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Abstract—Both convergence and diversity are crucial to
evolutionary many-objective optimization, whereas most
existing dominance relations show poor performance in
balancing them, thus easily leading to a set of solutions
concentrating on a small region of the Pareto fronts. In
this paper, a novel dominance relation is proposed to better
balance convergence and diversity for evolutionary many-
objective optimization. In the proposed dominance relation,
an adaptive niching technique is developed based on the
angles between the candidate solutions, where only the
best converged candidate solution is identified to be non-
dominated in each niche. Experimental results demonstrate
that the proposed dominance relation outperforms existing
dominance relations in balancing convergence and diversity.
A modified NSGA-II is suggested based on the proposed
dominance relation, which shows competitiveness against
the state-of-the-art algorithms in solving many-objective
optimization problems. The effectiveness of the proposed
dominance relation is also verified on several other existing
multi- and many-objective evolutionary algorithms.

Index Terms—Many-objective optimization, evolutionary
algorithm, convergence, diversity, Pareto dominance

I. INTRODUCTION

DURING the last two decades, the evolutionary
algorithms have been verified to be suitable for

solving multi-objective optimization problems (MOPs)
due to their population based characteristics [1]. Thanks
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to the success of NSGA-II [2], most existing multi-
objective evolutionary algorithms (MOEAs) were devel-
oped based on the Pareto dominance relation, which was
suggested by Goldberg for distinguishing the quality of
candidate solutions [3]. However, the performance of
most Pareto dominance based MOEAs suffers a serious
curse of dimensionality in solving MOPs with more than
three objectives, i.e., the many-objective optimization
problems (MaOPs) [4]. In many-objective optimization,
the challenge can be mainly attributed to a phenomenon
known as the dominance resistance [5], where most
candidate solutions become incomparable in the sense
of Pareto dominance. To address this issue, a variety of
methods have been proposed to enhance Pareto domi-
nance for solving MaOPs, which can be roughly divided
into the following two categories.

The first category focuses on developing new domi-
nance relations, where the basic idea is to increase the
probability that two candidate solutions are comparable
on MaOPs. There exist many techniques for develop-
ing new dominance relations in the literature, such as
expanding the dominance area [6], [7], gridding the
objective space [8], [9], adopting the fuzzy logic [10], [11],
and defining the dominance relation by weight vectors
[12], [13].

The second category is characterized by combin-
ing Pareto dominance with additional selection criteria.
These methods first eliminate a few worse candidate
solutions based on Pareto dominance, then distinguish
the incomparable candidate solutions by the secondary
selection criterion. Existing methods belonging to this
category mainly adopt three basic ideas: The first idea
is to develop new criterion to bias those with good con-
vergence and diversity in the incomparable candidate
solutions, such as KnEA [14] and VaEA [15]; the second
idea employs performance indicators to distinguish the
quality of incomparable candidate solutions by selecting
those with large contributions, such as HypE [16] and
AR-MOEA [17]; and the third idea is to combine Pareto
dominance with decomposition based algorithms, such
as MOEA/DD [18] and BCE-MOEA/D [19].

While the modified dominance relations can generate
relatively higher selection pressure for MOEAs than the
conventional Pareto dominance relation, most of them
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fail to strike a good balance between convergence and
diversity, which easily leads to a set of solutions con-
centrating on a small region of the Pareto fronts. Hence,
in this paper we propose a novel dominance relation
for MOEAs to solve MaOPs, which can better balance
convergence and diversity than existing dominance re-
lations. The contributions of this paper are summarized
as follows:

1) A novel dominance relation, termed strengthened
dominance relation (SDR), is proposed for evolu-
tionary many-objective optimization. The proposed
SDR balances convergence and diversity by devel-
oping a niching technique based on the angles be-
tween the candidate solutions, and maintains only
one candidate solution with the best convergence
in each niche. Since the niche size is adaptively
determined by the distribution of the candidate
solutions measured by the angles between them,
the proposed SDR is parameterless to use.

2) An MOEA, named NSGA-II/SDR, is suggested by
embedding SDR in NSGA-II. The NSGA-II/SDR
holds the same framework with NSGA-II, where
the conventional Pareto dominance relation is re-
placed by the proposed SDR. The performance of
NSGA-II/SDR is verified by comparing it with
several state-of-the-art MOEAs tailored for solving
MaOPs.

3) The performance of the proposed SDR is also as-
sessed by embedding it in two existing MOEAs de-
veloped for solving MOPs, namely, SPEA2 [20] and
PESA-II [21], and three existing MOEAs tailored
for handling MaOPs, namely, GrEA [9], KnEA [14],
and VaEA [15]. Experimental results demonstrate
that the proposed SDR maintains a good balance
between convergence and diversity, which can con-
siderably improve the performance of the MOEAs.

In the remainder of the paper, we first give a re-
view of existing dominance relations in Section II. Then
the proposed SDR is elaborated in Section III and the
experimental results are given in Section IV. Finally,
conclusions are drawn in Section V.

II. RELATED WORK

A. Existing Dominance Relations
The Pareto dominance relation is widely adopted in

MOEAs for distinguishing the quality of candidate solu-
tions [22], [23]. For a minimization MOP, a candidate
solution x is said to Pareto dominate another one y,
denoted as f(x) ≺ f(y), if and only if{

∀i ∈ 1, . . . ,M : fi(x) ≤ fi(y)
∃j ∈ 1, . . . ,M : fj(x) < fj(y)

, (1)

where f(x) = (f1(x), f2(x), . . . , fM (x)) denotes the ob-
jective values of x and M is the number of objectives.
If neither x dominates y nor y dominates x, the two
candidate solutions are known to be incomparable or
non-dominated to each other.

According to (1), for two random candidate solutions
with M objectives, the probability that one candidate
solution dominates the other one is 1/2M−1, where the
probability will exponentially decrease as the number
of objectives M increases, and such a phenomenon is
known as the dominance resistance [5]. To address this
issue, a variety of approaches have been proposed to
increase the probability that two candidate solutions
are distinguishable, which can be roughly grouped into
four categories. Fig. 1 illustrates some representative
dominance relations by plotting the dominance areas
in bi- and three-objective spaces. In the following, we
briefly review the representative dominance relations in
the four categories.

The first category of dominance relations improves the
selection pressure by expanding the dominance area. The
controlling dominance area of solutions (CDAS) method
[6] is a representative one falling into this category,
which expands the dominance area of a candidate so-
lution x by modifying the objective values:

f ′
i(x) =

∥f(x)∥ sin(ωi + S · π)
sin(S · π)

, i = 1, . . . ,M, (2)

where f ′
i(x) denotes the i-th objective value of x after

modification, ∥ · ∥ denotes the L2-norm, ωi denotes the
declination angle between x and the i-th axis, and S ∈
[0.25, 0.5] is a parameter for controlling the expanding
degree.

In order to eliminate the parameter S, an adaptive ver-
sion of CDAS, called self-CDAS (S-CDAS), was proposed
[24]. The S-CDAS adaptively determines the expanding
degree of a candidate solution x according to the extreme
solutions in the population:

f ′
i(x) =

∥f(x)∥ sin(ωi + ϕi)

sin(ϕi)
, i = 1, . . . ,M, (3)

where
ϕi = arcsin

∥f(x)∥ · sin(ωi)

∥f(x)− pi∥
(4)

and pi is the extreme solution with respect to the i-th axis
in the population. As shown in Fig. 1, the boundary of
the dominance area of x in the sense of S-CDAS always
intersects (but does not dominate) the extreme solutions.

Another idea for expanding the dominance area is
to modify the definition of dominance relation, such
as α-dominance [25] and generalized Pareto optimality
(GPO) [7]. In GPO, a candidate solution x dominates
another candidate solution y if and only if the following
condition holds:{
∀i∈1, . . . ,M : fi(x)−fi(y)≤

∑
k ̸=i δi(fk(y)−fk(x))

∃j∈1, . . . ,M : fj(x)−fj(y)<
∑

k ̸=j δj(fk(y)−fk(x))
,

(5)
where δi =

√
M − 1 · tanϕi/(M − 1) and ϕi is a param-

eter of the expanding angle on the i-th objective. As
reported in [7], while CDAS and GPO are equivalent
in bi-objective space, GPO can guarantee the identity of
dominance envelopes (i.e., the boundaries of dominance
area) in three- and higher-objective spaces.
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(a) Pareto dominance (b) Controlling dominance area of solutions
(CDAS)

(c) Self-CDAS (S-CDAS)

(d) Generalized Pareto optimality (GPO) (e) Grid dominance (f) (1− k)-dominance

(g) L-dominance (h) θ-dominance

Fig. 1. The dominance areas obtained by eight different dominance relations in bi- and three-objective spaces.

The second category of dominance relations is
based on the gridding of the objective space, such
as ϵ-dominance [8], paϵ-dominance [26], cone ϵ-
dominance [27], and grid dominance [9]. In the
grid dominance relation, the grid coordinate g(x) =
(g1(x), g2(x), . . . , gM (x)) of candidate solution x is cal-
culated by

gi(x) = ⌊(fi(x)− lbi)/di⌋, (6)

and

di = (ubi − lbi)/div
ubi = max fi + (max fi −min fi)/div/2
lbi = min fi − (max fi −min fi)/div/2

, (7)

where min fi and max fi denote the minimum and max-
imum values of the i-th objective in the population,
div is a parameter of the number of divisions on each
objective, and the grid coordinates are used to determine
the dominance relations instead of the objective values.
The grid dominance relation is a relaxation of Pareto
dominance, whereas it is often criticized due to its high
sensitivity to the parameter div [9].

The third category adopts fuzzy logic to define new
dominance relations, such as (1-k)-dominance [28], L-
dominance [29], and fuzzy dominance [11]. In these
dominance relations, the number of objectives where one
candidate solution is smaller or greater than another
is usually considered as the criterion to determine the
dominance relation. For the (1-k)-dominance relation, a
candidate solution x is said to (1-k)-dominate another
candidate solution y if and only if{

ne < M
nl ≥ M−ne

k+1

, (8)

where ne and nl count the number of objectives where x
is equal to and smaller than y, respectively, and k ∈ [0, 1]
is a predefined parameter. For the L-dominance relation,
x is said to dominate y if and only if{

nl > ng

∥f(x)∥ < ∥f(y)∥ , (9)

where nl and ng count the number of objectives where
x is smaller and greater than y, respectively. As shown
in Fig. 1, (1-k)-dominance and L-dominance hold the
same dominance areas with Pareto dominance in bi-
objective space, whereas the difference between (1-k)-
dominance and Pareto dominance only exists when the
number of objectives M ≥ 4, and the difference between
L-dominance and Pareto dominance only exists when
M ≥ 3,

Inspired by decomposition based MOEAs, the fourth
category of dominance relations is defined by a set of
weight vectors, e.g., the θ-dominance relation [12] and
the RP-dominance relation [13]. In θ-dominance, each
candidate solution is associated with its nearest weight
vector, and a candidate solution x is said to θ-dominate
another one y if and only if they are associated with the
same weight vector λ, and

d1(x, λ) + θ · d2(x, λ) < d1(y, λ) + θ · d2(y, λ), (10)

where θ is a penalty parameter and

d1(x, λ) = ∥f(x)λT ∥/∥λ∥
d2(x, λ) = ∥f(x)− d1(x, λ)(λ/∥λ∥)∥

. (11)

The θ-dominance relation guides the candidate solutions
to converge along the weight vectors, and thus maintains
a uniform distribution in the population. However, since

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand


Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand

Mehdi Baharvand



1089-778X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2018.2866854, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. , NO. , MONTH YEAR 4

(a) A population with seven
candidate solutions

(b) Pareto dominance, (1 − k)-
dominance, and L-dominance

(c) CDAS and GPO (d) S-CDAS

(e) Grid dominance (f) θ-dominance

Fig. 2. The results of eight dominance relations performed on a
population with seven candidate solutions, where the filled circles
denote non-dominated solutions identified by the dominance relations,
the empty circles denote dominated solutions, and the gray regions
denote dominance areas.

the population size should be identical to the number
of weight vectors, the performance will substantially
deteriorate if the distribution of the weight vectors is
inconsistent with the shape of the Pareto front [30].

B. Analysis of Existing Dominance Relations

As introduced above, most existing dominance rela-
tions aim to enhance the selection pressure of MOEAs,
but they can fail to achieve a good balance between
convergence and diversity. Nevertheless, a balanced con-
vergence and diversity is crucial to the performance
of MOEAs in solving MaOPs. To further investigate
the capabilities of existing dominance relations on this
aspect, we consider the population containing seven
candidate solutions as shown in Fig. 2(a). In this pop-
ulation, candidate solutions b, c, d, e, and f have much
smaller objective values than candidate solutions a and
g. In terms of convergence and diversity, it is clear that

candidate solutions a and g should be identified as dom-
inated solutions and discarded, whereas the other can-
didate solutions should be identified as non-dominated
solutions. Since the Pareto front is not known a priori,
the convergence is determined by the summation of
objective values of a population rather than the distance
of the population to the Pareto front. Therefore, the
convergence of the non-dominated solution set will sub-
stantially deteriorate if candidate solutions a and g are
selected. On the other hand, the definition of diversity
is consistent with those in most literature (i.e., evenness
and spread of a population [31], [32]), so the diversity of
the non-dominated solution set can only be improved a
little if a and g are selected.

All the eight dominance relations shown in Fig. 1 are
employed to identify the non-dominated solutions in
the population, and the parameters of them follow the
settings as suggested in their original literature. To be
specific, the parameters S in CDAS is set to 0.39, the
parameter ϕi in GPO is set to 0.34, the parameter div
in grid dominance is set to 5, the parameter k in (1-k)-
dominance is set to 0.25, the number of reference vectors
used by θ-dominance is set to 3, and the parameter θ in
θ-dominance is set to 106 for weight vectors on the axes
and 5 for the rest weight vectors.

The results are shown in Fig. 2(b)–(f), where the filled
circles denote non-dominated solutions identified by the
dominance relations, the empty circles denote domi-
nated solutions, and the gray regions denote dominance
areas. As shown in Fig. 2(b), Pareto dominance, (1-
k)-dominance, and L-dominance identify all the seven
candidate solutions as non-dominated solutions, since
their dominance areas are identical in bi-objective space.
By expanding the dominance area, CDAS and GPO
identify a and g as dominated solutions as shown in
Fig. 2(c), while they also discard c, d, and e. Regarding
S-CDAS, since the dominance area is determined by the
extreme solutions a and g, S-CDAS cannot discard the
two candidate solutions; by contrast, S-CDAS identifies
c, d, and e as dominated solutions. The result of grid
dominance relation is similar to those of CDAS and
GPO, where candidate solutions a, c, d, e, and g are
identified to be dominated by candidate solutions b and
f according to their grid coordinates. For θ-dominance,
the three candidate solutions a, d, and g that are close
to the weight vectors are identified as non-dominated
solutions.

To summarize, for the population shown in Fig. 2(a),
Pareto dominance, (1-k)-dominance, L-dominance, and
θ-dominance lead to poor convergence and good diver-
sity; CDAS, GPO, and grid dominance lead to good con-
vergence and poor diversity; S-CDAS leads to both poor
convergence and diversity; whereas none of them can
well balance convergence and diversity in the obtained
non-dominated solution set. Therefore, to address this is-
sue, we propose a new dominance relation in this work.
The proposed domination relation can not only enhance
the selection pressure of MOEAs, but also maintain a
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good balance between convergence and diversity.

III. STRENGTHENED DOMINANCE RELATION

A. The Proposed Dominance Relation
The proposed strengthened dominance relation (SDR)

balances the convergence and diversity of the non-
dominated solution set by adopting a tailored niching
technique. Specifically, a candidate solution x is said to
dominate another candidate solution y in SDR (denoted
as x ≺SDR y) if and only if{

Con(x) < Con(y), θxy ≤ θ

Con(x) · θxy

θ
< Con(y), θxy > θ

, (12)

where

Con(x) =
M∑
i=1

fi(x) (13)

is a metric for measuring the convergence degree of x,
which has been widely used in many MOEAs [15], [33]–
[35], θxy denotes the acute angle between the objective
values of the two candidate solutions, namely,

θxy = arccos(f(x), f(y)), (14)

and θ is the size of the niche that each candidate solution
belongs to. In order to better handle MaOPs whose
objectives are badly-scaled or where the ideal point is not
the origin, the objective values of all candidate solutions
should be normalized according to the ideal point and
nadir point of the Pareto front before calculating Con(x)
and θxy. However, since the Pareto front is not known
a priori, the minimum value of each objective and the
maximum value of each objective of the population are
adopted as the ideal point and nadir point, respectively.

As can be seen from (12), each candidate solution
x in the population has a niche with size θ, and the
dominance relationship related to the candidate solution
x is determined by mainly considering the candidate
solutions in its niche. According to the first formula in
(12), if the angle between any x and a candidate solution
y is smaller than θ, x is said to dominate y once the
convergence degree of x is smaller than that of y. It
means that, inside each niche, since there do not exist
two non-dominated solutions having a smaller angle
than θ, the diversity of the non-dominated solution set is
naturally preserved. By contrast, according to the second
formula in (12), if two candidate solutions x and y are
not inside the same niche (i.e., θxy > θ), x is still able to
dominate y if the convergence degree of y is much worse
than that of x, where the probability that x dominates
y is negatively related with the angle θxy. In this way,
the convergence of the non-dominated solution set can
be guaranteed.

Fig. 3 illustrates the dominance area obtained by SDR
in bi-objective space. On one hand, since y1 is located
inside the niche of x and has worse convergence degree
than x, x dominates y1; on the other hand, since y2

is located outside the niche of x and has much worse

f
1

f
2

x
y
1 y

2

ideal point

Fig. 3. The dominance area of solution x obtained by SDR in bi-
objective space. x dominates y1 since y1 is located inside the niche of x
(i.e., θxy1 < θ) and has worse convergence degree than x; x dominates
y2 since y2 is located outside the niche of x (i.e., θxy2 > θ) and has
rather worse convergence degree than x.

convergence degree than x, x still dominates y2. As a
result, the dominance area of x consists of two parts:
The first part is given by the first formula in (12), where
x dominates all candidate solutions inside its niche with
worse convergence degrees than it; the second part is
given by the second formula in (12), where x dominates
those outside its niche with rather worse convergence
degrees than it. According to (12), it is worth noting
that some candidate solutions that are worse in all ob-
jectives compared to another solution (i.e., the candidate
solutions that are Pareto-dominated) may be regarded as
non-dominated by SDR, which is not desired. However,
SDR does not adopt Pareto dominance to regard these
solutions as dominated, since only a few candidate solu-
tions in the population are Pareto-dominated on MaOPs,
and they have little influence on the performance of SDR.
More importantly, the detection of these solutions can
highly increase the computational complexity of SDR.

The parameter θ, which determines the niche size,
is crucial to the proposed SDR. While similar parame-
ters in existing dominance relations such as CDAS and
GPO are predefined by users, the parameter θ in the
proposed SDR can be adaptively estimated according
to the distribution of candidate solution set. For most
existing MOEAs, since the environmental selection al-
ways selects half of the combined population obtained at
each generation, the target of adapting θ is to guarantee
that the ratio of the non-dominated solutions in a given
candidate solution set is around 0.5. Consider the two
populations shown in Fig. 4 of different distributions,
θ should be set to 0.3 if three candidate solutions in
each population are expected to be dominated since
only one candidate solution is maintained in each niche.
Specifically, for the population shown on the left, the
minimum angles between each candidate solution and
the rest are 0.1, 0.1, 0.2, 0.2, 0.3 and 0.3, hence either one
of a and b, c and d, or e and f can be dominated; for
the population shown on the right, the minimum angles
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Fig. 4. Two populations of different distributions, where the minimum
angles between each candidate solution and the rest in the population
shown on the left are 0.1, 0.1, 0.2, 0.2, 0.3 and 0.3, and the minimum
angles between each candidate solution and the rest in the population
shown on the right are 0.1, 0.1, 0.2, 0.3, 0.4 and 0.5. Obviously, θ should
be set to 0.3 if the number of non-dominated solutions is expected to be
half the population size since only one candidate solution is maintained
in each niche.

between each candidate solution and the rest are 0.1, 0.1,
0.2, 0.3, 0.4 and 0.5, hence at most three of a, b, c, and
d can be dominated. In fact, θ should be set to the third
minimum value of the unique values of the minimum
angles between each pair of candidate solutions, which
is exactly 0.3 for both of the two populations. As a result,
in order to guarantee that the ratio of non-dominated
solutions in a solution set P is always around 0.5, θ is
set to the ⌊ |P |

2 ⌋-th minimum element of

{ min
q∈P\{p}

θpq | p ∈ P}, (15)

where θpq denotes the acute angle between any pair
of candidate solutions p and q. Some empirical results
demonstrating the effectiveness of adaptive estimation
of θ can be found in Section IV-E.

We have the following properties according to the
definition of SDR, which illustrate that SDR is irreflexive,
antisymmetric, and non-transitive, respectively.

Property 1: For any candidate solution x, x ⊀SDR x.
Proof: According to (12), if x ≺SDR y, then Con(x) <

Con(y). Since Con(x) ≮ Con(x), x ⊀SDR x.
Property 2: If x ≺SDR y, then y ⊀SDR x.

Proof: By x ≺SDR y, we have that Con(x) < Con(y),
i.e., Con(y) ≮ Con(x), so y ⊀SDR x.

Property 3: If x ≺SDR y and y ≺SDR z, we cannot
deduce that x ≺SDR z.

Proof: Assume that f(x) = (0, 3), f(y) = (2, 2),
f(z) = (5, 0), and θ = π/4. According to (12), we have
that x ≺SDR y, y ≺SDR z, but x ⊀SDR z.

Note that since the proposed SDR is non-transitive,
some popular non-dominated sorting approaches like
deductive sort [36] and efficient non-dominated sort [22]
cannot be adopted. This is because these non-dominated
sorting approaches take advantage of the transitivity of
dominance relation, and some dominated solutions may
be regarded as non-dominated if the dominance relation
is non-transitive. As a consequence, SDR can only be
embedded in the non-dominated sorting approaches that

Fig. 5. The result of SDR performed on a population with seven
candidate solutions, where the filled circles denote non-dominated
solutions identified by SDR, the empty circles denote dominated
solutions, and the gray regions denote dominance areas.

do not take advantage of the transitivity of dominance
relation, such as fast non-dominated sort [2].

B. Analysis of SDR
In the following, we verify the effectiveness of SDR

in balancing convergence and diversity by comparing it
with eight existing dominance relations shown in Fig. 1.
We first consider the proposed SDR on the population
shown in Fig. 2(a). The non-dominated solutions identi-
fied by SDR are plotted in Fig. 5, where SDR identifies
b, c, e, and f as non-dominated solutions. a and g are
identified as dominated solutions by SDR since they
have much worse convergence degrees than the others,
and d is identified as dominated solution since it locates
in the same niche with c or e. It is clear that the non-
dominated solution set identified by SDR has better
convergence and diversity than those identified by the
dominance relations shown in Fig. 2.

Despite that existing dominance relations can en-
hance selection pressure for MOEAs in solving MaOPs,
as shown in the literature [7], [8], [30], most of the
dominance relations can only find a set of solutions
concentrating on a small region of the Pareto front.
The Pareto front of an MOP consists of all the non-
dominated solutions in the objective space in the sense
of Pareto dominance, and MOEAs aim to find a rep-
resentative set of solutions covering the Pareto front
as comprehensively as possible. However, since most
existing dominance relations are modified to be more
strict than the original Pareto dominance relation, some
non-dominated solutions on the Pareto front can also be
identified as dominated, thus sacrificing the distribution
of the candidate solutions. By contrast, as evidenced
by Fig. 6, the proposed SDR can address this issue as
it maintains a good balance between convergence and
diversity, where the non-dominated regions are gener-
ated using the non-dominated solutions identified by
each dominance relation among 5000 solutions randomly
sampled on each Pareto front. Note that the Pareto
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Fig. 6. The non-dominate regions (shown in gray) identified by seven dominance relations on the Pareto fronts of DTLZ2, CDTLZ2, and IDTLZ2
with 3 objectives, which are generated using the non-dominated solutions identified by each dominance relation among 5000 solutions randomly
sampled on each Pareto front.

dominance relation and (1-k)-dominance relation are
not involved in the figure, since these two dominance
relations will identify all the candidate solutions on the
Pareto fronts as non-dominated solutions if the number
of objectives is smaller than four.

The parameter settings of these dominance relations
are the same to the recommended ones as described in
Section II-B. The number of reference vectors used in θ-
dominance is set to 300. As can be observed from Fig. 6,
the non-dominated region identified by SDR roughly
covers the whole Pareto front of each test instance,
whereas the non-dominated regions identified by the
other existing dominance relations easily shrink to a
small region of each Pareto front. To be specific, for dom-
inance area expansion based relations, CDAS, S-CDAS,
and GPO, the non-dominated regions identified by them
are merely located in the center of each Pareto front,
since the candidate solutions in the center can domi-
nate the boundary candidate solutions in terms of the
expanded dominance area. The non-dominated region
identified by grid dominance uniformly distributes in
several small regions of each Pareto front, failing to com-
prehensively cover the whole Pareto front. The is due to
the fact that the grids in the grid dominance uniformly
distribute in an M -dimensional hypercube, whereas the
Pareto front is an (M − 1)-dimensional manifold [37],
and thus the grids intersecting with the Pareto front are
discrete. For L-dominance, it identifies non-dominated
solutions mainly based on their Euclidean distances to
the origin in three-objective space, hence only the region
closest to the origin can be identified as non-dominated
region. For θ-dominance, since the distribution of the
weight vectors are uniformly sampled on a simplex unit
hyperplane, the non-dominated region is able to cover
the simplex-like Pareto fronts of DTLZ2 and CDTLZ2;
however, it can not deal with irregular Pareto fronts
where the shapes are not consistent with the uniformly

sampled weight vectors, such as the inverted Pareto
front of IDTLZ2.

By contrast, since the proposed SDR balances the
convergence and diversity of the non-dominated solu-
tions by identifying one candidate solution to be non-
dominated in each niche, it is always able to roughly
cover the whole Pareto fronts of the various test in-
stances. It should be noted that although the non-
dominated regions identified by SDR are similar to those
identified by the Pareto dominance, SDR identifies some
crowded solutions on the Pareto fronts as dominated so-
lutions. The elimination of these crowded solutions has
little influence on the convergence to the entire Pareto
front, but can greatly improve the selection pressure on
MaOPs.

SDR balances the convergence and diversity of the
non-dominated solution set by keeping one solution
with the best convergence degree in each niche. In
fact, scalarizing multicriteria approaches (e.g., hyperbola
efficiency [38]) and decomposition based MOEAs (e.g.,
MOEA/D [39]) adopt similar ideas to obtain a solu-
tion set with well balanced convergence and diversity,
while the motivation of SDR is completely different. In
scalarizing multicriteria approaches and decomposition
based MOEAs, solutions are expected to converge to
the positions determined by the aggregation functions
and weight vectors; by contrast, the proposed SDR
adaptively selects the candidate solutions with better
convergence and diversity. As a consequence, SDR can
adapt to various shapes of Pareto fronts without any
aggregation function or weight vector.

IV. EXPERIMENTAL RESULTS

In this section, we first empirically compare the pro-
posed SDR with eight existing dominance relations on a
number of many-objective benchmark problems. Then, a
new MOEA, termed NSGA-II/SDR, is established based
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on SDR and NSGA-II and compared with several state-
of-the-art MOEAs tailored for MaOPs. Afterwards, the
performance of the proposed SDR is verified on six ex-
isting MOEAs. Lastly, the effectiveness of the parameter
θ in SDR is verified on several test instances. All the
experiments are implemented on the PlatEMO 1 [40].

A. Experimental Settings
1) Dominance relations: The proposed SDR is compared

with Pareto dominance [41], CDAS [6], S-CDAS [24],
GPO [7], grid dominance [9], (1-k)-dominance [28], L-
dominance [29], and θ-dominance [12] in the experi-
ments. For fairness, the parameter setting for each dom-
inance relation is the same as introduced in Section II-B.

2) Algorithms: To evaluate the performance of NSGA-
II/SDR, it is compared with four state-of-the-art MOEAs
in the experiments, namely, NSGA-III [42], MOEA/DD
[18], RVEA [43], and MOMBI-II [44]. The effectiveness
of the proposed SDR is also verified on six MOEAs,
namely, NSGA-II [2], SPEA2 [20], PESA-II [21], GrEA
[9], KnEA [14], and VaEA [15]. In MOEA/DD, the size
of neighborhood T is set to ⌈0.1N⌉, the neighborhood
selection probability δ is set to 0.9, and the maximum
number of solutions replaced by each offspring nr is
set to ⌈0.01N⌉, with N denoting the population size. In
RVEA, the penalty parameter α in APD is set to 2, and
the parameter fr controlling the frequency of reference
vector adaption is set to 0.1. In MOMBI-II, the threshold
of variance α is set to 0.5, the tolerance threshold ϵ is set
to 0.001, and the record size of nadir vectors is set to 5.
In PESA-II, the number of divisions in each objective is
set to 6. In GrEA, the number of divisions div is set to
10. In KnEA, the rate of knee points T is set to 0.5.

3) Genetic operators: The simulated binary crossover
[45] and polynomial mutation [46] are used to generate
offsprings in all the considered MOEAs. The probability
of crossover is set to 1, the probability of mutation is set
to 1/D, and the distribution index of them is set to 20,
where D denotes the length of decision variables.

4) Benchmark problems: The widely used DTLZ [47] and
WFG [48] test suites are employed as the test problems.
Besides, the scaled DTLZ1–DTLZ2 (SDTLZ1–SDTLZ2),
convex DTLZ2 (CDTLZ2) [42], inverted DTLZ1 (IDTLZ1)
[49], multi-point distance minimization problem (MP-
DMP), and multi-line distance minimization problem
(ML-DMP) [50] are also involved in the experiments.
Note that for DTLZ5, the version proposed in [51] is
adopted. For all the eleven DTLZ problems, the length
of decision variables is set to K + M − 1, where M
denotes the number of objectives and K is set to 5 for
DTLZ1, SDTLZ1, and IDTLZ1, 20 for DTLZ7, and 10 for
the others. The scaling factor in SDTLZ1 and SDTLZ2 is
set to 2. Regarding the nine WFG problems, the length
of decision variables is set to K + L, where K and L
are set to M − 1 and 10, respectively. For MP-DMP and
ML-DMP, the length of decision variables is always 2,

1http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html

and the decision space is set to [−100, 100]2. Besides,
the maximum number of generations is adopted as the
termination criterion for all the MOEAs, which is set to
200 for all the MOPs.

5) Population size: The population size of all the al-
gorithms is set to the same on the problems with the
same number of objectives, namely, 210 for 5-objective
problems, 275 for 10-objective problems, and 240 for
15-objective problems. Accordingly, the Das and Den-
nis’s approach with two layers [42] is used to generate
the reference vectors used in θ-dominance, NSGA-III,
MOEA/DD, RVEA, and MOMBI-II, where the parame-
ters (p1, p2) controlling the numbers of reference vectors
along the outer and inner layers are set to (6, 0), (3, 2)
and (2, 2) for 5, 10 and 15 objectives, respectively.

6) Performance metric: The inverted generational dis-
tance (IGD) [52] and hypervolume (HV) [53] are em-
ployed to evaluate the performance of the algorithms,
which are the two most widely used performance metric
to measure both the convergence and diversity of the ob-
tained non-dominated solution set. A smaller IGD value
indicates a better performance of the algorithm, whereas
a larger HV value signals a better performance. For
calculating IGD, roughly 10000 reference points on the
Pareto front of each test instance are sampled by the Das
and Dennis’s approach with two layers. For calculating
HV, the reference point is set to (1, . . . , 1), and the objec-
tive values are normalized by the point 1.1×znad before
the calculation, where znad denotes the nadir point of
the Pareto front. All the algorithms are executed for 30
independent runs on each test instance. Furthermore, the
Wilcoxon rank sum test with a significance level of 0.05 is
also adopted to analyze the result, where ’+’, ’−’ and ’≈’
indicate that the result is significantly better, significantly
worse and statistically similar to that obtained by SDR
based algorithms, respectively.

B. Comparing SDR with Other Dominance Relations

To eliminate the effect of other selection criteria when
comparing dominance relations, the proposed SDR is
compared with eight existing dominance relations on
a simple evolutionary algorithm, where the dominance
relation is used as the only selection criterion in the en-
vironmental selection. In each generation, N offsprings
are generated by genetic operators based on randomly
selected parents, with N denoting the population size.
Then the population is combined with the offsprings
and sorted by a dominance relation, where only the
non-dominated candidate solutions survive to the next
generation. If the number of non-dominated solutions is
larger than N , they will be truncated randomly.

The mean IGD values of the nine dominance relation
based algorithms on DTLZ1–DTLZ7 are listed in Table I.
As can be observed, the SDR based algorithm outper-
forms the others on 11 out of the 21 test instances, and
the θ-dominance, S-CDAS, and GPO achieve 8, 1 and 1
best results, respectively.
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TABLE I
IGD VALUES OF NINE DOMINANCE RELATION BASED EVOLUTIONARY ALGORITHMS ON DTLZ1–DTLZ7 WITH 5, 10 AND 15 OBJECTIVES. THE

BEST RESULT IN EACH ROW IS HIGHLIGHTED.

Problem(M ) Pareto CDAS S-CDAS GPO grid (1-k)-dominance L-dominance θ-dominance SDRdominance dominance
DTLZ1(5) 2.48e-1 − 9.66e-2 − 2.71e-1 − 1.11e-1 − 6.72e+0 − 5.79e-2 − 1.85e-1 − 5.32e-2 + 5.55e-2

DTLZ1(10) 1.75e+1 − 2.42e-1 − 1.45e-1 − 5.32e-1 − 5.74e+0 − 2.57e-1 − 2.32e-1 − 1.06e-1 ≈ 1.06e-1
DTLZ1(15) 1.99e+1 − 3.63e-1 − 2.44e-1 − 7.94e-1 − 7.60e+0 − 1.25e+0 − 3.43e-1 − 1.24e-1 + 1.34e-1
DTLZ2(5) 2.76e-1 − 2.61e-1 − 1.04e+0 − 3.05e-1 − 9.13e-1 − 2.53e-1 − 1.11e+0 − 1.65e-1 + 2.07e-1

DTLZ2(10) 5.99e-1 − 5.30e-1 − 1.25e+0 − 5.07e-1 − 1.03e+0 − 1.23e+0 − 1.24e+0 − 4.24e-1 + 4.71e-1
DTLZ2(15) 8.63e-1 − 7.48e-1 − 1.31e+0 − 7.27e-1 − 6.17e-1 + 1.29e+0 − 1.29e+0 − 5.28e-1 + 6.26e-1
DTLZ3(5) 1.68e+0 − 6.30e-1 − 5.32e+0 − 5.98e-1 − 4.46e+1 − 9.40e-1 − 1.12e+0 − 2.04e+0 − 2.40e-1

DTLZ3(10) 2.84e+2 − 4.51e+0 − 3.37e+2 − 1.41e+0 − 5.16e+1 − 1.28e+0 − 1.23e+0 − 1.73e+0 − 4.75e-1
DTLZ3(15) 3.94e+2 − 8.53e+0 − 3.03e+2 − 5.35e+0 − 4.79e+1 − 1.36e+0 − 1.37e+0 − 1.77e+0 − 7.50e-1
DTLZ4(5) 2.69e-1 + 3.44e-1 ≈ 7.91e-1 − 3.85e-1 ≈ 7.92e-1 − 2.91e-1 + 9.40e-1 − 1.65e-1 + 4.77e-1

DTLZ4(10) 9.51e-1 − 6.16e-1 − 1.24e+0 − 5.47e-1 − 8.47e-1 − 7.93e-1 − 1.15e+0 − 4.35e-1 + 5.03e-1
DTLZ4(15) 1.23e+0 − 7.30e-1 − 1.47e+0 − 7.08e-1 − 9.60e-1 − 9.81e-1 − 1.26e+0 − 5.45e-1 + 6.82e-1
DTLZ5(5) 1.96e-2 − 1.13e-1 − 7.42e-1 − 2.36e-1 − 7.78e-1 − 1.64e-2 − 7.15e-1 − 7.67e-2 − 5.55e-3

DTLZ5(10) 3.11e+1 − 1.40e-1 − 3.77e+0 − 9.86e-2 − 7.52e-1 − 6.33e+0 − 7.18e-1 − 1.05e-1 − 4.83e-3
DTLZ5(15) 2.80e+1 − 1.15e-1 − 1.64e+1 − 9.75e-2 − 7.70e-1 − 1.53e+1 − 7.04e-1 − 1.36e-1 − 5.64e-3
DTLZ6(5) 6.63e+0 − 2.24e-1 − 9.70e+0 − 5.45e-1 − 9.96e-1 − 1.49e-1 − 5.17e-1 − 1.34e-1 − 7.79e-2

DTLZ6(10) 6.69e+0 − 2.12e-1 ≈ 9.95e+0 − 8.71e-1 − 1.10e+0 − 1.04e+1 − 9.60e+0 − 2.49e-1 − 1.25e-1
DTLZ6(15) 7.32e+0 − 2.62e-1 − 6.54e+0 − 9.11e-1 − 1.17e+0 − 7.49e+0 − 5.01e+0 − 3.92e-1 − 1.26e-1
DTLZ7(5) 4.90e-1 − 2.85e+0 − 4.14e-1 ≈ 7.02e-1 − 2.05e+0 − 4.89e-1 − 2.36e+0 − 5.49e-1 − 3.57e-1

DTLZ7(10) 1.54e+1 − 5.46e+0 − 1.04e+0 + 1.13e+0 + 2.68e+0 ≈ 4.69e+0 − 3.39e+0 − 2.08e+0 + 2.73e+0
DTLZ7(15) 5.05e+1 − 5.39e+0 ≈ 3.29e+0 + 2.08e+0 + 5.38e+0 ≈ 1.13e+1 − 3.85e+0 + 2.84e+0 + 5.40e+0
+/ − / ≈ 1/20/0 0/18/3 2/18/1 2/18/1 1/18/2 1/20/0 1/20/0 10/10/1

’+’, ’−’ and ’≈’ indicate that the result is significantly better, significantly worse and statistically similar to that obtained by SDR based
algorithm, respectively.
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Fig. 7. Parallel coordinates of the non-dominated solution set with
the median IGD among 30 runs obtained by nine dominance relation
based algorithms on 5-objective DTLZ7.

For visual observations, Fig. 7 plots the parallel co-
ordinates [54] of the non-dominated solution set with
the median IGD value among 30 runs obtained by the
algorithms based on the nine dominance relations on
5-objective DTLZ7, where each polyline in the figure
denotes one solution, and each vertex on the polyline
denotes one objective value. DTLZ7 has a discontinuous
Pareto front challenging the MOEAs in diversity preser-
vation. It can be observed that only Pareto dominance,
S-CDAS, (1-k)-dominance, θ-dominance and SDR can
make the solutions converge to the whole Pareto front of
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Fig. 8. Parallel coordinates of the non-dominated solution set with
the median IGD among 30 runs obtained by nine dominance relation
based algorithms on 10-objective DTLZ3.

DTLZ7. Fig. 8 plots the non-dominated solution set with
the median IGD value among 30 runs obtained by the
algorithms based on the nine dominance relations on 10-
objective DTLZ3. DTLZ3 has a multi-modal landscape,
which introduces a large number of local Pareto fronts
posing a stiff challenge for MOEAs to converge to the
global Pareto front. It can be seen that CDAS, GPO, (1-k)-
dominance, L-dominance, and SDR are able to push the
candidate solutions towards the global Pareto front. In
terms of diversity, however, only the candidate solutions
obtained by SDR show generally proper distributions.
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Algorithm 1: The procedure of NSGA-II/SDR
Input: N (population size)
Output: P (final population)

1 P ← RandomInitialize(N);
2 Normalize the objective values in P ;
3 [F1, F2, . . .]← Do non-dominated sorting on P by

SDR;
4 CrowdDis← CrowdingDistance(F );
5 while termination criterion not fulfilled do
6 P ′ ← Select N parents via binary tournament

selection according to the non-dominated front
and crowding distance of each solution in P ;

7 P ← P
∪
V ariation(P ′);

8

9 Normalize the objective values in P ;
10 [F1, F2, . . .]← Do fast non-dominated sort on P

by SDR;
11 CrowdDis← CrowdingDistance(F );
12

13 k ← Minimum value s.t. |F1

∪
. . .

∪
Fk| ≥ N ;

14 if |F1

∪
. . .

∪
Fk| > N then

15 Delete |F1

∪
. . .

∪
Fk| −N solutions from Fk

with the worst crowding distance values;

16 P ← F1

∪
. . .

∪
Fk;

17 return P ;

Therefore, in conclusion, SDR outperforms existing dom-
inance relations in balancing convergence and diversity.

C. Comparing NSGA-II/SDR with Other MOEAs
In this subsection, an MOEA, termed NSGA-II/SDR, is

developed on the basis of the proposed SDR and NSGA-
II. As shown by the pseudo code in Algorithm 1, NSGA-
II/SDR has the same framework with NSGA-II [2],
where the main difference is that the Pareto dominance is
replaced by the proposed SDR. Besides, the objective val-
ues of the candidate solutions are normalized according
to the maximum and minimum values in the population
before performing SDR in the algorithm. NSGA-II/SDR
is compared to four state-of-the-art MOEAs, i.e., NSGA-
III [42], MOEA/DD [18], RVEA [43], and MOMBI-II [44].
NSGA-III and MOEA/DD are two algorithms based on
both Pareto dominance and decomposition, and they
can obtain satisfactory performance on most benchmark
MaOPs. RVEA is a recently proposed decomposition
based MOEA, which have been verified to be superior
over many MOEAs in solving MaOPs. MOMBI-II is an
indicator based MOEA, which is also very effective for
solving MaOPs.

Table II lists the HV values obtained by the five
MOEAs on DTLZ1–DTLZ7, SDTLZ1, SDTLZ2, CDTLZ2,
IDTLZ1, WFG1–WFG9, MP-DMP and ML-DMP with 5,
10 and 15 objectives. Among the 66 test instances, NSGA-
II/SDR have obtained 36 best results, and the numbers of
best results obtained by NSGA-III, MOEA/DD, RVEA,
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Fig. 9. The convergence profiles of IGD values obtained by NSGA-
III, MOEA/DD, RVEA, MOMBI-II, and NSGA-II/SDR on 15-objective
DTLZ3, averaged over 30 runs.

and MOMBI-II are 13, 1, 7 and 9, respectively. For
further observations, Fig. 9 presents the convergence
profiles of IGD values obtained by the five MOEAs
on 15-objective DTLZ3, averaged over 30 runs. It is
clear that NSGA-II/SDR converges much faster than
the other four MOEAs. In addition, Fig. 10 draws the
non-dominated solutions obtained by the five MOEAs
on 15-objective DTLZ5 and IDTLZ1. For DTLZ5 with a
degenerate Pareto front, only the population obtained
by NSGA-II/SDR can converge to the Pareto front and
spread uniformly. As for IDTLZ1 with an inverted Pareto
front, the diversity of the population obtained by NSGA-
II/SDR is obviously better than the diversity of the pop-
ulations obtained by the other four MOEAs. Therefore,
in conclusion, SDR also outperforms the state-of-the-art
MOEAs in balancing convergence and diversity.

D. Performance of SDR on Existing MOEAs
The proposed SDR is then embedded in NSGA-II [2],

SPEA2 [20], PESA-II [21], GrEA [9], KnEA [14], and
VaEA [15], and compared with the original versions of
the six MOEAs. NSGA-II, SPEA2, and PESA-II are three
classical MOEAs, which have been demonstrated to be
effective in solving MOPs. However, their performance
deteriorates sharply when meeting MaOPs, since the
Pareto dominance relation they used is ineffective on
MaOPs. By contrast, GrEA, KnEA, and VaEA are three
recently proposed MOEAs combining Pareto dominance
with additional selection criteria, which perform fairly
well on MaOPs.

For simplicity, the improvement of the MOEAs based
on SDR in comparison to their original versions (i.e.,
those based on Pareto dominance) is recorded. The value
in each cell of Table III is calculated as

Improve = (
IGDPareto

IGDSDR
− 1)× 100%, (16)

where IGDPareto and IGDSDR are the mean values of
IGD obtained by an MOEA based on Pareto dominance
and SDR, respectively. Improve > 0 indicates that the
performance of the MOEA based on SDR is better than
the version based on Pareto dominance, and a greater
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TABLE II
HV VALUES OF NSGA-III, MOEA/DD, RVEA, MOMBI-II, AND NSGA-II/SDR ON DTLZ1–DTLZ7, SDTLZ1, SDTLZ2, CDTLZ2, IDTLZ1,

WFG1–WFG9, MP-DMP AND ML-DMP WITH 5, 10 AND 15 OBJECTIVES. THE BEST RESULT IN EACH ROW IS HIGHLIGHTED.

Problem M NSGA-III MOEA/DD RVEA MOMBI-II NSGA-II/SDR

DTLZ1
5 9.7578e-1 (1.30e-3) + 9.7737e-1 (1.11e-3) + 9.6109e-1 (2.14e-2) ≈ 9.7644e-1 (7.84e-3) + 9.6688e-1 (2.54e-3)
10 8.3164e-1 (2.87e-1) − 9.9447e-1 (2.15e-3) − 9.9603e-1 (1.58e-3) ≈ 9.2316e-1 (7.23e-2) − 9.9611e-1 (4.82e-4)
15 5.4543e-1 (4.27e-1) − 9.4016e-1 (1.21e-2) − 9.8947e-1 (5.39e-3) − 8.6019e-1 (9.52e-2) − 9.9750e-1 (6.38e-4)

DTLZ2
5 8.0899e-1 (6.26e-4) + 8.1031e-1 (6.46e-4) + 8.1046e-1 (6.53e-4) + 8.0998e-1 (4.60e-4) + 7.9283e-1 (2.10e-3)
10 9.3703e-1 (5.03e-2) − 9.6697e-1 (4.63e-4) + 9.6756e-1 (3.05e-4) + 9.6558e-1 (3.04e-3) + 9.6236e-1 (2.06e-3)
15 9.0718e-1 (5.97e-2) − 8.7942e-1 (2.04e-2) − 9.7906e-1 (7.07e-3) − 8.9199e-1 (4.96e-2) − 9.8999e-1 (1.36e-3)

DTLZ3
5 2.3919e-2 (9.88e-2) − 1.5554e-2 (4.74e-2) − 2.4240e-2 (6.66e-2) − 6.6809e-1 (1.70e-1) ≈ 6.8342e-1 (1.91e-1)
10 0.0000e+0 (0.00e+0) − 8.9910e-2 (2.22e-1) − 8.3030e-3 (2.51e-2) − 7.4329e-1 (2.08e-1) − 7.6288e-1 (3.91e-1)
15 0.0000e+0 (0.00e+0) − 2.6049e-1 (3.39e-1) − 1.6921e-1 (3.18e-1) − 3.2682e-1 (1.34e-1) − 8.3682e-1 (3.46e-1)

DTLZ4
5 8.0327e-1 (2.34e-2) + 8.1065e-1 (8.02e-4) + 8.1079e-1 (4.59e-4) + 8.0479e-1 (2.16e-2) + 7.9241e-1 (2.60e-3)
10 9.5517e-1 (2.37e-2) − 9.6900e-1 (3.18e-4) + 9.6978e-1 (3.43e-4) + 9.7332e-1 (2.37e-4) + 9.6017e-1 (2.36e-3)
15 9.5763e-1 (4.43e-2) ≈ 9.8801e-1 (1.04e-3) ≈ 9.9074e-1 (1.45e-3) + 9.8889e-1 (2.61e-3) ≈ 9.8797e-1 (1.38e-3)

DTLZ5
5 2.6840e-1 (6.98e-3) ≈ 2.3627e-1 (5.62e-3) − 2.4207e-1 (7.15e-3) − 2.2197e-1 (1.16e-2) − 2.7303e-1 (5.83e-4)
10 3.4597e-3 (8.90e-3) − 1.9064e-1 (1.35e-2) − 1.8683e-1 (1.10e-2) − 9.9535e-2 (1.32e-2) − 2.3611e-1 (5.66e-4)
15 3.9348e-4 (1.76e-3) − 1.8255e-1 (4.20e-3) − 1.4097e-1 (3.67e-2) − 9.5089e-2 (6.26e-3) − 2.3034e-1 (6.19e-4)

DTLZ6
5 1.4621e-1 (5.34e-2) − 2.2614e-1 (8.10e-3) − 1.8357e-1 (3.00e-2) − 1.6779e-1 (3.42e-4) − 2.4552e-1 (5.17e-3)
10 0.0000e+0 (0.00e+0) − 1.7046e-1 (4.21e-2) − 1.2152e-1 (3.47e-2) − 1.0793e-1 (2.34e-2) − 1.9054e-1 (8.13e-3)
15 0.0000e+0 (0.00e+0) − 1.0226e-1 (7.04e-2) − 8.8366e-2 (4.24e-2) − 9.4380e-2 (1.04e-2) − 1.8689e-1 (7.33e-3)

DTLZ7
5 2.4248e-1 (4.36e-3) + 1.0474e-1 (2.89e-2) − 2.2050e-1 (3.81e-3) ≈ 2.5430e-1 (9.73e-3) + 2.1727e-1 (1.22e-2)
10 1.1461e-1 (1.12e-2) + 7.9968e-5 (3.37e-5) − 1.2376e-1 (1.96e-2) + 1.5628e-1 (9.34e-3) + 6.4970e-4 (4.05e-4)
15 4.6537e-1 (2.89e-2) + 9.5239e-3 (1.30e-3) − 2.2530e-1 (6.42e-2) + 5.5850e-1 (4.82e-4) + 2.2383e-2 (1.39e-3)

SDTLZ1
5 9.7967e-1 (2.02e-4) + 9.0148e-1 (3.71e-3) − 9.7922e-1 (8.65e-4) + 9.7949e-1 (2.15e-4) + 9.4138e-1 (6.46e-3)
10 9.9260e-1 (2.01e-2) + 7.9979e-1 (1.85e-2) − 9.1879e-1 (3.82e-2) − 9.3820e-1 (4.01e-2) ≈ 9.5702e-1 (1.80e-2)
15 9.6476e-1 (1.24e-1) + 7.9242e-1 (3.25e-2) ≈ 8.0607e-1 (5.62e-2) ≈ 8.5317e-1 (7.47e-2) + 7.0406e-1 (2.54e-1)

SDTLZ2
5 8.1242e-1 (3.88e-4) + 6.7446e-1 (4.88e-3) − 8.1160e-1 (3.78e-4) + 8.1200e-1 (3.41e-4) + 7.9412e-1 (2.27e-3)
10 9.6316e-1 (9.08e-3) − 4.9585e-1 (2.29e-2) − 8.2447e-1 (3.07e-2) − 9.7055e-1 (2.42e-4) + 9.6437e-1 (2.60e-3)
15 9.7634e-1 (1.00e-2) + 4.6178e-1 (6.61e-2) − 6.3847e-1 (9.54e-2) − 6.1964e-1 (1.30e-1) − 8.6036e-1 (5.79e-2)

CDTLZ2
5 9.9939e-1 (3.16e-5) + 9.9257e-1 (1.30e-3) + 9.9773e-1 (5.11e-4) + 9.9930e-1 (3.58e-5) + 9.8160e-1 (4.30e-3)
10 9.9972e-1 (4.87e-4) + 9.7719e-1 (2.19e-3) − 9.9543e-1 (1.26e-3) ≈ 1.0000e+0 (9.99e-7) + 9.9452e-1 (1.67e-3)
15 9.9985e-1 (2.20e-4) + 9.9405e-1 (1.03e-3) − 9.9461e-1 (1.46e-3) − 9.9917e-1 (1.15e-3) + 9.9604e-1 (7.90e-4)

IDTLZ1
5 8.1792e-3 (4.03e-4) − 5.9753e-3 (5.03e-4) − 2.7461e-3 (8.00e-4) − 5.4801e-3 (3.92e-4) − 1.3043e-2 (2.06e-4)
10 4.8550e-7 (9.39e-8) − 4.4125e-8 (1.41e-8) − 1.2406e-8 (5.63e-9) − 1.4913e-7 (2.74e-8) − 6.2035e-7 (3.26e-7)
15 2.1250e-5 (2.40e-6) − 7.5419e-6 (8.03e-7) − 4.6044e-6 (5.00e-7) − 7.3176e-6 (1.94e-7) − 6.4529e-5 (1.02e-5)

WFG1
5 5.4887e-1 (4.08e-2) − 4.6747e-1 (5.87e-2) − 6.0114e-1 (4.80e-2) − 9.8261e-1 (9.75e-3) + 7.5060e-1 (3.58e-2)
10 4.2657e-1 (4.11e-2) − 4.8213e-1 (5.78e-2) − 6.0616e-1 (7.32e-2) − 9.9741e-1 (5.41e-4) + 7.8961e-1 (4.25e-2)
15 4.3844e-1 (7.47e-2) − 3.4950e-1 (4.44e-2) − 6.5608e-1 (8.82e-2) − 9.8789e-1 (2.86e-2) + 8.9124e-1 (6.19e-2)

WFG2
5 9.8242e-1 (3.30e-3) + 9.5998e-1 (4.55e-3) − 9.7596e-1 (3.24e-3) + 9.7462e-1 (1.34e-2) + 9.6927e-1 (6.22e-3)
10 9.9340e-1 (4.29e-3) + 9.6365e-1 (8.19e-3) − 9.7083e-1 (5.61e-3) − 9.8646e-1 (2.24e-2) + 9.7874e-1 (2.24e-2)
15 9.8798e-1 (4.73e-3) + 9.6064e-1 (2.04e-2) ≈ 9.5399e-1 (3.25e-2) ≈ 8.9100e-1 (7.56e-2) − 9.3641e-1 (8.70e-2)

WFG3
5 6.3239e-1 (6.77e-3) ≈ 5.9868e-1 (1.13e-2) − 6.1298e-1 (1.65e-2) − 5.3767e-1 (1.53e-2) − 6.3697e-1 (8.75e-3)
10 6.4862e-1 (3.14e-2) + 4.9850e-1 (1.31e-2) − 2.7357e-1 (7.37e-2) − 1.9808e-1 (4.47e-3) − 6.2874e-1 (1.78e-2)
15 5.8129e-1 (3.93e-2) − 2.6392e-1 (2.09e-2) − 2.0569e-1 (2.05e-2) − 1.7051e-1 (4.99e-3) − 6.6286e-1 (3.17e-2)

WFG4
5 7.7513e-1 (2.67e-3) ≈ 7.5530e-1 (2.65e-3) − 7.7691e-1 (2.74e-3) ≈ 7.0241e-1 (5.55e-2) − 7.7482e-1 (4.62e-3)
10 9.0350e-1 (6.87e-3) − 7.7140e-1 (1.95e-2) − 8.8229e-1 (9.50e-3) − 8.8357e-1 (3.29e-2) − 9.3383e-1 (5.47e-3)
15 8.2530e-1 (4.03e-2) − 7.3239e-1 (3.53e-2) − 8.7665e-1 (2.09e-2) − 6.2027e-1 (9.32e-2) − 9.4964e-1 (7.56e-3)

WFG5
5 7.4711e-1 (2.42e-3) + 7.2998e-1 (5.11e-2) − 7.4683e-1 (2.05e-3) + 7.0329e-1 (1.92e-2) − 7.4040e-1 (3.25e-3)
10 8.7105e-1 (3.36e-3) − 7.1420e-1 (1.65e-2) − 8.6404e-1 (4.80e-3) − 7.9123e-1 (6.60e-3) − 8.8845e-1 (2.67e-3)
15 8.1199e-1 (3.04e-2) ≈ 7.0167e-1 (2.80e-2) − 8.5023e-1 (9.27e-3) ≈ 3.0148e-1 (7.59e-2) − 7.8236e-1 (1.15e-1)

WFG6
5 7.1818e-1 (1.53e-2) ≈ 6.9347e-1 (1.57e-2) − 7.2154e-1 (1.22e-2) ≈ 6.4927e-1 (4.37e-2) − 7.1859e-1 (1.26e-2)
10 8.4510e-1 (1.87e-2) − 7.1767e-1 (2.05e-2) − 8.0343e-1 (2.48e-2) − 7.7126e-1 (2.21e-2) − 8.7678e-1 (1.43e-2)
15 7.5781e-1 (2.73e-2) − 6.3532e-1 (3.55e-2) − 7.6722e-1 (4.79e-2) − 6.3532e-1 (6.79e-2) − 8.8247e-1 (2.02e-2)

WFG7
5 7.8409e-1 (3.18e-3) − 7.5887e-1 (5.10e-3) − 7.8783e-1 (2.87e-3) − 7.6818e-1 (2.19e-2) − 7.9003e-1 (2.29e-3)
10 9.2322e-1 (1.17e-2) − 8.2767e-1 (1.69e-2) − 8.9959e-1 (7.75e-3) − 8.9003e-1 (5.67e-3) − 9.5554e-1 (2.23e-3)
15 8.2190e-1 (4.34e-2) − 5.0136e-1 (4.95e-2) − 7.6203e-1 (1.01e-1) − 7.8296e-1 (9.88e-2) − 9.5943e-1 (6.86e-3)

WFG8
5 6.6566e-1 (4.96e-3) ≈ 6.4639e-1 (1.22e-2) − 6.6388e-1 (5.53e-3) − 3.6935e-1 (1.37e-2) − 6.6724e-1 (4.22e-3)
10 7.8899e-1 (3.06e-2) − 7.0532e-1 (5.24e-2) − 7.1108e-1 (9.90e-2) − 6.6086e-1 (4.51e-2) − 8.7806e-1 (2.47e-2)
15 6.5570e-1 (1.53e-1) − 4.9298e-1 (5.35e-2) − 6.8953e-1 (1.07e-1) − 3.2596e-1 (8.16e-2) − 8.5400e-1 (1.11e-2)

WFG9
5 7.2308e-1 (8.87e-3) − 6.9055e-1 (1.47e-2) − 7.2710e-1 (5.15e-3) − 4.7639e-1 (4.16e-2) − 7.5551e-1 (4.12e-3)
10 8.2432e-1 (3.77e-2) − 6.0699e-1 (3.73e-2) − 7.9557e-1 (2.45e-2) − 8.0764e-1 (1.22e-2) − 8.9294e-1 (4.02e-3)
15 7.8714e-1 (6.58e-2) − 6.0814e-1 (4.45e-2) − 7.3791e-1 (4.89e-2) − 2.8607e-1 (7.35e-2) − 8.7049e-1 (1.94e-2)

MP-DMP
5 1.1467e-1 (1.71e-3) − 8.1875e-2 (6.26e-3) − 7.5149e-2 (4.42e-3) − 8.2525e-2 (3.82e-3) − 1.2441e-1 (4.13e-4)
10 9.9498e-3 (1.67e-4) − 6.0229e-3 (2.70e-4) − 4.9983e-3 (4.55e-4) − 2.1744e-3 (3.85e-5) − 1.0881e-2 (1.04e-4)
15 5.4250e-4 (2.11e-5) − 3.2617e-4 (2.60e-5) − 2.3297e-4 (3.26e-5) − 9.7809e-5 (2.37e-6) − 6.2072e-4 (1.81e-5)

ML-DMP
5 2.9608e-1 (5.15e-3) + 2.5273e-1 (9.71e-4) − 2.4096e-1 (5.53e-3) − 2.3047e-1 (1.73e-2) − 2.9013e-1 (2.75e-3)
10 1.2122e-2 (1.62e-3) − 7.8785e-3 (9.44e-5) − 5.2727e-3 (6.11e-4) − 2.2232e-3 (7.08e-5) − 1.6035e-2 (1.99e-4)
15 9.5381e-4 (8.71e-5) − 6.0735e-4 (4.93e-5) − 3.3211e-4 (6.63e-5) − 1.1544e-4 (8.46e-6) − 1.0989e-3 (3.33e-5)

+/ − / ≈ 20/39/7 6/57/3 12/45/9 20/43/3

’+’, ’−’ and ’≈’ indicate that the result is significantly better, significantly worse and statistically similar to that obtained by NSGA-II/SDR,
respectively.
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Fig. 10. Parallel coordinates of the non-dominated solution set with the median HV among 30 runs obtained by NSGA-III, MOEA/DD, RVEA,
MOMBI-II, and NSGA-II/SDR on DTLZ5 and IDTLZ1 with 15 objectives.

TABLE III
IMPROVEMENT OF SDR BASED MOEAS IN COMPARISON TO THE SAME MOEAS BASED ON PARETO DOMINANCE. THE RESULT WHERE AN

MOEA BASED ON SDR IS BETTER THAN IT BASED ON PARETO DOMINANCE IS HIGHLIGHTED.

Problem(M ) NSGA-II SPEA2 PESA-II GrEA KnEA VaEA
DTLZ1(5) 246.95% 19.66% 131748.00% 214.50% 230.09% 101.95%

DTLZ1(10) 11817.36% 142907.07% 54167.23% 250.88% 4639.74% 101.25%
DTLZ1(15) 10313.99% 182674.26% 32315.21% 198.35% 2886.15% 235.76%
DTLZ2(5) 17.79% 6.04% 10.18% -6.44% -3.43% -4.19%

DTLZ2(10) 253.63% 433.91% 29.87% -6.50% -1.35% 3.15%
DTLZ2(15) 150.29% 349.11% 60.08% -7.93% -4.61% 11.71%
DTLZ3(5) 349.16% 10.39% 116928.10% 292.97% 135.62% 85.16%

DTLZ3(10) 235168.06% 327702.21% 83404.53% 735.71% 62313.46% 2924.73%
DTLZ3(15) 187636.42% 302265.42% 66003.62% 33096.54% 85689.74% 3744.82%
DTLZ4(5) 14.01% 35.21% -26.28% -4.91% -3.46% -3.52%

DTLZ4(10) 249.16% 421.45% 86.94% -6.28% -0.43% 6.79%
DTLZ4(15) 167.30% 345.25% 99.86% -7.36% -1.51% 12.63%
DTLZ5(5) 889.66% -49.83% 17.88% 679.59% -16.01% -42.34%

DTLZ5(10) 36545.40% 367006.47% 781339.59% 36207.13% 111887.50% 33493.00%
DTLZ5(15) 78676.02% 2590618.47% 479086.99% 142800.47% 224323.88% 39676.14%
DTLZ6(5) 1298.98% 516.24% 1380.03% 388.15% 339.36% 284.90%

DTLZ6(10) 4649.77% 7734.03% 1839.76% 1104.26% 2119.92% 3342.06%
DTLZ6(15) 5230.64% 7423.63% 1807.42% 1830.18% 1832.92% 1441.22%
DTLZ7(5) 24.28% -8.00% 17.98% -13.79% -9.39% 7.00%

DTLZ7(10) 73.94% 1.38% 538.91% 31.77% -62.04% -32.85%
DTLZ7(15) 172.12% 89.95% 1412.09% 204.92% 25.87% -8.31%

Better/Worse 21/0 19/2 20/1 14/7 12/9 16/5

value of Improve indicates a larger improvement of the
performance. As shown in Table III, the improvement of
SDR based NSGA-II, SPEA2, PESA-II, GrEA, KnEA, and
VaEA exists on 21, 19, 20, 14, 12 and 16 test instances,
respectively. In terms of NSGA-II, SPEA2, and PESA-II,
SDR substantially improves their performance on almost
all the MaOPs. Regarding GrEA, KnEA, and VaEA,
SDR can also improve their performance especially on
DTLZ1 and DTLZ3 with multi-modal landscapes and
DTLZ5 and DTLZ6 with degenerate Pareto fronts, even
if these three MOEAs were originally designed for many-
objective optimization.

Fig. 11 depicts the non-dominated set obtained by the
six MOEAs based on Pareto dominance and SDR on
15-objective DTLZ3. It is clear that the MOEAs based
on Pareto dominance cannot promote the population to

converge to the global Pareto front of DTLZ3, even for
the three MOEAs tailored for MaOPs. By contrast, the
population obtained by all the SDR based MOEAs has
significantly better convergence and diversity on DTLZ3.
In conclusion, it is evidenced that SDR is a promising
dominance relation for solving MaOPs.

E. Effectiveness of the Adaptive Estimation of θ

To verify the effectiveness of adaptive estimation of θ
in controlling the ratio of non-dominated solutions, we
execute the NSGA-II/SDR on DTLZ1 and DTLZ5 with 3,
5 and 10 objectives. Here the population size is fixed to
100. Fig. 12 plots the ratios of non-dominated solutions
identified by the proposed SDR during the optimization
process, averaged over 30 runs. As shown in the figure,
the ratio of non-dominated solutions is very close to 0.5,
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Fig. 11. Parallel coordinates of the non-dominated solution set with the median IGD among 30 runs obtained by NSGA-II, SPEA2, PESA-II,
GrEA, KnEA, and VaEA based on Pareto dominance and SDR on 15-objective DTLZ3.
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Fig. 12. The average ratios of non-dominated solutions during the
optimization process of NSGA-II/SDR on DTLZ1 and DTLZ5 with 3,
5 and 10 objectives.

which demonstrates the effectiveness of θ in adaptively
controlling the ratio of non-dominated solutions. Fig. 13
depicts the values of θ over the optimization process,
where it is clear that the values of θ are distinct on
different problems with different numbers of objectives.
This is due to the fact that the distributions of the can-
didate solutions can be various when solving different
problems. In particular, the Pareto front of M -objective
DTLZ1 is an (M − 1)-dimensional hyperplane, so the
candidate solutions in high-objective space distribute
much more sparsely than those in low-objective space.
By contrast, since the Pareto front of DTLZ5 is always
a degenerate one-dimensional curve, the candidate solu-
tions show similar distributions regardless of the specific
number of objectives. As a result, it is unreasonable to set
θ to a fixed value for solving different MaOPs; instead,
the value of θ should be adaptively adjusted during the
optimization process, due to the various distributions of
the candidate solutions.

V. CONCLUSION AND FUTURE WORK

In this paper, a dominance relation has been proposed
for many-objective optimization, termed strengthened
dominance relation (SDR). The proposed SDR is effec-
tive in balancing the convergence and diversity of the
non-dominated solution set, where it uses a niching
technique based on the angles between the candidate
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Fig. 13. The average values of θ during the optimization process of
NSGA-II/SDR on DTLZ1 and DTLZ5 with 3, 5 and 10 objectives.

solutions, and keeps only one candidate solution with
the best convergence to be non-dominated in each niche.
SDR is an adaptive method since the niche size is
automatically determined according to the distribution
of the candidate solutions, which does not need to be
predefined by users.

The comparison between SDR and eight existing dom-
inance relations on several examples and benchmark
problems has evidenced that SDR can better balance
convergence and diversity in many-objective optimiza-
tion. An MOEA, termed NSGA-II/SDR, is established
based on SDR and NSGA-II, which has been empirically
shown to be competitive to the state-of-the-art MOEAs
for solving MaOPs. SDR has also been verified on six
existing MOEAs, where the experimental results have
evidenced that SDR can bring considerable improvement
for these MOEAs in solving MaOPs.

Despite that NSGA-II/SDR performs fairly well on
MaOPs, it is known that the crowding distance is ineffec-
tive in solving MaOPs [55]. So it is desirable to further
improve the performance of NSGA-II/SDR on MaOPs
by developing a new MOEA which can effectively distin-
guish the non-dominated solutions identified by SDR. In
addition, it is also interesting to assess the performance
of SDR on real-world applications with many objectives
[56], [57] in the future.
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