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A B S T R A C T   

A miniature fiber-optic Fabry–Perot (F-P) accelerometer based on phase demodulation is demonstrated for 
improving sensitivity. The accelerometer is composed of a 11.5 mm diameter cylindrical outer frame, a spring- 
like diaphragm with a loaded mass block and optical fiber. This structure is not only simple and easy to 
manufacture, but also greatly improves the performances of the accelerometer. The F-P cavity length is 
demodulated by phase demodulation with abundant advantages of wide dynamic range, high resolution, inde
pendent of fiber loss and light intensity fluctuations. The inertial mass displacement indicating a variation in the 
F-P cavity length is demodulated and converted to acceleration. Through experimental verification, the resonant 
frequency of the accelerometer is 232 Hz, and axial sensitivity is flat in 30–180 Hz. The average sensitivity of the 
flat area is 17.55 µm/g and the transverse crosstalk is around 3 %. The resolution of the sensing system is 2.8 µg 
within a ±3 mm maximum measurement range by experimental tests. This work gives a fitting option to monitor 
low and medium frequency vibration in a large range of areas.   

1. Introduction 

Compared with conventional electric sensors, fiber-optic sensors 
have attracted great deal of attentions due to their unique advantages of 
high sensitivity, anti-electromagnetic interference and remote detection 
[1–4]. One of the crucial applications of fiber-optic sensors is fiber-optic 
accelerometers (FOAs). Currently, FOAs have been applied in structural 
health monitor [5], aerospace industry [6,7], railway health monitoring 
[8,9] and seismic monitoring [10]. 

There are abundant various technologies to develop FOAs. Fiber 
Bragg gratings (FBGs) is an important application of these technologies 
to develop FOAs [11]. By the detection of dynamic wavelength shift 
with induced vibration, the deformation of the sensor caused by the 
applied acceleration can be measured. For FBG accelerometers, there are 
different types of FBGs such as Chirped FBG (CFBG) [12], Tilted FBGs 
(TFBGs) [13], Phase-shifted Bragg grating (PSBG) [14] and so on. It is 
possible to optimize resolution, low and medium frequency response by 
using them. Various mechanical structures can also improve their 

sensitivity by optimizing the vibration-strain conversion efficiency [15]. 
Some typical FBG accelerometers were designed such as a hinge-shaped 
sensitization structure within a working frequency range (30–300 Hz) 
and corresponding sensitivity (57.7 pm/g) [16], a V-double mass block 
within a wide working frequency (20–340 Hz) and an optimal sensitivity 
(66.84 pm/g) [17], a cantilever accelerometer within flat region 
(20–220 Hz) and a larger sensitivity (149.8 pm/g) [18]. For sensitivity 
optimization, an accelerometer with a short bonding gap could obtain 
sensitivity of 1771 pm/g [19]. Besides, a dual short FBG accelerometer 
based on flexible hinge was proposed with an optimal sensitivity 
(2167.1 pm/g) at a low frequency range (10–50 Hz) [20]. However, the 
sensitivity, resolution and dynamic range of them are usually limited by 
the optical fiber stiffness and the spectral range of the FBG operation 
[21–23]. 

Fiber-optic accelerometers is developed by Fiber-optic Fabry-Perot 
(F-P) interferometer. Compared to FBG sensors, fiber-optic F-P acceler
ometers have higher sensitivity, large working frequency range and 
resolution [24–26]. Applied acceleration or sound pressure can cause 
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the sensor to change its cavity length to measure the applied value. By 
detecting the changes in F-P cavity length, the acceleration or sound 
pressure can be obtained. For the measurements of cavity length, light- 
intensity demodulation, phase demodulation and optical cross- 
correlation demodulation are usually raised. Light-intensity demodula
tion measures dynamic physical quantities based on the relationship 
between the detected light power and the cavity length [27,28]. Wei 
et al. designed a F-P acoustic detector by 3D printing technology. With 
ingenious structural design, a low minimum detectable pressure level 
(4.71 mPa/ Hz1/2@100 kHz) and high bandwidth (366.05 kHz-467.84 
kHz) were obtained [29]. Wang et al. produced a fiber-optic F-P accel
erometer within a higher resolution (982 ng) and a thin dynamic range 
(10–90 Hz) [30]. Zhao et al. reported a mesh diaphragm with special 
structure (mass-loaded structure) which achieves a high sensitivity 
(3.86μ m/g) within a fitting dynamic range (10–120 Hz) [31]. Intensity 
demodulation methods control the static working point at the orthog
onal phase point of the interfering signal, i.e., the Q point. The measured 
cavity length varies over λ/8 length range centered on the Q point and 
detected range is only λ/4. Therefore, even if the Q-point is set at the 
beginning, the parameter will drift over time because of temperature 
fluctuations and external environmental disturbances reduced the ac
curacy of demodulation of the F-P cavity length. At the same time, 
demodulation dynamic range will be confined and distortion of 
measured signal may also occur. The optical cross-correlation demod
ulation method was originally developed by adjusting the cavity length 
of the reference F-P cavity to match the sensing F-P cavity [32]. When 
their F-P cavity lengths are adjusted to be identical, the optical corre
lation interference spectrum will be maximized, and the F-P cavity 
length is thus measured [33,34]. The cross-correlation demodulation 
has ample advantages including structural simplicity and high stability. 
However, cavity length of both F-P cavity of the cross-correlation must 
be accurately matched which is very hard. For phase demodulation, it is 
a demodulation method of cavity length by extracting phase information 
of the measured interference spectrum. Therefore, it has received much 
attention due to wide dynamic range, high resolution, and independence 
from fluctuations in light source power and fiber loss. Li et al. conducted 
researches on fiber optic accelerometer based on phase demodulation 
with a sensitivity of 3.8 nm/g and a resolution of 263 ng [35]. To 
simplify the calculation process, Yu et al. presented Buneman frequency 
estimation and used it for phase demodulation [36]. A high-performance 
computer is required to perform this method, so this algorithm was 
optimized and used to demodulate cantilever microphone by Chen et al. 
[37–40]. 

In this paper, a miniature ultrahigh-resolution and ultrahigh- 
sensitivity fiber-optic F-P accelerometer is presented. The F-P acceler
ometer was made of a housing with a diameter of 11.5 mm and a spring- 
like diaphragm made of stainless steel, which was optimized by finite 
element analysis. At the same time, we report an ultra-high-resolution F- 
P phase demodulation method white light interferometry (WLI) 
demodulation method. The WLI demodulation scheme can achieve high 
stability, high-speed measurement. Combining them and constructing a 
fiber-optic sensing system, the performances of the system were evalu
ated in lab tests. 

2. Principle and simulation analysis 

The F-P fiber-optic accelerometer (FOA) is comprised of optical fiber, 
ceramic ferrule, stainless steel diaphragm, stainless steel mass block and 
protective shell (Fig. 1(a)). The ceramic ferrule and fiber are fixed on the 
shell by a hole. The surface of the fiber and the diaphragm are used as 
the reflector and their tips form the F-P cavity. The block mass is 
attached on the center of the diaphragm with spring-like structure 
(Fig. 1 (b)) and the physical photograph of the sensor is displayed in 
Fig. 1 (c). The original cavity length is 0.4 mm to improved visibility and 
contrast of interference fringes. Table 1 lists other detailed parameters of 
the FOA. 

Supposing that axis acceleration is applied to the FOA, the acceler
ation of entire accelerometer is ain. If the signal is a sine or cosine 
function, then the amplitude-frequency characteristic A(f) and Keff of the 
accelerometer can be obtained as follows [41]: 

A(f ) =
1
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where E1 is the elastic modulus of the stainless steel, ν is Poisson’s ratio 
of the stainless steel, T is the diaphragm thickness, R is the radius of the 
diaphragm, b is the mass-load solidity ratio(b = R/R1) and R1 is the 
inertial mass radius, Q is the reduction in stiffness due to the mesh 
structure. f is the frequency of applied vibration, f0 describes the reso
nant frequency of the accelerometer defined as [42]: 

f0 =
1

2π

̅̅̅̅̅̅̅̅
Keff

Meff

√

(3)  

where Meff is effective mass of the sensing system. 
The mass of the cylindrical block is much larger than the elastic 

diaphragm. Therefore, the equivalent mass of the overall elastic struc
ture can be approximated as the mass block. When the parameters of the 
FOA is determined, the displacement is proportional to the applied ac
celeration ain. According to Hooke’s Law, the on-axial acceleration ain 

Fig. 1. (a) Structure diagram of the spring-like diagram based fiber-optic F-P 
accelerometer. (b) Cross-section of the stainless steel diaphragm. (c) Physical 
image of the sensor element. 

Table 1 
Parameters of the FOA.  

Symbol Value Description 

T 0.1 mm Thickness of diaphragm 
T1 3 mm Thickness of inertial mass 
E1 190000 MPa Young’s modulus of the shell and diaphragm 
ρ 8000 kg/m3 Density of the shell and diaphragm 
v 0.31 Poisson’s ration of the stainless steel 
R 11.5 mm Diameter of diaphragm 
R1 3 mm Diameter of inertial mass 
Meff 0.17 g Total mass of the inertial mass 
g 9.81 m/s2 Acceleration of gravity 
W1 0.4 mm Beam width 
W2 0.3 mm Connection width  
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can be calculated as [31]: 

ain =
QπET3Δy

3Meff R2(1 − ν)2
(

b2 − 1
4b2 − ln2b

b2 − 1

) (4) 

Furthermore, the sensitivity S0 can be expressed as: 

S0 =
Δy
ain

=

3Meff R2(1 − ν)2
(

b2 − 1
4b2 − ln2b

b2 − 1

)

QπET3 (5) 

For the dynamic FOA, sensitivity will be impacted by frequency 
characteristic which can be expressed as: 

SD = S0A(f ) (6) 

To correspond to the theoretical accounts, the finite element analysis 
software COMSOL was used to perform the simulation. According to Eq. 
(6), the acceleration ain is proportional to the variation of F-P cavity 
length Δy. Considering Meff, E, Q, T, b and ν are constants and then 
importing these parameters of the sensing system as Table 1 into 
COMSOL. With axial acceleration of 1 g applied on the FOA, the central 
deformation distribution can be observed to be 18.26 μm (Fig. 2). With 
change in frequency and constant acceleration, the ratio of cavity length 
to acceleration cavity length called frequency response at different fre
quencies will be obtained (Fig. 3). Based on the Fig. 3, it can be known 
that the resonant frequency of the accelerometer is 235 Hz. 

From the above results, the cavity length must be demodulated to 
evaluate performances of sensing system. Therefore, white light inter
ferometry (WLI) demodulation is used to obtain cavity length. When a 
beam of light is incident on the FOA, it will be reflected and refracted 
many times between the end face of the optical fiber and the inner 
surface of the diaphragm. The multi-beam interference effect will be 
generated between the reflected beams. The reflectivity of the F-P 
interferometry surface is approximately 4 %, so this process of light 
propagation can be equated to a two-beam interference. Therefore, the 
reflected light intensity IR for two-beam interference is expressed as 
[43]: 

IR = 2I0

[

1+ γcos
(

4π(y + Δy)
λ

+ π
)]

(7)  

where I0 is the intensity of broadband light, γ is the fringe visibility, y is 
the original cavity length, Δy is the variation of the cavity length, and λ 
is the central wavelength of the broadband light. 

Before performing a WLI demodulation of the cavity length, the 
interference spectrum of the reflected light must be obtained. Besides, 

the parameters determined by Zemax, including the F-P cavity length y, 
can optimize the interference spectrum and intensity contrast. The 
simulated F-P interference fringe (Fig. 4 (a)) and the acquired actual F-P 
interference intensity distribution (Fig. 4 (b)) are under the optimal 
cavity length 0.4 mm. After determining the parameters of the FOA and 
acquiring the spectral signal, extracting the phase information of the 
interference spectrum can obtain cavity length information. When axial 
acceleration is applied to the FOA, the variation in F-P cavity length can 
be acquired by WLI demodulation algorithm and it’s nearly proportional 
to the acceleration. Then the acceleration signal value can be calculated 
according to a specific mathematical relationship. 

3. Sensing and demodulation system design 

The diagram of the sensing system (Fig. 5 (b)) and the internal 
photograph of the F-P sensing instrument (Fig. 5 (b)) are displayed to 
clearly state their roles. In the sensing instrument, a super luminescent 
diode (SLD) was used to excite broadband light with a common wave
length 1550 nm and a full width at half maximum (FWHM) of 45 nm. 
The F-P interference signal formed by the broadband light passing 
through the fiber-optic accelerometer (FOA) is collected by a spectral 
module (I-MON-256-OEM, Ibsen) with highest vibration signal rate of 
10 kHz which is consisted of a collimating lens, two transmission grat
ings, a focusing concave lens and an image detector. Acquired spectral 
signal was received and transferred to Field Programmable Gate Array 
(FPGA) circuit by a 256-pixel image detector. The FPGA circuit is 
composed of a FPGA chip, an analogue-to-digital converter (ADC) chip, 
a DAC chip and an RS232 communication interface which can accom
plish high-speed acquisition and real-time processing of the F-P inter
ference spectrum [44–46]. Spectrum normalization, FFT, interpolation 
and Buneman frequency estimation are integrated in the FPGA circuit. 
Among them, Buneman frequency estimation is used for peak evaluation 
to obtain the change in cavity length by phase demodulation [47]. 
Buneman frequency estimation reduces the amount of computation and 
accurately finds the location of the maximum value. The advantages of 
this method are very simple and the computational effort is very small. 
Moreover, it is more accurate and has a higher resolution for purely 
single frequency signals with fractional frequencies. After signal pro
cessing, acquired signal is filtered and transferred to computer to 
demodulate cavity length. 

The probe light propagates through the circulator to the FOA. Af
terward, optical signals were converted into electrical signals and 
demodulated by white light interferometry (WLI) demodulation algo
rithm. The FOA and a commercial piezoelectric accelerometer (PEA) 
with a sensitivity of 50 mV/g were fixed on a vibration table. The vi
bration table can produce signals of sinusoidal acceleration within 
adjustable frequency and amplitude. When it generated vibrating wave, 
the commercialized PEA would output voltage signal obtained by a data 
acquisition card (DAQ) and then the voltage signal would be translated 
into acceleration signal as a reference. Fig. 2. Simulated total deformation distribution with acceleration of 1 g.  

Fig. 3. Simulated frequency response of the accelerometer.  
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4. Experiments and results analysis 

4.1. Measurement of frequency response and axial sensitivity 

To test frequency response and axial sensitivity of the accelerometer, 
an excitation signal with an increase in frequency from 20 Hz to 350 Hz 
was applied by the vibration table. The piezoelectric accelerometer 
(PEA) used as a reference with a sensitivity of 50 mV/g and fiber-optic 
accelerometer (FOA) were fixed on the vibration table. The cavity length 
changes of FOA and the acceleration changes of PEA could be measured 
at a same frequency. 

The frequency response curve was shown through calculating and 
data processing (Fig. 6 (a)). The resonant frequency of the accelerometer 
is 232 Hz, which is similar with the simulation of 235 Hz. In addition, 
the average sensitivity is 17.55 μm/g with a range of frequency from 30 
Hz to 180 Hz which is also close to the simulation of 18.26 μm/g and the 
deviation of the sensitivities do not exceed 3 dB. The average sensitivity 
of transverse crosstalk direction is 0.446 μm/g which is approximately 3 
% of the axial direction (Fig. 6 (b)), and it is much less than axial 
direction. 

To further evaluate the performances of the sensing system, the 
stability and linearity in flat frequency range were separately measured. 
Three selected frequencies of 40, 80 and 120 Hz were applied to the FOA 
and PEA by vibration table, the time-domain spectrums of cavity length 
changes and acceleration changes were measured and shown (Fig. 7). 
They have stable trigonometric waveforms, the sensitivity at each of the 
three frequencies can be calculated as 17.63 μm/g, 17.75 μm/g and 
17.28 μm/g. The linear relationship between the acceleration values and 
the cavity length values were also acquired with the change of excitation 
acceleration (Fig. 8). The linear fit coefficients are 0.9992, 0.9942 and 

Fig. 4. (a) Simulated F-P spot size by Zemax simulation. (b) Acquired actual F-P interference spectrum.  

Fig. 5. (a) Diagram of the sensing system for vibration/acoustic measurement. (b) Internal photograph of F-P sensing instrument.  

Fig. 6. (a) Measured axial sensitivity. (b) Comparison of sensitivity in 
both directions. 
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0.9984, respectively. Therefore, the sensing system has excellent 

stability and linearity in the working range. 

4.2. Measurement range and acceleration resolution 

The axial displacement given by the vibration table was first grad
ually increased and then gradually decreased by control panel (Fig. 9). 
There are three times ascending and descending and the maximum 
measurement range can be observed as − 3 μm to 3 μm without distor
tion and saturation. This approach is more reasonable than to create a 
large vibration caused by directly striking the sensor. If the sensor is 
tapped directly, the sensor may cause formation or even damage, and 
the detected waveform will be easily deformed. Therefore, the 
maximum measurable acceleration can be calculated as − 174 mg to 174 
mg. 

To evaluate the long-term noise level and assess the minimum 
detection acceleration of the system, the accelerometer was placed in a 
soundproof box. The noise level was measured over 1000 s and the 
standard deviation (1σ) is 50 pm (Fig. 10 (a)). According to the sensi
tivity 17.55 μm/g, the resolution can be calculated as 2.8 μg. Allan- 
Werle deviation was also used to evaluate the performance of the 
accelerometer [48]. When the average time is 100 s, the detection limit 
of acceleration reaches 28 ng (Fig. 10 (a)). In addition, a comparison 
between our work and other reported work is displayed in Table 2. The 
results show that the sensing system has excellent performance 
compared to some of the current work. 

5. Conclusion 

In conclusion, a miniature fiber-optic Fabry-Perot accelerometer is 
proposed to achieve ultra-high resolution and sensitivity vibration 
detection at low-frequency and medium-frequency. Finite element 
analysis is used to simulate the axial sensitivity and the performance of 
accelerometer. The WLI demodulation based on phase demodulation is 
used to demodulate the cavity length, and the sensitivity and resolution 
of the accelerometer are obtained after that. The vibration detection and 
digital locking equalization functions are integrated by the FPGA circuit, 
increasing the speed and stability of the system. With a well-designed 
sensing system and a good agreement with simulation results, the 
resonance frequency was 232 Hz, and the axial sensitivity of the accel
erometer was measured to be 17.55 μm/g in the 30–180 Hz. Further
more, the transverse crosstalk is approximately 3 %. The acceleration 
resolution was calculated to be 2.8 μg and maximum cavity length was 
measured to be ±3 μm. With unique capability of the optic-fiber Fab
ry–Perot accelerometer, this new technology is promising for aerospace, 
low- and medium-frequency vibration signals and mechanical 
equipment. 

Fig. 7. Measured time domain of cavity length changes by FOA and accelera
tion changes by PEA when frequencies are 40 Hz, 80 Hz and 120 Hz. 

Fig. 8. Measured linearity when the frequencies from top to bottom are 40 Hz, 
80 Hz and 120 Hz. 

Fig. 9. Measured maximum measurement range of cavity length with three 
times gradual rises and falls of vibration. 
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Comparison between our work and other reported schemes.  
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et al.  
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FPI 232 Hz 30–180 Hz 2.8 μg 17220n 
m/g  
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