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1 Introduction

Structural problems under mechanical and thermal cyclic loads are frequently encountered
in the design problems and are widely used in industry. Since in the advanced design codes
such as power piping and pressure vessels, the structure is designed for cyclic loading in the
plastic region, the problems related to cyclic response of the structures in the plastic region is
of interest for many researchers. The question remains of the true behavior of a structure in
regard to the reverse plasticity (or shakedown) or ratcheting. Based on the reverse plasticity,
although some inelastic strain accumulates during a few cycles, the rate of accumulated
strain tends to become zero by increasing the cycles. On the other hands, it is possible to
have a situation where the accumulated inelastic deformation exceeds the allowable value
causing structural failure. This behavior is defined as ratcheting.

Many criteria and constitutive models are proposed in the literature to estimate the behav-
ior of a structure under cyclic loading condition. The main differences among these models
are related to the hardening theories. Hill (1950) and Westergaard (1952) presented the basic
works related to isotropic hardening theory. Based on this theory, the radius of yield surface
is extended in the Haigh—Westergaard stress space. Inelastic analysis of a circular rod based
on the isotropic hardening model using the von Mises yield criterion is discussed by Neal
and Shirvastava (1990). Since isotropic hardening theory does not consider the Bauschinger
effect, the response based on this theory does not coincide with the experimental data.

According to the Bauschinger effect, yield surface is transferred in the Haigh—Wester-
gaard stress space during plastic loading. In 1956, the first kinematic rule with linear hard-
ening capable to consider translation of yield surface was proposed by Parger (1958). Ziegler
(1959) proposed a kinematic hardening model. This kinematic model is merely able to
describe linear hardening, although it is widely used in commercial finite elements codes
(Karlsson et al. 2001). Nevertheless, numerous modifications have been propped in order
to precisely evaluate the plastic responses, since neither cyclic stress—strain curves nor the
hysteresis loop curves can be precisely simulated. Besseling (1959) and Mroz (1967) sug-
gested multi-layer and multi-surface models to overcome the aforementioned defect in the
linear kinematic hardening models. However, these models failed to predict the ratcheting
phenomenon. Thus, Armstrong and Frederick (1966) proposed a nonlinear kinematic hard-
ening model in 1966. The nonlinear term in this model makes the slope of strain—stress curve
different in loading and unloading process and as a result cyclic ratcheting phenomenon is
predict more realistically. In 1979, a kinematic hardening model for cyclic plasticity was
proposed by Dang-Ban et al. (1979), where the total back stress tensor is decomposed into
additive parts with each part following the Armstrong—Frederick hardening model to use the
experimental data. In 2006, plastic cyclic behavior of thick pressure vessels using kinematic
hardening criterion was studied by Mahbadi and Eslami (2006). The aim of this paper was
to compare the Prager linear kinematic hardening with the Armstrong—Frederick nonlinear
kinematic hardening model. It was concluded that the linear kinematic hardening of Prager
model predicts reverse plasticity for a vessel subjected to all categories of cyclic loadings.
On the other hands, the nonlinear theory of Armstrong—Frederick results in ratcheting re-
sponses for the load-controlled cyclic loadings, reverse plasticity for the strain controlled
cyclic loadings with zero mean load, and thermal cyclic loadings with zero and non-zero
mean load. Also, Mahbadi et al. (2013, 2017) have investigated cyclic behavior of thick
spherical and cylindrical vessels, respectively, made of transversely isotropic materials us-
ing anisotropic yield criterion. As a result, identical behaviors similar to Mahbadi and Eslami
(2006) study are observed for these materials.

Rusinko and Rusinko (2009, 2011) described the synthetic flow theory, where a corner
point along the loading path on the yield surface is produced, and considerably widened the
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applicability of this theory. Regarding the importance of cyclic loading, recent studies are
conducted into this field. The book written by Shorr in 2005 is among these works (Shorr
2015). In this book, recent investigations on integrity of materials at high temperature are
presented. Moreover, developed numerical methods for thermo-cyclic creep are presented.
Since analysis of plastic deformation is required for mechanical design of the structures
subjected to cyclic loading, Hashiguchi (2017) assessed and reviewed the cyclic plasticity
models in 2017. In 2017, cyclic deformation of Inconel 718 superalloy was modeled by
means of crystal plasticity by Cruzado et al. (2017). The computational homogenization and
a linear jump approach was developed to diminish the computational time for simulating
numerous cycles. Roostaei and Jahed (2018) developed a cyclic small-strain plasticity model
for anisotropic wrought Mg alloy under multiaxial loading.

Chaboche (1986) proposed a time-independent constitutive model for cyclic plasticity,
which combines the nonlinear kinematic hardening and isotropic hardening theories. The
model is capable to estimate the cyclic loading behavior of a structure more accurately com-
pared to the previous linear kinematic hardening models. Cyclic plastic responses of beams
based on the time-independent Chaboche hardening model is investigated by Shojaei et al.
(2010). It is concluded that this model predicts reverse plasticity for deformation (strain)
controlled conditions and load-controlled stresses with zero mean stress. A ratcheting re-
sponse is observed for the load-controlled conditions with non-zero mean stress.

In the past decades, a several viscoplasticity constitutive models are proposed to pre-
dict the structural behavior under cyclic loading condition at high elevated temperatures.
Chaboche and Rousselier (1983a,b) proposed the unified viscoplastic constitutive model.
In this model, the kinematic and isotropic hardening theories are considered in a unified
form. Contrary to 1986 Chaboche model (Chaboche 1986), this theory is a time-dependent
model which is able to evaluate effects of rate and creep time and also it is suitable for high
temperature conditions, where rate effect is important. This model is widely accepted in the
literature. The key problem to properly use this model is how to select the initial set of the
material properties which are used in the model. This problem is resolved and referred in the
literature by a number of authors such as Zhan et al. (2004), Zhan (2004), and Gong et al.
(2010).

Since improving the knowledge of the rate-dependent behavior of materials is of sig-
nificant importance in many engineering applications, many cyclic loading researches deal
with modifying rate-dependent constitutive models. Zhu et al. (2016) proposed a thermo-
mechanically coupled cyclic elasto-viscoplastic constitutive model of metals and imple-
mented it into a finite element code (ABAQUS). The proposed model is verified by com-
paring with the experimental results of 316L stainless steel. In 2017 a modified constitutive
model is proposed based on the unified viscoplasticity theory considering time-dependent
kinematic hardening for relaxation by Chen et al. (2017). Hang et al. (2019) used a modified
unified viscoplastic constitutive model to evaluate the axial torsional thermo-mechanical
cyclic loading. In 2018, a series of experiments were conducted by Chen et al. (2018) to de-
termine the creep and fatigue behavior of 316 stainless steel and to revisit a unified viscoplas-
tic model. Benaarbia et al. (2018) have developed a thermodynamically-based viscoelastic—
viscoplastic model for the high temperature cyclic behavior of 9-12% Cr steels, considering
the isotropic and kinematic hardening theories. Rae et al. (2019) studied experimental char-
acterisation and computational modeling of cyclic viscoplastic behavior of turbine steel. In
addition, changes in stress ranges hysteresis area and viscous stress were analyzed in or-
der to characterize the cyclic mechanical behavior of the FV566 steel. The rate-dependent
ratcheting characteristics of 35CRMo alloy have been investigated by Zheng et al. (2019)
under cyclic uniaxial tension considering different stress amplitudes at high temperature.
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There are also other papers deal with viscoplastic constitutive models such as those studied
by Dong et al. (2014), Chen and Feng (2015), Szmytka et al. (2015), Kyaw et al. (2016),
Ahmed et al. (2016), Luk-Cyr et al. (2017) and Xiaoan et al. (2019).

In this study the Chaboche unified viscoplastic model (Chaboche and Rousselier
1983a,b), which is a time-dependent model with combined kinematic and isotropic hard-
ening theories, is considered. The model allows one to reasonably predict the behavior of
materials under cyclic loading condition. It must be mentioned that some limitations exist on
application of isotropic hardening theory as described in synthetic flow theory by Rusinko
and Rusinko (2009, 2011). The assumed vessel material is considered to be type 316 stain-
less steel, where to obtain the coefficients and parameters of the material for starting point
of cyclic loading (Gong et al. 2010). The numerical analysis is carried out using the exper-
imental results of type 316 stainless steel. Due to nonlinearity of the problem and applying
the combined isotropic and kinematic hardening theories of plasticity, a numerical method
is proposed to solve the governing partial differential equations of the problem. The plastic
and creep strains are obtained by a unified flow rule. The proposed numerical method is
the modification of the method proposed by Mahbadi and Eslami (2006), Mahbadi et al.
(2013, 2017), Shojaei et al. (2010), where the generalized differential quadrature (GDQ by
Shu 2012) method is used to calculate the stress tensor. The novelty of the present study, in
comparison with the published papers reported on cyclic loading, is application of a time-
dependent constitutive model to obtain both plastic and creep strains due to the combination
of thermal and mechanical loads. Temperature-dependent material properties is considered
and the GDQ method is employed to solve the governing differential equations. The cyclic
viscoplastic behavior of thick spherical pressure vessels is derived and presented. The ba-
sic concern of this paper is to show that cyclic loading of strain controlled loads results in
shakedown or reversed plasticity.

2 Mathematical formulation

A thick spherical vessel made of isotropic material is considered. The vessel is subjected to
the combination of thermal and mechanical loads. The inside and outside radius of vessel,
R, and R,, are subjected to inside and outside pressures P; and P, and inside and outside
temperatures 77 and T, respectively. The following normalized parameters are considered
in Eq. (1) to conveniently obtain convergence:
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In Eqs. (1) o;; is the stress tensor and ¢;; is the strain tensor. The subscripts rr, 66, and
¢¢ describe the radial, tangential, and meridional directions, respectively. Also, /" and eRes
represent the inelastic strain and residual strain, respectively. The parameters oy and €, are
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the initial yield stress and the initial yield strain, and T is the temperature distribution in the
vessel. The dimensionless stress—strain relations in spherical coordinate are as follows:
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In Egs. (2), v is Poisson’s ratio and «y is the initial thermal expansion. Due to the spheri-
cal symmetry, 69 = 044 and €ygy = €44. By substituting Eqgs. (2) into the one-dimensional
compatibility equation and using the equilibrium equation in a spherical coordinates system,
a second order non-homogeneous differential equation with variable coefficients for &, is
obtained, as given by the following equation (Hetnarski and Eslami 2019):
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The heat conduction equation in the steady-state condition for the one-dimensional prob-
lem in spherical coordinates is given by

d(, ,dT\ _
d_r<kr dr)_O ©)

where &’ is the thermal conduction coefficient being assumed to be temperature dependent.
We may assume the following form for k'

K'=&T+&. @)
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The dimensionless temperature distribution is obtained by integrating Eq. (6) twice,
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Using the boundary conditions 7'(R;) = T} and T (R,) = T, to determine the constants I
and I, yields
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In exploring an effective discretization method, Bellman and Casti (1971), Kashef et al.
(1972) proposed the differential quadrature method (DQM). The weight coefficient in the
DQ must be determined for the discretization of a derivative of any order. Two approaches
are proposed in Bellman and Casti (1971) to define the weighting coefficients of the first or-
der derivative. First, by accomplishing an algebraic equation system and second by consid-
ering a simple algebraic formulation. Since the number of grid points in Bellman’s approach
was limited, Shu (2012) introduced a method to calculate the weight coefficient for the first
and higher order derivatives with arbitrary number and distribution of grid points, which
then was defined as the GDQ method. Using the GDQ method, the rth order derivative of
function f(x;) is defined as

N
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o | ; fGx)). (10)
Thus, the first and second order derivatives of radial stress d;’;" and d;(_’;’ are defined as
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where N is the number of grid points along the radial direction and C;;) can be obtained by
the following relations: '
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and also M (p) can be obtained:

N
MY =[] i =pp. (14)
j=Lji
Using cl e ), the weighting coefficient c along the radial direction can be defined as
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In order to obtain a better distribution for mesh points along the radial direction, the
Chebyshev—Gauss—Lobatto technique is applied as

m=(ﬂ;L{1—cm<;iiﬂ)}+L (16)

Using the GDQ method and substituting Eqgs. (11) into Eq. (4), the radial stress in the grid
points can be obtained:

[K(l)]{o_'rr}={F} a7

where the components of stiffness matrix [K ('] can be obtained by the following equations:
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Using Egs. (5) and (8), A;, B; and C/ are defined as follows:
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where E; is the normalized elasticity modulus at p; radius. The force vector is defined as

fi=Di+ F +G,. (20)
In order to calculate G;, the GDQ method is applied to & " and % 0 L
ZC(I) 1n(p])+ ZC(I) Ree(pj Q21
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Using Egs. (5) and (8), D; and F! are defined as

3 _. 3
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where «; is the normalized thermal expansion coefficient at p; radius.

After evaluating the radial stresses of grid points, the tangential stresses can be calculated
using the equilibrium equation. The GDQ discretization method is applied to this equation
and the tangential stresses of the grid points are obtained:

{500} = [K?] {57/} (23)

where the elements of [ K ®] matrix are defined as

K2 =P
ij ij ’
. 24)
ki =2 +1 i=].
To impose the boundary conditions of pressure for the spherical vessel, 5., (1) = — P} and

5.+(8) = — P, the following modification should be applied to the stiffness matrix [K ]:

K)=0, j=2,....N. k=1,

(1) (1 25)
kyl=0, j=1,....N—1 kyy=1,
and the force vector {F'} is altered as
fi=—P,
_ (26)
fn:_ 2

3 Unified viscoplastic constitutive model

The Chaboche unified viscoplastic constitutive model (Chaboche and Rousselier 1983a,b) is
used to evaluate the cyclic viscoplasticity of the thick spherical vessels subjected to thermo-
mechanical loads. The presented constitutive model can be exploited for monotonic or cyclic
loading conditions or for a more complex situation (Lemaitre 2001). This model is based
on the rate-dependent flow rule which consists of the kinematic and isotropic hardening
theories using the normality rule. In order to obtain the inelastic strain rate, the flow rule for
this model is

cin _ 3ein %0 "X _ §< J (01 = xij) = R = Y>" 0ij = Xij @7
Y2 J(oy—xi) 2 zZ J(oij — xij)
The yield criterion associated with the above constitutive model is
f=J(oij—xij)—R-Y. (28)
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The McCauley bracket (.) is used here to ensure that when f < 0, the state of stress is
inside the elastic domain. In Egs. (27) and (28), x;; is the back stress tensor, n and Z are
material parameters which are functions of the temperature, Y is the yield stress and is a
function of the temperature, R is associated parameter of the isotropic hardening of material
and is called the drag stress, o/; and x;; are deviatoric stress and back stress tensors and J
represents a distance in the stress space which for the von Mises yield criterion is

3 12
J(oij = xij) = [E(ai/j = xi;) (0 = X,-/,-)] : @9

In the present model, the back stress tensor, which is related to the kinematic hardening
theory, is described by Eq. (30),
. - (1) - (2)
Xij = Xij T Xij (30)
where )'(i(jl) and )'(i(jz) are the nonlinear kinematic hardening parameters:
. (1 . 1) .
X =Ci(aél) — xém).
(2 i (2) 2i 31
Xij = Calaxél] — xi €"),
where C;, C,, a;, and a, are material parameters for the Chaboche kinematic hardening
model and are obtained from the uniaxial test and they are considered to be functions of the
temperature. The drag stress related to the increase of the yield surface is defined as

R=0b(Q — R)é" + HE™. (32)

In Eq. (32), b and Q are material parameters for the isotropic hardening model and they are
considered to be temperature dependent. The second term in Eq. (32), (Hé™), represents the
linear evolution of drag stress and is proportional to the effective inelastic strain.

The dimensionless quantities of hardening model are defined as

_ - C a — Y
j=L =% a=%  ;=* 7Y
o) Ey o) 0o o)
1n (33)
_ R _ ZGO — Q - bo’o — H
R=—, Z=—-, 0=—, b=—, H=—.
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4 Numerical solution

In this section, the numerical solution procedure for inelastic analysis and cyclic loading
behavior of thick spherical vessels under mechanical and thermal loads is described. Due to
the existence of eﬁ;’ in the force vector, the relations are nonlinear and the inelastic strains
are dependent on the loading path and the stress tensor. A numerical iterative procedure
based on the successive approximation method is proposed in the present work to evalu-
ate the inelastic analysis of thick vessels. The numerical method described by Mahbadi and
Eslami (2006), Mahbadi et al. (2013, 2017), Shojaei et al. (2010) is modified and devel-
oped for the viscoplastic material, considering creep analysis, to solve the problem. Succes-
sive coordinate systems, corresponding to each cycle during the loading and unloading, are
considered by this method. The solution obtained by this successive coordinate systems is
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transferred to the main coordinate system located at the beginning of the first cycle of load.
Thus, the coordinate system corresponding to the first cycle of the load is identical with the
main coordinate system. When the number of cycles are increased, the subsequent succes-
sive coordinate systems differ with the main coordinate system. The problem is solved in
each successive coordinate system independently, while the parameters such as back stress
and residual stresses are initialized based on the results obtained in the previous coordinate
system and transferred to the current coordinate system employing proper coordinate trans-
formation. The details of the modified method for viscoplastic thermo-mechanical load is
described by the following steps:

e Step 1: Since the modulus of elasticity and yield stress vary at different temperatures, all
the input quantities are normalized with the initial yield stress and elasticity modulus.

e Step 2: Total time is divided into p steps and applied load associated with the time division
(Load = f(¢)) is divided into g steps. Also, the cross section of thick sphere is divided
into N layers.

e Step 3: For each layer, the yield criteria from Eq. (28) is checked to determine if the layer
is in inelastic zone. For the layers that are in the inelastic range, a value for the inelastic
strain increment A& is assumed and is added to the accumulated inelastic strain from
the previous step of loading (i.e. for the first increment of inelastic strain the accumulated
inelastic strain is zero) to obtain the total inelastic strain.

e Step 4: To determine material properties of each layer, including yield stress, elastic mod-
ulus, isotropic and kinematic hardening parameters, and creep parameters, the tempera-
ture distribution from Eq. (8) is used. The quadratic equation, given by Eq. (34), is used
to approximate these material properties,

A=0T*+ 0T + & (34

where A is any material property and ¢;, &, and ¢z are calculated from the experimental
data.

e Step 5: Considering the initial guess for A€ in Step 3 and the yield stress from Step 4,
the inelastic strain increment tensor using the flow rule, Eqgs. (35), is obtained and added
to the accumulated inelastic strain to calculate the total inelastic strain,

5/
e = pgin T X
Y2 J (35)
e =&l 4 A,

It must be mentioned that since J, X, 0 parameters are dependent on inelastic strains, the
values of the previous time step are used in this step.

e Step 6: The increment of back stress tensor related to the kinematic hardening theory is
obtained from Eqgs. (36)

A = Cyan el — 31" Aem),
2
Afij =Y A% (36)
n=1
Xij = X+ AXij-
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Fig. 1 Unloading and reloading

. A Unloading Coordinate System
coordinate systems

-

Reloading Coordinate System

1)

al

Main Coordinate System

e Step 7: The extension of radius of the yield surface, using the approximated inelastic
strains in Step 5, is obtained:

AR=5b(Q — R)AE™ + HAE™,
- _ (37)
R = R*° 4+ AR.

e Step 8: The new values of inelastic strains obtained from Step 5 are used to calculate
the new values for the radial and tangential stresses by applying new values of inelastic
strains to the force vector in the GDQ method, Eq. (20).

e Step 9: Using the calculated quantities in Steps 6 to 8, new inelastic effective strain incre-
ment is obtained from Eq. (38),

TGy — %) — R—T\"
Aé”’:< (@ XfZ) >At. (38)

e Step 10: The new values of inelastic strain increments are compared with the initial guess
and if the difference between these two values is small enough, repeat the method from
Steps 3 to 10. Otherwise, Steps 5 to 10 must be repeated until convergence occurs. The
following relative error is considered to determine convergency:

Aég\rllew _ Agﬁ;’evious
—F———™" | < Tolerance. 39)

~New
A€;),

e Step 11: For the unloading procedure, a second coordinate system in reverse directions is
mounted at the current state of stress and strain values; see Fig. 1.

e Step 12: All the values of stress, strain, accumulated, and total plastic strains are set to
zero. The values for back stress and drag stress are transferred to the unloading coordinate
system as

Sacc _ =(2)

Xij =03 — Xij (40)
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where y;; is the accumulated back stress tensor in the unloading coordinate system and
57 is the maximum stress tensor in the loadin di
> g coordinate system.
e Step 13: Steps 2 through 10 are repeated to evaluate the unloading responses. All the
calculated quantities in the unloading coordinate systems can be transferred to the main

coordinate using the following transmission relation:

m m—1
L(k) UL(k) UL(m)
s,-,-:(E SEO -3 )—S,.j 41)
k=1 k=1

where S;; is any tensors including stress, total strain, inelastic strain, and back stress.
Superscripts L(k) indicate the final value of S;; in kth cycle of loading. Also, UL(k)
indicates the final value of S;; in the kth cycle of unloading. Here, m shows the last cycle.

o Step 14: For the reloading procedure, a third coordinate system is attached to the current
state of stress and strain values in the same direction of the main coordinate system. All
values of stress, strain, accumulated, and total plastic strains are set equal to zero. The
values for back stress and drag stress are transferred into the reloading coordinate system
as

7= - ) @)

where Xf‘/.“ is the accumulated back kinematic hardening parameter in the reloading coor-

dinate system and 6,.('1) is the maximum stress tensor in the unloading coordinate system.

o Step 15: Similar to unloading process, Steps 2 through 10 are repeated in order to estimate
the reloading responses. All the calculated quantities in the reloading coordinate systems
can be transferred to the main coordinate using the following transmission relation:

m—1 m—1
— L(k) UL(k) UL(m)
Si/_<zsi.f - 2S5 >+Sij : (43)
k=1 k=1

e Step 16: Procedures between Steps 2 through 15 are repeated until the final cycle of load
is archived.

The flow chart corresponding to the proposed numerical procedure is illustrated in Fig. 2.

5 Results and discussion

In this section, the effect of various thermal and thermo-mechanical loading conditions on
cyclic viscoplastic behavior of thick spherical vessels are investigated. The numerical re-
sponses of present work are verified with the experimental data for uniaxial loading condi-
tion and results of commercial finite element program.

5.1 Verification

Figure 3 shows the comparison between the results obtained in present work and the exper-
imental data given in Hyde et al. (2014) for a service-aged P91 steel subjected to uniaxial
strain cyclic loading under isothermal condition, 500 °C. The axial strain is cycled between
—0.5% and 0.5% with €, = 0.1%/s strain rate and 120 s creep time after loading procedure.
The Chaboche unified viscoplastic model is used and the material properties are assumed
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Divide cross section of
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Fig. 2 Flow chart of the proposed numerical procedure

Calculate isotropic
hardening pa-
rameter, Eq. (37)

to be oy =28.02 MPa, E = 156310 MPa, C, = 4607.47, C, = 379.69, a; = 45.04 MPa,
a, = 109.72 MPa, n = 6.55, Z = 807.55 MPas'/", b = 2.54, Q = —59.05 MPa and
H = —1.84. Figure 3 shows that the experimental data of Hyde et al. (2014) and numer-
ical data of current work are in close agreement.

In order to demonstrate the accuracy of the proposed numerical method of the present
work in evaluating inelastic responses of the structures, a commercial finite element pro-
gram is used. In Figs. 4 and 5 a thick spherical vessel made of an alloy similar to U720Li
alloy (Zhan and Tongi 2007) is subjected to thermal and thermo-mechanical loads, respec-
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tively. The results of ABAQUS for the normalized effective total strain, inelastic strain,
and stress versus radius ratio are depicted and compared with the results obtained through
the present formulations. The material properties are: oy = 800 MPa, E = 509000 MPa,
Ci.a; = 141590, Cy.a; = 688100, C; = 391.61 MPa, C, = 2578.69 MPa, b = 7.13 and
Q = 161.52 MPa. The back stresses due to this hardening model is defined by Eq. (44),

dX,-(;() = Crar(oij — xij)de” — Ck)([(f)dfp,
" (44)

By substituting the aforementioned kinematic hardening given by Egs. (44) in the numerical
algorithm of present work and considering ¢ = 0, the plastic responses of present work are
compared with the ABAQUS results. The maximum percentage of error between the FEM
method and the proposed approach is less than 2%.
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Fig. 5 Comparison of results of
thermo-mechanical load of
present work with ABAQUS
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In Fig. 6 the viscoplastic response of present method is verified with Mahbadi et al.
(2018), where a thick pressure vessel is subjected to mechanical cyclic loads. The inside
pressure is cycled between 0 to 250 MPa under uniform temperature distribution. By com-
parison the method is well justified.

5.2 Viscoplastic cyclic behavior

In the following section, the cyclic viscoplastic behavior of thick spherical vessels made of
316 stainless steel subjected to thermo-mechanical loads is evaluated. The material proper-
ties of the unified Chaboche viscoplastic model are given in Table 1 (Gong et al. 2010). The
radius ratio of the vessel is § = 1.5, H parameter in Eq. (32) is set to be zero and &; and &,
in Eq. (7) are considered to be 0.0125 Wm~'k 2 and 15 Wm~' k™!, respectively.
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Table 1 Material properties at

multiple temperatures (Gong Temperatures (°C) 300 °C 500 °C 550 °C 600 °C

et al. 2010)
oo (Mpa) 39 32.5 31 30
E (Gpa) 154.84 145.54 141.26 139.12
b 39.46 33.35 31 28.6
Q (Mpa) 32.76 30.41 27.8 27.43
a; (Mpa) 119.1 94.6 86.3 80.06
Cy 5964.1 6472.6 6939 7111.9
ap (Mpa) 108.4 113.3 114.8 116
Cy 1001.6 979.91 957.69 928.7
Z(Mpas%) 179 175 173 170
n 10 10 10 10

Fig. 7 Reverse plasticity due to 20 T T T T

thf: thermal cyc}ic lqading i&'fiﬁlﬁggycm Loading

;Z;zrom creep time in the inner 15 - Inside Temperature: (0 to 600)°C b

Load and Unload Rate: 0.1667°C/s

Number of Cycles: 50
Chaboche Viscoplastic Model
Inner Layer

_
o
T

N
z
L
&
[0
2 5r
3
=
B ot
el
Q
8
< 5t
g 5
2
T 0f
_15 1 Il 1 Il
-50 -40 -30 -20 -10 0

Normalized Effective Strain, &

5.2.1 Pure thermal cyclic load without creep

The cyclic viscoplastic response of a spherical vessel subjected to the thermal cyclic load-
ing, T; = 0 to 600 °C, without considering creep time for the inner and outer layers are
evaluated in Figs. 7 and 8. The loading and unloading rate is 0.1666 °C/s. The maxi-
mum effective strain and stress are occurred in the inner and outer layers, respectively.
As shown in these figures, reverse plasticity is occurred in both critical points under this
cyclic loading condition. In this situation, stress amplitude and strain amplitude remain the
same by proceeding the cyclic loading further from the initial transient cycles. In these
figures the ratcheting behavior is negligible after the first transient cycles, and the start of
reversed plasticity may be considered after these transient cycles. The initial transient cy-
cle for Figs. 7 and 8 is approximately the second and sixth cycles, respectively. In Figs. 7
and 8, the steady stress amplitude after the transient cycles is 13.61 (or 421.76 MPa) and
12.28 (or 380.5449 MPa), and the steady strain amplitude of reverse plasticity is 18.8955 (or
0.4165%) and 13.765 (or 0.3034%), respectively. Moreover, the start of reversed yielding
in Figs. 7 and 8 is at 522.6 °C and 438.0 °C, respectively, and the magnitude of back stress
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Fig. 8 Reverse plasticity due to 15 T T T T T
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L
o

components and isotropic hardening parameter in these figures are x = (Xrr, X006, X¢p) =
(179.80, 89.90, 89.90) MPa, R = 6.60 MPa, and (23.76, 11.88, 11.88) MPa, R = 1.41 MPa,

respectively, for the first cycle.
5.2.2 Pure thermal cyclic load with creep time

Figures 9 and 10 depict the normalized effective stress versus normalized effective strain
of the inner and outer layers of the vessel. The vessel is under pure thermal cyclic loading
with 100 hours creep time at the end of the loading condition. Similar to Figs. 7 and 8,
reverse plasticity is observed in both layers and it is noted that creep time does not have
major effect on the cyclic viscoplastic behavior of the vessel. The initial transient cycle for
Figs. 9 and 10 is approximately the second and fifth cycles, respectively. In Figs. 9 and 10,
the steady stress amplitude after the transient cycles is 13.66 (or 423.3097 MPa) and 12.315
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Fig. 10 Reverse plasticity due to
the thermal cyclic loading with
100 h creep time in the outer
layer

Fig. 11 Effect of loading rate on
peak effective stress
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(or 381.6295 MPa), and the steady strain amplitude of reverse plasticity is 19.0315 (or
0.4195%) and 13.774 (or 0.3036%), respectively. Moreover, the start of reversed yield-
ing in Figs. 9 and 10 is at 535.6 °C and 456.2 °C and the magnitude of back stress
components and isotropic hardening parameter in these figures are x = (Xrr, X0, X¢p) =
(186.90, 93.45, 94.45) MPa, R = 6.86 MPa and (30.41, 15.21, 15.21) MPa, R = 1.52 MPa,

respectively, for the first cycle.

5.2.3 Effects of loading rate

Peak normalize stress and strain versus number of cycles are illustrate in Figs. 11 and 12, re-
spectively, for different loading rates but constant unloading rate. It is shown that increasing
the rate of loading results into increase of the peak effective stress and decrease of the peak
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Fig. 12 Effect of loading rate on 48.4
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effective strain. Also, it is concluded that the difference between loading and unloading rates
have no major effect on the viscoplastic cyclic behavior and reverse plasticity is observed.

5.2.4 Thermo-mechanical cyclic loading

In order to evaluate the effects of mechanical and thermal loads on cyclic viscoplastic be-
havior of the vessel, the vessel is subjected to thermo-mechanical cyclic loading with higher
thermal cyclic load. The inside temperature and pressure are cycled between 0 to 400 °C
and 0 to 100 MPa, respectively. In this loading condition, the critical point takes place on
the outer layer of the vessel. It is concluded that when thermal cyclic load is high enough
compared to the mechanical cyclic load, the effective stress—strain cycle ratchets to a sta-
bilized reverse plasticity cycle, as shown in Fig. 13 and 14. Figure 13 represents that the
accumulated inelastic strain decreases in magnitude.
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Fig. 14 Stabilizing of
accumulated inelastic strain due
to thermo-mechanical cyclic
loading with domination of
thermal load

Fig. 15 Ratcheting behavior due
to the thermo-mechanical cyclic
loading with domination of the
mechanical load
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In Figs. 15 and 16, the spherical vessel is cycled under thermo-mechanical load, where
the inside temperature is cycled between 0 and 100 °C and inside pressure is cycled between
0 and 300 MPa. Since the maximum effective stress and strain occur at the inner layer of
vessel, this layer is the critical point in design problem. As a result of this loading condition,
when the mechanical cyclic load dominates the thermal cyclic load, the effective strain is
increased through each cycles, as shown in Fig. 15. Thus, ratcheting cyclic phenomenon
is observed and inelastic strain is accumulated after each cycles. Figure 16 illustrates this

accumulated inelastic strain.

5.2.5 Effect of material temperature dependency

The effects of the temperature dependence of material properties are investigated in this
section. In Figs. 17 and 18, normalized peak effective stress and peak strain are shown in
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Fig. 16 Accumulation of
inelastic strain due to
thermo-mechanical cyclic
loading with domination of the
mechanical load

Fig. 17 Effect of considering
temperature dependence on
effective stress distribution along
thickness
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various radius and different cycles when material temperature dependence is considered and
when it is not considered. If the material properties are considered to be independent of the
temperature, there would be an extreme difference between these responses and the results
of temperature-dependent material. The maximum differences between the results of these
two material properties are about 30% for effective stress and 40% for effective strain. While
there are significant differences between the magnitudes of stresses and strains, the reverse
plasticity behavior is observed for both conditions due to the thermal cyclic loading.

6 Conclusion

Applying the compatibility and equilibrium equations, the governing differential equations
are solved using the GDQ method in order to obtain strain and stress distributions along
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Fig. 18 Effect of considering 50 , , , ,
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the thickness of the spherical vessels subjected to thermos-mechanical loads. The unified
Chaboche viscoplastic model with combined isotropic and kinematic hardening theories is
used to evaluate the inelastic strains. A numerical iterative method with consideration of the
GDQ method to solve differential equations is proposed which is quite capable and efficient
to handle the cyclic loading analysis of the viscoplastic structures. In regard to the field of
cyclic inelastic behavior of the structures, cyclic viscoplastic responses of a thick spherical
vessel due to thermal and thermo-mechanical loading conditions considering creep time are
investigated employing the proposed numerical method. The outputs of present numerical
procedure are verified by some experimental data and a commercial finite elements pro-
gram. The novelty of the present study, in comparison with the published papers reported on
thermal cyclic loading, is the application of a rate-dependent constitutive model considering
temperature dependence of material properties and employing the GDQ method to calcu-
late the stress and strain tensors. The results of cyclic viscoplastic behavior analysis for the
spherical thick vessels are summarized in the following:

e Similar to the plasticity cyclic behavior, cyclic viscoplasticity predicts reverse plasticity
for vessels under thermal cyclic load, where the stress classification is of strain controlled
type.

e While the unified Chaboche viscoplastic model predicts shakedown for thermal cyclic
loading, ratcheting behavior could be observed under thermo-mechanical cyclic loading
when mechanical load (load-controlled) dominates the thermal load.

e Creep time and difference between loading and unloading rates do not have significant
impact on the cyclic viscoplastic behavior (i.e. ratcheting, reverse plasticity). However,
they have influence on the strain and stress distributions.

e Temperature dependence of material properties plays an important role to evaluate the
stresses and strains of the vessel and to recognize the critical points.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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