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Abstract—Owing to the call for energy efficiency, the need
to optimize the energy consumption of commercial buildings—
responsible for over 40% of US energy consumption—has recently
gained significant attention. Moreover, the ability to participate
in the retail electricity markets through proactive demand-side
participation has recently led to development of economic model
predictive control (EMPC) for building’s Heating, Ventilation,
and Air Conditioning (HVAC) system. The objective of this paper
is to develop a price-sensitive operational model for building’s
HVAC systems while considering inflexible loads and other
distributed energy resources (DERs) such as photovoltaic (PV)
generation and battery storage for the buildings. A Nonlinear
Economic Model Predictive Controller (NL-EMPC) is presented
to minimize the net cost of energy usage by building’s HVAC
system while satisfying the comfort-level of building’s occupants.
The efficiency of the proposed NL-EMPC controller is evaluated
using several simulation case studies.

Index Terms—Nonlinear economic model predictive control,
Building thermal model, HVAC, Demand response, battery, PV.

I. INTRODUCTION

The Heating, Ventilation, and Air Conditioning (HVAC)
system is responsible for a significant proportion of the
building total energy consumption. Recently, as a result of
wholesale electricity market restructuring and development
of retail electricity markets, researchers have explored the
potential of commercial buildings in proactive demand-side
participation. For example, in [1]], authors proposed an MPC-
based optimization approach to generate proactive demand-bid
curves for the buildings to optimally schedule their energy
consumption in response to the variable electricity prices.
The optimization of the building energy consumption while
satisfying the occupants’ comfort requirements requires an
accurate model for thermal building loads and advance control
methods for the HVAC system. In literature, model predictive
control (MPC) for both tracking a desired set-point and
for economic optimization (using economic model predictive
control/EMPC) has been employed to solve this problem [?2].

MPC is a model-based controller that requires the dynamical
model of the system to obtain optimal control inputs. The
required model of the system must be sufficiently accurate to
acquire a valid prediction of system states in a computationally
tractable manner [3]]. Building thermal model dynamics and
consequently HVAC system model is nonlinear [1f], [4]. For
example, in [4], authors used EnergyPlus, a popular building
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energy simulation software [5]], to simulate thermal and en-
ergy behavior of a multi-zone commercial building. However,
owing to the high-levels of model complexity, they use a auto-
regressive model to approximate the dynamics with a linear
dynamical model to develop an EMPC controller for reducing
electricity usage cost for building’s HVAC system. In [6]-
[8]l, Jacobian linearization approach is used to eliminate the
system nonlinearity. The resulting linear model is used to
design a traditional MPC for temperature set-point tracking.
In [9], authors use feedback linearization approach to linearize
the simplified nonlinear system model and develop MPC
technique to track set-point temperature using water-to-air
heat exchange in HVAC systems. By proposing a nonlinear
model for the overall cooling system, [10] presents a MPC
scheme for minimizing energy consumption. Assuming the
temperature can vary in a short range, [11]] propose a MPC-
based control algorithm based on Jacobian linearized model to
co-schedule the HVAC system control and the battery storage
usage for reducing energy cost while meeting HVAC system
requirements related to room temperature set-point and airflow.

Unfortunately, the Jacobian linearization approach is not
valid when the desired room temperature obtained from the
optimization problem problem vary significantly at different
time-steps. This is usually the case when the building is not
occupied for certain time of the day and can be overheated
or overcooled to achieve the desired economic objective. This
case is of significant interest when optimizing the transacted
cost of energy by leveraging the occupancy information of
the building. Since, the primary energy consumption for a
building is due to its HVAC system, significant energy savings
can be achieved using a price-sensitive HVAC model that
optimally schedules heating/cooling while taking the build-
ing’s occupancy information into account, as demonstrated
using a nonlinear MPC-based optimization problem in [1].
However, they do not consider the co-scheduling of other
energy resources using a price-sensitive model.

The objective of this paper is to develop a price-sensitive op-
erational model for buildings HVAC systems while considering
inflexible loads and other distributed energy resources (DERS)
such as photovoltaic (PV) generation and battery storage. Note
that in the proactive setting, an efficient HVAC controller
should track an optimal temperature trajectory based on HVAC
dynamical model, comfort ranges based on occupancy infor-



mation, and weather forecasts while taking time-dependent
cost of energy into account [12]]. Inspired by [1]] and [[11]], in
this work, we present a Nonlinear Economic Model Predictive
Controller (NL-EMPC) that minimizes the net cost of energy
usage by the HVAC system with an imperfect prediction of the
future disturbance vectors. In addition, we address the problem
of co-scheduling HVAC with other DERs and inflexible loads
of the building using the proposed NL-EMPC and demonstrate
the added cost savings.

II. OVERVIEW OF THE PROPOSED FRAMEWORK

This section details building thermal load, battery energy
storage, and PV panel.

A. Building Thermal Model

Thermal model of a building is usually obtained by mod-
eling the building as a first-order RC network [6], [[7]. In the
resulting RC network, a node indicates a wall or a room. In
general, if there are in total n nodes, m of which denote rooms,
then, n — m remaining nodes denote walls. Using the same
equations as detailed in [6], [[7] to describe rooms and walls
temperatures, and after zero-hold discretization [1]], we obtain
the following state-space equations representing the building
thermal model:

" = Az® + Bu” o (Ts — o*) + Ed* (1)

y* = Cz" ©

where superscript k£ shows the sampling time and o is the
element-wise product operator for two vectors; d* e R is
the vector of disturbance (with [ number of the disturbance
elements such as external temperature, solar radiation and in-
ternal gains, etc.) at sampling time k; A € R*"*", B € R"*™,
C € R™" and E € R™! are matrices obtained from
building thermal model representing time-invariant building
parameters (see [6], [7] for more details); ¥ € R" is the
state vector representing the temperature of the network nodes;
uF € R™ is the vector of input variables whose elements
(u¥) are mass flow into each thermal zone; y* € R™ is the
output vector of the system; and Ts € R™ with entries of T,
representing the temperature of supply air to the room ;.

In [[1], it is assumed that the perfect prediction of distur-
bance input over the prediction window is available at each
sampling time. A perfect prediction of the future disturbance
is not possible in practice due to the uncertainty in forecasting
ambient temperature, solar radiation and other weather-related
effects [8]. The dynamics of the system after considering
prediction error and the new state-space representation for the
thermal building model is detailed in (3) and (@).

D" =d" + ¢ 3)
2" = Az + Bu" o (Ts — ") + ED* )
where € is error due to uncertainty in predicting d".

Next, we detail the equations for power consumption of
HVAC system as a function of mass flow rate (u). A typical

HVAC system consumes most of its power through heater,
chiller, and fan. Without loss of generality, in this paper we
only consider a cooling system. The fan power consumption,
iji , 1s modeled as a cubic function of air mass flow rate [1]:

P]l”i = Pratedi (uf/u'r‘atedi)g (5)

where Pjrgted, and Upqteq; are the rated power and rated
outlet mass flow rate of the air handling unit of HVAC
system in thermal zone 7, respectively; and P}?i , uk are power
consumption and the air mass flow rate (control variable) of
fans in thermal zone ¢ at sampling time k, respectively.

The cooling load is a function of the air mass flow rate,
ambient temperature, and temperature of the thermal zone @
as defined in [1]:

Ph = S [t + (- d)The -T.] ©
COP; [ P o~ T

where TF , is the ambient temperature at sampling time F;
COP is performance coefficient of the chiller; ¢, is the
specific heat capacity of the air; and d,, is the instantaneous
return-to-total ratio of the chiller that varies between 0 and 1.

Therefore, the total power consumption of the entire build-

ing by its HVAC system at sampling time k is given by (7).
Py =Pf+Y Pf (7
i=1
B. Battery Energy Storage Model
The dynamics for battery energy storage can be formulated
using the state-space equations for the state-of-charge (SOC)

and the limits on battery’s charging and discharging power and
energy as follows:

SOCH = (1 —v)SOC* +p

k
Pc,d

Qbat
E~ < SOCH! < ET Q)

T ®)

—dr <PEg< o (10)

Specifically, the battery SOC updates based on where
SOC* and PF, are the SOC and charging/discharging power
of battery at sémpling time k, respectively; v, p, Qpqr and 7
are energy decay rate, round-trip efficiency, capacity of the
battery and length of time step respectively. Constraint (9)
guarantees the battery SOC remains in safety boundary where,
E™T and E~ specifies bounds on battery charging/discharging
limits. Finally, constraint @]) bounds batteries maximum
charging/discharging rates where d,. is the maximum discharge
rate while ¢, is the maximum charge rate. It should be noted
that in the above formulation when Pfy 4 > 0, the battery is
charging and when PC’f 4 < 0, the battery is discharging.

C. Photovoltaic (PV) Generator Model

The PV panel is modeled as a negative load with rated active
power of P}’,‘%}fed and an associated multiplier o* indicating the
effect of variation in solar irradiance at the sampling time k.
The PV generation at sampling time k, P1’§V, is given by 1}

Phy = o . PEy? (11)
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III. OPTIMAL SCHEDULING OF POWER CONSUMPTION

Fig. |I| shows the component layout used in this paper.
It is assumed that the building is equipped with the home
energy management system (HEMS) [13]]. In order to satisfy
the building’s energy demand, HEMS can provide electricity
from any combination of PV generation, battery storage, and
electricity purchased from the retail electricity provider [14].

The objective in this section is to optimally co-schedule
the HVAC system with inflexible loads and available energy
resources of the building such that it can optimize the net
cost of transacted energy for the specified prediction window
while ensuring that the desired level of comfort is met for
its occupants. The problem is formulated as an economic
model predictive control (EMPC) problem with the objective
of minimizing the building’s total electricity usage for a
given price vector, whose entries indicate time-of-use (TOU)
electricity tariffs for each hour of the day subject to the thermal

building model detailed in (I)-(2) and @)-(17).

t+W—1 . .
Min kz::t Price®. P} (12)
Subject to: Th kot 13
0< Py < Piyy,, (14)
Ui < " < Uliros (15)
Pr =P+ P+ Pla— Py, (16)
PE>0 a7

and constraints (I)-(2) and G)-(TI)

The minimization of the electricity usage cost is given by
(12), where Pk is the electric power purchased from the retail
electricity provider; W is the prediction window, and Price”
is the electricity tariff at the sampling time k. The desired
temperature range, HVAC power consumption limits, air mass
flow limits, the thermal building model, and the total consumed
power by HVAC are presented in (I3), (I4), (13), (I)-(@).
and (©)-(7), respectively; where, at sampling time k, vari-
ables T]\k/[m, T]’f/jm, P};de , u’fmn and uﬁmw are minimum and
maximum range of the temperature (°C), maximum HVAC
power consumption limits, minimum and maximum limits for
HVAC mass flow rate, respectively. Constraint (I6) determines
the total power consumption where Plk is the consumed
power by inflexible loads of the building at sampling time k.

NL-EMPC- Based uk
Optimization Formulation
in (1), (2) and (5)-(17)
A
HEMS xk

One-day ahead information Main System Dynamic

Described By (4) & (2)

\4

Fig. 2. Diagram of the NL-EMPC controller

Constraint states that the total power consumption cannot
be negative, in other words, the surplus of energy cannot be
sold back to the power grid.

It should be noted that (I} is bilinear in system input
and states which results in a nonlinear economic model-
predictive control (NL-EMPC) problem. Note that Jacobian-
linearization methods, extensively used in related literature for
temperature set-point tracking, is not a valid approach to solve
the aforementioned problem. That is, Jacobian-linearization
is not valid when a wide-range of temperature variations in
buildings are expected due to varying occupancy patterns when
attempting to optimize electricity usage given time-varying
cost of electricity. Therefore, a fully nonlinear model needs
to be solved for the case under consideration.

A schematic view of the proposed NL-EMPC is detailed
in Fig. 2] At the beginning of each day, HEMS provides
NL-EMPC controller, one-day ahead prediction information
including the occupancy pattern, PV generation, power con-
sumption by inflexible loads, and TOU prices for the next 24
hours of the day. This information determines 7%, and 7%,
in P]fv and PF, in (16), and Price* in objective func-
tion (12). NL-EMPC algorithm solves minimization problem
(12), with constraints (I), @) and (3)-(I7) at each sampling
time k. This results in optimal mass air flow rate trajectory
[uf, w1, ..., u!T™W 1] for a prediction window from time ¢
to time ¢ + W — 1. After obtaining the optimal mass air flow
rate trajectory, only the first control input (u?) is applied to
the main system plant which is governed by () and (). After
observing the new values of the system states (x'*!), the NL-
EMPC algorithm moves one step forward. Using the observed
system states as the new initial condition, the minimization
problem is solved again from time intervals ¢t + 1 to ¢t + W.
The same process continues for the next time steps, and
repeatedly a constrained optimization problem over a moving
time horizon is solved to choose the control actions using
predictions of future costs, disturbances, and constraints. This
control method is also known as receding horizon control
approach. Note that although in this work, it is assumed
that NL-EMPC has the knowledge of the exact value of PV
generation and power consumption of inflexible loads during
the day, the uncertainty in these variables can be treated same
as uncertainty in dF as illustrated in and . Also, it should
be noted that for the case that some or all the states cannot be
measured, an observer should be designed to predict the state
variables [15]]. The design of the observer is, however, outside
of the scope of this paper.

IV. SIMULATION RESULTS

In this section, we conduct a set of experiments to validate
the efficiency of the proposed NL-EMPC controller. For ther-
mal building model, we consider a thermal zone with 7 states
(four states for temperature of walls, two states for temperature
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Fig. 3. Model Parameters of NL-EMPC for HVAC system

of floor and ceiling, and one state for indoor thermal zone
temperature) with the parameters as same as [1]], [7]. Other
building parameters are: d, = 0, Prqteq and Urqteq are 600
and 1kg/s, respectively. And battery capacity Qpqr = 6kWh.

The predicted ambient temperature received at the beginning
of the day is shown in Fig[3a] The 24-hour TOU electricity
tariffs are shown in Fig. Bb] Two occupancy patterns are
considered for the building in simulations (see Fig. 3c). To
maintain the desired comfort level of building occupants, it
is assumed that during occupancy, the indoor temperature in
thermal zone should lie between 21- 25 (°C'), otherwise, there
is no limit for the thermal zone temperatures. There is no
temperature limits for other 6 states of the thermal zones
for all the times. The simulations are carried out using Ipopt
slover integrated with MATLAB using Opti toolbox. Ipopt is
a software package suitable for solving large-scale nonlinear
optimization problems. The initial conditions for solving the
nonlinear optimization problem are randomly generated to sat-
isfy the prespecified upper and lower bounds for the variables.

A. Effectiveness of NL-EMPC for HVAC Control

This section validates the proposed NL-EMPC controller
for its effectiveness in minimizing the transacted energy cost
while accounting for the error in disturbance vector prediction.
Starting at the beginning of a day (00:00) and after receiving
one-day ahead information, the controller solves the NL-
EMPC optimization problem for the next 24 hours at sampling
rate of 15 minutes. We model the error in disturbance vector,
€, as zero mean Gaussian noise with variance of 2. For
both occupancy patterns, Fig. |4 shows the evolution of indoor
thermal zone temperature obtained using receding horizon
approach (reference trajectory) and using optimal controls
obtained by solving NL-EMPC at sampling time £ = 1
(predicted trajectory). Note that the receding horizon control
approach generates reference trajectory by repeatedly solving
NL-EMPC problem at each sampling time and applying the
optimal air mass flow control input to HVAC system. On
the other hand, the predicted trajectory is obtained using the
optimal air mass flow calculated at the first sampling time
for all 24 hours. As expected, there are deviations between
the predicted and receding horizon trajectories. Notice that
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the predicted trajectory is obtained with the assumption of
having prefect knowledge of the future input disturbances.
Thus, the uncertainty in prediction of (e, is ignored when
solving for predicted trajectory. However, the receding horizon
approach is able to take this uncertainty into account when
re-optimizing the problem at each time step. This case study
highlights the role of MPC on managing uncertainties in the
dynamical model of HVAC system.

Next, Fig. [5] shows the optimal value of the control input u
(air mass flow rate) and HVAC power consumption for the
both occupancy patterns. As it can be seen in Fig. [4] and
Fig. [5] when the thermal zone (building) is occupied, the
controller adjusts the control variable, u, of HVAC cooling
system such that the temperature of the thermal zone lie
within the prespecified comfort range while simultaneously
minimizing the cost of transacted energy. On the contrary,
when, there is no occupancy in the thermal zone, controllers
minimize the total cost of using energy by turning the HVAC
cooling system off. Note that there are times during the day
(e.g. 00:00-06:00 for occupancy pattern 1) that although the
thermal zone is occupied, there is no need to turn HVAC
on (u = Py = 0). That is, the ambient temperature at
these times are low and sufficient to maintain the thermal-
zone temperature within the occupants’ comfort level without
requiring HVAC cooling system.

The price-sensitivity of the model is emphasized for the
optimal controls obtained for occupancy pattern 2. Notice
that although the building is unoccupied till 6:00, the HVAC
control is ON from 4:00-6:00. Due to low TOU electricity
tarrifs, the optimal solution is to precool the building from
4:00-6:00 by turning ON HVAC, so as to consume a smaller
amount of expensive electricity after 6:00. The NL-EMPC
controller thus leverages the thermal building dynamics to
minimize the overall cost of transacted energy.
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B. Co-schedule HVAC with PV and Battery Storage

This section demonstrates the effectiveness of NL-EMPC
controller in meeting economic objective of minimizing trans-
acted energy cost by coordinating HVAC control with battery
energy storage, PV system, and other inflexible loads of the
building. The model simultaneously utilizes the occupancy in-
formation and TOU prices to optimally schedule all resources.
The PV panel is rated at 4 kW. The actual PV generation
follows sun’s irradiation during the day and is depicted in Fig.
[6a] Tt is assumed that the battery is in the minimum state of
charge (SOC = 0.25) at the beginning of one-day simulation
(00:00). Figlob] shows the demand profile for other essential
and inflexible loads in the building for a day; the demand
varies based on the building occupancy patterns.

Fig. |7} shows the amount of purchased power during each
hour of the day to satisfy the power requirement of building’s
HVAC system and inflexible loads for both occupancy pat-
terns: occupancy pattern 1 (Fig. and occupancy pattern 2
(Fig. [7b). Three cases are demonstrated: (1) without battery
storage and PV, (2) with battery storage but without PV, and
(3) with both battery storage and PV. As it can be observed
in both sub-figures, with the help of PV, a reduction in total
amount of purchased power from the grid is observed. This
reduction reaches to it’s maximum at around 12:00 noon when
there is maximum solar radiation. Similarly, the positive effect
of battery can be observed; HEMS decides to purchase the
energy at times that TOU electricity tariffs are low (00:00-
07:00) to charge the battery and uses it at the time that TOU
electricity tariffs are high (17:00-21:00).

Table [I| shows the cost of electricity for each combination
of resources to be co-scheduled. As it can be observed, NL-
EMPC can effectively co-schedule all resources and results in
significant reducing in the net cost electricity usage. Notice
that on co-scheduling HVAC with battery, the cost of electric-
ity usage is decreased for the day. As expected, co-scheduling
HVAC with both PV and battery storage leads to the most

TABLE 1
TOTAL COST OF ELECTRICITY USAGE DURING A DAY (24-HOURS)

System Configurations
Loads | Loads+Battery | Loads+Battery+PV
Occupancy 1 | $3.54 $3.38 $1.97
Occupancy 2 | $3.98 $3.82 $2.41

savings in electricity usage cost.

V. CONCLUSION

In this paper, we present a NL-EMPC to co-schedule
building’s HVAC system with its inflexible loads, PV system
and battery storage. The proposed NL-EMPC controller is able
to optimize the building’s electricity usage cost by leveraging
the known building’s occupancy information while considering
an imperfect prediction of the disturbance for HVAC system.
The simulation results demonstrate that the proposed controller
leads to a reduction in the net-cost of electricity usage while
satisfying building occupants’ comfort-level.
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