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Abstract 

We first investigate the issue of obtaining the weights associated with the OWA aggregation in the situation when we 
have observed data on the arguments and the aggregated value. We next introduce a family of OWA operators called 
exponential OWA operators. Finally, we look at a simple procedure for generating the weights given a required degree of 
orness. © 1998 Elsevier Science B.V. 

1. Introduction 

The concept of ordered weighted operators (OWA) was introduced by Yager I-7]. A class of OWA 
operators called S-OWA operators was introduced in [12]. Some new families of OWA operators were 
discussed by Yager [10]. Several applications of the OWA operators were reported during the short time 
period following their first appearance: in decision making [3, 9], expert systems [4], neural networks [2, 8], 
fuzzy systems and control [11], and communication networks [6]. 

One important issue in the theory of OWA aggregation is the determination of the associated weights. 
A number approaches have been suggested for obtaining the weights [10]. One of the first methodologies for 
obtaining the weights was developed by O'Hagan [5]. O'Hagan's approach allows one to calculate the vector 
of the OWA weights for a predefined level o f o r n e s s  (optimism); among the variety of possible solutions to this 
problem O'Hagan selects the vector which maximizes the entropy of the OWA weights; algorithmically, it is 
based on the solution of a constrained optimization problem. Thus the method of O'Hagan in fact 
determines a special class of OWA operators having maximal entropy of the OWA weights for a given level 
of o r n e s s .  

In this paper we focus on some issues related to the acquisition of the OWA weights. We first develop an 
algorithm for the calculation of the OWA weights that allows us to learn the weights from data consisting of 
tuples of individual scores along with their aggregated value. Next we introduce also a class of OWA 
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operators, called Exponential OWA Operators, whose weights can be calculated in a very simple way for 
a given level of orness. Further we demonstrate an effective mechanism for generation of OWA operators. 

2. The concept of ordered weighted averaging operators 

An OWA operator  [1] of dimension n is a mapping: 

f :  R" ~ R ,  

that has an associated weighting vector W 

W = [wl w2 ... w,] T 

such that 

~ wi-- 1; wie[O, 1] 
i 

and where 

f (a l ,  . . . ,  a ,)--  ~" wjbj, 
j = l  

where bj is the j t h  largest element of the collection of the aggregated objects a~, a2 . . . . .  a,. The function 
value f (al . . . . .  a,) determines the aggregated value of arguments, al, a2 . . . . .  an. 

A fundamental aspect of the OWA operator  is the re-ordering step, in particular an argument ai is not 
associated with a particular weight wi but rather a weight w~ is associated with a particular ordered position 
i of the arguments. A known property of the OWA operators is that they include the Max, Min and 
arithmetic mean operators for the appropriate  selection of the vector W: 

1. For  W =- , f (a l  . . . .  ,a , )  = Maxai  
i 

2. For  W --- , f (a l ,  . . . , a , ) =  Minal 
i 

1/n] 

1/n [ 1 
3. For  W --- . , f (a l  . . . . .  a,) = -  ~" ai.  

H i =  1 

It can be easily shown [1] that the OWA operators are aggregation operators, satisfying the commutativity,  
monotonici ty and idempotency properties and that they are bounded by the Max and Min operators, for 
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OWA operators 

Minal <<.f (a l  . . . .  , a , )  <<. Maxai.  
i i 

Since this class of operators runs between the Max (or) and the Min (and) in [7] Yager introduced 
a measure to characterize the type of aggregation being performed for a particular value of the weighting 
vector. This measure called the o r n e s s  m e a s u r e  of the aggregation is defined as 

orness(W) - 1 ~ (n  - i ) w i .  (1) 
r t - -  1 i =  1 

As suggested by Yager [7] this measure, which lies in the unit interval, characterizes the degree to which 
the aggregation is like an or  (Max) operation. It can be shown that 

orness([1 0 ... 0] T) = 1, 

orness([0 0 ... 1IT) = 0, 

orness([1/n 1In . . .  l /n] T) =0.5.  

Therefore the Max, Min and arithmetic mean operators can be regarded as OWA operators with degree of 
orness, respectively, 1, 0 and 0.5. 

A second measure introduced by Yager [7] was the dispersion or entropy associated with a weighting 
vector 

Disp(W) = ~ w i l n w l .  
i=1 

This was suggested for use in calculating how much of the information in the arguments is used during an 
aggregation based on W. 

In [5] O'Hagan used these measures to develop a procedure to generate the OWA weights that have 
a predefined degree of orness ~ and maximize the entropy. O'Hagan called them MEOWA operators. The 
approach suggested by O'Hagan is based on the solution of the following constrained optimization problem 
[5]: 

Maximize ~ w i l n  wi  
i = 1  

' i  
subject to c~ - - (n  - i ) w i ,  

n 1i= 1 

~, w i =  l ,  
i = l  

wie [0, 1], i = ( 1  . . . . .  n). 

We note that for this we need to have specified the desired degree of orness e. 

3. Learning OWA operators from observations 

In this section we shall suggest an algorithm which can be used to learn the weights associated with 
a particular use of the OWA operator from an observation of the performance of some agent. Formally, we 
shall assume the following information is available. Given are a collection of m samples (observations) each 
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comprised of an n-tuple of values (a , l ,  ak2, . . .  , a, ,) ,  called the arguments, and an associated single value 
called the aggregated value, which we shall denote as dk. A prototypical  situation which can generate such 
a data set will be described as follows. Assume we have a set of m alternatives and a set of n criteria which are 
used to evaluate each of the alternatives. We indicate these scores as a~j. An expert reviews the scores 
obtained by each alternative on the n criteria and then provides an aggregate score for that alternative 
denoted dk. 

Our goal will be to obtain an OWA operator,  a weighting vector W that models the process of aggregation 
used in that data set. We need a OWA operator,  W, such that for the entire collection of data we as faithfully 
as possible satisfy the condition 

f ( a k a ,  ak2 . . . . .  a k . ) = d k  

for any k. 
This problem can be simplified by taking advantage of the linearity of the OWA aggregation with respect 

to the ordered arguments. We denote the reordered objects of the kth sample by bk~, bk2 . . . . .  bk. where bkj is 
the j th  largest element of the argument collection ak~, ak2, . . . , a k , .  Using these ordered arguments the 
problem of modelling the aggregation process is to find the vector of OWA weights W = [w~ WE ... W,] T 
such that 

b k l W l  q- bk2W 2 -1- . . .  q- bknW n -= d k 

for a n y k =  1 . . . . .  m. 
We shall relax this formulation by looking for a vector of OWA weights W = [wl w2 

approximates  the aggregation operator  by minimizing the instantaneous errors ek where 

ek = l ( b k l W l  q -  bk2W2 + "'" + bk, W. --  dk) e 

... w,] x that 

with respect to weights wl. The solution of this problem seems to be simple and one could expect that it can 
be done by application of the Widrow-Hoff  rule [-1 3]. The situation is complicated by the fact that the above 
minimization problem is a constrained optimization problem, since the OWA weights w~ have to satisfy the 
following two properties: 

1. ~ WI=I; 
i=1  

2. wie [0, 1], i = ( 1  . . . . .  n). 

To avoid the constraints on wi we assume that the OWA weights are defined as follows: 

e ~, 
wi - 527= 1 e ~j' i = (1 . . . . .  n). 

F rom the above transformation it becomes clear that for any values of the parameters 2i the weights wi will be 
positive and will sum to 1. Therefore the constrained minimization problem is transformed to the following 
unconstrained nonlinear programming problem: 

M i n i m i z e  the ins tantaneous  errors ek: 

1 ( e 'h e x2 e ~. )2 
e k = - ~  b k l ~ + b k 2 - - 7 ~ +  "'" + b k , ~  dk 

52j = 1 52i= 1 e xj 2 ; =  1 e ar 

with respect to the parameters  2i. 
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We shall use the gradient  descent technique to solve this problem. Using the gradient  descent me thod  we 
obtain the following rule for updat ing the parameters  2~, i = (1 . . . . .  n): 

2 i ( / +  1) = 2~(/) - fl 
).~= A,(l), 

where fl denotes  the learning rate (0 ~< fl ~< 1). 
F o r  nota t ional  simplification we shall denote  by ak the estimate of the aggregated value dk: 

e2~ ea~ e2. 
- - 7 - - - - - -  + bk2---7-- - - - - -  + "'" + bk.  ak = bkx Es= le~  ~ E j = l  e ~ E j=I  e ~" 

Then  for the partial  derivative Oek/021 we get 

( e ~' Y j"= 1 eZJ - -  e2Z '  bk2 ( ~ .  2z 'e 'h  
Oek -- bkl d- e,~J)2 d- "'" 

e z' Y~7= 2 e ar - -  e z' e z~ 
de, _ bkl eZ~) z + bk2 eZ~) z + .. .  + b , .  
6 ~ 2 ,  (27=1 (27=1 

+ bk.  2 - -  dk), 

Oek eZ' [ eZ~ ea" 1 
- , - - -  , l b k l  - + . . .  + 

)-~j=l  e L/_. . j=I  

),i n This expression can be rewritten by using the substi tut ion w~ = e /~s= 1 e x~ into the form 

~ek 
- w l  [ w 2 ( b k l  - -  bk2) + • " + w . ( b k l  - -  bk.)](& -- ak), 

aek 
= wl [(w: + 

021 
• .. + w . ) b k l  - -  (W2bk2 + "'" + W . b k . ) ] ( a k  - -  dk), 

~ek 

021 
- -  = wl[(1 - w l ) b k l  - -  (W2bk2 + "'" + w . b k . ) ] ( a k - -  dk), 

~ek 

021 
= w l [ b k a  - -  ( w l b k x  + W2bk2 + "'" + W . b k . ) ] ( a k  - -  dk), 

~ek 

021 
- w , ( b k l  - -  & ) ( &  - -  dk). 

In a similar manne r  we obtain for the other  partial  derivatives: 

de---2k = w i ( b u  - -  Cak)(C~k - -  dk), i = (1, n). 
02~ 

Then we derive the final form of the rule for updat ing the parameters  2~; we get 

2i( l  + I) = 2,(0 - f lw i (bk i  - -  ak)(ttk - -  dk), 

where parameters  wi are calculated at each i teration step for the current  values of parameters  21(/): 

e;t~(l) 

wi 5~7=1e ~ju)' i (1, n) 

(2) 

(3) 
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and dk is the current estimate of the aggregated values dk: 

dk = bkl Wl -1- bkzW2 Jr- "" Jr- bknW n. (4) 

Therefore the parameters  2~ determining the OWA weights are updated by propagat ion of the error 
(ak --  rig) between the current estimated aggregated value and the actual aggregated value with factors wl and 
( b k i -  dk). These factors are the current OWA weight w~ and the difference ( b k ~ -  ak) between the ith 
aggregate object bk~ and the current estimated aggregated value 3k- 

We shall illustrate the algorithm for learning OWA weights wi (Eqs. (2-4)) in the following example. 

Example 1. We assume the collection of samples of data in Table 1. Each sample consists of 4 argument 
values and the relevant aggregated value: 

Table 1 

Sample Argument values Aggregated value 

1 0.4 0.1 0.3 0.8 0.24 
2 0.1 0.7 0.4 0.1 0.16 
3 1.0 0.0 0.3 0.5 0.15 
4 0.2 0.2 0.1 0.4 0.17 
5 0.6 0.3 0.2 0.1 0.18 

The aggregated values for each sample were calculated by using the Hurwicz [-3] method for compromise 
aggregation. According to this method, which is widely applied in decision making, the aggregated value 
d obtained from a tuple of n arguments, a l ,  aa, . . . ,  a, ,  is defined as a weighted average of the Max and Min 
values of that tuple 

p Maxai  + (1 - p ) M i n a i  = d, 
i i 

where parameter  p represents the optimism of the decision maker, 0 ~< p ~< 1. For  example the first data set 
was calculated using p = 0.2. From the Max and Min values for the first example we obtained 

0.2(0.8) + (1 - 0.2)(0.1) = 0.24. 

Slightly different values of parameter  p were used for each argument tuple to reflect the reasonable 
variation that is possible with slightly different mechanisms of aggregation in different samples, which are due 
to the individuality of different experts. For  the calculation of the aggregated values we used the following 
values of the parameter  p: 

p = 0.2; 0.1; 0.15; 0.25; 0.18. 

The learning algorithm, Eqs. (2)-(4), was applied on the reordered argument tuples. The learning algo- 
rithm was started with initial values 2i(0) = 0, i = (1, 4), with initial values of the OWA weights wi = 0.25. 
A learning rate of fl = 0.35 was used. The estimated values of 21 after 150 iterations were: 

;ol = - 0 . 6 1 ;  2 2 = - 0 . 2 9 ;  2 3 =  - 0 . 0 5 ;  24=1 .51 .  

These values of the 2~ induce the following OWA weights: 

W 1 = 0 . 0 8 ;  W 2 = 0.11; W3 = 0.14; W~ = 0.67. 
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Estimated aggregated values ak at the and of the learning process were 

dl---0.22; a2=0 .18 ;  a3= 0 .18 ;  d4=0 .15 ;  d5=0 .18 .  

Using the OWA weights learned in the above and applying formula (1) we calculated a degree of orness 
0.199. We found it to be a reasonable characteristic of the total level of orness that is associated with the 
entire collection of samples, compared with the different levels of optimism for the individual samples. 

4. On an exponential class of  O W A  operators 

In this section we introduce a class of OWA operators which we shall call exponent ia l  OWA operators. We 
study their usefulness in the problem of generation of OWA weights satisfying a given degree of orness. One 
possible way of solving this problem was suggested by O 'Hagan,  but as we mentioned above it involves the 
solution of a constrained nonlinear programming problem. We shall see that for the exponential OWA 
operators a very simple relationship exists between the orness degree and the parameter  which determines 
the OWA weights. 

We shall consider a family of OWA operators whose weights are of the same form as the well-known set of 
weights that are used in the method of exponential smoothing [13. We define the OWA weights as follows: 

W 1 = ~ ;  W 2 = 0~(1 - -  (~); W 3 = 0~(1 - -  ~ ) 2 ;  " ' "  ; W n - 1  = ~ ( 1  - -  ~ ) n  2;  W n = ( 1  - -  ~ ) n - 1  ( 5 )  

where parameter  ct belongs to the unit interval, 0 ~< ~ ~< 1. We can express these weights recursively as 
1. Wl = c~e]-0, 1], 
2. wj = Wj_l(1 - w l ) , j  = 2 . . . . .  n - 1, 

3. w. = w. - l (1  - -  w 1 ) / w  1 . 

There exists an alternative view to the process of generation of these weights. Assume W is a weighting 
vector of dimension n we extend it to a vector V of dimension n + 1 as follows: 

v i = w i  f o r i =  1 , 2 , . . . , n - I ,  

1) n = ~ W  n ~ W 1 W n ,  

v,+l = (1 - cow, = (1 - Wl)W, .  

Thus in extending this we simply proportionally divide the weight in the last place of the old vector. 
It is evident that for the above defined weights it is true that 0 ~< wl ~< 1. In addition, the above weights 

satisfy the following identities: 

w,-1 + w , = ( 1 - c t ) "  2 (~+  1 - ~ ) = ( 1 - c &  -2, 

w , _ 2 + w ,  l + W , = ( 1 - ~ ) " - 3 ( ~ + l - ~ ) = ( 1 - c &  -a, 

W I - . ~ W 2 - .  ~- . . .  J f - W n = l .  

Thus from a formal point of view these weights can serve as OWA weights. 
For  ~ = 1 we obtain the following vector of OWA weights: 

W = E 1  0 ... 0] T 

and thus degree of orness 1. For  ~ = 0 we get the following vector of OWA weights: 

W = [ 0  0 . . .  1] T 
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and therefore degree of  orness 0. The orness of  this O W A  opera tor  for different values of  parameter  ~ is 
determined by the formula (1): 

1 
o r n e s s ( W ) -  - ~ ( n -  i)wi. 

n 1i=1 

We note since n - i = 0 for i -- n then 

orness(Wn) - 1 ~ (n i )w i -- 1 n-~= I n 1 n - l . =  (n i)wl. 
i = 1  

Consider  the orness value for n + 1, orness(W.+l) :  

11_1"-1 1 ~ nl"-a--1 nl"-~i.= 1 (n + 1 -- i)w, = - (n + 1 -- i )w  i = . E  (n --  i )w  i + Wi + --OtWn, 
n + 

i = 1  n i = l  t t n 

1 n - - 1  
orness(W,+x)  = n - 1 orness(W,)  + 1(1 - w.) + -  ~w. 

r/ n n n 
- - -  orness(W,)  + -1(1 - w,+ 1), 

n 

orness(W,+ 1) = orness(W,)  + 1 [1 - {orness(W.) + w,+ 1}]. 
n 

We note that  

1 ~ (n - i)wi, orness(W,) = (n 1~---) i=1 

1 .+1 1 " 
o r n e s s ( W , + l ) =  n i~1 (n + 1 - i ) w l  = ni~=a (n + 1 - i ) w i .  

Consider  

n + l - i  n - i  i - 1  

n n -  1 n(n - 1) 
- - ~ > 0  

thus orness(W,+ 1) >/orness(W,) ,  hence the orness value increases as n increases for a fixed n. It  can also be 
proved that  the orness function is a monotonica l ly  increasing function of  parameter  c~. 

The functional relationship between the orness and parameter  ~ for different number  of arguments  
n -- 2, 3, . . . ,  10 is presented in Fig. 1. We note the monoton ica l ly  increasing nature of  this relationship with 
respect to ~; for a fixed n the orness of this aggregat ion increases as ~ increases. We also note the 
monotonica l ly  increasing nature of  this relationship with respect to n, for a fixed ~ the orness of this 
aggregat ion increases as n increases. Fur thermore ,  it can be shown that  for n = 2 the orness value of  this 
aggregat ion is always equal to ~. This fact along with the monoton ic i ty  with respect to n results in the notable 
feature that  for any value of n > 2 the degree of  orness is higher than the value of  the parameter  ~. For  this 
reason we shall call the O W A  operators  associated with these weights optimistic exponential O W A  operators. 
In particular,  we note that  as the number  of  arguments  increases this aggregat ion becomes more  and more  
orlike. 

An alternative related O W A  opera tor  can be derived by considering the following O W A  weights: 

W l = ~ n - 1 ;  W 2 = ( 1 - - 0 0 0 ~ n - 2 ;  W 3 = ( 1 - - ~ ) 0 ~ n - 3 ;  . . . ;  w , _ l = ( 1 - ~ ) ~ ;  w , = ( 1 - ~ ) .  (6) 
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F i g .  1. Functional relationship between the orness of the 
optimistic exponential O W A  operator and its parameter c~ for 
n = 2 , 3 ,  . . . ,  10. 

n=2 

/ 7  

1. / # 

0.9, / ~ "  
o.s ,6,,1' ,,=1o 

0 7  / ~ r  " 
~o.6 /A/z /" 

0.5 ///× 
o.4 ~///,~ y 
0.3 / i / / , ~  
0.2 / / / ~ '  
0.1 

0 0.10.20.30.40.50.60.70.80.9 1 

Alpha 

F i g .  2. Functional relationship between the orness of the 
pessimistic exponential O W A  operator and its parameter ~ for 
n = 2 , 3  . . . . .  10. 

W e  can express these weights  recursively as 
1. w . = ( 1 - - ~ ) ;  
2. w j  = w j + l c ~  = w~(1 - -  w , ) ,  j = 2,  . . . , n - -  1; 

3. wl = w2(1 --  w.)/w,. 
There exists an alternative v iew to the process  of  generation of these weights.  Assume  W is a weighting 

vector  of  d imens ion  n we  extend it to a vector  V of d imens ion  n + 1 as follows: 

v i + l = w l  f o r i = 2  . . . . .  n, 

v2 = (1 - c0wl = w.wl, 

Vl = ~wl = (1 -- w,)wx. 

Thus in extending this we push d o w n  all the e lements  and s imply  proport ional ly  divide the weight  in the top 
place of  the old vector  to the two  top places in the new vector.  

In a similar manner  as that for the opt imist ic  exponent ia l  O W A  operator,  we  can show that these weights  
satisfy the formal requirements  to be O W A  weights: 

O<<.wi<<.l, i = ( 1 ,  n) and ~ w i = l .  
i = 1  

W e  also note  that for ~ = 0 we  obtain the pure Min and for ~ = 1 we  obtain the pure Max.  
The functional  relationship between the orness and parameter  ~ for different numbers  of  aggregate objects 

n = 2, 3 . . . . .  10 is presented in Fig. 2. As in the previous  case we note  the m o n o t o n i c a l l y  increasing nature of 
this relationship with respect to ~, for a fixed n the orness of this aggregation increases as ~ increases. 
Contrary to the previous  case we  also note  the monoton ica l l y  decreasing nature of  this relationship with 
respect to n. For  a fixed ~ the orness of  this aggregation decreases as n increases. Furthermore,  it can be 
shown that for n = 2 the orness value of  this aggregation is always equal to ~. This  fact along with the 
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ant i -monotonic i ty  with respect to n results in the notable feature that for any value of n > 2 the degree of 
orness is lower than the value of  the parameter  ~. Fo r  this reason we shall call the O W A  operators  associated 
with these weights pessimistic exponential OWA operators. In particular, we note that  as the number  of 
arguments  increases this aggregat ion becomes more  and more  andlike. 

The optimistic and pessimistic exponential  O W A  operators  have one very useful property.  Given a value 
of  n and a desired degree of  orness one can simply obtain from Figs. 1 or 2 the associated value of  ~. Then the 
O W A  weights can easily be generated according to (5) or  (6). The following example demonst ra tes  this simple 
method  for generat ion of O W A  weights. 

Example  2. Let us assume the number  of aggregate objects is 5. We shall construct  the O W A  weights that  
guarantee  the desired degree of  orness. Assume we desire a degree of  orness of  0.6. F r o m  Fig. 2 we obtain the 
associated value of c~ as 0.8. By substituting e = 0.8 in (6) we get the following O W A  weights: 

wl = 0.41; w 2 = 0.10; w3 = 0.13; w4 = 0.16; w5 = 0.20. 

For  those O W A  weights the exact degree of orness calculated by (1) is 0.5904. Similarly for a desired degree of 
orness 0.9 from Fig. 1 we obtain the associated with it the reading e = 0.7. By the substitution in (5) we get the 
following O W A  weights: 

wl = 0.70; w 2 = 0.21; w 3 = 0.06; w4 = 0.02; w5 = 0.01. 

The exact degree of orness for those weights is 0.8137. 
This simple technique eliminates the need to calculate the O W A  weights via the sophisticated procedure  

suggested in [5] which requires the solution of the constrained opt imizat ion problem. We are aware of  the 
imprecision of  the readings from the charts in Figs. 1 and 2. However,  it is not  reasonable to expect high 
accuracy in the expert est imation of the degree of  orness. Therefore, such an approximate  method  for 
generat ion of the O W A  weights is completely satisfactory for the solution of a large class of  practical 
problems. 

5. An alternative method for generation of OWA weights 

We shall t ransform the formula for the degree of  orness (1) in order  to obtain an alternative expression for 
the relationship between the degree of orness and the O W A  weights. Using the identity 

1 
2 wi 

i~1 2 

we shall rewrite (1) as follows: 

~ ( n - i )  1 ~ ( n - i )  ~ 1 
orness(W) = ~ wi = ~ + ~ wi - ~ wi, 

i = 1  i = 1  i = 1  

orness(W) = ~ + - - - -  2 wi = + wi, 
i=1 n 2 i=a 2 ( n -  1) 

1 i orness(W) = ~ + q i w i  . 

i = 1  
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W e  now cons ider  the case where  n is even, n = 2m. We note  tha t  for i = k, where  k ~< m and  i = n + 1 - k 

we get 

n - 2 k + l  
qk-- 

2(n - 1) 

n - 2 n - 2 + 2 k + l  

Thus  

But 

- n + 2 k - 1  

q , + l - k  = n - 1 2(n - 1) qk. 

ornes s (W)  = ~  + qk(wk -- W,+ l - k ) .  
k = l  

If  n is odd,  then n = 2m + 1 and we get 

o rnes s (W)  = ~ + qk(wk - -  Wn+ l - k )  + qm+ l Wm+ l .  
k = l  

2 m +  1 - 2 ( m +  1 ) +  1 
qm+~ - = 0 

2(n - 1) 

and  hence again  we get for the orness 

o r n e s s ( W )  = ~ + qk(wk -- W.+ 1-~). 
k = l  

F r o m  this express ion direct ly  follows a m e t h o d  for cons t ruc t ing  O W A  ope ra to r s  with weights tha t  have 
predef ined degree of orness. 

Let  us assume a given degree of  orness f2. W e  shall  assume tha t  all weights except  the wl and  w, are  equal.  
W i t h  this a s sumpt ion  the orness  funct ion becomes  simply:  

o rnes s (W)  = ½ + qa(wl  - wn) = ½ + ½(wl - w,) .  

F r o m  the des i red  degree of orness  f2 we get an explici t  express ion for the difference be tween the first and  last  
weight:  

wl - w, = 2(12 - 0.5). (7) 

W e  can choose  wl and  w, to be any numbers  f rom the unit  in terval  tha t  satisfy the above  condi t ion .  Then the 
remain ing  weights should  be d i s t r ibu ted  equal ly  to satisfy the requi rement :  

~ w i = l .  
i = 1  

Therefore,  we get 

1 
w i = - - [ 1 - ( w l  + w , ) ] ,  i = ( 2 , 3  . . . .  n - l ) .  (8) 

n - 2  

W e  shall  i l lus t ra te  this m e t h o d  by  the fol lowing example .  
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Example  3. Assume n = 4 and  the desired degree of orness is f2 = 0.8. Then  

wl - w4 = 2(0.8 - 0.5) = 0.6. 

One  possible selection is 

w 1 = 0 . 6 ;  w 4 = 0 .  

Then  for the remain ing  weights we calculate according to (8): 

w3 = w4 = ½[-1 - (0.6 + 0)] = 0.2. 

By subs t i tu t ion  in the original  formulae for the degree of orness we can check that  the O W A  weights: 

wl = 0.6; w2 = 0.2; w3 = 0.2; w 4 = 0 

have degree of orness 0.8. 
However,  we could choose 

w 1 = 0 . 8 ;  w 4 = 0 . 2 .  

Then  apparen t ly  the remain ing  weights should be 

W 3 ~ W 4 ~ O .  

We now consider  a slight modif icat ion of the above procedure.  
1. Assume 

A = 2(12 - 0.5). 

2. Let 

1 
L = - ( 1  -- I,~1). 

n 

3. F o r i = 2  . . . . .  n - - 1  

w i = L .  

4. I f A > 0 t h e n  

wl  = L  + A, w , = L .  

if A ~< 0 then 

wl = L ,  w n = L  + A. 

Consider  the s i tuat ion A > O, here we get wl = L + A and  w~ = L for i = 2 . . . . .  n. In  this case we ob ta in  for 
the aggregated value 

F ( a l ,  . . . ,  a,,) = A M a x [ a i ]  + L ~, al = A M a x [ a i ]  + -  
i i = 1  i 

Thus  

F(a l  . . . .  ,a,,) = A M a x [ a / ]  + (1 -- A)Ave(al  . . . . .  a,). 
i 

( 1 -  A) 
a l .  

r /  i = 1  
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The above form is introduced in [121 which was called the S-OWA operator. We note that if A ~< 0 we get 

F ( a l  . . . . .  a . )  = A Min[ai]  + (1 - A)Ave(al . . . . .  a.), 
i 

which is also a form of S-OWA operator. 

6. Conclusion 

We derived a method for obtaining the OWA aggregating operator from a collection of samples with 
aggregated data. We developed computationally effective methods for calculating the weights of the OWA 
operator  for an assigned degree of orness. 
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