BYY Py;dEy;
J
The last term here is the ensemble average reversible work done by the systems. For
simplicity, we assume only p—V work to get
df= —-EdB— Ndy+ ppdv

Paralleling our development in Chapter 2, we add d(BE) + d(yN) to both sides of this
equation:

d(f + BE + yN)=BdE + BpdV + y dN

If we compare this to the purely thermodynamic equation
TdS=dE +pdV — pdN

and use the fact that g = 1/kT, we can conclude that

ZH

= 1
kT =10
E Ny -
S—?—7+kln._. (3-12)

In Eq. (3-12), we have set the constant of integration equal to zero in accord with the
third law of thermodynamics (see Problem 3-5).

We have now brought the entropy, a nonmechanical property, into our discussion.
Equation (3-12), along with Eqgs. (3-6) through(3-9), allows us to express any thermo-
dynamic function of interest in a grand canonical ensemble in terms of Z(V, T, w).
This function is called the grand (canonical ensemble) partition function:

=V, T, p) = Z Z e~ Eny(V)kT guN[kT (3-13)
N j

As the canonical partition function is the connection between thermodynamics and
statistical thermodynamics for closed, isothermal systems (N, V, and T fixed), the
grand partition function serves as the link for open, isothermal systems (V, T, and p
fixed). If we can determine = for a system, we can calculate its thermodynamic
properties.

By summing over j for fixed N in Eq. (3-13), we see that it is possible to write
Z in the form

E(V, T, =Y QN, V, T)e:*" (3-14)
N
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The term e*/*7 is often denoted by A. Since = kT In A, A is an absolute activity, for
the difference in chemical potentials between two states is given by Ay = kT In(a,/a,),
where a; and a, are activities.

Since we take the number of systems in an ensemble to be arbitrarily large, the
number of particles in an ensemble becomes arbitrarily large, and hence the possible
number of particles in any one system can approach infinity. Therefore the summation
in Eq. (3-14) can be taken from 0 to co:

E(V, T, 1) =N20Q(N, v, TIAY (3-15)

Even though it may appear from Eq. (3-15) that = would be more difficult to
obtain than Q, it actually turns out in many problems that = is easier to obtain, since
the constraint of constant N is often mathematically awkward. This constraint can
be avoided by using a grand partition function, that is, by summing over all values of
N (see Section 4-2). Furthermore, there are many systems in which the many-body
problem can be reduced to a one-body, two-body problem, and so on. In these cases,
the grand partition function is particularly useful.

To complete our discussion of the grand canonical ensemble, we shall show that
pV is the thermodynamic characteristic function of In E. To see this, compare
Eq. (3-12) with the thermodynamic equation

G=uN=E+pV -TS
Thus we have
pV=kThhZWV,T,p (3-16)

Problem 1-37 shows that pV is the thermodynamic function whose natural variables
are V, T, and u. Equations (3-8), (3-9), and (3-12) can be derived from Eq. (3-16)
and the thermodynamic equation d(pV)= SdT + N du + p dV (see Problem 3-6).
Table 3-1 summarizes the formulas of the grand canonical ensemble.

3-2 OTHER ENSEMBLES

We could go on to consider other ensembles. For example, we could construct an
ensemble of systems in which the containing walls of each system are heat conducting
and flexible, so that each system of the ensemble is described by N, T, and p. The
constraints would be on the total energy and total volume of the ensemble, and the
partition function would turn out to be (see Problem 3-9):

AN, T,p)=). Y Q(N, V, E)e” ElkTe™pVIkT (3-17)
EV

whose characteristic thermodynamic function is the Gibbs free energy, that is,
G=—kTIln AN, T, p) (3-18)

Equation (3-17) is called the isothermal-isobaric partition function. Notice that the
natural variables of G are N, T, and p, the variables associated with this ensemble.

If we compare Eq. (3-17) with the two other partition functions that we have
derived [Egs. (2-34) and (3-13)], we see that all three can be obtained by starting with
Q(N, V, E), multiplying by some appropriate exponential, and summing over one or
two of the variables N, V, and E. In a sense, Q(N, V, E) is fundamental to all
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ensembles and, in fact, is itself the partition function for conceptually thie most simple
ensemble, the one representative of isolated systems. This is called the microcanonical
ensemble.

We can apply the results of the previous section to a treatment of an isolated system.
The grand canonical ensemble represents a collection of systems whose containing
walls allow heat and molecules to pass freely from one system to another. From a
physical point of view, the entire grand canonical ensemble is equivalent to one
isolated system of volume &V, containing 4~ molecules and having energy &. The
partitions in Fig. 3-1 can be considered to be a conceptual division of one isolated
system into &/ subsystems. The entropy of the entire ensemble S,, considered as one
isolated system, is &S, where S is the entropy of each of the open, isothermal systems.
This entropy is given by Eq. (3-12):

S=k(BE +yN +In E) (3-19)

where we use the notation § and y for convenience. We use Egs. (3-7) and (3-9) for
Eand N:

e—ﬁl:'nue—vN Ne—ﬁENJe—vN
S=klns+k(2pE~, —+ )y = )
N, j = N, j =
e BENjp—WN

=kInE +k) (BEy; + yN) —————

N,J =

ay;

=kInE— kY (Inay* +InE —In ) —- (3-20)

N.j X4

where we have used Eq. (3-6) to write the last line. We can perform the summation
over the second two terms in parentheses in Eq. (3-20):

k
S=klnE—— Yay*Inay*—kInE+klns
A

or

S,=AS=ksl Insf —kY ay*In ay;*
N, j

We see that for an isolated system, the entropy is proportional to the logarithm of the
number of states available to the system. In another notation, we can write

S=kInQ(N, V, E) (3-22)

Equation (3-22) shows that the more states there are available to an isolated system,
the higher is its entropy. This equation serves as the basis for qualitative statements
concerning entropy and disorder, randomness, and so on. In practice, Eq. (3-22) is
not used for the calculation of thermodynamic functions since N, V, and E are all
mechanical variables.

The argument leading to Eq. (2-38) incidentally can be immediately applied to
Eq. (3-22). For any spontaneous process in an isolated system,

2
= _Q 0
AS=kIn ) >

where 1 and 2 represent the initial and final states, respectively.
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Equation (3-22) is due to Boltzmann and is possibly the best-known equation in
statistical thermodynamics, mainly for historical reasons. Of course, Boltzmann
(1844-1906) did not express his famous equation in terms of quantum states, but
rather in a classical mechanical framework. We shall take up classical statistical
mechanics in Chapter 7. Boltzmann, in fact, was a great contributor to both equilib-
rium and nonequilibrium statistical mechanics. He was one of the first to see clearly
how probability ideas could be combined with mechanics. Equation (3-22) is carved
on his tombstone in the Zentralfriedhoff in Vienna, although the equation is not often
used today. However, his contribution to nonequilibrium statistical mechanics is such
that to this day the so-called Boltzmann equation (Chapters 18 and 19) still is the
fundamental equation describing the transport of dilute gases. It is interesting to note
that Boltzmann, who contributed so much to understanding macroscopic phenomena
in terms of molecular mechanics, lived at a time when the atomic theory was not so
generally accepted as it is today, and his work was severely criticized by some of the
leading physicists of the day. He committed suicide in 1906 (for reasons not entirely
clear) and never lived to see the full acceptance of his work in statistical mechanics.

Although Q(N, V, E) is not generally available, we have determined it for an ideal
gas in Section 1-3 [¢f. Eq. (1-37)]. If we calculate k In Q, neglecting terms of order
less than O(N '), we get (see Problem 3-11):

2nmkT\*? Ve5/2
S = Nk ln[( "Z’z ) jv ] (3-23)

We shall see later that this equation gives excellent agreement with experiment, but
now we simply show that if we use

1 p 7
S =—dE + =dV — —=dN 3-2
d Td +T Td (3-24)

to get

()
T \oV/y e

and substitute Eq. (3-23) into this, we find
pV = NkT

which is the ideal gas equation of state. See Table 3-1 for a summary of the formulas
related to the microcanonical ensemble.

It is possible to derive partition functions appropriate to other sets of independent
variables, but the four that we have considered above are sufficient for most applica-
tions. We shall show that in the limit of large systems in equilibrium, one can choose
an ensemble and its partition function on the basis of mathematical convenience
rather than on the basis of which thermodynamic variables are used to describe the
system. This result will come out of a study of fluctuations, which we turn to now.

3-3 FLUCTUATIONS

The methods that we have developed allow us to calculate ensemble averages of
mechanical variables, which we then equate to thermodynamic functions. Equations
such as Eq. (2-12) or (3-6) are the probability distributions over which these ensemble
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Table 3-1. A summary of formulas for several types of ensemble

microcanonical ensemble, Q(N, ¥, E)

S=klnQ

1_cmﬂ

kT~ \"eE NV (3-26)
P 81nQ)

ITT_( W Ink (3-26)
o 2InQ

kT~ _( oN ),,,E (3-27)

canonical ensemble, Q(N, ¥, T)

A=—kTh Q
dA=—SdT—pdV+ pdN
2
s=kin 0+ k(g (3-28)
N,V
2In Q)
p= W Jur (3-29)
9ln Q
W= "‘T( N )., . (330
2ln Q)
= kT2 .
e=ir(258) (3-31)
grand canonical ensemble, E(¥, T, )
pV=kThE
d(pV)=SdT+ Ndu+pdv
— 2In E)
S—kln_.+kT( T )y, (3-32)
2lnE
(e -
N=kT 2 Jv.e (3-33)
?2In E.) InE
p—kT(-W o —kT—V- (3-34)
isothermal-isobaric ensemble, A(N, T, p)
G=—kTlh A
dG=—SdT+ Vdp+ pdN
2ln A
S=k1nA+kT(-—a—-) (3-35)
T /n.»p
2ln A
s :
T op /n,r (3-36)

?In A)
F'=_kT( oN /1,p (3=37)
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averages are taken. In Section 1-5 we saw that the average is the first of a family of
moments. Another important moment is the second central moment or the variance,

(x — X)?, which is a measure of the spread of a probability distribution about the mean
value. Furthermore, we saw toward the end of Section 1-5 that the most meaningful
measure of the spread of a distribution is the square root of the variance, that is, the
standard deviation, relative to the mean value. A standard deviation of 10'° may be
large as an absolute number, but it is extremely small if the mean of the probability
distribution is 10?°. In this section we shall calculate the variances of several mechanical
variables and compare these to the mean values.

Any deviation of a mechanical variable from its mean value is called a fluctuation,
and the investigation of the probability of such deviations is called fluctuation theory.
Fluctuation theory is important in statistical mechanics for a number of reasons. The
most obvious reason is to determine to what extent we expect to observe deviations
from the mean values that we calculate. If the spread about these is large, then experi-
mentally we would observe a range of values, whose mean or average is given by
statistical thermodynamics. We shall see, however, that the probability of observing
any value other than the mean value is extremely remote. As a corollary to this im-
portant result, we shall see that all of the ensembles that we have considered earlier
are equivalent for all practical purposes. In addition, there are several statistical thermo-
dynamical theories of solutions and light scattering based on fluctuation theory, and
one formulation of the statistical mechanical theory of transport focuses on the rate
of decay of spontaneous fluctuations.

Let us consider first fluctuations in a canonical ensemble. In a canonical ensemble,
N, V, and T are held fixed, and we can investigate fluctuations in the energy, pressure,
and related properties since these are the ones that vary from system to system. It is
important to be aware of the properties that can vary and those properties that are
fixed in each ensemble. We shall consider fluctuations in the energy. Thus we use
Eq. (2-12) for the probability distribution of the energy and write for the variance

0.2 =(E— E)? = E* — E?

=Y E*P, - E? (3-38)
J
where
e FEs
P=—— (3-39)
Y QN V, B)
We can write Eq. (3-38) in a more convenient form by noting that
1 190
E2P,.=—Y E2 Ffls=____VY E,e PEs
2ER =g 0k ER
10, 0E _odlnQ
=———(EQ)=—-———-E——
0P "% "
0E _
= 2 " 4 E? 3-40
kT 7T + (3-40)
Thus Eq. (3-38) becomes
O0E
2 = kT? —) 3-41
7E (aT N.V =40
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and if we associate E with the thermodynamic energy, we have
gt =kT?*C, (3-42)

where Cy, is the molar heat capacity.
To explore the relative magnitude of this spread, we look at

O _ (kT2Cy)1/2
E E

To get an order-of-magnitude estimate of this ratio, we use the values of E and C,
for an ideal gas, namely, O(NkT) and O(Nk), respectively. If we use these values in
Eq. (343), we find that o/E is O(N ~'/?), showing that in a typical macroscopic
system, the relative deviations from the mean are extremely small. The probability
distribution of the energy may, therefore, be regarded as a Gaussian distribution which
is practically a delta function.

We can derive a Gaussian distribution approximation to P(E), the probability of
observing a particular value of E in a canonical ensemble. According to Eq. (2-36),
P(E) is given by CQ(E)e™ ¥/*T, where C is a normalization factor which is independent
of E. Since Q(E) is an increasing function of E, and e~ £/T is a decreasing function of
E, their product P(E) peaks at some value of E, say E*. But we have just seen above
that the spread about the maximum value is extremely small, and so E* and E are
essentially the same point. The width of P(E) is O(N ~/?), and so E* and E differ by
O(N~112),

Let us now expand P(E) in a Taylor series about E*, or E. As in Section 1-5, it is
more convenient to work with In P(E). From the definition of E*(=~ E) as the value
of E at the maximum in P(E),

(6 In P) _ (6 In Q) _p=0 (3-44)
E Je—por \ OE )p_per
Equation (3-44) determines E as a function of . The second derivative of In P(E) is
(62 In P) B (az In Q)
0E* )\ oF?

which is to be evaluated at E = E* = E. Since

(a2 In Q)E _PlE) 0 (a In Q(E))

(3-43)

"OE? )..p  OE> OE\ OE
d (0lnQ op
~ O ( OE )£=E ~OE
where the last term follows from Eq. (3-44), we have
*InP ap 1 oT 1
(W)EW:E:E: TkT?9E T kT?C, (3-48)
The Taylor expansion of In P(E) through quadratic terms is
— 2
In P(E) = In P(E) — (2Ek_T2EC_); + e (3-46)
or
2
P(E) = P(E)exp} — (fk—jc)j} (3-47)
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Problem 3-16 involves showing that terms beyond the quadratic terms can be ignored
in Eq. (3-46).

If we compare Eq. (3-47) to the standard form of a Gaussian distribution [Eq. (1-72)],
we see that o> = kT2C, (in agreement with Eq. (3-42)] and that the normalization
constant P(E) is (2no*)~"/2. Equation (3-47) can be used to calculate the probability
of observing a value of E that differs from E. For example, the probability of observing
an energy that differs by 0.1 percent from the average energy of 1 mole of an ideal
gas O(e™1°%), an extremely small number. (See Problem 3-12.)

Incidentally, the derivation of Eq. (3-47) is a case where we must be careful not to
confuse the variable E in P(E) with E*, E, or the thermodynamic quantity E, which
unfortunately is also called *“ E.”” This is especially true of Eq. (3-44), where E is a
variable, and E is that particular value of the variable for which the quantity d In Q/JE,
a function of E, is equal to the preassigned value of § (N, V, T are given in a canonical
ensemble).

We could also calculate the fluctuations in the pressure in a canonical ensemble, but
this is left to Problem 3-18. Instead, we consider the fluctuations in a grand canonical
ensemble. In a grand canonical ensemble, V, T, and p are held fixed, while the energy
and number of particles in each system are allowed to vary. We can calculate the
fluctuation in the number of particles in the same manner as we treated the fluctuation
in energy in a canonical ensemble. If o,,* is the variance in the number of particles, then

oy? = N? — N?> =¥ N?P,, — N? (3-48)
N'j

where
P e BENjp—YN
MTEW,B,Y)

We treat N? in analogy to Eq. (340):

z NZPN_, =1: z Nze—ﬂEwe—yN — _lzi zNe—ﬂEN,e—yN
NJ =N Z0y N
10 __ ON _0lnE
E Oy Oy Oy
N _
onlv,r
Thus Eq. (3-48) becomes
N
oy =kT (6—) (3-50)
op

The right-hand side of this equation can be written in a more familiar form by ther-
modynamic manipulations. Problem 3-26 proves that

()., ()
oN)y.r  N*\oV/yr

and so
_ N2kTk
7

oyt

(3-51)



62 OTHER ENSEMBLES AND FLUCTUATIONS

where k is the isothermal compressibility

1 aV)
k=——|— (3-52)
|4 (3P NT
The value of oy relative to N is
1/2
0’_£ = (Q) (3-53)
N | 4

To get an order-of-magnitude estimate of this ratio, we use the fact that x = 1/p for
an ideal gas to get oy/N = N™'/2, Again we find that relative deviations from the
mean are very small. The result, O(N~!/2), is typical of fluctuations in statistical
thermodynamics.
Since V is fixed in the grand canonical ensemble, the fluctuation in the number of
particles is proportional to the fluctuation in the density p, and so
o, oy (kTKk\'?
ﬁ_N_(V)
There is a condition under which the fluctuations in density are not negligible. At the
critical point of a substance, (0p/0V)y, r is zero, and hence its isothermal compress-
ibility is infinite. Thus there are large fluctuations in the density from point to point
in a fluid at its critical point. This is observed macroscopically by the phenomenon
of critical opalescence, in which a pure substance becomes turbid at its critical point.
We can also derive a Gaussian approximation to P(N). Let N*(= N) be the value
of N at the peak in P(N). We have

P(N) = CO(N, V, T)e*N

where C is a normalization constant. Then

dln P dln Q
(G = (5 )y P10

This equation determines N as a function of fu. Also,
(62 In P) _ (62 In Q) 0 0dln O(N,V, T) _ OBu
ON* Jy-n N=R B

(3-54)

ON? -N oN oN oON
___r
KTON3R)y 2
Thus we find
[ —(N—Ny ]
P(N) = P(R)exp| =N = M) y
(N) = F( )""p[sz(aN/au)y.r (3-85)

which gives the same expression for o,* as Eq. (3-50). Problems 3-19 through 3-20
involve the determination of fluctuations in the isothermal-isobaric ensemble.

An interesting application of the above fluctuation formulas is to the scattering of
light by the atmosphere. It can be shown that if light of intensity I, is incident on a
region of volume V with a dielectric constant &, which differs from the average value
of ¢ for the medium &, the intensity of light scattered at an angle 6 at a distance R is

1) n*V?qg,” (1 + cos® 6)
I, ¢ R?

(3-56)

where ¢, is the variance of ¢, and 2 is the wavelength of the incident light in vacuum.
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This is called Rayleigh scattering. The dielectric constant ¢ is related to the density
by the so-called Clausius-Mossotti equation

e—1

e+2

=Ap (3-57)

which is derived and discussed in most physical chemistry texts. The quantity A4 is a
constant, and p is the density. We can see from this equation that fluctuations in p
lead to fluctuations in €, and hence to Rayleigh scattering by Eq. (3-56). If we calcu-
late 0,2 in terms of ¢,? from Eq. (3-57), and use Eq. (3-54) for 0,2, we find (see
Problem 3-21)

I6) n*T (1 + cos? 0)
To IR e Ve DV T

where k is the isothermal compressibility. By integrating this over the surface of a
sphere of radius R, we obtain finally

Iscattered _ I() 2
_—Io—._f R?sin 0 d d¢

3

Tt

This equation shows that the blue color of the sky is due to fluctuations in the density
of the atmosphere. The 1* in the denominator gives rise to a strong dependence on
wavelength, so that the short wavelengths (blue) of the sun’s light are scattered more
than the red, and hence the sky appears blue. Similarly, red sunsets and sunrises are
due to the fact that the long wavelengths (red) are not scattered as much as the blue.

There is one result of fluctuation theory which will be very useful to us. We have
stated above that the various ensembles and their partition functions are essentially
equivalent to each other, and that one can choose to work with a partition function
on the basis of mathematical convenience. We now show why this is so.

Consider the canonical partition function:

ON,V,T)=Y QN, V, E)e” E*T (3-58)
E

kTr(e — 1)*(e + 2)*V

We have seen in Eq. (3—47) that P(E) = CQ(E)exp(—E/kT) is an extremely narrow
Gaussian function of E. In the limit of large N (and it is only in the limit of large N
that classical thermodynamics is valid), only one value of E is important, namely,
E = E* = E. Thus in the summation in Eq. (3-58), only the term with E = E contri-
butes, and Eq. (3-58) becomes

O(N, V, T)=Q(N, V, E)e” BT (3-59)
Although the systems of a canonical ensemble can, in principle, assume any value of
E (as long as it is an eigenvalue of the N-particle Schrodinger equation), it happens
that the energy of the entire ensemble is distributed uniformly throughout the ensemble,
and each system is almost certain to be found with the average energy E. A canonical

ensemble degenerates, in a sense, to a microcanonical ensemble.
If we take the logarithm of Eq. (3-59) and use Eq. (2-35), we find that

A=E—kTInQ(N, V,E)
or that
S=kInQ(N, V, E)
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This is an alternative derivation of the fundamental relation between the entropy and
the number of states accessible to the system.

The general results we have obtained here are also obtained for other ensembles.
For example, although the systems of a grand canonical ensemble can assume any
value of N and E, in practice it turns out that the total energy and the total number of
molecules of the entire ensemble are distributed uniformly throughout the ensemble,
and each system has the average energy and contains the average number of molecules.
This, of course, is exactly what one expects intuitively, as long as the systems are of
macroscopic size and the density is not extremely low.

These results can be used to write down, by inspection, the characteristic thermo-
dynamic function of any partition function. Equations (3-58) and (3-59) are a good
example. Suppose we did not know that A = —kT In Q. We do know that S=kIn Q,
however, and so if we take the logarithm of Eq. (3-59), we get that In Q = S/k — BE,
which shows that A = —kT In Q. Since partition functions, in general, are a sum of
Q(N, V, E) multiplied by exponential factors, this method can always be used to
determine the thermodynamic characteristic function. (See Problem 3-15.)
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PROBLEMS

3-1. Derive Eq. (3-5).

3-2. Using a grand canonical formalism, show that any two systems at the same tempera-
ture have the same value of f.

3-3. For a grand canonical ensemble show that

()., #(a0).. -

Compare this to the thermodynamic equation (see Problem 1-31)

(aE) + 1 ( ap )
V) ur.ur - T\OQIT) ) wr.v P

to suggest that 8 = const/T for a grand canonical ensemble.
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3-4. State and use Euler’s theorem to show

— kT olnE lenE
p= v ) OV

3-5. Show that the entropy given by Eq. (3-12) goes to zero as T goes to zero.
3-6. Derive the principal thermodynamic connection formulas of the grand canonical
ensemble starting from
pV=kTIh E
and
d(pV) — SdT+ Ndu+p dV

3-7. Show that for a two-component system

By, 2, T, V) =2 3. O(N1, N2, V, TIA,M1A,N2
Ny N2
where A, = e*/*T (i= 1, 2). From this derive the corresponding thermodynamic connection
formulas.
3-8. In the next chapter we shall see that the grand partition function of an ideal mon-
atomic gas is

A

[x

= e%

where g = 2mmkT'h?)3'2V. Derive the thermodynamic properties of an ideal monatomic gas
from E.
3-9. Show that the partition function appropriate to an isothermal-isobaric ensemble is

A(N)p’ T) = Z Z II(N, V, E)e—El'lT e—PVIKT
E V

Derive the principal thermodynamic connection formulas for this ensemble.
3-10. In Problem 5-17 we shall show that the isothermal-isobaric partition function of an
ideal monatomic gas is

A [(Zwm):‘/’(kT)’/z] N
ph*

Derive the thermodynamic properties of an ideal monatomic gas from A.

3-11. Derive Eq. (3-23) starting from Eq. (1-37).

3-12. Calculate the probability of observing an energy that differs by 10~* percent from
the average energy of 1 mole of an ideal gas.

3-13. Show that for macroscopic ideal systems, ones obtains the same result for the
entropy whether one uses S = k In ®(E), where @ is the number of quantum states with energy
<E [Eq. (1-36)], or S= k In Q(E, AE), where Q(FE, AE) is the number of quantum states
within energy AE about E [Eq. (1-37)] as long as AE, E is small, but not zero. Show that S is
insensitive to AE over a wide range of AE. The next problem discusses this remarkable result
more generally.

3-14. Let Q(E) dE be the number of quantum states between E and F + dE. In Chapter 1
we showed that Q(E) is 2 monotonically increasing function of E (at least for an ideal gas).
We can write two obvious inequalities for (F):

E
OE)= fo Q(E) dE’ > (E) AE

E
EQ(E) > f E') dE' = (E)
0
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where AE is a small region surrounding E. By multiplying the second inequality by AE/E, we
get

AE (E
UE)AE>— f QE") dE’
E Jo
Combining this inequality with the first one above gives
A E E E
= f E") dE’ < (E) AE < f Q(E’) dE’
E 0 0
Taking logarithms gives
E
In ®(E) —In (E) <In [Q(E) AE] <In ©(E)

Now unless AE is extremely small, In (E’AE) is completely negligible compared to In ©(E),
since the total number of states with energies equal to or less than E is at least O(e"). Show
that even if the energy could be measured to a millionth of a percent, In (E/AE) = 18, which
is completely negligible compared to N.

3-15. Fluctuation theory provides a simple method to determine the characteristic function
associated with a particular partition function. Consider the canonical partition function

OWN, V,T) = 3 N, V, E) e~
E

According to the theory of fluctuations, there is effectively only one term in this summation,
and so we write

Q(N, V,T)= (N, V, E) e-Ent

Remembering that S = k In Q, we have, upon taking logarithms, that

ro S_E
0=y~
or that
o —A
Q=7

Proceeding in a like manner, determine the characteristic thermodynamic function of the
following partition functions:

EV, T, = % O(N, V, T) e™
A(p, T,N) = g Q(N, V,T)e **"

$(V,E, Bp) = % QN, V, E) e~

¥V, T, ps, N2) =NZ Q(Ny, N2, T, V) &M
1
W(p,y, T, N)= ; g ON, V, A, T) e=#%" o=
where &7 is surface area, and y is the surface tension.
3-16. When we derived the Gaussian expression for P(E) in a canonical ensemble, we

expanded In P(E)in a Taylor expansion about E = E* ~ E, dropping terms after the quadratic
term. Show that these terms are negligible.
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3-17. Show that

—_— oCy
—E’3= 2 14 — 13
& kl (aT)+2 CV}
and that
(E—E)?
T=0(1v—z)

for a canonical ensemble.
3-18. Derive an expression for the fluctuation in the pressure in a canonical ensemble.
3-19. Show that for an isothermal-isobaric ensemble

v-v)

124
5r(2)
op [n, 1

3-20. Derive an equation for the fluctuation in the volume in an isothermal-isobaric

ensemble. In other words, derive an equation for Vi—va Express your answer in terms of
the isothermal compressibility, defined by

1(3V)
k= ——{—
V\ép /w1

Show that o,/V is of the order of N-1/2,
3-21. By calculating o.2 in terms of 0,2 from Eq. (3~57) and using Eq. (3-54) for 0,2, show
that

P(V) — P(V*) exp

I6) =*T (1 + cos? 6)
o e <ET VDY

3-22. Show that the fluctuation in energy in a grand canonical ensemble is

0};2=(sz€)+ E O'Nz
YV T\oN) 1. v

3-23. Show that in a two-component open, isothermal ensemble that

— oN.
N:N: — N,N, = kT( ‘)
opz)v, 1, m

%)
=kT
Ops/v, 1, u,

3-24. Show that

H? — H* = KT?C,

in an N, p, T ensemble.

3-25. Use the formulas in Table 3~1 to derive expressions for any other thermodynamic
functions for each of the four ensembles listed there.

3-26. Show that



CHAPTER 4

BOLTZMANN STATISTICS,
FERMI-DIRAC STATISTICS,
AND BOSE-EINSTEIN
STATISTICS

The results that we have derived up to now are valid for macroscopic systems. In order
to apply these equations, it is necessary to have the set of eigenvalues {E(N, V)} of
the N-body Schrodinger equation. In general, this is an impossible task. There are
many important systems, however, in which the N-body Hamiltonian operator can
be written as a sum of independent individual Hamiltonians. In such cases the total
energy of the system can be written as a sum of individual energies. This leads to a
great simplification of the partition function, and allows us to apply the results with
relative ease.

We shall see that the final equations depend upon whether the individual particles
of the system are fermions (that is, the N-body wave function is antisymmetric under
the interchange of identical particles) or bosons (the N-body wave function is sym-
metric under the interchange of identical particles). These two types of particles obey
different laws, called Fermi-Dirac or Bose-Einstein statistics. We shall show that under
normal conditions (for example, sufficiently high temperatures), both of these distribu-
tion laws can be approximately reduced to an even simpler one, called Boltzmann
statistics. The Boltzmann distribution law can also be derived from Q(N, V, T) at
high temperature without first deriving the Fermi-Dirac and Bose-Einstein distribution
laws, and this is done in Section 4-1. We shall discuss in this section just what is meant
by “normal” conditions or “sufficiently high” temperatures. Then in Section 4-2
we derive the two fundamental distribution laws, Fermi-Dirac and Bose-Einstein
statistics, and show how both of them reduce to Boltzmann statistics in the appropriate
limit.

4-1 THE SPECIAL CASE OF BOLTZMANN STATISTICS

In Section 1-3 it was shown that if the Hamiltonian of 2 many-body system can be
written as a sum of one-body Hamiltonians, the energy of the system is the sum of
individual energies, and the wave function is a product of the single-particle wave
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functions. In addition, the wave functions of a system of identical particles must
satisfy certain symmetry requirements with respect to the interchange of the particles.
All known particles fall into two classes: those whose wave function must be symmetric
under the operation of the interchange of two identical particles, and those whose
wave function must be antisymmetric under such an exchange. Particles belonging to
the first class are called bosons, and the others are called fermions. There is no restric-
tion of the distribution of bosons over their available energy states, but fermions have
the very severe restriction that no two identical fermions can occupy the same single-
particle energy state. This restriction follows immediately from the requirement that
the wave function be antisymmetric (see Problem 1-26). These considerations become
important in enumerating the many-body energy states available to the system.

There are many problems in which the Hamiltonian can be written as a sum of
simpler Hamiltonians. The most obvious example perhaps is the case of a dilute gas,
where the molecules are on the average far apart, and hence their intermolecular
interactions can be neglected. Another example, which may be familiar from physical
chemistry, is the decomposition of the Hamiltonian of a polyatomic molecule into its
various degrees of freedom:

H =~ -#(ransla(ional + ‘#rmalional + ‘#vibmtional + ‘#elcctronic (4—1)

Equation (4-1) is a good first approximation and can be systematically corrected by
the introduction of small interaction terms.

There are many other problems in physics in which the Hamiltonian, by a proper
and clever selection of variables, can be written as a sum of individual terms. Although
these individual terms need not be Hamiltonians for actual individual molecules, they
are nevertheless used to define the so-called quasi-particles, which mathematically
behave like independent real particles. Some of the names of quasi-particles that are
found in the literature are photons, phonons, plasmons, magnons, rotons, and other
“ ons.” In spite of the apparent limitation of this requirement on the Hamiltonian, we
can see that it is very useful and can be used to study solids (Chapter 11) and liquids
(see Chapter 12 of Statistical Thermodynamics), systems in which the decomposition of a
many-body Hamiltonian into a sum of independent terms would hardly appear to be
justified. First let us consider the canonical partition function for a system of dis-
tinguishable particles, in which the Hamiltonian can be written as a sum of individual
terms. Denote the individual energy states by {¢;°}, where the superscript denotes the
particle (they are distinguishable), and the subscript denotes the state. In this case the
canonical partition function becomes

Q(N, V, T) = z e_E-'/kT = Z e—(ei"+t_,"+¢k¢+...)/k'r
J VoK e
= 2 e—ziﬂ/kT Z e—;lb/kT 2 e—,;kc/kT
i J k

=4a9v4c (4-2)

where
q(V, T) =3 e = (4-3)
Equation (4-2) is a very important result. It shows that if we can write the N-particle

Hamiltonian as a sum of independent terms, and if the particles are distinguishable,
then the calculation of Q(N, V, T) reduces to a calculation of g(V, T). Since g(V, T)
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requires a knowledge only of the energy values of an individual particle or quasi-
particle, its evaluation is quite feasible. In most cases {g;} is a set of molecular energy
states; thus g(V, T) is called a molecular partition function.

If the energy states of all the particles are the same, then Eq. (4-2) becomes

ON,V,T)=[q(V, T)]¥ (distinguishable particles) (4-4)

Equation (4-4) shows that the original N-body problem (the evaluation of Q(N, V, T))
can be reduced to a one-body problem (the evaluation of g(V, 7)) if the particles are
independent and distinguishable. Although particles are certainly not distinguishable
in general, there are many important cases where they can be treated as such. An
excellent example of this is a perfect crystal. In a perfect crystal each atom is confined
to one and only one lattice point, which we could, in principle, identify by a set of
three numbers. Since each particle, then, is confined to a lattice point and the lattice
points are distinguishable, the particles themselves are distinguishable. Furthermore,
we shall see in Chapter 11 that although there are strong intermolecular interactions
in crystals, we can treat the vibration of each particle about its lattice point as inde-
pendent to a first approximation.

Another useful application of the separation indicated in Eq. (4-2) is to the mole-
cular partition function itself. Equation (4-1) shows that the molecular Hamiltonian
can be approximated by a sum of Hamiltonians for the various degrees of freedom of
the molecule. Consequently we get the useful result that

Imolecule = GiranslationalFrotational9vibrationalJelectronic *°° (4_5)

where, for example,

Qeranslational = z e—n"‘“"/kT (4-6)
i

Thus not only can we reduce an N-body problem to a one-body problem, but it is
possible to reduce it further into the individual degrees of freedom of the single
particles.

Equation (44) is an attractive result, but atoms and molecules are, in general, not
distinguishable; thus the utility of Eq. (4—4) is severely limited. The situation becomes_
more complicated when the inherent indistinguishability of atoms and molecules is
considered. In this case, the N-body energy is

Ejm. =& +e+eg+e+- (4-7)
and the partition function is
Q(N, V, T) = ' j;l e—(e.+:l+¢k+:,+---)/kT (4—8)
i E .

Because the molecules are indistinguishable, one cannot sum over i, j, k, I, . . . separately
as we did to get Eq. (4-2).

Consider, for example, the case of fermions. The antisymmetry of the wave function
requires that no two identical fermions can occupy the same single-particle energy
state. Thus in Eq. (4-8), terms in which two or more indices are the same cannot be
included in the summation. The indices i, j, k, /, and so on, are not independent of
one another, and a direct evaluation of Q(N, V, T) for fermions by means of Eq. (4-8)
is very difficult.

Bosons do not have the restriction that no two can occupy the same molecular state,
but the summation in Eq. (4-8) is still complicated. Consider a term in Eq. (4-8) in
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which all of the indices are the same except one, that is, a term of the form
g+¢e +¢ +¢g+ - with i) Because the particles are indistinguishable, the
position of ¢; is unimportant, and so this state is identical with ¢; +¢; +¢; + ¢; + -
orej+¢;+¢& +¢+¢+ -, and so on. Such a state should be included only once
in Eq. (4-8), but an unrestricted summation over the indices in Eq. (4-8) would
produce N terms of this type. Consider the other extreme in which all of the particles
are in different molecular states, that is, the state with energy ¢; + ¢; + g + - with
i#j#k+# Because the particles are indistinguishable, the N! states obtained by
permuting the N different subscripts are identical and should occur only once in
Eq. (4-8). Such terms will, of course, appear N! times in an unrestricted summation.
Consequently, a direct evaluation of Q for bosons by means of Eq. (4-8) also is
difficult.

The terms that introduce complications are those in which two or more indices are
the same. If it were not for this kind of term, one could carry out the summation in
Eq. (4-8) in an unrestricted manner, and then correct the sum by dividing by N! It
turns out that this procedure yields an excellent approximation in many (most) cases
for the following reason.

We showed in Section 1-3 that for a particle in a box, the number of molecular
quantum states with energy < ¢ is

8ma2.¢;)3/2

*e) =%(T

Form =10"%2g, a =10 cm, and T = 300°K, ®(g) = O(10*°). Although this calcula-
tion is done for one particle in a cube (i.e., one molecule of an ideal gas), the order of
magnitude of the result is general. Thus we see that the number of molecular quantum
states available to a molecule at room temperature, say, is much greater than the
number of molecules in the system for all but the most extreme densities. Since each
particle has many individual states to choose from, it will be a rare event for two
particles to be in the same molecular state. Therefore the vast majority of terms in
Eq. (4-8) will have all different indices. This allows us to sum over all the indices
unrestrictedly and divide by N! to get

N
ON,V,T)= % (indistinguishable particles) (4-10)

(4-9)

with
oV, T)=F ™9
J

for a system of identical, indistinguishable particles satisfying the condition that the
number of available molecular states is much greater than the number of particles.

Equation (4-10) is an extremely important result, since it reduces a many-body
problem to a one-body problem. No longer is there a condition of distinguishability;
the indistinguishability of the particles has been included by dividing by N!, a valid
procedure for most systems under most conditions. We can investigate this condition
in more detail using Eq. (4-9) for an ideal gas. Mathematically, we require that

o) > N
Using Eq. (4-9), we have the condition
n (IkaT)""Z N

: > (4-11)

hZ
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where we have set ¢ = 3kT/2. Clearly this condition is favored by large mass, high
temperature, and low density. Numerically it turns out that (4-11) is satisfied for all
but the very lightest molecules at very low temperatures. Table 4-1 examines this
condition for a number of systems. We see that the use of Eq. (4-10) is justified in
most cases. We have examined (4-11) for only monatomic systems, but the results are
valid for polyatomic molecules as well, since the translational energy states account
for almost all of the energy states available to any molecule.

When Eq. (4-10) is valid, that is, when the number of available molecular states is
much greater than the number of particles in the system, we say that the particles obey
Boltzmann statistics. Boltzmann statistics is an approximation that becomes increas-
ingly better at higher temperatures. We shall show in Chapter 7 that at high enough
temperatures, one can describe the energy of a system by classical mechanics. Since
the limiting case of Boltzmann statistics and the use of classical mechanics both require
a high-temperature limit, Boltzmann statistics is also called the classical limit.

Let us examine Eq. (4-10). The total energy of the N-body system is

e L2010 Q) _
E=Né=kT (——aT "y N;tzl p
The first equality is valid, because the molecules are assumed to be independent, and
hence their energies are additive. We see from Eq. (4-12) that the average energy of a
particle is

{-:= E.
;Z’ g

We can conclude from this equation that the probability that a molecule is in the jth
energy state

e—al/kT

(4-12)

e—l:l/kT

(4-13)

—&4kT —eskT

e e
n;, = =
J —&5kT
die 9

It is interesting to note that the fluctuations in ¢ are of the same order as ¢ itself
(see Problems 4-18 and 4-19), that is, the probability distribution for single molecules
is not sharp. A sharp probability distribution is a many-body effect.

(4-14)

Table 4-1. The quantity (6 N7V )(h*/12mkT)3'? for a number of simple systems*

6N h? 3/2
TCK) oV (12ka)

liquid helium 4 1.6
gaseous helium 4 0.11
gaseous helium 20 2.0x10-3
gaseous helium 100 3.5x10°%
liquid neon 27 1.1 x10-2
gaseous neon 27 82 x10-3
gaseous neon 100 3.1 x 10~¢
liquid argon 86 5.1 x 10~%
gaseous argon 86 1.6 x 10~
liquid krypton 127 54 x10°%
gaseous krypton 127 2.0 x 107
electrons in metals 300 1465
(sodium)

* This quantity must be much less than unity for Eq. (4-10) to be valid. The temperatures associated with
the liquid states are the normal boiling points [¢f. Eq. (4-11)].
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The similarity between Eq. (4-14) for molecular states and Eq. (2-12) for states of
the entire N-body system is not fortuitous. Equation (4-14) can be derived by the same
mathematical formalism of Chapter 2. The ensemble is considered to be the N actual
molecules in thermal contact with each other. The number of molecules #; in the state
with energy ¢; is found by maximizing a combinatorial factor similar to Eq. (1-77).
This point of view was the one originally proposed by Boltzmann. It is valid only for
systems in which the total energy is a sum of individual molecular energies, that is,
only for dilute gases. The conceptual generalization of these ideas by Gibbs was a
magnificent achievement, which allowed statistical thermodynamics to be applicable
to all physical systems. Furthermore, the derivation given in Chapter 2 is rigorous,
since macroscopic systems can be labeled, and the size of the ensemble can be in-
creased arbitrarily. This is not so for the Boltzmann approach, since the molecules
cannot be labeled, and the system is finite.

Equation (4-14) can be reduced further if we assume that the energy of the molecule
can be written in the form [¢f. Eq. (4-1)]

£= ei"ans + 8jmt + £kv'b + 8'elec 4o

Then Eq. (4-14) and Eq. (4-5) can be combined to give, for example,
—gvib
aviv € (4-16)
9viv
for the probability that a molecule is in the jth vibrational state irrespective of the
other degrees of freedom.

Although Eq. (4-10) is applicable to most systems, it is important to complete the
development of systems of independent, indistinguishable particles by evaluating
Eq. (4-8) for the general case. The exact evaluation of Eq. (4-8) is necessary for
several systems that we shall study. We must return, then, to a consideration of the
effect of the symmetry requirements of N-body wave functions on the sum over states

in Eq. (4-8).

4-2 FERMI-DIRAC AND BOSE-EINSTEIN STATISTICS

There are two cases to consider in the evaluation of Eq. (4-8). The resultant distri-
bution function in the case of fermions is called Fermi-Dirac statistics, and that in the
case of bosons is called Bose-Einstein statistics. Since all known particles are either
fermions or bosons, these two * statistics”” are the only exact distributions. We shall
see, however, that in the case of high temperature andfor low density, both of these
distributions go over into the Boltzmann or classical distribution.

It is most convenient to treat the general case by means of the grand canonical
ensemble for reasons that we shall see shortly. Let E;(N, V) be the energy states avail-
able to a system containing N molecules. Let g be the molecular quantum states.
Finally, let n, = n,(E;) be the number of molecules in the kth molecular state when the
system itself is in the quantum state with energy E;. A quantum state of the entire
system is specified by the set {n,}. The energy of the system is

Ej=;£knk (4_16)

and, of course,
N=Yn (4-17)
k
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We can write Q(N, V, T) as

ON,V, T)=Y e #Es= ¥ g hLicim (4-18)
i {md

where the asterisk in the summation signifies the restriction that
z nk = N
This restriction turns out to be mathematically awkward. We can avoid this restric-
tion by using the grand canonical partition function instead. This will be an excellent
example where one partition function is much easier to evaluate than another. Since

we have demonstrated the equivalence of ensembles, we are free to make the choice
strictly on mathematical convenience. We then use

EV, T, ) =3 " ON, V, T)
N=0
We use Eq. (4-18) for Q(N, V, T) and the absolute activity 1 = ¢’* to get
EWV, T,p) = Z yLl Z* e BLiem

N=0 {n})

Lo

2* l}: me—ﬂ Yyeqmy

N=0 {m)
— S * A = Bescyni
NZ’O (g,:') ];I( <) (4-19)

Now comes the crucial step (which requires some thought). Since we are summing
over all values of N, each n, will range over all possible values, and Eq. (4-19) can be
written as (see Problem 4-6)

ny™Max p,max

EV, T, W)= ZO 2_0 1:[ (Ae™ Py (4-20)
Equations (4-19) and (4-20) are completely equivalent. Equation (4-20) can be written
in a2 more lucid form:

nymax nymex

=WV, T, p) = zo(le‘ﬁn)m Zo(le—ﬁcz)nz e
or

-
=] 3 (Ae ey (4-21)
k m=0
Equation (4-21) is a simple product and is a general result. The crucial step in this
series of equations is the step from Eq. (4-19) to Eq. (4-20), from which Eq. (4-21)
follows immediately. The step from Egs. (4-19) to (4-20) is possible only because we
are summing over all values of N, or, in other words, since we are using the grand
canonical partition function.
We now apply Eq. (4-21) to fermions and bosons. In Fermi-Dirac statistics, each
of the n, in Eq. (4-21) can be only either 0 or 1, since no two particles can be in the
same quantum state. In this case n,™* = 1, and Eq. (4-21) is simply

Epp = ]:[ (1 + Ze™F) (4-22)

where FD, of course, signifies Fermi-Dirac.
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In Bose-Einstein statistics, on the other hand, the n, can be 0, 1, 2, ..., since there
is no restriction on the occupancy of each state. Therefore, n,™** = oo, and Eq. (4-21)
becomes

Epg = H z (Ae™ p"‘)"" = H (1 —2e” ﬁek)- e P < 1 (4-23)

=0

To get Eq. (4-23), we have used the fact that
Yxi=(1-x""
j=0

for x < 1.

Equations (4-22) and (4-23) are the two fundamental distributions of the statistical
thermodynamics of systems of independent particles. We can combine these two
equations into

Erp =] (1 £ Ae~ Pyt (4-24)
BE k

where as the notation indicates, the upper sign refers to Fermi-Dirac statistics, and
the lower sign refers to Bose-Einstein statistics.
Using Eq. (3-33), we see that

= = Bex

N=N= ; iy = kT(a g::)y.r = ).(a :,;:)v’ ; 1 iele — (4-25)
The average number of particles in the kth quantum state is

_ Ae~Pex

= 3 70 (4-26)

Equation (4-26) is the quantum statistical counterpart of Eq. (4-14). We multiply
Eq. (4-26) by ¢, and sum over k to get the quantum statistical version of Eq. (4-13).

_ _ Ag e Bex
E=N£=zk:nk8k=zk:m (4-27)
Lastly, Eq. (3-16) gives
pV = £kTY In[l + le™#%] (4-28)
k

Equations (4-25) through (4-28) are the fundamental formulas of Fermi-Dirac
(+) and Bose-Einstein (—) statistics. Note that the molecular partition function g
is not a relevant quantity when we are dealing with quantum statistics, that is, Fermi-
Dirac or Bose-Einstein statistics. In spite of the fact that we have neglected inter-
molecular forces, the individual particles of the system are not independent because
of the symmetry requirements of the wave functions.

We noted above that both kinds of statistics should go over into Boltzmann or
classical statistics in the limit of high temperature or low density, where the number of
available molecular quantum states is much greater than the number of particles. This
condition implies that the average number of molecules in any state is very small, since
most states will be unoccupied and those few states that are occupied will most likely
contain only one molecule. This means that #, — 0 in Eq. (4-26). This is achieved by
letting A — 0. Thermodynamically, this means the limit of N/V — 0 for fixed T, or
T — oo for fixed N/V. (See Problem 4-3.) For small 1, Eq. (4-26) becomes

n, = Ae P (A small)
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If we sum both sides of this equation over k to eliminate A, we have

Ay _ e (4-29)
N ¢
where
q= Z e~ b (4-30)
J

Equation (4-26) then goes over to the Boltzmann or classical limit for both Fermi-
Dirac and Bose-Einstein statistics.

Equations (4-27) and (4-28) also reduce to the formulas of Section 4-1 as 1— 0.
Equation (4-27) becomes

_ pe
E b Z ).8,-6‘ J
7
and since n; — le~#%, we have

E g e P
S —ZZJ,- e (4-31)

o

This is the same as Eq. (4-13). Similarly, for small A we can expand the logarithm in
Eq. (4-28) to get

pV - (—_I-kT)(—_l_-l Y e_”“) (4-32)
J
We have used the fact that In(1 + x) = x for small x. Using Eq. (4-30), this becomes
pV =2kTY e % = 2kTq (4-33)
i
or
BpV =InE=1q (4-34)

Equation (3-33) can be used to show that 1g = N, and so Eq. (4-34) is the perfect gas
law as expected. Thus the formulas of Fermi-Dirac and Bose-Einstein statistics reduce
to those of Boltzmann statistics in the classical limits.

We can also derive Eq. (4-10) directly from Eq. (4-34) for E:

= ga_ o G
“_elq_,vz:o N!

If we compare this to Eq. (3-15), see that

qN

O, V, T) =1

We shall defer a discussion of the equations of Fermi-Dirac and Bose-Einstein
statistics to Chapter 10. There are a few systems such as electrons in metals, liquid
helium, electromagnetic radiation, for which one must use quantum statistics. For
most systems that we shall study in this book, however, we shall be able to use Boltz-
mann or classical statistics. In the next chapter we shall apply the limit of Boltzmann
statistics to the simplest system, namely, a monatomic ideal gas.
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PROBLEMS

4-1. Calculate the temperature below which each of the substances listed below cannot be
treated classically at 1 atmosphere. Compare this with the normal boiling temperature for
each substance.

He, Ne, Ar, Kr, CO., N,, H,, Cl,, H,O
4-2. Show that the quantity

6N [ h* \2
w_V(IkaT)

given in Table 4-1 is indeed very large for electrons in metals at room temperature.

4-3. Show that the condition that A —0 corresponds thermodynamically to the limit
N/V -0 for fixed T, or T— o for fixed density. Remember that A = e#*.

4-4. In deriving the limiting case of Boltzmann statistics, we claimed that if the number of
quantum states M far exceeds the number of particles N, then the terms in the product of the
molecular partition functions in which each particle is in a different quantum state constitute
the overwhelming number of terms. Show, in fact, that the ratio of this type of term to the
total number of terms approaches unity as N/M —0, N and M both large. Hint: remember

that
. a\*
lim (l + —) =e°
x4 X

4-5. For an ideal gas, show that the relation

holds irrespective of its statistics, where Ei.n is the total kinetic energy.
4-6. To convince yourself of the step leading from Eq. (4-19) to Eq. (4-20), consider the
summation

@
S= z * X1"x "2

where n, and n, =0, 1, and 2. Show by directly expanding S for this simple case that this is
equivalent to [Eq. (4-21)]

2
S=xl_I A + xx+ x&?)
=1

4-7. Recall that the equation of state for an ideal quantum gas is
pV=kTInE = +kT > In[1 £ de~%/7T]
J
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where A = e*/*T_ Using the fact that the summation over states can be replaced by an integra-
tion over energy levels

2 32
w(e) de = 217(7:7") Vel/2 de

derive the quantum virial expansion

P 1 = (FyN
kT—:F A3 32
where A = (h? 2aemkT)"'2.
4-8. Show that the entropy of an ideal quantum gas can be written as

S= ——k;:[ﬁ,lnﬁ,j:(l Fra)In(d Fap))

where the upper (lower) sign denotes Fermi-Dirac (Bose-Einstein) statistics.

4-9. Show that p¥V > (N>kT for fermions, and p¥V < {N>kT for bosons.

4-10. Consider a system of independent, distinguishable particles, each of which has only
two accessible states; a ground state of energy 0 and an excited state of energy &. If the system
is in equilibrium with a heat bath of temperature 7, calculate A4, E, S, and C,. Sketch C, versus
T. Does the choice of the ground-state energy = 0 affect P, C,, or S? How would your results
change if &, were added to both energy values?

4-11. Generalize Eq. (4-10) to the case of a mixture of several different species of non-
interacting particles.

4-12. Consider a system of N distinguishable independent particles, each of which can be
in the state +&o or —&o. Let the number of particles with energy 4-&o0 be N, so that the
energy is

E=N,€0—N_g0=2N, €0 — Neo

Evaluate the partition function Q by summing exp(—E'kT) over levels and compare your
result to Q =¢". Do not forget the degeneracy of the levels, which in this case is the number
of ways that N , particles out of N can be in the + state. Calculate and plot the heat capacity
Cv for this system.

4-13. The vibrational energy levels of a diatomic molecule can be approximated by a
quantum mechanical harmonic oscillator. The fundamental vibrational frequency v is
0(10*2 sec*) for many diatomic molecules. Calculate the fraction of molecules in the first
few vibrational levels in an ideal diatomic gas at 25°C. Derive a closed expression for the
fraction of molecules in all excited states.

4-14. The rotational energy of diatomic molecules can be well approximated by a quantum
mechanical rigid rotor. According to Eq. (1-32), the energy levels depend upon the moment
of inertia, which for a diatomic molecule is 0(10~4° g-cm?). Calculate and plot the population
of rotational levels of a diatomic ideal gas at 25°C. Do not forget to include the degeneracy
2J+ 1.

4-15. Show that Q(N, V¥, T) = [¢(V, T)]*/N! implies thatg(¥, T) = f(T)V. Do this in both
the canonical ensemble and grand canonical ensemble formalisms.

4-16. Show that the most probable distribution of 2N molecules of an ideal gas contained
in two equal and connected volumes at the same temperature is N molecules in each volume.

4-17. In Fermi-Dirac statistics, the maximum occupancy of any state is 1, while in Bose-
Einstein statistics, it is co. All particles appear to obey one of these two statistics. In 1940,
however, Gentile* investigated the implications of an intermediate statistics, in which the
maximum occupancy is m. Derive the distribution law for this case.

* G. Gentile, Nusvo Cimento 17, p. 493, 1940.
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4-18. Derive the equation

= _[g? — &2
[y [e 1
for independent particles and show that fluctuations of molecular energies are not at all
negligible.

4-19. Starting from Eqgs. (4-13) and (4-14), show that the fluctuations in ¢, the energy of a
single particle, are not small, and in fact, are given by

% _ ¥
£ E

4-20. Consider a gas in equilibrium with the surface of a solid. Some of the molecules of
the gas will be adsorbed onto the surface, and the number adsorbed will be a function of the
pressure of the gas. A simple statistical mechanical model for this system is to picture the
solid surface to be a two-dimensional lattice of M sites. Each of these sites can be either un-
occupied, or occupied by at most one of the molecules of the gas. Let the partition function
of an unoccupied site be 1 and that of an occupied site be g(T"). (We do not need to know g(7T)
here.) Assuming that molecules adsorbed onto the lattice sites do not interact with each other,
the partition function of N molecules adsorbed onto M sites is then

Q(N,M,T)=m!

[a(D)”

The binomial coefficient accounts for the number of ways of distributing the N molecules
over the M sites. By using the fact the adsorbed molecules are in equilibrium with the gas
phase molecules (considered to be an ideal gas), derive an expression for the fractional
coverage, 8 = N/M, as a function of the pressure of the gas. Such an expression, that is,
6(p), is called an adsorption isotherm, and this model gives the so-called Langmuir adsorption
isotherm.

4-21. Consider a lattice of M equivalent noninteracting magnetic dipoles, p (associated,
say, with electron or nuclear spins). When placed in a magnetic field H, each dipole can orient
itself either in the same direction, %, or opposed to, |, the field. The energy of a dipole is —uH
if oriented with the field, and + pH if oriented against the field. Let N be the number of |}
states and M — N the number of 1 states. For a given value of N, the total energy is

pHN — pH(M — N) = (2N — M)uH
The total magnetic moment 1 is
I=(M—2N)p

where N is the average value of N for a given M, H, and T. The work necessary to increase H
by dH is —IdH. Find the specific heat C and the total magnetic moment for this system, and
sketch both I versus uH/kT, that is, the total magnetization versus the applied field, and
C/Nk versus kT|uH.

4-22. (a) Consider a system of M independent and distinguishable macromolecules on
which any number from O to m small molecules may bind. Let ¢(j) be the macromolecular
partition function when j molecules are bound. If there are N small molecules (or ions) and
M macromolecules (say proteins), then

M1 g(0y°q(1) - - - g(m)*~
ao!a! - am!

O, M, T)=3*
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where the number of macromolecules having j bound molecules is a;, and where the asterisk
indicates the restrictions

é:o a =M Jé":oja,=N
Show that the grand partition function for this system can be written in the form
E(M, T, p) = £, T)™
where
&, T) =q(0) + g(A + -+ + g(m)A™

Interpret this result.
(b)" Extend this result to the case in which the macromolecules are not distinguishable.



CHAPTER 5

IDEAL MONATOMIC GAS

In this chapter, we shall apply the general results of the preceding chapters to an ideal
monatomic gas. By ideal, we mean a gas dilute enough that intermolecular interactions
can be neglected. The results that we derive here will be applicable to real monatomic
gases at pressures and temperatures for which the equation of state is well represented
by pV = NkT, that is, pressures below 1 atmosphere and temperatures greater than
room temperature.

We have shown in Section 4-1 that the number of available quantum states far
exceeds the number of particles for an ideal gas. Thus we can write the partition
function of the entire system in terms of the individual atomic partition functions:

lg(V, T

O(N, V’T')= Nt

(6-1)

A monatomic gas has translational, electronic, and nuclear degrees of freedom. The
translational Hamiltonian is separable from the electronic and nuclear degrees of
freedom, and the electronic and nuclear Hamiltonians are separable to a very good
approximation. Thus we have

‘I( V’ T') = Girans Gelect Inucl (5—2)
We shall study each of these factors separately in the following sections of this chapter.

5-1 THE TRANSLATIONAL PARTITION FUNCTION

In this section we shall evaluate the translational partition function. The energy
states are given by
2
En_nun =h—2(n,2+n2+n,2) ne,n,n=12,... (5-3)
=0 8ma Y
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We substitute this into g, to get
@ -—

GQirans = Z e

RBxs Ny, nz=1

5 ol 4528) 5 ol -20) 5, enf 2220

x -
21 8ma? | n/=1 : 8ma?

B © pthZ))S
B ; exp(— 8ma? (5-4)

This summation cannot be evaluated in closed form, that is, it cannot be expressed
in terms of any simple analytic function. This does not present any difficulty, however,
for the following reason. The successive terms in these summations differ so little from
each other that the terms vary essentially continuously, and so the summation can, for
all practical purposes, be replaced by an integral. To prove this, we show that the
argument of the exponential changes little in going from n, to n, + 1. This difference,
A, is given by

Bh*(n. +1)>  BH’n,> _ BH*(2n, +1)
2 7 8ma®  8md®

ﬂcnx ny ng

A=

8ma
At room temperature, for m = 1072? g and a = 10 cm, this difference is
A & @2n, + 1) x 10720
A typical value of n, at room temperature is O(10'°) (see Problem 5-3), so A is indeed
very small for all but very large values of n,. A value of n, for which A is as large as

10~% would correspond to an energy of (10'°4T), an extremely improbable energy.
Thus we can replace the summation in Eq. (5-4) by an integration:

© 2 3 2 T\ 3/2
Gueans(Vs T) = (J‘O e~ Bh’n*/8ma? dn) — (n‘:l_zk)

where we have written V for a®.

It is instructive to evaluate g,,,, in another way. Equation (5-4) is a sum over the
states of the system. We could also write g,,,s as a sum over levels. Recognizing that
the levels are very densely distributed, we can write g,,,,s as an integral:

Qirans = ‘[O a’(ﬁ)e_‘hZ de (5-6)

The function w(g) is the number of energy states between ¢ and ¢ + dg, or, in other
words, the effective degeneracy. Equation (5-6) is simply a continuous form of a sum
over levels rather than a sum over states. We have already evaluated w(g) in Section 1-3.
It is given by Eq. (1-35)

(5-5)

2\ 3/2
() de =§ (87:2“ ) e'/% de (5-7)

If we substitute this into Eq. (5-6), we get

7 (8ma?\3/% (= _
( ) J. e/2e=F ge
o

Gicans = z hz
(2nka) 3/2

T .

Of course, we obtain the same result as Eq. (5-5).
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The factor (h%/2nmkT)"/? that occurs in the translational partition function has units
of length and is usually denoted by A. In this notation, Eq. (5-5) or (5-8) read

| 4
Girans = F (5-9)

The quantity A can be given the following interpretation. The average translational
or kinetic energy of an ideal gas molecule can be calculated immediately from
Eq. (5-8) and Eq. (4-13), which in terms of gy, is

a ln qtrnns)

étrans = sz ( aT

We find that &, = 3kT, and since &, = p?/2m, where p? is the momentum of the
particle, we can say that the average momentum is essentially (mkT)"/2. Thus A is
essentially /1/p, which is equal to the De Broglie wavelength of the particle. Conse-
quently, A is called the thermal De Broglie wavelength. The condition for the applica-
bility of classical or Boltzmann statistics is equivalent to the condition that A3/V <1,
which physically says that the thermal De Broglie wavelength must be small compared
to the dimensions of the container. Such a condition is similar to the condition that
quantum effects decrease as the De Broglie wavelength becomes small (¢f. Table 4-1).

5§52 THE ELECTRONIC AND NUCLEAR PARTITION FUNCTIONS

In this section we shall investigate the electronic and nuclear contributions to q.
It is more convenient to write the electronic partition function as a sum of levels
rather than a sum over states. We have, then,

Qelect = z Wy; e-—ﬁe‘ (5—1 0)

where w,; is the degeneracy, and ¢; the energy of the ith electronic level. We first fix
the arbitrary zero of energy such that ¢, = 0, that is, we shall measure all of our elec-
tronic energies relative to the ground state. The electronic contribution to g can then
be written as

Qelect = Wet + (2% e_ﬁAzlz +- (5-1 1)

where Ag, ; is the energy of the jth electronic level relative to the ground state. These
Ag’s are typically of the order of electron volts, and so fAc is typically quite large at
ordinary temperatures (see Problem 5-10). Therefore at ordinary temperatures, only
the first term in the summation for g, is significantly different from zero. However,
there are some cases, such as the halogen atoms, where the first excited state lies only a
fraction of an electron volt above the ground state, so that several terms in g, are
necessary. Even in these cases the sum converges extremely rapidly.

The electronic energies of atoms and ions are determined by atomic spectroscopy
and are well tabulated. The standard reference is the tables of Moore* which list the
energy levels and energies of many atoms and ions. Table 5-1 lists the first few levels
for H, He, Li, O, and F. A look at this table will indicate that electronic states are
labeled or characterized by a so-called term symbol, which is briefly explained in
Section 5-4. (A knowledge of the meaning of atomic term symbols is not necessary for
the calculation of g, , but they are explained in Section 5-4 for completeness.)

* See Table 5-1.
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Table 5-1. Atomic energy states

electron term degeneracy
atom configuration symbol g=2/+1 energy (cm™1) energy (€V)
H 1s 2812 2 0 0
2p 2Pys2 2 82258.907 10.20
2s 28,2 2 82258.942
2p 2Pz 4 82259.272
He 1s2 1S 1 0
1s2s 38, 3 159850.318 19.82
1So 1 166271.70
Li 15?25 282 2 0
1s%2p 2P, 2 14903.66 1.85
2P3;2 4 14904.00
1s%3s 282 2 27206.12
(o} 1s22522p* 3p, 5 )
3p, 3 158.5 0.02
3P, 1 226.5 0.03
1p, 5 15867.7 1.97
150 1 33792.4 4.19
F 1s22522p% 2Py, 4 0
2p,,, 2 404.0 0.05
1522522p*3s ‘Pm 6 102406.50 12.70
“Pya 4 102681.24
‘P2 2 102841.20
2P, 4 104731.86
2p ., 2 105057.10

Source: C. E. Moore, ‘“‘Atomic Energy States,” Natl. Bur. Standards, Circ., 1, p. 467, 1949.

Some general observations about Table 5-1 are: All the rare gases have a ground
state 1S, (called a singlet S) with the first excited state O(10 eV) higher; the alkali
metals have a %S , (called a doublet S) ground state with the next state O(1 eV) higher;
the halogen atoms have a ?P,,, (called a doublet P) ground state with the next one, a
%pP,,, (also a doublet P) only O(0.1 eV) higher. Thus at ordinary temperatures the
electronic partition function of the rare gases is essentially unity and that of the alkali
metals is 2, while those for halogen atoms consist of two terms.

Using the data in Table 5-1, we can now calculate the fraction of He atoms in the
lowest triplet state, 3S,. This fraction is given by

weze—ﬂMlz
Wey + W, e—ﬁAznz + W, e PAes P

fa=
3e_ﬂA¢lz

= 5-12
1+ 3¢ PAerz + wese—ﬂlhu PR ( )

At 300°K, B Ag,, =770, and so f, ~ 107334, Even at 3000°K, f, ~ 10733, This is
typical of the rare gases. The energy separation must be less than a few hundred cm™?!
or so before any population of that level is significant. Incidentally, it is useful to know
that Boltzmann’s constant in units of cm™*/deg-molecule is 0.695 (almost In 2), and
1 eV =8065.73 cm™ .

Table 5-2 gives the fraction of fluorine atoms in the first excited electronic state as
a function of temperature. It can be seen that fluorine is a case where it is necessary
to use two terms in g, -

We shall write the electronic partition function as

Getee(T) R Wy + Wz~ P512 (5-13)
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Table 5-2. The fraction of fluorine atoms in the first excited electronic state as a function of temperature

TCK) f2
200 0.027
400 0.105
600 0.160
800 0.195

1000 0219

1200 0.236

2000 0272

but at temperatures at which the second term is not negligible with respect to the first
term, we must check the possible contribution of higher terms as well. This will rarely
be necessary, however.

We now consider the nuclear partition function. The nuclear partition function has
a form similar to that of the electronic partition function. Nuclear energy levels are
separated by millions of electron volts, however, which means that it requires tem-
peratures of the order of 10'°°K to produce excited nuclei. At terrestrial temperatures
then, we need consider only the first term, that is, the degeneracy of the ground nuclear
state w,,;. We take our zero of nuclear energy states to be the ground state. Note that
we have taken the overall atomic ground state to be the atom in its ground translational,
electronic, and nuclear states. The nuclear partition function, g, = w,;, then contrib-
utes only a multiplicative constant to @, and hence affects only the entropy and free
energies by a constant additive factor. Since the nuclear state is rarely altered in any
chemical process, it does not contribute to thermodynamic changes, and so we shall
usually not include it in g. We cannot do this in the case of the electronic contribution
since there are many chemical processes in which the electronic states change.

This completes the partition function of monatomic ideal gases. In summary then,
we have

N
=<_q__qmq_0 -
where
2nmkT\3/? 1%
Qrans = h—2 V = F
Gelect = Wer + (l.)‘_,ze_‘i Aeg2 4 ...
ot = O (5-15)

The nuclear partition function, although not always equal to unity, is usually omitted.
We can now calculate thermodynamic properties of a monatomic ideal gas.

5-3 THERMODYNAMIC FUNCTIONS
The Helmholtz free energy is given by

T 3/2
AN, V,T)= —kTInQ = —NkT m[(%‘—) %

— NKkT In(w,; + w., e P2%1%)  (5-16)

The argument of the first logarithm here is much larger than the argument of the
second logarithm, and so the electronic contribution to A4 is quite small.
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The thermodynamic energy is

(7| Now,, A ~hhesz
E= kT’(—riz) = INKT + ~2e2Bf12® + (6-17)
oT N,V Gelec

The contribution of the electronic degrees of freedom to the energy is small at ordinary
temperatures (see Problem 5-12). Since we have neglected the contribution of the
intermolecular potential to the total energy of the gas, the first term of Eq. (5-17)
represents only kinetic energy. Furthermore, each atom has an average kinetic energy
3kT/2, or kT/2 for each degree of translational freedom. We shall give an interesting
interpretation of this result when we study classical statistical mechanics in Chapter 7.
If we ignore the very small contribution from the electronic degrees of freedom, the
molar heat capacity at constant volume is 3Nk/2, a well-known experimental result
for dilute gases.
The pressure is

aan) _ NKT
v Jyr V

p=kT ( (5-18)
Note that Eq. (5-18) results because g(V, T) is of the form f(T)V, and the only contri-
bution to the pressure is from the translational energy of the atoms. This is what one
expects intuitively, since the pressure is due to bombardment of the walls of the
container by the atoms and molecules of the gas.

The entropy is given by

2amkT\¥? V.
S = 3Nk + Nk m[(—"h'"T) F" + Nk In(w,y + 0, e~ F2412)

N Nk, BAe,, e~ PAe12

Gelec

2 T 3/2 Ve 5/2
= Nk1In [(’";:'—Zk) eT} + Saee (5-20)

(5-19)

In Eq. (5-20), S denotes the last two terms of Eq. (5-19). Equation (5-20) is called
the Sackur-Tetrode equation. Table 5-3 compares the results of this equation with
experimental values for several monatomic gases.

Table 5-3. Comparison of experimental entropies at 1 atm and 7= 298°K to those calculated from the
statistical thermodynamical equation for the entropy of an ideal monatomic gas*

exp. calc.

(e.u) (e.u)
He 30.13 30.11
Ne 34.95 34.94
Ar 36.98 36.97
Kr 39.19 39.18
Xe 40.53 40.52
C 37.76 37.76
Na 36.72 36.70
Al 39.30 39.36
Ag 41.32 41.31
Hg 41.8 41.78

* The experimental values have been corrected for any nonideal gas behavior.
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The chemical potential is

dln Q q

T = — = —kTIn—

W(T, p) kT( = )” (Tind
2nmkT\3? V

2nmkT\> kT
—kT In [(i',’:,—) —p—] — kT Ing.q,

2nmk T\ 2
—kT ln[(—"h'"z—) KT| — kT Ingg, + kT Inp

=p(T)+kThhp (5-21)

where the last line is the thermodynamic equation for u(T, p) for an ideal gas
[¢f. Eq. (1-66)]. Thus statistical thermodynamics yields an expression for uy(7):

2nmkT\3/?
po(T) = —kT ln[(nh—nzk-) kT] — kT Ing.q, (6-22)

The argument of the first logarithm here has units of pressure, but remember that there
is a kT In p term in Eq. (5-21) so that u(T, p) itself has units of energy and is O(kT).

54 A DIGRESSION ON ATOMIC TERM SYMBOLS

The electronic state of an atom is designated by a so-called atomic term symbol.
Since one encounters atomic term symbols in the calculation of electronic partition
functions, we discuss them in this section. (The quantum mechanical level of this
section is above that of most of the book, and it is not necessary to read this section
on first reading.)

In addition to the usual kinetic energy and electrostatic terms in the Hamiltonian
of a many-electron atom, there are a number of magnetic and spin terms. The most
important of these is the spin-orbit interaction term, which represents the interaction
of the magnetic moment associated with the spin of the electron with the magnetic
field generated by the electric current produced by its own orbital motion. There are
other terms such as spin-spin and orbit—orbit interaction terms, but these are numeri-
cally much less important. The Hamiltonian can then be written as

h? Ze* e
H=———ZV,~2-—Z—+Z—+Z§(rj)lj'sj (5—23)
2m J J r,- i<j r,-j J

where 1; and s; are the individual electronic orbital and spin angular momenta,
respectively, and £(r;) is a scalar function of r;, whose form is not necessary here. We
can abbreviate this equation by writing

H=H, +H,.+ H,, (5-24)

where H, represents the first two terms (no interelectronic interactions), H,, the third,
and H,, the fourth.

For light atoms (Z < 40), H,, is small enough to be considered a small perturbation.
If H,, is neglected altogether, it can be shown that the total orbital angular momentum
L and the total spin angular momentum S are conserved (i.e., have “good” quantum
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numbers, or commute with Hy + H,.). However, in this case, the individual orbital
and spin angular momenta are not conserved; hence they are not useful concepts.
The eigenvalues of the square of the total orbital angular momentum operator [?
and the square of the total spin angular momentum operator S? are L(L + 1)4* and
S(S + 1)A%, respectively. One often interprets these eigenvalues by saying that the
orbital angular momentum has the value L or that the total spin is S, but it should
always be borne in mind that the orbital or spin angular momentum itself is not an
eigenoperator in quantum mechanics.

The quantities L and S are the vector sums of the individual orbital 1; and spin s;,
angular momenta. The possible ways of adding these 1; or s; are governed by quantum
mechanics with the result being that only certain values of the quantum numbers L
and S are allowed. In the case of two electrons, L can take on only the values
L, +1,,+1,—-1, |1; — 1,|, with a similar result for S. What we really mean
by this, of course, is that the only allowed values of the eigenvalues of I? are
(1 + 1)1 + 1 + DA%, (1, + 1, — 1)(1; + 1)R%, (11 = 12])(11; — 15| + DA%
The addition of electronic angular momenta to obtain L for cases involving more than
two electrons can be accomplished using a scheme which is a straightforward but
rather tedious electron-by-electron extension of the above two electron systems.
Actually, rather specialized and advanced techniques have been developed to handle
this problem, but we need not be concerned with them here.

The electronic energy states are designated by a term symbol, part of which is given
by 25*1L. Terms with L =0, 1, 2, ... are denoted by S, P, D,

When the spin-orbit term is taken into account, L and S are no longer conserved
(that is, do not commute with the total H), and only the total angular momentum,
J=L+S, is conserved. The eigenvalues of J* = (L + 5)® are J(J + 1)4?, with a
degeneracy 2J + 1, corresponding to the 2J + 1 eigenvalues of J,, namely,
Jh, (J — DA, ..., —Jh. Just as in the addition of 1, and 1, above, the allowed values
of Jare L+ S, L+S—1,..., |L— S]|. The spin-orbit term causes each of these
values of J to have a slightly different energy, and so the value of J is included in the
term symbol as a subscript to give 2L, as a characterization of the electronic state
of an atom.

Table 5-1 lists the first few electronic states for some of the first row atoms.

This light atom approximate coupling scheme, in which L and S are almost good
quantum numbers (that is, not good quantum numbers because of the small spin—orbit
perturbation term) and in which the total angular momentum J is found by adding
L and S, is called Russell-Saunders or L-S coupling. As the atomic number of the
atom becomes larger, the spin—orbit term becomes larger than the interelectronic
repulsion term, and H,, can be considered to be a small perturbation on the others. In
this case L and S are no longer useful, and the individual total angular momenta,
J;=1;+s;, become the approximately conserved quantities. One then couples the
J’s to get the total angular momentum. This scheme is called j— coupling and is
applicable to heavier atoms. In spite of the deterioration of L-S coupling as Z increases,
it is still approximately useful, and so the electronic states of even heavy atoms are
designated by term symbols of the form 25*!L,.

We are ready to discuss an ideal gas of diatomic molecules. In addition to having
translational and electronic degrees of freedom, diatomic molecules have rotational
and vibrational degrees of freedom as well. It should be apparent at this point that the
additional input into our statistical thermodynamical equations will be the rotation-
vibration energy levels.
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We could also leave the study of gases for a while and apply our general results to
other systems such as solids and liquids. This would involve no more effort than
continuing with ideal gases and perhaps would be a change of pace. We could go
directly to Chapter 11, for example, but we shall finish gases before treating other
systems.
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PROBLEMS

5-1. Convert Boltzmann’s constant k = 1.3806 x 10~-*¢ ergs-molecule ~* deg~! to cm~1-
molecule ~!-deg~! and to eV-molecule~*-deg~".

5-2. By considering the special case of an ideal gas, determine the order of magnitude of
E, A, G, S, Cyv, and p. Express your answers in terms of N, k7, or Nk, whichever is ap-
propriate.

5-3. Calculate the value of »n,, n,, and ». for the case n, = n, = n. for a hydrogen atom
(atomic weight 1.00) in a box of dimensions 1 cc if the particle has a kinetic energy 3k77/2,
for T=27°C. What significant fact does this calculation illustrate ?

5-4. Calculate the entropy of Ne at 300 K and 1 atmosphere. Use the entropy, in turn, to
estimate the ““ translational ” degeneracy of the gas.

5-5. Calculate the entropy of 1 mole of argon at 298°K and 1 atm and compare this to
Table 5-3.

5-6. The quantum mechanical energy of a particle confined to a rectangular parallelepiped
of lengths q, b, and c is

h? (n2 n? n?
St =g\ T 57 T T

Show that the translational partition function for this geometry is the same as that of a cube
of the same volume.

5-7. Given that the quantum mechanical energy levels of a particle in a two-dimensional
box are

2
£=8—maz(sx’+sy’) Sk, 8y =1,2,...

First calculate the density of states w(€) de, that is, the number of states between ¢ and ¢ de,
and use this to find the translational partition function of a two-dimensional ideal gas. Then
find the partition function by another method. And finally find the equation of state, the
thermodynamic energy E, the heat capacity C,, and the entropy. This is a model for a gas
adsorbed onto a surface or for long-chain fatty acids on the surface of water, say, as long as
the number of molecules per unit area is small enough.

5-8. Calculate the entropy of a mixture of 50 percent neon and 50 percent argon at S00°K
and 10 atm, assuming ideal behavior.
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5§-9. Calculate the De Broglie wavelength of an argon atom at 25°C and compare this with
the average interatomic spacing at 1 atm.

5-10. Evaluate BAe.. at room temperature, given that electronic energy levels are usually
separated by energies of the order of electron volts.

5-11. Using the data in Table 5-1, calculate the population of the first few electronic
energy levels of an oxygen atom at room temperature.

5-12. Show that the contribution of the electronic degrees of freedom to the total energy
is small at ordinary temperatures [¢f. Eq. (5-17)].

5-13. Generalize the results of this chapter to an ideal binary mixture. In particular, show
that

Ni,_N2
e =‘1I\lr,!‘11\:z !
E=3§(N,+ N.)kT
and
Ves!? Ves'2
S=Nk ln(m) + Nk ln(m)

if we ignore g esec and gouct -

5-14. Derive the standard thermodynamic formula for the entropy of mixing by starting
with Eq. (5-20).

5-15. Calculate A4, E, u, Cyv, and S for 1 mole of Kr at 25°C and 1 atm (assuming ideal
behavior).

5-16. Show that the most probable distribution of 2N molecules of an ideal gas contained
in two equal and connected volumes at the same temperature is N molecules in each volume.

5-17. Evaluate the isothermal-isobaric partition function of a monatomic ideal gas by
converting the summation over V in Eq. (3-17) to an integral. The result is

kT \*®
A(N’ D T) = (’E\—;)

Using the fact that G = —kT In A, derive expressions for S and V.
5-18. Consider a monatomic ideal gas of N particles in a volume V. Show that the number
n of particles in some small subvolume v is given by the Poisson distribution

e

P,=(\g)"

n!

=@ —
Hint: Use the grand canonical ensemble and particularly the result that & = exp (Ag).
5-19. Calculate gei.. for a hydrogen atom. The energy levels are given by

272 me*

E"—___—nth n=1,2,...
and the degeneracy is 2n2. How is this seemingly paradoxical result explained? (See S. J.

Strickler, J. Chem. Educ., 43, p. 364, 1966.)



CHAPTER 6

IDEAL DIATOMIC GAS

In this chapter we shall treat an ideal gas composed of diatomic molecules. In addition
to translational and electronic degrees of freedom, diatomic molecules possess vibra-
tional and rotational degrees of freedom as well. The general procedure would be to
set up the Schrédinger equation for two nuclei and r-electrons and to solve this equa-
tion for the set of eigenvalues of the diatomic molecule. Such a general exact approach
is very difficult and has been done only for H,. Fortunately, a series of very good
approximations can be used to reduce this complicated two-nuclei, n-electron problem
to a set of simpler problems. The simplest of these approximations is the rigid rotor-
harmonic oscillator approximation. In Section 6-1 we shall discuss this approxima-
tion, and then in Sections 6-2 and 6-3 we discuss the vibrational and rotational
partition functions within this approximation. Section 6—4 is a discussion of the sym-
metry of the wave functions of homonuclear diatomic molecules under the interchange
of the two nuclei, and Section 6-5 is an application of these results to the rotational
partition function of homonuclear diatomic molecules. This section contains a detailed
discussion of ortho- and para-hydrogen. Section 6—6 summarizes the thermodynamic
functions under the rigid rotor-harmonic oscillator approximation.

6-1 THE RIGID ROTOR-HARMONIC OSCILLATOR APPROXIMATION

We first make the Born-Oppenheimer approximation. The physical basis of the
Born-Oppenheimer approximation is that the nuclei are much more massive than the
electrons, and thus move slowly relative to the electrons. Therefore the electrons can
be considered to move in a field produced by the nuclei fixed at some internuclear
separation. Mathematically, the Schrodinger equation approximately separates into
two simpler equations. One equation describes the motion of the electrons in the field
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of the fixed nuclei. We denote the eigenvalues of this equation by u;(r), where r is the
internuclear separation. The other equation describes the motion of the nuclei in the
electronic potential u(r), that is, the potential set up by the electrons in the electronic
state j. Each electronic state of the molecule creates its own characteristic internuclear
potential. As in the atomic case, the first excited electronic state usually lies several
electron volts above the ground state, and so only the ground electronic state potential
is necessary. The calculation of ;(r) for even the ground state is a difficult n-electron
calculation, and so semiempirical approximations such as the Morse potential are
often used. Figure 6-1 illustrates a typical internuclear potential. Given u,(r), we treat
the motion of the two nuclei in this potential.

Problem 1-8 shows that the motion of two masses in a spherically symmetric poten-
tial can be rigorously separated into two separate problems by the introduction of
center of mass and relative coordinates. The center-of-mass motion is that of a freely
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Figure 6-1. The internuclear potential energy curve for the ground state of I, as computed fromn ultraviolet
spectroscopy. The dashed curve is the Morse curve. (From R. D. Verma, J. Chem. Phys.,
32, 738, 1960.)
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translating point of mass m, + m, situated at the center of mass. The other problem

is that of the relative motion of the two bodies, which can be interpreted as one body

of reduced mass p = mym,[(m, + m,) moving about the other one fixed at the origin.
The Hamiltonian can be written as

H = '#tnms + '#int
with eigenvalues
€ = Eyrans + Eine

The partition function of the diatomic molecule, therefore, is

9 = Gransini
where
2n(m, + my)kT)3?
Girans = [—(_l—hz;)'] vV (6_1)

The density of translational states alone is so great that we can write

qa'fa..sqi':.

oW, v, T) = Tt

(6-2)

Thus we must investigate g;,, to complete our treatment of diatomic molecules.

The relative motion of the two nuclei in the potential #(r) consists of rotary motion
about the center of mass and relative vibratory motion of the two nuclei. It turns out
that the amplitude of the vibratory motion is very small, and so it is a good approxi-
mation to consider the angular motion to be that of a rigid dumbbell of fixed inter-
nuclear distance r,. In addition, the internuclear potential u(r) can be expanded
about r,:

di
e =ue) + @ =) () =

r=re
=u(r,) + 3k(r —r)* + -+ (6-3)

The linear term vanishes because (du:dr) is zero at the minimum of u(r). The parameter
k is a measure of the curvature of the potential at the minimum and is called the force
constant. A large value of k implies a stiff bond; a small value implies a loose bond.
The approximation introduced in the previous paragraph is called the rigid rotor—

harmonic oscillator approximation. It allows the Hamiltonian of the relative motion
of the nuclei to be written as

Hror, viv = Hror + Hviv (rigid rotor-harmonic oscillator (6—4)
approximation)

and
Grot, vib = &rot + Eyib (6_5)
The partition function gy, vip» then, is

Grot, vib = Grotdvib (rigid rotor-harmonic oscillator approximation) (6-6)
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The energy eigenvalues and the degeneracy of a rigid rotor are given in Eq. (1-32)

. R JJ + 1)
! 21 J=0,1,2,
w;=2J + 1 (6-7)

where I is the moment of inertia, ur,?, of the molecule. The energy and degeneracy of
an harmonic oscillator are [¢f. Eq. (1-31)]

&vip = hv(n + 1)

n=0,1,2,...
w,=1 foralln (6-8)
where
1 [k\'/?
v=— (—) (6-9)
2n \u

Transitions from one rotational level to another can be induced by electromagnetic
radiation. The selection rules for this are: (1) The molecule must have a permanent
dipole moment, and (2) AJ = +1. The frequency of radiation absorbed in the process
of going from a level J to J + 1 is given by

_ &1 &

h

h
=—5J+1) J=0,12,... 6-10
v 4n21( +1) (6-10)

We thus expect absorption of radiation at frequencies given by multiples of h/4n2l
and should observe a set of equally spaced spectral lines, which for typical molecular
values of u and r.? will be found in the microwave region. Experimentally one does
see a series of almost equally spaced lines in the microwave spectra of linear molecules.
The usual units of frequency in this region are wave numbers, or reciprocal wave-
lengths.

@(cm™1) =%=_z (6-11)

Microwave spectroscopists define the rotational constant B by h/8n%Ic (units of
cm™?Y), so that the energy of rigid rotor (in cm~™') becomes

§;=BJJ +1) (6-12)

Table 6-1 lists the values of B for several diatomic molecules.

For a molecule to change its vibrational state by absorbing radiation it must (1)
change its dipole moment when vibrating and (2) obey the selection rule An = +1. The
frequency of absorption is, then, seen to be

—e, 1 (K2
v=f%ﬁ'=2_n(;) (6-13)

Equation (6-13) predicts that the vibrational spectrum of a diatomic molecule will
consist of just one line. This line occurs in the infrared, typically around 1000 cm™?,
giving force constants k of the order of 10° or 10 dynes/cm. (See Problem 6-5.)
Table 6-1 gives the force constants of a number of diatomic molecules.
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Table 6-1. Molecular constants for several diatomic molecules*
electronic @ O B (C) k x 103 Do

molecule  state (cm™?Y) (”f() (cm™?) (‘“i() (dynes/cm)  (kcal/mole)
H, D34 4320 6215 593 85.3 5.5 103.2
D: DI 3054 4394 299 42.7 5.5 104.6
Cl, DP4 561 808 0.244 0.351 3.2 57.1
Br, P 322 463 0.0809 0.116 24 45.4
1. 5 214 308 0.0373 0.0537 1.7 35.6
0, 3y~ 1568 2256 1.437 2.07 11.6 118.0
N, Y x 2345 3374 2.001 2.88 22.6 225.1
co 1y 2157 3103 1.925 2.77 18.7 255.8
NO - 1890 2719 1.695 245 15.7 150.0
HC 3 2938 4227 1044 15.02 4.9 102.2
HBr 13+ 2640 3787 8.36 12.02 3.9 82.4
HI 3+ 2270 3266 6.46 9.06 3.0 70.5
Na, DI 159 229 0.154 0.221 0.17 17.3
K. W4 92.3 133 0.0561 0.081 0.10 15.8

* These parameters were obtained from a variety of sources and do not necessarily represent the most
accurate values since they are obtained under the rigid rotor-harmonic oscillator approximation.

We furthermore assume that the electronic and nuclear degrees of freedom can be
written separately, and thus we have

H = Hirans + Hror + Hvio + Hetee + H puar (6-14)
which implies that

€ = Eyrans T Eror T Evib T Eelec T Enuct (6-15)
and

4 = Girans9rot Dvib elec Inucl (6-16)

The translational partition function is given by Eq. (6-1); the electronic partition
function will be similar to Eq. (5-11) for a monatomic gas; and we shall usually adopt
the convention that g,,.; = 1. Although Eq. (6-14) is not exact, it serves as a useful
approximation. Within this approximation, the partition function of the gas itself is
given by

N
Q(N, V’ T) = (qtrans Grot q\lr\n;w'qelec qnuc])

(6-17)

We shall introduce several corrections to Egs. (6-14) through (6-17) in Problems 6-23
and 6-24.

Only the vibrational and rotational contributions to the partition function are not
known in Eq. (6-17), and we shall discuss these contributions in the next few sections.
Before discussing these, however, we must choose a zero of energy for the rotational
and vibrational states. The zero of rotational energy will usually be taken to be the
J =0 state. 1n the vibrational case we have two choices. One is to take the zero of
vibrational energy to be that of the ground state, and the other is to take the zero to be
the bottom of the internuclear potential well. In the first case, the energy of the ground
vibrational state is zero, and in the second case it is Av/2. We shall choose the zero of
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Figure 6-2. The ground and first excited electronic states as a function of the internuclear separation
r, illustrating the quantities Do, D,, and &,.

vibrational energy to be the bottom of the internuclear potential well of the lowest
electronic state. Lastly, we take the zero of the electronic energy to be the separated,
electronically unexcited atoms at rest. If we denote the depth of the ground electronic
state potential well by D,, the energy of the ground electronic state is — D, , and the
electronic partition function is

Getec = Wey €2 + w,, e 52T 4 ... (6-18)

where D, and ¢, are shown in Fig. 6-2. We also define a quantity D, by D, — 3hv. As
Fig. 6-2 shows, D, is the energy difference between the lowest vibrational state and the
dissociated molecule. The quantity D, can be measured spectroscopically (by pre-
dissociation spectra, for example) or calorimetrically from the heat of reaction at any
one temperature and the heat capacities from 0°K to that temperature. The values of
D,, for a number of diatomic molecules are given in Table 6-1.

6-2 THE VIBRATIONAL PARTITION FUNCTION

Since we are measuring the vibrational energy levels relative to the bottom of the
internuclear potential well, we have

g, =(n+3hv n=0,1,2,... (6-19)

with v = (k/u)'/?/2n, where k is the force constant of the molecule, and p is its reduced
mass [¢f. Eq. (6-9)]. The vibrational partition function ¢,;,, then, becomes

qvib(n = ; e—ﬁtn

- e—ﬁh\'/z i e—ﬁhvn
n=0
e-—ﬁhv/l

e (6-20)
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where we have recognized the summation above as a geometric series. This is one of
the rare cases in which g can be summed directly without having to approximate it by
an integral, as we did in the translational case in Chapter 5 and shall do shortly in the
rotational case. The quantity phv is ordinarily larger than 1, but if the temperature is
high enough, fhv < 1, and we can replace the sum in Eq. (6-20) by an integral to get

—pnviz [© = phn kT
di(T) =e fo e dn= - (kT > hv) (6-21)

which we see is what results from Eq. (6-20) if phv < 1. Although we shall rarely
use this approximation since we have g,;,(T) exactly, it will be interesting to compare
this limit to some others which we shall derive later on. From g,;,(T) we can calculate
the vibrational contribution to the thermodynamic energy

dlng, (C) ©
E = NkT?Z—2° vy v _
o= NKT* — Nk(2 + o 1) (6-22)
where ©, = hv/k and is called the vibrational temperature. Table 6-1 gives ©, for a
number of diatomic molecules. The vibrational contribution to the heat capacity is

OE, 0,2 &7
(57), = ™(7) @y (@29
Notice that as T — oo, E,» NkT and C,— Nk, a result given in many physical
chemistry courses and one whose significance we shall understand more fully when we
discuss equipartition of energy.
Figure 6-3 shows the vibrational contribution of an ideal diatomic gas to the molar
heat capacity as a function of temperature.

An interesting quantity to calculate is the fraction of molecules in excited vibrational
states. The fraction of molecules in the vibrational state designated by n is

e—ﬂlw(n'l- 1/2)

= — (6-24)
f Qvivb

This equation is shown in Fig. 64 for Br, at 300°K. Notice that most molecules are
in the ground vibrational state and that the population of the higher vibrational states

Nkp—————————— — — —

CV, vib

| ! |
0 OFY

v

7

Figure 6-3. The vibrational contribution of an ideal diatomic gas to the molar heat capaclty as a function
of temperature. Room temperature is typically O(0.10,)(Cf. Table 6-1).
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Figure 6-4. The population of the vibrational levels of Br, at 300°K.

decreases exponentially. Bromine has a force constant smaller than most molecules,
however (c¢f. Table 6-1), and so the population of excited vibrational levels of Br, is
greater than most other molecules. Table 6-2 gives the fraction of molecules in all
excited states for a number of molecules. This fraction is given by

© e—phv(n+ 1/2)
f;’>0 - Z - 1 _fo J— e_p,lv — e—eu/T (6—25)
n=1 dvib
Table 6-2. The fraction of molecules in excited vibrational states at 300°K and 1000°K
e-©ulT

gas 0,, °K 300°K 1000°K

H. 6215 1.04 x 10~° 2.03 x 10-3

HCl 4227 1.02 x 10~6 1.59 x 10~ 2

N, 3374 1.51 x 10-5 3.55 x 10-2

CcOo 3100 3.71 x 10-% 4.65 x 10~2

Cl, 810 6.72 x 10~2 445 x 10!

) 310 3.56 x 10! 7.33 x 107!

6-3 THE ROTATIONAL PARTITION FUNCTION OF A
HETERONUCLEAR DIATOMIC MOLECULE

For heteronuclear diatomic molecules, the calculation of the rotational partition
function is straightforward. The rotational partition function is given by

Gro(T) = Y (2J + 1)e” PRI+ (6-26)
J=0

In the nomenclature of Chapter 2, Eq. (6-26) is a summation over levels rather than
over states.
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The ratio B 'k is denoted by ©, and is called the characteristic temperature of rota-
tion. This is given in Table 6-1 for a number of molecules. Unlike the vibrational case,
this sum cannot be written in closed form. However, because ©,/T is quite small at
ordinary temperatures for most molecules, we can approximate this sum by an
integral. (It is really Ae’kT = 20©,(J + 1)'T that must be small compared to one, and
this of course cannot be true as J increases. However, by the time J is large enough to
contradict this, the terms are so small that it makes no difference.)

At high enough temperatures, then,

Gl T) = [ (27 + e+ DT gy (6-27)
[}
°° T
= f e VT I + 1)} = — (6-28)
) ©,
2
1
= 8_"h2_kT 0,<T (6-29)

This result improves as the temperature increases and is called the high-temperature
limit. For low temperatures or for molecules with large values of ©,, say HD with
©, =42.7°K, one can use the sum directly. For example,

Qrol(T) = 1 + 37 28/T | 5¢76€AT 4 7o=126.T (6-30)

is sufficient to give the sum to within 0.1 percent for ®, > 0.7T. For ©, less than 0.7T
but not small enough for the integral to give a good approximation, we need some
intermediate approximation.

The replacement of a sum by an integral can be viewed as the first of a sequence of
approximations. The full scheme is a standard result of the field of the calculus of
finite differences and is called the Euler-MacLaurin summation formula. It states that
if f(n) is a function defined on the integers and continuous in between, then

b b
3 )= [ fn) dn+ HF(B) +f(@)
+ Z( -y AL

AT @)!

where f®(a) is the kth derivative of f evaluated at a. The B;’s are the Bernoulli
numbers, B, =%, B, =34, By =34, Before applying this to g,.,(7), let us apply
it first to a case we can do exactly. Consider the sum [cf. Eq. (6-20)]

L {f2i=1(g) — fCI~1)b)}  (6-31)

© . 1

j=0 1—e

— (6-32)

Applying the Euler-MacLaurin summation formula, we get

Z 1+a a3 6-33
#o Tt Tt (6-83)
The expansion of (1 —e %) is
1 1 1 £+a a’ 3 634
—es @ @ a2z 7m0 (=54
2 6
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We see that these two expansions are the same. If « is large, we can use the first few
terms of Eq. (6-33); otherwise, we use the Euler-MacLaurin expansion in a.
Applying this formula to g,,,(T) gives (see Problem 6-9):

T 1/06, 1 (0,2 4 (0,3
qrot(T)—a‘1+§(?)+l—5'(?) +m(?) + - } (6-35)

which is good to within one percent for ®, < T. For simplicity we shall use only the
high-temperature limit in what we do here since ©, is < T for most molecules at room
temperature (cf. Table 6-1).

The rotational contribution to the thermodynamic energy is

ol
Eo= NkT’(ﬂ'i‘) = NkT + --- (6-36)
oT
and the contribution to the heat capacity is
CV.rot =Nk +--- (6-37)

The fraction of molecules in the Jth rotational state is
N, (2] + 1)e~®Ju+it
N qrot(T)

Figure 6-5 shows this fraction for HCI at 300°K. Contrary to the vibrational case,
most molecules are in excited rotational levels at ordinary temperatures. We can find
the maximum of this curve by differentiating Eq. (6-38) with respect to J to get

kT 1/2 l T 1/2 k 1/2
en=(z) -3~(s) -~ (3)

We see then that J,,, increases with T and is inversely related to B, and so increases
with the moment of inertia of the molecule since Boec 1 1.

The next two sections deal with the rotational partition function of homonuclear
diatomic molecules. The wave function of a homonuclear diatomic molecule must
possess a certain symmetry with respect to the interchange of the two identical nuclei
in the molecule. In particular, if the two nuclei have integral spins, the wave function
must be symmetric with respect to an interchange; if the nuclei have half odd integer

(6-38)

. A
0 2 4 6 8 10 12

Figure 6-5. The population of the rotational levels of hydrogen chloride at 300°K.
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spin, the wave function must be antisymmetric. This symmetry requirement has a
profound effect on the rotational energy levels of a homonuclear diatomic molecule,
which can be understood only by understanding the general symmetry properties of a
homonuclear diatomic molecule. This is discussed in the next section. Then in
Section 6-5 we apply these results to the rotational partition function. We shall see
there that at low temperatures, the symmetry properties have an important effect on
the thermodynamic properties of certain molecules, and in particular we shall discuss
ortho- and para-hydrogen.

The discussion of the symmetry requirement is somewhat involved, however, and
so we present here a summary of the high-temperature limit, which for most systems is
completely adequate. At temperatures such that the summation in Eq. (6-26) can be
approximated by an integral or even the Euler-MacLaurin expansion, the result for a
homonuclear diatomic molecule is

1+ L9
L 2@,‘ MET T (T) * (6-39)
Note that this equation is the same as Eq. (6-35) except for the factor of 2 in the
denominator. This factor is due to the symmetry of the homonuclear diatomic molecule
and, in particular, is due to the fact that there are two indistinguishable orientations of
a homonuclear diatomic molecule. There is a two-fold axis of symmetry perpendicular
to the internuclear axis.

Equations (6-35) and (6-39) can be written as one equation by introducing a factor
o into the denominator of Eq. (6-35). If o = 1, we have Eq. (6-35), and if 6 = 2, we
have Eq. (6-39). The factor o is called the symmetry number of the molecule and
represents the number of indistinguishable orientations that the molecule can have.
The exact origin of ¢ can only be completely understood from the arguments presented
in Sections 6-4 and 6-5, but on first reading it is possible to accept the factor of o
and proceed directly to Eq. (6—47) from here.

6-4 THE SYMMETRY REQUIREMENT OF THE TOTAL WAVE
FUNCTION OF A HOMONUCLEAR DIATOMIC MOLECULE

The calculation of the rotational partition function is not quite so straightforward
for homonuclear diatomic molecules. The total wave function of the molecule, that is,
the electronic, vibrational, rotational, translational, and nuclear wave function, must
be either symmetric or antisymmetric under the interchange of the two identical
nuclei. It must be symmetric if the nuclei have integral spins (bosons), or antisymmetric
if they have half-integral spins (fermions). This symmetry requirement has profound
consequences on the thermodynamic properties of homonuclear diatomic molecules
at low temperatures. We shall discuss the interchange of the two identical nuclei of a
homonuclear diatomic molecule in this section, and then apply the results to the
calculation of ¢,,, in the next section.

It is convenient to imagine this interchange as a result of (1) an inversion of all the
particles, electrons and nuclei, through the origin, and then (2) an inversion of just
the electrons back through the origin. This two-step process is equivalent to an ex-
change of the nuclei. Let us write .., exclusive of the nuclear part as

ll/t’otal = 'l/trans 'l/rot 'l/vib 'l/elec

where the prime on ., indicates that we are ignoring the nuclear contribution for
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now. The translational wave function depends only upon the coordinates of the center
of mass of the molecule, and so this factor is not affected by inversion. Furthermore,
Vs depends only upon the magnitude of (r — r,), and so this part of the total wave
function is unaffected by any inversion operation. Therefore, we concentrate on /.
and 'llrot .

The property of /.. under the inversions in both Steps (1) and (2) above depends
upon the symmetry of the ground electronic state of the molecule. The ground elec-
tronic state of most molecules is symmetric under both of these operations. Such a
state is designated by the term symbol Z; . Thus it is ¥, that controls the symmetry of
'J/totzl .

Only Step (1) above, the inversion of both electrons and nuclei through the origin,
affects .. The effect of this inversion is to change the coordinates (r, 8, ¢) that
describe the orientation of the diatomic molecule into (r, = — 0, ¢ + ). One can see
this either analytically from the eigenfunctions themselves or pictorially from the
rotational wave functions shown in Fig. 6-6. Notice that the rigid rotor wave functions
are the same functions as the angular functions of the hydrogen atom.

The net result then, when the ground electronic state is symmetric, that is, Z;
is that .., remains unchanged for even J and changes sign for odd J. This result
applies to the total wave function, exclusive of nuclear spin.

Now consider a molecule such as H,, whose nuclei have a spin of 4. Just as in the
case of the two electrons in the helium atom, the two nuclei of spin 4 have three sym-
metric spin functions aa, ff, and 2~ */*(af + Pa), and one antisymmetric spin function
27Y%(qB — Ba). Since nuclei with spin 4 act as fermions, the total wave function must
be antisymmetric in the exchange of these two nuclei. Now states with both even and
odd values of J can be brought to the required antisymmetry by coupling them with
the right spin functions. Since three symmetric nuclear spin functions can be combined
with the odd J levels to achieve the correct overall antisymmetry for ') electronic
states, we see that the odd J levels have a statistical weight of 3, compared to a weight of
1 forevenJ levels. This leads to the existence of ortho- (parallel nuclear spins) states and
para- (opposed nuclear spins) states in H, . This weighting of the rotational states will be
seen shortly to have a profound effect on the low-temperature thermodynamics of H, .

More generally, for nuclei of spin I, there are 2I + 1 spin states for each nucleus.
Let the eigenfunctions of these spin states be denoted by a,, a,, ..., a374,- There are
(2I + 1)? nuclear wave functions to include in ¥, . (In the case of H,, I = 1, there
are two spin states a and f§, and there are four nuclear spin functions, three of which are
symmetric and one of which is antisymmetric.) The antisymmetric nuclear spin func-
tions are of the form o;(1)ot;(2) — a;(2)ex;(1), 1 < i, j < 2I + 1. There are (21 + 1)(2I),2
such combinations, and so this is the number of antisymmetric nuclear spin functions.
(For H,, we find that there is only one antisymmetric choice in agreement with the
above paragraph.) All the remaining (21 + 1)? total nuclear spin functions are sym-
metric, and so their number is (21 + 1)> — I(2I + 1) = (I + 1)(2I + 1). Thus we can
write the following summary for ) . states;

integral spin
I(2I + 1) antisymmetric nuclear spin functions couple with odd J
(I + 1)(2I + 1) symmetric nuclear spin functions couple with even J
half-integral spin
I(2I + 1) antisymmetric nuclear spin functions couple with even J
(I + 1)(2I + 1) symmetric nuclear spin functions couple with odd J
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Figure 6-1. The vibration-rotation spectrum of acetylene. This represents one vibrational line. The
alternation in the intensity of the lines is due to the statistical weights of the rotational
levels. (From L. W. Richards, J. Chem. Ed., 43, p. 645, 1966.)

These combinations of nuclear and rotational wave functions produce the correct
symmetry required of the total wave function under interchange of identical nuclei.
Remember that all of these conclusions are for ), electronic states, the most com-
monly occurring ground state. (See Problem 6-26 for a discussion of O,.)

Even though we have considered only diatomic molecules here, the results of this
section apply also to linear polyatomic molecules such as CO,, H,C, . For example,
the molecules HC'2C'2H and DC'2C'2D have their rotational states weighted in a
similar way as H, and D,. Figure 6-7 shows the vibration-rotation spectrum of
H,C, . The alternation in the intensity of these rotational lines due to the statistical
weights is very apparent.

6-5 THE ROTATIONAL PARTITION FUNCTION OF
A HOMONUCLEAR DIATOMIC MOLECULE

The results of the previous section show that for homonuclear diatomic molecules
with nuclei having integral spin, rotational levels with odd values of J must be coupled
with the I(2] + 1) antisymmetric nuclear spin functions, and that rotational levels with
even values of J must be coupled with the (I + 1)(2I + 1) symmetric nuclear spin
functions. Thus we write

Geot,ouel(T) = (I + 1)21 + 1)}, (2] + 1)e” 7+ DIT

J even

+ 1021 + I)J);dd(zJ +1)e” T (5 _40)

Likewise, for molecules with nuclei with half-integer spins, we have

Grot,nue(T) = 121 + 1) Y (27 + 1)e” &0+ DIT

J even

+ (I + 1)2I + l)lgd(y +1)e”OUHIT (g 4q)

Notice that in this case the combined rotational and nuclear partition function does
not factor into ¢, g, - This is a situation in which we cannot ignore ¢, . For most
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molecules at ordinary temperatures, ®, < T, and we can replace the sum by an
integral. We see then that

Ty~ %% ~1 [ @+ peerrrom gy - 22, (6-42)
and so both Egs. (6-40) and (6-41) become
Grot, nua(T) = (2_1;_91)—21 (6-43)
which can be written as g, (T)g,. Where
T 2
4:a(T) = 20, and guua =21 +1) (6-44)

For Eq. (6-42) to be valid, ©,/T must be less than about 0.20.

This result is to be compared to the result for a heteronuclear diatomic molecule,
namely, g,,(7) = T '©,. The factor of 2 that appears above in the high-temperature
limit takes into account that the molecule is homonuclear, and so its rotational parti-
tion function is given by Eq. (6-40) or (6-41) instead of (6-26). This factor of 2 is
called the symmetry number and is denoted by o. It legitimately appears only when
©, is less than approximately 0.2T, since only then can we use Eq. (6—42). Under-
standing the origin of this fact then, we can write
8n2IkT R

= Y QI+ D IIT @, T (6-45)
J=0

4(T) =

where ¢ = 1 for heteronuclear molecules, and ¢ = 2 for homonuclear diatomic mole-
cules. Remember that this is applicable only to the high-temperature limit or its Euler-
MacLaurin correction. A similar factor will appear for polyatomic molecules also.

There are some interesting systems in which ©,'T is not small. Hydrogen is one
of the most important such cases. Each nucleus in H, has nuclear spin 4, and so

Geot,nue1 = 2, (27 + D)e” OV UIT 4 3% (2] 4 1)e”OIU+DT (6—46)

Jeven J odd

The hydrogen with only even rotational levels allowed (antisymmetric nuclear spin
function or “ opposite” nuclear spins) is called para-hydrogen; that with only odd
rotational levels allowed (symmetric nuclear spin function or “parallel” nuclear
spins) is called ortho-hydrogen. The ratio of the number of ortho-H, molecules to the
number of para-H, molecules is

3 2.I+ 1 e—e,l(.l+1)/T
Nonho_ J;d( )

anra - Z (2J + 1)e—6,J(J+ 1)/T

Jeven

Figure 6-8 shows the percentage of p-H, versus temperature in an equilibrium mixture
of ortho- and para-hydrogen. Note that the system is all para- at 0°K and 25 percent
para- at high temperatures.

Figure 6-9 illustrates an interesting situation that occurs with low-temperature heat
capacity measurements on H,. Equation (6-46) can be used to calculate the heat
capacity of H,, and this is plotted in Fig. 6-9, along with the experimental results. It
can be seen that the two curves are in great disagreement. These calculations and
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Figure 6-8. The percentage of para-hydrogen in an equilibrium mixture as a function of temperature.
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Figure 6-9. The rotational and nuclear contribution to the molar heat capacity for ortho-hydrogen,
para-hydrogen, an equilibrium mixture of ortho- and para-hydrogen, a metastable 75
percent ortho- and 25 percent para- mixture, and the experimental data. (From K. F.
Bonhoeffer and P. Harteck, Z. Physikal. Chem., 4B, p. 113, 1929.)
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measurements were made at a time when quantum mechanics was being developed,
and was not accepted by all scientists. For a while, the disagreement illustrated in
Fig. 6-9 was a blow to the proponents of the new quantum mechanics. It was Dennison*
who finally realized that the conversion between ortho- and para-hydrogen is extremely
slow in the absence of a catalyst, and so when hydrogen is prepared in the laboratory
at room temperature and then cooled down for the low-temperature heat capacity
measurements, the room-temperature composition persists instead of the equilibrium
composition. Thus the experimental data illustrated in Fig. 6-9 are not for an equili-
brium system of ortho- and para-hydrogen, but for a metastable system whose
ortho-para composition is that of equilibrium room-temperature hydrogen, namely,
75 percent ortho- and 25 percent para-. If one calculates the heat capacity of such a
system, according to

Cy = 3$Cy(ortho-) + 3Cy(para-)

where C,,(ortho-) is obtained from just the second term of Eq. (6-46), and C,(para-) is
obtained from the first term of Eq. (6-46), one obtains excellent agreement with the
experimental curve. A clever confirmation of this explanation was shortly after
obtained by Bonhoeffer and Harteck,t who performed heat capacity measurements
on hydrogen in the presence of activated charcoal, a catalyst for the ortho-para
conversion. This produces an equilibrium system at each temperature. The experi-
mental data are in excellent agreement with the equilibrium calculation in Fig. 6-9.

The explanation of the heat capacity of H, was one of the great triumphs of post-
quantum mechanical statistical mechanics. You should be able to go through a similar
argument for D, , sketching the equilibrium heat capacity, the pure ortho- and para-
heat capacity, and finally what you should expect the experimental curve to be for D,
prepared at room temperature and at some other temperature, say 20°K. (See
Problem 6-17.)

In principle, such nuclear spin effects should be observable in other homonuclear
molecules, but a glance at Table 6-1 shows that the characteristic rotational tem-
peratures for all the other molecules are so small that these molecules reach the
“ high-temperature limit ”* while still in the solid state. Hydrogen is somewhat unusual
in that its rotational constant is so much greater than its boiling point.

For most cases then, we can use Eq. (6-45) which, when we use the Euler-MacLaurin
expansion, becomes

T)= T {1+®'+ L (6')2+ 4 (6')3+---} 6-47
D =a Mt s\7) Yis\T (47

Usually only the first term of this is necessary. Some of the thermodynamic functions
are

E,, = NkT{1 - 2 1(9')2+---} (6—48)
rot { 3T 45\T
1 (©,\2
= — (= 6-49
Crot Nk{1+45(T) + } ( )

* D. M. Dennison, Proc. Roy. Soc. A115, 483, 1927.
t K. F. Bonhoeffer and P. Harteck, Z. Phys. Chem., 4B, 113, 1926.
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(4 Q) 1 /60,\2
S . =N —1 e — [
ot k{l n( T ) (T) + } (6-50)

where all of these formulas are valid in the same region, in which o itself is a meaningful
concept, that is, ©, < 0.2T. The terms in ©,, T and its higher powers are usually not
necessary. Note that Eq. (647) is identical to Eq. (6-35) except for the occurrence of
the symmetry number in Eq. (6-47).

6-6 THERMODYNAMIC FUNCTIONS

Having studied each contribution to the total partition function ¢ in Eq. (6-17), we
can write in the harmonic oscillator-rigid rotor approximation

21tka)3/ 2 v 8n2IkT

gV, T) = ( 12 oz e PIZ(1 — e Py~ 1qy, gPelkT (6-51)
P

Remember that this requires that ©, € T, that only the ground electronic state is
important, and that the zero of energy is taken to be the separated states at rest in their
ground electronic states. Note that only g,.., is a function of V, and this is of the form
f(T)V which, we have seen before, is responsible for the ideal gas equation of state.
The thermodynamic functions associated with Eq. (6-51) are

E S5 h kT D,

== == 6-5

NkT 2 2T VAT 1 T kT ¢-52)

Cy 5 N (hv)2 eIkt (6-53

Nk 2 \kT) ("*T —1)? o9

S 2n(m, + my)kT]3/2 Ve’/? 8n?lkTe

2o 1

Nk "[ X T] N T o

+ e#k/rﬁf—f —In(l—e™*) +Inw,,  (6-54)
pV = NkT (6-55)

0 2
w(T) 2n(m, + mz)kT] 312 8n’lIkT  hv
KT _'"[ n? KT —In ==+ 5T

—hy D,
+ In(1 — e™PT) _ T In w,, (6-56)

Table 6-1 contains the characteristic rotational temperatures, the characteristic
vibrational temperatures, and D, = D, — +hv for a number of diatomic molecules.
Table 6-3 presents a comparison of Eq. (6-54) with experimental data. It can be
seen that the agreement is quite good and is typical of that found for the other thermo-
dynamic functions. It is possible to improve the agreement considerably by including
the first corrections to the rigid rotor-harmonic oscillator model. These include centrif-
ugal distortion effects, anharmonic effects, and other extensions. The consideration
of these effects introduces a new set of molecular constants, all of which are deter-
mined spectroscopically and are well tabulated. (See Problem 6-24.) The use of such
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Table 6-3. The entropies of some diatomic molecules calculated according to Eq. (6-54) compared to
the experimental values at 1-atm pressure and 25°C*

S(calc.) S(exp.)

(e.u.) (e.u.)
H. 31.1 31.2
0. 49.0 49.0
N 457 45.7
Cl, 53.2 53.3
HCl 44.6 44.6
HBr 47.4 47.4
HI 494 49.3
co 47.2 46.2

* The experimental values have been corrected for any nonideal gas behavior.

additional parameters from spectroscopic data can give calculated values of the entropy
and heat capacity that are actually more accurate than experimental ones.

It should be pointed out, however, that extremely accurate calculations can require
a sophisticated knowledge of molecular spectroscopy. For example, we said above
that the electronic partition function was similar to that in the atomic case. This,
however, is not entirely true. For molecules in states other than a )’ state (which has
zero total angular momentum), the total electronic angular momentum must be
coupled with the overall rotational angular momentum, and this coupling must be
treated in a detailed quantum mechanical way. This is too specialized to discuss here,
but the result of this coupling is that the electronic and rotational partition functions
do not separate. When T > ©,, however, the molecules are in states with large enough
rotational quantum numbers [¢f. Eq. (6-39)] that the angular momentum coupling is
no longer important, and the rotational-electronic partition function separates into a
rotational part and an electronic part. Since we have chosen the zero of energy to be
the separated electronically unexcited atoms at rest, the electronic partition function is

‘Ie(T) = weleD'/kT + D2 e—tz/hT +

where the w,; are the degeneracies, and the ¢;’s are measured relative to the ground
electronic state of the molecule. Keep in mind, however, that for some molecules, such
as NO, this equation is valid only at high temperatures, and that the low-temperature
partition function requires a fairly specialized knowledge of the coupling of electronic
and rotational angular momenta. See Herzberg under “ Additional Reading” for a
thorough discussion of this complication.

It seems logical at this time to go on to a discussion of polyatomic molecules in
much the same manner as we have for diatomics. We would see very quickly, however,
that unless the molecule possesses a certain degree of symmetry, it is impossible to
write down any closed-form expression for its rotational energy levels. This means that
a calculation of g, (T) is at best a complicated numerical problem. This would appear
to imply that we have come to the end of the line for statistical thermodynamical
applications, and we have not even begun to consider interactions between molecules!
Even just two simple molecules, to say nothing of N particles, interacting through any
kind of realistic interatomic potential becomes an extremely complicated quantum
mechanical problem. At this point we must go back and reconsider some of the results
we have derived up to now.
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PROBLEMS
6-1. The Morse potential is

U(r) = D1 — e—ﬁ(r—r,))z

Show that B = v(2w2u/D.) 2.

6-2. The dissociation energy D, of H. is 103.2 kcal/mole, and its fundamental vibrational
frequency @ is 4320 cm~*. From this information, calculate D, and @ for D,, T., and HD,
assuming the Born-Oppenheimer approximation.

6-3. Given that D, for H: is 103.2 kcal‘mole and that @, is 6215°K, calculate D, for both
D, and Tz .

6—4. Show that the moment of inertia of a diatomic molecule is pr.2, where p is the reduced
mass, and r. is the equilibrium separation.

6-5. Show that the force constants in Table 6-1 are consistent with the frequencies given
there.

6-6. Using the data in Table 6-1, calculate the frequencies that are expected to be found
in the rotational spectrum of HCI.

6-7. In the far infrared spectrum of HBr, there is a series of lines separated by 16.72cm ™!,
Calculate the moment of inertia and internuclear separation in HBr.

6-8. Show that the vibrational contribution to the heat capacity Cy of a diatomic molecule
is Nk as T— oo,

6-9. Derive Eq. (6-35) from the Euler-MacLaurin summation formula.

6-10. Show that the rotational level that is most populated is given by Jmax = (KTJ2B)/2.
Calculate Jmax for CO, and H, at room temperature.

6-11. The rotational constant B for HC*2N'* is 44,315.97 MHz (megahertz) and DC!2N!4
for 36,207.40 MHz. Deduce the moments of inertia for these molecules. Assuming that the
bond lengths are independent of isotopic substitution, calculate the H-C and C-N bond
length.

6-12. Given that the values of ©, and ©, for H. are 85.3 K and 6215°K, respectively,
calculate these quantities for HD and D, .

6-13. What is the most probable value of the rotational quantum number J of a gas phase
N molecule at 300°K ? What is the most probable vibrational quantum number » for this
same situation ?
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6-14. Using the Euler-MacLaurin expansion, derive the second- and third-order correc-
tions to the (first-order) high-temperature limit of E, and Cy, . Express your result in terms of
a power series of @,/T.

6-15. Calculate the rotational contribution to the entropy of HD at 20°K, 100K, and
300°K, using the formulas appropriate for each particular temperature, and estimate the
error involved in each.

6-16. Discuss the statistical weights of a hypothetical diatomic molecule X, with a ground
electronic state >, supposing the X nuclei have integral spin (bosons) and half-integral
spin (fermions). Derive the rotational partition function and the rotational contribution to
the heat capacity Cy for each case.

6-17. Calculate the percent of para-D, as a function of temperature (assuming equilib-
rium) and also calculate the heat capacity of the equilibrium mixture, para-D., ortho-D.,
and finally what you expect would be the experimental heat capacity.

6-18. Why does one not see discussions in the literature concerning the ortho-para forms
of fluorine?

6-19. Show that the thermodynamic quantities p and C, are independent of the choice
of a zero of energy.

6-20. In the far infrared spectrum of HCI, there is a series of lines with an almost constant
spacing of 20.7 cm . In the near infrared spectrum, there is one intense band at 3.46 microns.
Use these data to calculate the entropy of HCI at 300°K and 1 atm (assuming ideal behavior).

6-21. Molecular nitrogen is heated in an electric arc, and it is found spectroscopically that
the relative populations of excited vibrational levels is

n 0 1 2 3 4

-';—" 1.000 0.200 0.040  0.008 0.002
(4]

Is the nitrogen in thermodynamic equilibrium with respect to vibrational energy ? What is the
vibrational temperature of the gas ? Is this necessarily the same as the translational tempera-
ture?

6-22. Without looking anything up, put in order of decreasing magnitudes the following
“‘ temperatures ”’:

@DHZ’ G'HZ’ @vCIz’ @'cu’ GHHCI, e'HCl
6-23. A more accurate expression for the vibrational energy of a diatomic molecule is
&=+ Dhv — x(n+ $)*hv

where x. is called the anharmonicity constant. The additional term here represents the first
deviations from strictly harmonic behavior. Treating x. as a small parameter, calculate the
anharmonic effect on the various thermodynamic functions at least to first order in x..
6-24. The model of a diatomic molecule presented in this chapter is called the rigid rotor—
harmonic oscillator model. The rotational-vibrational energy in this approximation is

tr=M0+ v+ BIJ+ 1D

This expression can be improved in a number of ways. The harmonic oscillator approximation
can be modified to include terms that reflect the deviations from harmonic behavior (an-
harmonicity) as the vibrational energy of the molecule increases. This is done by quantum
mechanical perturbation theory, which gives

go= M+ Dhv — x(n+ H*hv +---
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where x. is a small constant called the anharmonicity constant. In addition to this, there is a
correction due to the fact that the molecule is not a rigid rotor and, in fact, stretches some as
the molecule rotates with greater energy. This is also handled by perturbation theory and
gives

&=BIJ+1)—DIU+1" +-

where D is a small constant called the centrifugal distortion constant. Lastly, there exists a
coupling between the rotational and vibrational modes of the molecule, since its moment of
inertia changes as the molecule vibrates. Putting all this together gives

tw=(n+ Dhv + BIT+ 1) — xn + )?hv — DI+ 1)* — an + HIJ + 1)

where o is the rotation-vibration coupling constant. These terms, which correct the rigid
rotor-harmonic oscillator approximation, are usually quite small. Using this more rigorous
expression for &, , show that the molecular partition function can be written in the form

q(I/’ T') = Gre-nofcore

where

120
Georr = + B E +e’hv—l(-B=)

28y . -

m x. + higher-order terms in D, «, and x.

Calculate the effect of gcor: On E and Cy for O, at 300°K, given the following values of the
spectroscopic parameters: x. = 0.0076, D = 4.8 x 10~¢ cm~?, and « = 0.016 cm ™.

6-25. Consider a system of independent diatomic molecules constrained to move in a plane,
that is, a two-dimensional ideal diatomic gas. How many degrees of freedom does a two-
dimensional diatomic molecule have ? Given that the energy eigenvalues of a two-dimensional
rigid rotor are

h2J?

&y =

J=0,1,2,...

with a degeneracy w; = 2 for all Jexcept J 0, calculate the rotational partition function. I is
the moment of inertia of the molecule. The vibrational partition function is the same as for a
three-dimensional diatomic gas. Write out

q(T) = qlnns(T)qrot(T)qvlh(n

and derive an expression for the average energy of this two-dimensional ideal diatomic gas.
6-26. Show that the molecule O'¢0O'¢ has only odd rotational levels in its ground
electronic state.



CHAPTER 7

CLASSICAL STATISTICAL
MECHANICS

So far we have been able to derive translational, rotational, and vibrational partition
functions for linear molecules. In each case we saw that if the temperature were high
enough we could replace sums by integrals and obtain high-temperature limits. These
prove to be numerically satisfactory for most gases at ordinary temperatures (with the
exception perhaps of the vibrational case).

As the temperature increases, the average energy per molecule increases, and so in a
quantum mechanical sense, the quantum numbers describing this motion (n, for
translational, J for rotational, etc.) also increase, meaning that the molecules are in
the high quantum number limit. For example at room temperature translational
quantum numbers are typically 108. (See Problem 5-3.) It is the recognition of this
fact that will point the way to a solution to the problem discussed in the last paragraph
of Chapter 6.

It is one of the fundamental principles of quantum mechanics that classical behavior
is obtained in the limit of large quantum numbers. So we see that up to now our
procedure has been to solve a particular quantum mechanical problem, use this
result in the molecular partition function, use a high-temperature approximation, and
then find that this high-temperature limit is satisfactory. In other words, we were start-
ing with a quantum mechanical solution and then taking the classical limit at a later
stage. Itisnatural to seek a procedure inwhich we can use classical mechanics through-
out, and such an approach is developed in this chapter. For simplicity we shall first
consider only molecular partition functions, although we shall generalize our results
afterward.

7-1 THE CLASSICAL PARTITION FUNCTION
Consider the molecular partition function

g=) e’ (7-1)
j
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This is of the form of a sum of e "#¢"*®) over all possible quantum states. It is natural
to assume that the corresponding classical expression is a similar sum, or since the
energy in the classical sense is a continuous function of the momenta p; and coordinates
g;, this sum would become an integral over all the possible classical “states” of the
system. Since the classical energy is the Hamiltonian function H(p, q), the molecular
partition function ¢(V, T) becomes

Gelass ~ f .. Ie_”"(""’) dp dq (7-2)

In Eq. (7-2) the notation (p, ¢) denotes all the momenta and coordinatss on which H
depends; dp stands for dp, dp, - -dp, and dq for dg, - - - dq,, where s is the number of
momenta or coordinates necessary to completely specify the motion or position of
the molecule. The quantity s represents the number of degrees of freedom of the
molecule. The set of coordinates {g;} does not necessarily have to be a set of Cartesian
coordinates, and more usually represents a set of generalized coordinates, that is, any
set of coordinates that conveniently specifies the position of the molecule. For a mass
point, for example, the generalized coordinates might be simply x, y, and z; for a rigid
rotor, we might choose the two angles 6 and ¢ needed to specify the orientation of the
molecule. Usually the choice of generalized coordinates is obvious. The momenta {p;}
in Eq. (7-2) are the generalized momenta conjugate to the {g;} [¢f. Eq. (1-19)].

At this stage Eq. (7-2) is just a plausible conjecture. Let us now pursue this idea by
considering a monatomic ideal gas once again. From Eq. (5-8), we have

2nmk T\ 3/?
Geeans(V, T) = ( 2 )

The classical Hamiltonian of one atom of a monatomic ideal gas is simply the kinetic
energy:

1
H= 2 2 2
—2m(px + p,° + p.%)

According to Eq. (7-2), then,

B(ps> + p,* + p.%)
Getass f f CXP‘ - o dp, dp, dp, dx dy dz (7-3)
Notice here that since it takes three coordinates to specify the position of a point
particle, g.,,; is a six-fold integral. The integral over dx dy dz simply yields the volume
of the container V, and so we have

qc.ass~VU e~ pr2m dp} = (2mmkT)**V (7-4)

We see that except for a factor of Planck’s constant cubed, this is just the translational
partition function that we obtained before. Of course, we cannot expect to derive a
purely classical expression that contains 4, and so although our conjecture may be
incomplete, there seems to be some element of truth to it.

Let us see how this procedure works for the other partition functions that we have
evaluated. For the rigid rotor, the Hamiltonian is

1 p¢2
=2 (" 0"+ Gin? 9)
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where I is the moment of inertia of the molecule. The generalized coordinates and
momenta in this case are 6, ¢, py, and py, and so Eq. (7-2) is

© 2n ¢ 4
ot ~ dp, dj d dfe P = (8n’Ik 7-5
G~ [ [doadof "o | (8*IKT) (7-5)
For the classical harmonic oscillator,
2
Pk,
=+ 7-6
H 2H+ 2x (7-6)
and
i~ | d T = — 7-7
Qviv f_w pf_wdxe . (7-7)
where
1 (k\'/?
V=2—n )

We can see from these three examples that the translational partition function is
incorrect by a factor of h*; the rotational partition function is incorrect by a factor
of h?; and the vibrational partition function is incorrect by a factor of A. It appears
that a factor of 4 results for each product dp; dg; occurring in gy, - Since partition
functions are dimensionless, and # has units of momentum times length, we see that
this at least automatically satisfies a dimensional requirement. We shall therefore
assume that

1 S
= —Be —_--- ~BH R -
9=Ye !_.hsf [e 1 dp; da (7-8)

We now shall extend this assumption to systems of molecules. Equation (4-10) says
that at high enough temperatures, we can write for a system of N independent in-
distinguishable particles

N

_ 4
2=

| LA | _ s
_—I\ﬁ]=l {h_sffe ﬁﬂjil;[ldp,-,- dqﬁ}

where H; is the Hamiltonian of the jth molecule and is a function of p;;, ..., pjs,
gj1> ---» gjs- We now simply relabel the momenta and coordinates such that p,
through p, represent p,, through p,; ps+; through p., . represent p,, through p,,
and so on, and write

1 sN
= vee e BEHITT d ; dg;
2 N!h""f / 11 dp:dq

thst"'f _pﬂnd”-dq-

where H is the Hamiltonian of the N-body system. This form suggests the classical
limit of Q for systems of interacting particles. We conjecture that

0= f. .. j e PH(P.9) dp dq (7-9)

NI h’"
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where H(p, q) is the classical N-body Hamiltonian for interacting particles. The nota-
tion (p, g) represents the set of p;’s and g;’s that describes the entire system, and dp dg
represents

sN
11 dp; dg;
i=1
We have assumed then that the classical limit of Q(N, V, T) is given by
1
— V" o BE eor [ e~ FHGP @ _
Q—Zj;e l_’N!h‘”f fe P9 dpdg (7-10)

For a monatomic gas, for example,

1 N
H(P, q) = 5; Zl(psz + pyjz + pzjz) + U(xlr Y1 zb ceey xNa VN> ZN) (7_11)
ji=

Equation (7-10) is, in fact, the correct classical limit of Q, although we have not proved
it here. It is actually possible to start with the quantum mechanical sum in Eq. (7-10)
and to derive the integral as the classical limit, that is, the limiting result as 2 — 0
(¢f- Section 10-7).

If we substitute Eq. (7-11) into Eq. (7-10), the momentum integrations can be done
easily, and we get

1 (2rmkT\3"?
chass = —IW (—h—z— N (7-12)
where
ZN — IV e—U(xl. wee s ZNMKT dxl P dZN (7-13)

In Eq. (7-13), Z,, is called the classical configuration integral. Since the intermolecular
forces depend upon the relative distances between molecules, this integral is, in general,
extremely difficult and is essentially responsible for the research in equilibrium statis-
tical mechanics. In the absence of intermolecular forces, U = 0 and Z, = VN Equa-
tions (7-12) and (7-13) are fundamental equations in the study of monatomic, classical,
imperfect gases and liquids.

It often happens that not all of the degrees of freedom of a molecule can be treated
classically. For example, we have seen that the spacing between translational and
rotational levels is small enough that the sum over states or levels can be replaced by
an integral, that is, these degrees of freedom can be treated classically. This is not the
case, however, with the vibrational degrees of freedom, and these degrees of freedom
must be treated quantum mechanically.

Suppose, then, that the Hamiltonian of a molecule can be written as

H= Hclass + Hquant (7"‘1 4)

where H, refers to the s degrees of freedom that can be treated classically, and
H,,n refers to the degrees of freedom that cannot be treated classically. Then

9 = Qclass Aquant (7-15)
where

|
9class = ',F fe Hetnsalp. /KT dpl dql e dps dqs (71 6)



PHASE SPACE AND THE LIOUVILLE EQUATION 117

Note that Eq. (6-51) is of the form of Eq. (7-15), where the translational and rotational
degrees of freedom are treated classically, and the vibrational and electronic degrees
of freedom are treated quantum mechanically.

Equations (7-14) to (7-16) are immediately generalizable to a system of interacting
molecules. I1f the Hamiltonian of the entire system is separable into a classical part and
a quantum part, then

H= Hclass + Hquant (7'“1 7)

Q= Qctass Qquanl (7-18)
Q uan -

= Nq! hs;v Ie Hetass/kT dpclass dqclass (7_1 9)

7-2 PHASE SPACE AND THE LIOUVILLE EQUATION

Until now our approach has been to go to the classical limit only when it was
necessary. Historically, however, statistical mechanics was originally formulated by
Boltzmann, Maxwell, and Gibbs in the nineteenth century before the evolution of
quantum mechanics. Their formulation, therefore, was based on classical mechanics,
and since this still is a most useful limit, we shall now discuss the classical mechanical
formulation of statistical mechanics. This formalism forms the basis of most of the
work involving interacting systems in equilibrium and nonequilibrium statistical
mechanics that is done today.

Consider any classical system containing N (interacting) molecules. Let each mole-
cule have s degrees of freedom, that is, each molecule requires s coordinates to com-
pletely describe its position. Let the number of coordinates necessary to describe the
positions of all N molecules be / = sN. The / coordinates, q,, ¢,, --., q;, then com-
pletely describe the spatial orientation of the entire N-body system. To each of these
I coordinates, there corresponds a conjugate momentum p;, say, defined by Eq. (1-19).
The [ spatial coordinates {g;} and the / momenta {p;} completely specify the classical
mechanical state of the N-body system. These 2/ coordinates, along with the equations
of motion of the system, completely determine the future and past course of the
system.

We now construct a conceptual Euclidean space of 2/ dimensions, with 2/-rectangular
axes, one for each of the spatial coordinates ¢, . .., ¢, and one for each of the momenta
P1» ---» p1- Following Gibbs, we speak of such a conceptual space as a phase space
for the system under consideration. The state of the classical N-body system at any
time ¢ is completely specified by the location of one point in phase space. Such a point
is called a phase point. As the system evolves in time, its dynamics is completely
described by the motion or trajectory of the phase point through phase space. The
trajectory of the phase point is given by Hamilton’s equations of motion:

OH
% j=1,2,...,1=sN (7-20)

J

ql:a_m and I’JJ=_

In principle, these 2/ equations can be integrated to give {g;(¢)} and {p;(¢)}. For nota-
tional simplicity, we shall denote the set of / ¢’s by g(t), and the set of / p’s by p(t). The
2l constants of integration can be fixed by the location of the phase point at some
initial time, say #,. Of course, in practice, such an integration is not feasible.
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We now introduce the concept of an ensemble of systems in phase space. For
simplicity we shall consider a microcanonical ensemble, that is, an ensemble repre-
sentative of an isolated system. Consider a large number & of isolated systems, each
of which having the same values of macroscopic variables N, V, and E.

The detailed classical state of each system in the ensemble has a representative
phase point in the same phase space. The entire ensemble then appears as a cloud of
points in phase space. As time evolves, each point will trace out its independent
trajectory. The trajectories are independent, since each one represents an isolated
system and is, therefore, independent of all the others. The postulate of equal a priori
probabilities requires that there is a representative phase point in phase space for each
and every set of coordinates and momenta consistent with the few fixed macroscopic
variables. In particular, the postulate of equal a priori probabilities states that for a
microcanonical ensemble, the density is uniform over the constant energy “ surface”
in phase space, where the value of the energy on the surface is that of the isolated
system. We consider all parts of phase space equally important, as long as the (p, g)’s
are consistent with all that we know macroscopically about the system, that is, con-
sistent with the values of N, V, and E for the system that the ensemble represents. Just
as every quantum state was equally likely before, now we consider every classical state
to be equally probable.

This cloud of points is very dense then, and we can define a number density f(p, g, t),
such that the number of systems in the ensemble that have phase points in dp dg
about the point p, g at time t is f(p, g, t) dp dq. Clearly we must have

[ [reodpdg= (7-21)

The ensemble average of any function, say ¢(p, g), of the momenta and coordinates
of the system is defined as

é= ?; j . f¢(p, 9)f(p,q,t)dpdq (7-22)

It is Gibbs’ postulate to equate this ensemble average to the corresponding thermo-
dynamic function. Note the similarity between this equation and Eq. (2-5), its quantum
mechanical analog.

Since the equations of motion determine the trajectory of each phase point, they
must also determine the density f(p, g, t) at any time if the dependence of fon p and ¢
is known at some initial time t,. The time dependence of f is thus controlled by the
laws of mechanics and is not arbitrary. The time dependence of f is given by the
Liouville equation, which we now derive.

Consider the small volume element dp; - dp,; 8¢, - - - 6q, about the point p,,
Pi 91> - q;- The number of phase points inside this volume at any instant is

ON =f(P1s--+» P1sq1s --->q158) Opy *** 6P1 6q * -~ Oq,

This number will, in general, change with time since the natural trajectories of phase
points will take them into and out of this volume element, and the number passing
through any one “face” will, in general, be different from the number passing through
the opposite “ face.” Let us calculate the number entering one face and leaving through
the opposite. Consider two faces perpendicular to the ¢,-axis and located at ¢, and
q, + 6q,. The number of phase points entering the first of these faces per unit time is

fd4,6q, -+ 8q,6p, **- Op; (7-23)
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(See Problem 7-33.) The number passing through the other face per unit time is
fq1+691,92, 5415 Prs -5 P)
X Gy(91 + 091,925 -+, q1s P1s---> P) 6Gy *** 6, Opy -+~ Op,
which, if we expand fand 4, to linear terms in éq,, gives
Y
(f+ (‘11 +a_ql¢s‘11 0, -+ 0q,6py -+ 6p + - (7-24)
1

Subtracting (7-24) from (7-23), we get the net flow of phase points in the g,-direction
into the volume element dq, --- g, 6p, - - &p,:

net flow = — (a_f“‘h +fa_q£) opy -+ 6p, 6gy - 6q,
9

in the g;-direction. In a similar manner, the net flow in the p,-direction is (remember
that momenta and spatial coordinates have equal status in phase space):

- (5,
op,
Thus the change in the number of phase points through all the faces is

Py +f ) Opy **-6p0q, -~ Oqy

o . o4; , o . )
o < 0p, 6q, -+ 0q,.
lzl (6q, +f 4 + = ap +f D1 P 09, UH

This must be equal to the change of N with time, and so we have

d@éN) _ [ (34, ) (af .o )]
+-—4;+—D;)| op, - Op, 6q, --- &
ar T A 1 f 20, o, aq,.q' ap, Fi)| 0P 0P 04y Oy
(7-25)
This result can be immediately simplified. Since
PP R (7-26)
7 op; ! oq;
the first term in parentheses in Eq. (7-25) is

o4; Op;

—+—==0 (7-27)

dq;  Op;

Furthermore, we divide Eq. (7-25) by the volume element dp, --- dp, dq, - - dq,. This
gives the rate of change in the density itself around the point py, ... pj, gy, .- ¢;, SO
that we can write

6f _2': (aq, aapf, ) (7-28)

where we have written df /ot to indicate that we have fixed our attention on a given
stationary point in the phase space.

Equation (7-28) can be written in a more conventional form by using Egs. (7-26)
for §; and p;. The result is

o _ ”(aHaf aHaf)

o #~ \op.oq, &q,dp,

(7-29)
op; 9q; 0q;0p;
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This is the Liouville equation, the most fundamental equation of classical statistical
mechanics. In fact, it can be shown that the Liouville equation is equivalent to the 6N
Hamiltonian equations of motion of the N-body system. See Mazo under “Additional
Reading™ for a proof of this. In Cartesian coordinates, the Liouville equation for
N point masses is (see Problem 7-11):

a N N

Tes :—jj-V,_,f+j;Fj-wa=0 (7-30)

Jj=1

In this equation V,, denotes the gradient with respect to the spatial variables in f;
Vs, denotes the gradient with respect to the momentum variables in f; and F; is the
total force on the jth particle. The Liouville equation forms the starting point of most
theories of nonequilibrium statistical mechanics.

There are several interesting deductions from the Liouville equation which we now
discuss. Consider Eq. (7-28)

S < (af). ! (3f).

Z 4 ZLlp. + ~)4:=0 7-31

at 2 )it X\ A (7=31)
Since f=f(p, g, t), this equation is equivalent to

af

i 0 (7-32)

Physically, this equation says that the density in the neighborhood of any selected
moving phase point is a constant along the trajectory of that phase point. Thus the
cloud of phase points behaves as an incompressable fluid. Gibbs called this the
principle of the conservation of density in phase. An equivalent statement of this is
that if p, g are the coordinates of a phase point at time z, which at time ¢, were (p,, 90),
then Liouville’s equation implies that (see Problem 7-12)

S0, 4; 0 =f(po, 90 to) (7-33)
Because of the equations of motions, the point (p, ¢) should be considered a function
of the initial point (py, qo) and the elapsed time ¢. That is

P =p(Po> 903 1)

q=4(Po> 903 1)
Now let us select a small element of volume at (p,, go) at time t,. At a later time,
to + t, the phase points originally on the surface of this volume element will have
formed a new surface enclosing a volume element of different shape at the phase point
(p, 9)- The volume element at (p, ¢) must contain the same number of phase points
as the original volume element at (p,, ¢o)- This follows because a phase point outside
or inside the volume element can never cross the surface as the element moves through
phase space, for otherwise there would be two different trajectories through the same
point in phase space. This is impossible, however, because of the uniqueness of the
equations of motion of a phase point. Trajectories of phase points can never cross.
Now since the density and number of phase points in the volume element are the same
at po, 9o and p, g, it follows that although the shape of this volume may change and
contort itself as it moves through phase space, its volume remains constant. Gibbs
called this result conservation of extension in phase space. This fact is expressed mathe-
matically by writing

ép 8q = dpo 690 for all ¢ (7-34)
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Another way of expressing this is to say that the Jacobian of the set (p, g) to (po, 9o)
is unity. This can be proved directly from the equations of motion of the system. See
Mazo under * Additional Reading.”

A corollary of this theorem, whose proof demands a more extensive knowledge of
classical mechanics, is that if we are given two sets of coordinates and their conjugate
momenta, say,

915925 ---+93n> P15 P25 ---> P3n
Ql’ QZ’“-: Q3n’P1»P2"",P3n

which can describe a system in phase space equally well, then
dq, dq, -+ - dgs, dp, - - dps, = dQ, - -- dQs,dP, - - - dP;,

For example, a single particle in three dimensions may be described by the coordinates
(x, y, 2) or the spherical coordinates (r, 6, ¢). It is straightforward, albeit lengthy to
show that

dp, dp, dp, dx dy dz = dp, dp, dp, dr d6 d¢ (7-35)

Notice that although the volume elements in ordinary coordinate space are dx dy dz
and r? sin 6 dr df d¢, the r? sin 6 factor does not occur in the phase space transforma-
tion. These simple volume element transformations would not generally be true if we
have chosen the generalized coordinates and velocities instead of momenta. This is
one reason why momenta and not velocities are used to describe classical systems.

7-3 EQUIPARTITION OF ENERGY

We have seen that classical statistical mechanics is applicable when the temperature
is high enough to replace the quantum statistical summation by an integral. Under
these conditions, it is not necessary to know the eigenvalues of the quantum mechan-
ical problem, only the classical Hamiltonian is required. There is an interesting theorem
of classical statistical mechanics which can be used to understand more fully some of
the results of the last two chapters.

Consider the expression for the average energy of a molecule in a system of inde-
pendent molecules,

[[ He## dp, --- dg,
([ dp, --- da,

which can be evaluated in principle for any known dependence of H on the p’s and
the ¢’s. Multiplying by the total number of molecules gives an expression for the total
energy of the system, and by differentiating with respect to T, we obtain an expression
for its heat capacity at constant volume.

If it so happens that the Hamiltonian is of the form

(7-36)

m n
H(ph P2s--e» qs) = zlaip.iz + _Zlb.iqiz + H(pm+l" cosPss Qna1s-- ,qs) (7-37)
i= i=

where the a; and b; are constants, then it is easy to show that each of these quadratic
terms will contribute kT/2 to the energy and k/2 to the heat capacity. (See Problem
7-29.) This result is called the principle of equipartition of energy. It should be
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emphasized that the principle is a consequence of the quadratic form of terms in the
Hamiltonian, rather than a general consequence of classical statistical mechanics.

Let us apply this general theorem to some of the cases we have treated in Chapters
5 and 6. For instance, for a monatomic ideal gas, the Hamiltonian is

gt R P’
2m

Since there are three quadratic terms, each atom contributes 3kT/2 to the total
energy and so 3k/2 to the constant volume heat capacity. This is exactly our result in
Chapter 5. For the case of a rigid rotor, the Hamiltonian is

1 P42
_2,2 ®
21 (p,, + sin? 6)

(7-38)

The sin? 6 in the p,? term would seem to exclude the p,* term from the principle of
equipartition, since Eq. (7-37) requires that the coefficients a; be constants. There is a
more general version, however, that allows the a; and b; to be functions of the momenta
and coordinates not involved in the quadratic terms, that is, to be functions of
DPmatr ---» Psand g, 4, - .., g, in Eq. (7-37). The proof of this is more difficult than the
proof of the simpler version. (See either Problem 7-30 or Tolman under “Additional
Reading.””) Because of this, each quadratic term above still contributes its equipartition
value, and so the rotational contribution of a rigid rotor to the energy is kT per
molecule, just as we obtained in Chapter 6 [¢f. Eq. (6-36)].

Note that equipartition is a classical concept, that is, the degree of freedom con-
tributing must be such that Ag/kT is small in passing from one level to another. We
have seen that this is true for translational and rotational degrees of freedom at
ordinary temperatures, but not vibrational degrees of freedom. The heat capacity for
an ideal diatomic gas in the rigid rotor-harmonic oscillator approximation is

[¢/- Eq. (6-53)]

NK(©,/T)%e®!T

Cy= '%Nk + (eev/T — l)z

(7-39)
where the Nk comes from the translational plus rotational degrees of freedom which,
we have seen, are excited enough to be treated classically. The second term is the
vibrational contribution, which reaches its expected classical limit of Nk, since
the classical Hamiltonian for a harmonic oscillator is (p?>/2m) + (k'2)x?), when © /T
becomes small, which is far above room temperature for most molecules. A value of
the vibrational contribution to C, differing from Nk is thus a quantum mechanical
result.

There are more general formulations of the principle of equipartition of energy
than we have given here, but they are not necessary for most purposes. In fact, the
principle itself is perhaps more of historical interest today than actual practical interest.
1t is interesting to note in this regard that when the electronic structure of atoms and
metals evolved toward the end of the nineteenth century, it was of great concern to
Gibbs that the electrons contributed only a very small fraction of their equipartition
value to the heat capacities of metals. He did not live to see this anomalous result
completely explained by quantum statistics. Since electrons have such a small mass,
they behave not at all classically and should, therefore, not be governed by the equi-
partition of energy (cf. Section 10-2).



PROBLEMS 123

We have made this long detour through phase space for more than just historical
reasons. As we said earlier, most of the systems of interest to chemists can be treated
very satisfactorily by classical methods. In fact, the quantum statistical theories of
systems of interacting particles are quite a demanding and specialized subject whose
techniques are still being developed. Fortunately, being chemists, we are spared from
having to master these techniques. Even today the classical Liouville equation forms
the starting point for most of the rigorous approaches to nonequilibrium statistical
mechanics. We shall now discuss the problem that sent us here in the first place, namely,
the study of ideal polyatomic gases.

ADDITIONAL READING

General

EYRING, H., HENDERSON, D., STOVER, B. J., and EYRING, E. M. 1964. Statistical mechanics and dynam-
ics. New York: Wiley. Chapter 7.

Gisss, J. W. 1960. Elementary principles in statistical mechanics. New York: Dover.

HiLL, T. L. 1956. Statistical mechanics. New York: McGraw-Hill. Chapter 1.

HuaNG, K. 1963. Statistical mechanics. New York: Wiley. Chapter 7.

KHINCHIN, A. 1. 1949. Mathematical foundations of statistical mechanics. New York: Dover.

KILPATRICK, J. E. 1967. In Physical chemistry, an advanced treatise, Vol. 11, ed. by H. Eyring, D.
Henderson, and W. Jost. New York: Academic.

KuBo, R. 1965. Statistical mechanics. Amsterdam: North-Holland Publishing Co. Sections 1-1 to
1-14.

MaAzo, R. M. 1967. Statistical mechanical theories of transport processes. New York: Pergamon.
Chapter 2.

MUNSTER, A. 1969. Statistical thermodynamics, Vol. 1. Berlin: Springer-Verlag. Chapter 1.

RUSHBROOKE, G. S. 1949. Statistical mechanics. London: Oxford University Press. Chapter 4.

TER HAAR, D. 1966. Elements of thermostatistics. London: Oxford University Press. Chapter 5.

. 1955. Rev. Mod. Phys. 217, p. 289, 1955.

ToLMAN, R. C. 1938. Statistical mechanics. London: Oxford University Press. Chapter 3.

PROBLEMS

7-1. Show that at room temperature the translational quantum numbers are typically
around 108 or so.

7-2. What is the constant energy surface in phase space for a simple linear harmonic
oscillator ? What is it for a single-point mass ? What is it for an ideal gas of N-point masses ?

7-3. Convince yourself that trajectories in phase space can never cross, also that surfaces
(really hypersurfaces) of constant energy can never intersect if the energies are different.

7-4. Consider a classical ideal gas enclosed in an infinitely tall cylinder in a gravitational
field. Assuming that the temperature is uniform up the cylinder, derive the barometric
formula

—mgz
p(z) — P(O)eXp( T )

From this calculate the atmospheric pressure at the top of Mt. Everest.

7-5. An ideal gas consisting of N particles of mass m is enclosed in an infinitely tall
cylindrical container placed in a uniform gravitational field, and is in thermal equilibrium.
Calculate the classical partition function, Helmholtz free energy, mean energy, and heat
capacity of this system.

7-6. Consider a perfect gas of molecules with permanent electric dipole moments . in an
electric field &. Neglecting the polarizability of the molecules, the potential energy is

= —ué& cos 0

where 6 is the angle between . and &. Using classical mechanics, derive an expression for the
additional effect of & on the energy E and heat capacity of the gas.
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7-7. The potential energy of N molecules in a container V can often be fairly well ap-
proximated by a sum of pair-wise potentials:

U(l'l, ceey I'N) 'Z’ u(r,, I';)

In addition, the pair-wise potentials u(r,, r;) are often assumed to depend only upon the
distance r;; = |r, — r;| between the twe molecules. Thus one often writes

U, ...,y ’; u(ryy)

Convince yourself that even these two simplifications of U do not help in trying to evaluate
the configuration integral Z.

7-8. Itis possible to determine the value of Boltzmann’s constant by observing the distribu-
tion of suspended Brownian particles in a gravitational field as a function of their height z.
Given that the particles have a mass of 1.0 X 10~!4 g, that the temperature is 300°K, and the
following data:

z(cm) Number of particles
0.0000 100
0.0025 55
0.0050 31
0.0075 17
0.0100 9

calculate the value of the Boltzmann constant.
7-9. We can calculate the microcanonical ensemble partition function for a classical
monatomic ideal gas in the following way. This partition function is given by

1 %
Q(E’AE)—:W.[.I dpl dp; "'dq;uv

where the asterisk indicates that one integrates over the region of phase space such that

l 3N 2
E—0E<5— 3 p*<E

We have seen in the quantum mechanical case that the thermodynamic consequences of this
equation are remarkably insensitive to the value of AE. (See Problem 3-14.) We can find Q
most readily by first evaluating

1 *
I(E)=WII dp,dp, - - dqan

where now the asterisk signifies the constraint

-_'2_ Z pr<
Note that Q(E, AE) is given by I(E) — I(E — AE). The integration of dg, - dgsy in I(E)
immediately gives V", and the remaining integration over the momenta is just the volume of
a 3N-dimensional sphere of radius (2mE)!/2. The volume of a 3N-dimensional sphere of
radius R is (see Problem 1-24)

7,,:HVIZ

(3N/2)!

3N
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(Note that this reduces correctly when 3N = 2 and 3.) Using this formula then, show that

wIN2YNQmE)3NI2
N!RE3™(3N2)!

is in agreement with Eq. (1-36).

7-10. In Problem 3-14 we showed that the entropy could be calculated from k In Q(E)AE
or k In ®(E), where Q(E)AE is the number of states with energies between E and E + AE, and
®(E) is the total number of states with energies less than E. In addition to this, we showed that
the result is remarkably insensitive to the choice of AE. We shall now discuss the classical
analog of this. In particular, this problem involves showing that the volume of an N-dimen-
sional sphere is essentially the same as the volume of the hypershell of thickness s. First write
the volume of the hypersphere as

I(E)=

l/spheu(R) = const X RY
Now show that if N is large enough such that sN > R, then

Vaneu = V(R) — V(R — 5)
= const X RM¥(1 —e~*N'R)

~
~ sphere

7-11. Show that in Cartesian coordinates, the Liouville equation takes the form of Eq.
(7-30).
7-12. Convince yourself that a corollary of Liouville’s equation is

f(p,q;t) =f(Po, go; to)

Although we did not discuss it explicitly, much of the kinetic theory of gases is contained in
this chapter. Problems 7-13 through 7-25 develop some of the kinetic theory of gases.

7-13. Consider a system of N interacting molecules, whose vibrational degrees of freedom
are treated quantum mechanically and whose translational and rotational degrees of freedom
are treated classically with Hamiltonian

Hcllss = Kirans + Krnl +U

where K represents kinetic energy, and U represents potential energy. Substitute this into
Eq. (7-19); integrate over all the coordinates except the 3N translational momentum
coordinates; and derive

e"‘lnnsl'ﬂ‘ dp(nns

Prob{Kun} = 75—
fe' trans/kT dp"‘m

Now realize that

N
Klnns Z Puz + pyjz + szz)

1
2m
and derive the normalized Maxwell-Boltzmann distribution, namely,
f(Px, Py, P:) dps dp, dp. = (2umkT) =312 g~ @™ +2,* +2:2mT g dp dp, (7-40)

One can derive all of the usual expressions of the kinetic theory of gases from this.
7-14. An integral that appears often in statistical mechanics and particularly in the Kinetic
theory of gases is

e [ e
o
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This integral can be readily generated from two basic integrals. For even values of n, we first
consider

To= f: e~ dx

The standard trick to evaluate this integral is to square it, and then transform the variables
into polar coordinates:

°2=J f e " e~ dx dy
() ()

@ n2 2
=f f e~"rdrdb
(] o

k
4a

1 (m\12
-39

Using this result, show that for even »

_1:3-5---(n—1) (w)m

n = 2(20 w2 - n even

a

For odd values of n, the basic integral I, is easy. Using I,, show that

()
L=—"—_"7 nodd

" 2a(n+l)12

7-15. Convert Eq. (7-40) (see Problem 7-13) from a Cartesian coordinate to a spherical
coordinate representation by writing

p*=p+p2+p.?
p-=pcos b

px=psin 0 cos ¢

py=psin Osin ¢

dp, dp, dp. — p* sin 0 dp db d¢

and integrating over 6 and ¢ to get
f(p) dp = 4"""(211’"1’(7')_:”zp2 e*rzlzmu‘ dp

for the fraction of molecules with momentum between p and p + dp. By substituting p = mv,
we get the fraction of molecules with speeds between v and v + dv:

3/2
f@)dv=4n (Zr'%f) vie~mT gy

7-16. Prove that the most probable molecular speed is v, = (2k7T/m)!/2, that the mean
speed is <v)> = (8kT/wm)'/2, and that the root-mean-square speed is {v?)'/2 = (3kT/m)'/2.
Evaluate these for H, and N, at 25°C.

7-17. Show that the mean-square fluctuation of the velocity of the Maxwell-Boltzmann
distribution is

— kT 8
v’—ﬁ’=—(3—-—)
m

mw
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7-18. Show that the average velocity in any direction (say x, y, or z) vanishes. What does
this mean?

7-19. Derive an expression for the fraction of molecules with translational energy between
€ and € + de from both Egs. (7-40) and (5-7).

7-20. According to Problem 1-35, the speed of sound in an ideal gas is given by

RT\1/2
)

where M is the molecular weight of the gas, and ¥y = C,/C,. Show that ¢, = 0.817 for an
ideal monatomic gas.

7-21. Calculate the probability that two molecules will have a total kinetic energy between
eand £+ de.

7-22. Calculate the fraction of molecules with x-component of velocity between
+n(2kT/m)''?, where n=1, 2, and 3. Remember that the integral of exp(—x2?) with finite
limits cannot be evaluated in closed form and is expressed in terms of the error function
erf (x) by

2
erf(x)=ﬁfo et dt

7-23. What is the average Kinetic energy € and the most probable kinetic energy &, of a
gas molecule?

7-24. Show that the number of molecules striking a unit area per unit time is p5/4, where
p=NJV.

7-25. How would you interpret the velocity distribution

m i m 2 2 2
¢(V) = (m) exp{— 7’-‘7 [(vx —a)* + (v, — b))% + (v: — ©) ]}
in which a, b, and c are constants ?
7-26. The relativistic dependence of the Kinetic energy on momentum is

e=c(ps? + py? + p.? + morc)'?

where my, is the rest mass of the particle, and c¢ is the speed of light. Determine the thermo-
dynamic properties of an ideal gas in the extreme relativistic limit, where p > moc.

7-27. If an atom is radiating light of wavelength Ao, the wavelength measured by an
observer will be

c

if moving away from or toward the observer with velocity ». . In this equation c is the speed
of light. This is known as the Doppler effect. If one observes the radiation emitted from a gas
at temperature T, it is found that the line at A, will be spread out by the Maxwellian distribu-
tion of velocities v; of the molecules emitting the radiation. Show that I() d], the intensity
of radiation observed between wavelengths A and A + dA, is

mci(A — Ao)?
2002kT

This spreading about the line at A, is known as Doppler broadening. Estimate the Doppler
line width for HCI radiating microwave radiation at room temperature.

7-28. Plot C, in Eq. (7-39) versus temperature and see that the vibrational contribution
does not contribute until the temperature approaches ©, .

7-29. Prove that if the Hamiltonian is given by Eq. (7-37), then each of the quadratic
terms will contribute k7/2 to the average molecular energy and k/2 to the molecular heat
capacity.

I(}) o exp { —
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7-30. Prove that even if the a; and b, in the Hamiltonian of Eq. (7-37) are functions of
the momenta and coordinates not involved in the quadratic terms, the law of equipartition
still applies. In particular, show how this more general version of the law of equipartition
applies to the rigid rotor Hamiltonian.

7-31. Let H(p, q) be the classical Hamiltonian for a classical system of N interacting
particles. Let x, be one of the 3N momentum components or one of the 3NV spatial coordinates.
Prove the generalized equipartition theorem, namely, that

oH
<x. a—xl> = kmu

and from this derive the principle of equipartition of energy that we discussed earlier.
Hint: Realize that the potential U — oo at the walls of the container.
7-32. Consider a two-dimensional harmonic oscillator with Hamiltonian

1 k
_— 2 2 Z (2 2
H 2m(px +py)+2(x +»9)

According to the principle of equipartition of energy, the average energy will be 2k7. Now
transform this Hamiltonian to plane polar coordinates to get

1 p,z k
= — 2 -_ —r2
H 2m(p,+r,)+2r

What would you predict for the average energy now? Show by direct integration in plane
polar coordinates that € = 2kT. Is anything wrong here? Why not?

7-33. Convince yourself that the number of phase points passing through a face perpen-
dicular to ¢, per unit time is

JG18g28q5 -+ 8py



