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Abstract—This paper presents a framework for OMNeT++
which includes time synchronization model for WLANs. Syn-
chronization is based on the Generalized Precision Time Protocol
(gPTP) standard, which aims to achieve an accuracy of less
than 100 nanoseconds. The presented model is developed and
implemented in OMNeT++, a discrete event network simulator,
using its INET library. A new type of WLAN node is modeled
which supports time synchronization at the Link layer. A clock
module for WLAN nodes is also modeled which implements vari-
able clock drift to simulate noise interference in clock frequency
oscillators. Simulations with our WLAN nodes are done and
the results show that using gPTP based time synchronization in
wireless networks, accuracy of ±3ns can be achieved.

Index Terms—time synchronization, wlan, gPTP, tsn, OM-
NeT++

I. INTRODUCTION

With the IEEE 802.11ax [4] standard approved in 2021,
work on the 802.11be amendment is already ongoing. Al-
though an initial draft of 802.11be was planned to be presented
in March 2021, the work will continue until its approval, which
is planned for 2024. A major part of 802.11be is to have Time-
Sensitive Networking (TSN) integrated which must provide
inter-working capabilities with Ethernet-based TSN and 5G-
TSN.
There are two types of networks, one that can tolerate higher

latency and one that can’t. The first type of network is called
Delay Tolerant Network (DTN) while the latter can be called
a real-time network. Real-time networks consists of real-time
systems which are required to complete their tasks within
a specific time for the whole network to function properly.
Depending on the system, tasks can be a-periodic or periodic
such as moving a robotic arm to a specified position when a
command is received or sending a command repetitively after
a specific amount of time.
In addition to types of tasks, each system can have two types

of deadlines, i.e. hard and soft deadlines. A soft deadline, if
missed, only compromises the performance of that specific
system module, while a hard deadline, if missed, can be
catastrophic for the whole system. To avoid such issues and
system failures, the clock time of real-time systems must
be synchronized. In the case of wireless nodes, such time

European Regional Development Funds (EFRE) Project AgraNet (project
number: ZW-85018457)

synchronization becomes difficult due to mobility, packet loss,
and low Signal to Interference and Noise Ratio (SINR).
In this paper, we introduce a time synchronization model

based on IEEE 802.1AS [2] [3] Generalized Precision Time
Protocol (gPTP) for WLANs with updated clock model using
variable drift, developed in OMNeT++1, a discrete event
simulator. The IEEE 802.1AS standard defines methods for
time synchronization not only in Ethernet-based networks but
also in wireless networks. The developed model considers the
propagation delay and synchronizes the clocks of slave nodes
with their masters.
The rest of this paper is divided into 5 sections. Section II

provides an overview of generalized Precision Time Protocol
and discusses the requirements of the time synchronization
process in the WLAN networks. Section III discusses related
work. Section IV derives the model for time synchronization
and section V presents the simulation scenario along with its
results. Finally, section VI mentions the future works.

II. GENERALIZED PRECISION TIME PROTOCOL

Generalized Precision Time Protocol is a profile of the
Precision Time Protocol (PTP) defined in IEEE 1588-2008 [1],
also referred to as PTP version 2.0. gPTP adds timing features
and improves the timing accuracy in the base Precision Time
Protocol profile. It works on the Master-Slave principle, which
means all slaves under the same master synchronize their
clocks with the master’s clock. In a multi-hop network, a
primary master is selected as Grand Master (GM) and its
slave nodes further synchronize their slave nodes and thus, are
referred to as Bridge nodes. The hierarchy of such network is
shown in figure 1. Thus, three types of nodes exist in the gPTP
domain:

• Grand Master (GM) - There exist only one GM per
gPTP domain. The GM sends the time synchronization
messages in the network.

• Slave - Multiple slaves can exist in a gPTP domain at the
same time.

• Bridge - Multiple bridges can exist in a gPTP domain. A
bridge is a slave to solely one master and can be a master
to multiple slaves.

1www.omnetpp.org
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Fig. 1. gPTP network topology

Selection of the Grand Master is done by the Best Master
Clock Algorithm (BMCA) [2]. Multiple clock properties are
considered for the Grand Master selection. But since the
focus of this paper is the time synchronization aspect of
gPTP in WLANs, the BMCA is not discussed here. In our
implementation of Time synchronization in WLANs, nodes
are pre-assigned the roles of (grand-)master or slave, thus
eliminating the need of BMCA.
Each of the master, slave, and bridge nodes in a time-

aware system has a specific type of port that performs the
time synchronization functionality. The GM has a master port
while slaves have slave ports. A slave can have multiple slave
ports but at any given time, it can only synchronize to a single
master. Bridge nodes on the other hand have both slave and
master ports. These ports are always in one of the following
states:

• Master port - the port that sends time synchronization
information to slaves and bridge nodes.

• Slave port - a port that receives time synchronization
information from the master node and synchronizes the
node clock with the master’s clock.

• Passive port - a port not capable of time synchronization
via gPTP.

Once gPTP based synchronization starts, slave nodes re-
quest their master via sending timing measurement request, to
which the master replies with the acknowledgment. Acknowl-
edgment sent by the master contains an origin timestamp on
which slaves must synchronize. Further information is needed
to complete the synchronization, which is discussed in the
following section.

A. Requirements for Time Synchronization in Wireless Net-
works

For the clock time correction, various types of information
are needed. This includes the propagation delay information,

the rate ratio (r) information, and the Correction Field (CF)
information. The propagation delay is the time that a packet
takes to transfer from master to its slave after it is transmit-
ted over air. It takes two round trip times to compute the
propagation delay for time synchronization in WLAN. The
difference in clock oscillator frequencies of master and slaves
also needs to be considered. This is taken care of via the
rate ratio which is the ratio of the oscillator frequencies of
the synchronization requester and the responder. Finally, the
CF is required if the slave computing the time difference is
synchronizing to a bridge. The CF is the corrected information
that every bridge node computes and shares with its slaves. It
represents the time differences of the bridge node to its master
so that the slave nodes can also consider this difference while
adjusting their clock.
In addition to the propagation delay, CF, and rate ratio,

mobility speed, SINR, Bit Error Rate (BER), etc. can also
affect the time synchronization process. They directly affect
the synchronization process when sync or ack packets are
lost. In such cases, slaves have to wait for the next successful
consecutive synchronization packets to synchronize with the
master.
1) Rate Ratio: Time-aware systems use hardware clocks

whose properties may vary, e.g. precision, error rate, and de-
viation of the oscillator, which results in a variable frequency,
within a specific range for that oscillator. To have a consistent
time base between the nodes being synchronized, a rate ratio is
used. Rate ratio is the ratio of the frequency of the master clock
to the frequency of the slave clock, as per [3]. Its equation is
mentioned in eq. 1. The rate ratio brings both, the slave and
the master, on a common frequency base for propagation delay
computation.

r =
frequester
fresponder

(1)

With the rate ratio, it can be pointed out whether the slave
clock is lagging behind the master clock or precedes the master
clock, but it does not tell which clock runs correctly. That
decision is taken by Best Master Clock Algorithm (BMCA)
when the master node is chosen.
From equation 1, it is seen that
• if r > 1, slave clock precedes the master clock.
• if r < 1, slave clock lags behind the master clock.
• if r = 1, master and slave clocks are at same frequency.
In our clock model, we have not yet fully implemented

the oscillator frequency model, therefore we use an alternative
method for rate ratio computation. Since the interval between
two consecutive measurement request frames (at slave) is not
always equal to the interval between their reception times at
the master, thus this difference in the intervals can be used
to compute the rate ratio between slave and master as shown
in eq. 2. Similarly, the rate ratio can also be computed via
acknowledgments sent by the master.

r =
t‘1 − t1
t‘2 − t2

=
t‘3 − t3
t‘4 − t4

(2)
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2) Propagation Delay: Propagation delay, as mentioned
before, is the propagation time of a packet from master to slave
or vice versa. In the wireless networks with mobile nodes,
propagation delay can vary and become important to factor
in, for clock corrections. The propagation delay measurement
in IEEE 802.11 links is accomplished via round trip frame
exchange. A timing measurement request is initiated by the
requester (slave) and is sent to the responder (master) time-
aware system, which then responds with an acknowledgment.
In this exchange, both time-aware systems capture 4 times-
tamps.
(a) The timing measurement requesting station generates a
measurement frame and sends it to the requester on a
wireless link at time t1 and records t1.

(b) The responding station receives the timing measurement
frame and records the frame reception time t2.

(c) The responding station generates an acknowledgment
frame and sends it to the requester at time t3 and records
t3.

(d) The requesting station receives the acknowledgment
frame and records the frame reception timestamp t4.

In each measurement frame exchange, these 4 timestamp
are captured and the responder (master) shares its captured
timestamp with the requester (slave) in the next timing frame
exchange. Thus, after the second timing measurement ex-
change, the requester has all four of the timestamps from the
last timing measurement exchange and is capable of measuring
the precise propagation delay using equation 3. This can be
seen in figure 2. After the first Round Trip (RTT), only 3
timestamps are available at the slave hence Pdelay cannot be
calculated. After another RTT t3 also becomes available to the
slave node thus Pdelay is calculated after 2*RTTs for the first
time. Afterward, at each received ack from the master node,
a new Pdelay can be calculated.

Pdelay =
r · (t4 − t1)− (t3 − t2)

2
(3)

Figure 2 shows the timing measurement and acknowledg-
ment frames exchange between a master and slave. It also
shows what information is available at the slave at any given
time and how it is used for the propagation delay calculations.
3) Correction Field: In a multi-hop network, the nodes

that are not directly connected to the GM, must be able
to synchronize with the GM via their local masters, i.e.
Bridges. For such nodes to synchronize, their bridges compute
correction fields and share them with their slaves. The CF is
the adjusted time of the bridge node. Once the slave of the
bridge knows the CF, it can synchronize with the master. CF
is calculated via equation 4.

CF (i) = CF (i−1)+Pdelay+Tresidence+Ttransmission (4)

4) Residence Time: The time that a frame spends waiting
in queues or being processed, after being received by node
and before it is processed in synchronization method is called
Residence Time. Queuing delay is also considered in the

Fig. 2. Propagation delay measurement sequence

residence time. Once the frame is received at physical layer, it
goes through various processes before it is processed by time
synchronization functions. It is necessary to include this time
in the synchronization process.
5) Transmission Delay: Transmission delay is the time that

a measurement request needs to be transmitted on the wireless
medium. It is directly related to the available bitrate. In our
model, transmission delay is calculated by diving the number
of bits in the frame by the bitrate at which the frame is sent.

B. Time Synchronization

In addition to rate ratio, propagation delay, and correction
field, residence time and transmission time of the timing
measurement packets are also used in synchronization. The
equation that is used in our model for time synchronization is

Tsynced = Torigin+CF +Pdelay+Tresidence+Ttransmission

(5)
For slaves and bridges directly connected to Grand Master,
CF in equation 5 becomes zero but for all other nodes, CF
is computed and sent by their master and is then used in the
time synchronization process.
These various delays are shown in figure 3.

III. RELATED WORK

One of the main starting points for investigating time
synchronization for any type of time-aware system is the
selection of synchronization procedures. [7] takes a look at
various synchronization procedures and then presents a PTP
variation for time synchronization. They mention
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Fig. 3. Time differentiation in Sync process

• Global Positioning System (GPS) (which uses signals
from four different satellites and uses trilateration to
calculate the exact position and time of the device).

• Network Time Protocol (NTP) (which uses public internet
to synchronize devices to UTC with the accuracy of less
than one millisecond within LANs and accuracy of tens
of milliseconds over public internet).

• Reference Broadcast Time Synchronization (RBS)
and Reference Broadcast Infrastructure Synchronization
(RBIS) (where both uses synchronization packets and
acknowledgments for WLANs . RBIS works for AP
based WLANs while RBS works in Ad-Hoc networks,
in similar fashion to gPTP).

• Precision Time Protocol (PTP) (which is related with
IEEE 1588 standard [1], IEEE 802.1AS standard [2], and
its revision in [3]).

In [6], a Wireless Precision Time Protocol is proposed,
which is an extension to PTP. It is implemented and tested in
Cooja Simulator on Contiki Operating System2 nodes. Authors
in [5] present an IEEE 1588 styled time synchronization for
Wireless Links but the research is focused on the network
embedded systems and using Kalman filter along with PI
controller for clock frequency stability. Their implementation
is hardware-based and shows promising results. In [9] authors
present a PTP model for OMNeT++ simulator which is based
only on Ethernet and no model for WLAN time synchroniza-
tion is provided. Another PTP implementation is presented in
[13], but the authors focus on modeling clock and estimating
clock noise using Power Law Noise (PLN). While their clock
noise model is of interest to us and we integrate their PLN
model in our implementation, their framework is still missing
time synchronization in WLANs. The Open-source framework
CORE4INET, which implements real-time Ethernet and time
synchronization, is presented in [12], but it does not provide
synchronization functionalities for WLANs. Another IEEE
802.1AS clock synchronization implementation is presented in

2www.contiki-os.org

[11], which is gPTP based but also implements only Ethernet-
based synchronization. The clock model in their framework is
minimal and implements constant clock drift. In our imple-
mentation, we take this clock model and update it with PLN
based variable clock noise. In our future developments, we
will integrate this Ethernet-based time synchronization model
with our WLAN time synchronization framework. Authors
of [8] present a real-time Ethernet synchronization but they
focus on time-aware shaping. None of these papers present a
comprehensive time synchronization framework for WLANs
and network simulators like ns-3 or OMNeT++ and also do
not list any of such frameworks either. Thus in this paper, we
present a time synchronization model and a framework for
WLANs in OMNeT++ simulator.

IV. MODELING TIME SYNCHRONIZATION FOR WLANS

Time synchronization modeling requires modeling a gPTP
capable MAC layer, synchronization capable nodes, and a
clock with clock drift functionality. Furthermore, the requester
node must be able to send the timing measurement frames
and process the acknowledgments. The responder node has to
process the timing measurement frame and send timestamps
along with the origin timestamp to the requester via ack
frames.
OMNeT++ is a discrete event network simulator that is

used to implement, simulate and test our time synchronization
model for wireless time-aware systems. The gPTP standard
explained in the previous sections is implemented using the
INET framework3 of OMNeT++. Some of the requirements
and assumptions that are made in this modeling are as follows:

• BMCA for choosing the grand-master in the network is
not implemented, as it is out of the scope of this paper.
Instead, nodes are pre-configured as master or slaves

• The base clock model that we use is taken from [11]. It
is then updated with variable clock noise (using PLN) to
have realistic clock behavior.

• INET framework for OMNeT++ is used. Node models,
OSI layers, and all other models e.g. propagation are used
from INET. Our implementation extends the MLME layer
for wireless nodes to add gPTP based time synchroniza-
tion.

gPTP synchronization is performed at the Link layer. All
timestamps are captured as soon as timing measurement
frames are received at the MAC layer or are transmitted
to the physical layer. The timing measurement frames and
their acknowledgments are generated and consumed by the
MLME or management entity at the MAC layer of the IEEE
802.11 node. Since the timing synchronization and ack frames
are generated by the management module at the Link layer,
therefore these frames get the highest priority due to being
management frames. This results in data rate for application
data being dropped and management frames being prioritized
in case the network is throttling, during a simulation.

3inet.omnetpp.org
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Various models are created to implement the timing syn-
chronization functionality. These models are:

• The Clock model - This model keeps track of the node’s
local time. It implements variable drift and responds with
drift time when queried. When a timing measurement
frame is received, the local clock’s time is adjusted
according to the master’s clock.

• The MLME model with gPTP - This MAC layer manage-
ment module implements gPTP functionality. It computes
the rate ratio, propagation delay, and sends updates to the
clock module when clock time must be adjusted.

• A model that interfaces slave and master ports in the
network - This module is needed for the bridge nodes.
When a bridge node synchronizes its local clock to its
master, it must transmit this information to its slave nodes
too. Information to be shared with slaves is stored in this
module.

• Time aware network node called GPTP Wireless Host -
gPTP wireless host contains the above-mentioned mod-
ules and can take the role of master or slave depending
on the user-defined configuration.

• Wireless access point from INET framework is also
updated and gPTP capable management module is added
at its Link layer.

gPTP capable wireless nodes consist of several simple and
compound modules and their structure is shown in figure 4.
Modules highlighted in red are added in INET based wireless
hosts. Link layer of INET wireless host is present inside
WLAN compound module, therefore it is updated there.

Fig. 4. gPTP node structure

V. SIMULATION AND RESULTS

A simulation scenario is created using gPTP wireless hosts.
This scenario is simulated with 2, 5, 10, and 15 gPTP
slave nodes. The number of nodes does not affect simulation
primarily because OMNeT++ is a discrete event simulator,
therefore, whenever a frame or packet is being processed, the
simulation time halts until the processing is done.
One of the nodes is configured as a master and the rest of the

nodes as slaves. The simulation area is set to be 100 x 100m.

Simulation modules necessary for wireless communication are
added. These consist of a configurator and a radio medium
module. A random way-point mobility model is used in the
simulation with wait times of 0 to 5 sec. The mobility speed
of the nodes is set via uniform distribution between 1 and 3
meters per second. Simulation time resolution is set to 1 ns.
IEEE 802.11 NIST error model is used as error model and, for
propagation model constant speed propagation is used; both
from INET framework. An Isotropic antenna is specified for
all nodes.
Each timing measurement request is sent after 125ms. IEEE

802.11g standard is used. Variable clock drift is configured
for the slaves. The Master’s clock is assumed to be perfect
therefore no drift is added to it. Even if we would introduce
drift in the master’s clock, all the slaves try to synchronize
with the master, therefore it doesn’t make a difference if drift
is added to the master or not. Thus the master’s clock runs
at simulation time while slave clocks have the continuous
variable drift.
With these parameters, the simulations are run and slaves

synchronize with the master for the first time after two RTTs.
After that, slaves can synchronize with their master at each
acknowledgment frame until the timing measurement request
or ack frame is lost. In that case, two-timing measurement
requests and acks are needed to synchronize again.
Simulations with 2, 5, 10 and 15 nodes are done. The clock

drift that our clock model generates in simulation with 2 nodes
is shown in figure 5. Since the drift is negative this means
that both slave clocks lag behind the master clock and try to
synchronize with the master at every synchronization interval.
Furthermore, as the drift is variable, it varies between 0ns-
2ns. From the same figure, it can be seen that just after 10
seconds of simulation, if clock correction is not done via
synchronization, node 1 will be about 80ns and node 2 will
be about 77ns behind the master’s clock respectively.

Fig. 5. Slave clock drifts vs. Simulation time

In figure 6, the slave’s clock difference to the master’s clock
is shown just before and immediately after the synchronization
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takes place. An important point to note here is that the
time difference after synchronization is in nanoseconds, while
before synchronization it is in milliseconds.

Fig. 6. Slave’s clock diff to master’s clock before and after the synchronization

Lastly, in figure 7, it is shown that for all simulations
the time difference between slave and master’s clock remains
between ±2 ns after synchronization with only a few outliers
at +3 ns and -3 ns.

Fig. 7. All slaves time difference to their masters

VI. CONCLUSION AND FUTURE WORKS

Clock with variable drift using PLN noise and time syn-
chronization in gPTP capable WLAN nodes is presented in
this paper. Each gPTP capable node is equipped with clock
module which has variable drift. This results in the node’s
clock drifting ahead or lagging behind the Master’s clock even
after synchronization takes place. Thus, we use modified gPTP
algorithm to synchronize all the nodes with Master after every
125 milliseconds. Modifications are made to gPTP algorithm

for it to function properly with WLAN nodes. The original
concept of gPTP algorithm remains the same. With gPTP capa-
ble WLAN nodes, simulations are done using 2, 5, 10, and 15
nodes. Results of each simulation shows that synchronization
between Master and Slave nodes can be achieved successfully
using our WLAN gPTP capable Framework. This framework
is first of the kind which combines gPTP and WLAN, and
it can be used to develop and simulate TSN protocols over
wireless networks.
We plan to add further parameters, e.g. temperature, move-

ment, etc., and clock noise variation dependency on those
parameters to model realistic clock behavior. Integrating Eth-
ernet based gPTP nodes in this framework hybrid network
simulations is also planned as future work. The final goal
is to have an OMNeT++ based framework that is capable
of simulating both Ethernet and WLAN based TSN protocol
stack.
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