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Abstract—Simple, fast and accurate channel models can assist
not only in a process of manufacturing of novel multi-core fibers,
but also in a communication link design, providing a convenient
way to investigate different properties of fibers that could be ap-
pealing for transmission. Models for coupled-core fibers are in a
great demand since this type of the fiber provides advantages for
data transmission, e.g. by reducing the effects of modal dispersion
and fiber nonlinearity. In this work we present a comparative
study of key features in a three coupled-core fiber (3CCF) for
scalar and vector random coupling models. Supermodes and their
group delays in an unperturbed 3CCF with polarization mode
mixing are comprehensively analyzed for the first time. It is shown
that birefringence does not impact significantly the group delay
values but it may affect the mode mixing. The intensity impulse
response and its RMS width were then investigated in a 3CCF with
perturbations and compared for two types of models. The shape of
the averaged intensity impulse response is found to be very similar
for two models and retained for various input polarization states,
while in the absence of averaging, the shape of the impulse response
strongly depends on the input state of polarization. We show that
the calculated RMS widths of the intensity impulse response agree
well with theoretical values, as well as between scalar and vector
cases.

Index Terms—Coupled-core fibers, random coupling, impulse
response, group delay, modal dispersion.

I. INTRODUCTION

IMPLEMENTATIONS of space-division multiplexing
(SDM) in optical fiber transmission have attracted significant

attention over the last decade due to the potential to increase
data throughput by utilizing spatial modes to transmit additional
information. A coupled-core fiber (CCF) is a particular type
of multi-core SDM fibers characterized by a close core
arrangement and strong coupling between the cores. It has
been extensively used in transmission experiments [1], [2],
[3], [4] and has shown promising results demonstrating an
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ability to transmit up to 172 Tbit/s of data [5]. Therefore,
CCFs are considered to be one of the prime candidates for
deployment of SDM fibers. Future engineering of transmission
links with CCFs relies on accurate models that describe static
and dynamic phenomena in such fibers. This is especially
relevant for random mode coupling effects that contribute to the
reduced accumulation of the modal dispersion (MD) or group
delay spread (GDS) with fiber length [6].

Numerous models where CCFs of various core count were
investigated can be categorized into deterministic static models
and random coupling models. Deterministic static models are
based on the assumption that the mode coupling is constant
over time. These models usually apply coupled-mode theory [7]
for characterising coupling effects in CCFs. This model was
demonstrated in the simplest case of a two coupled-core fiber
(2CCF) [8] for characterization of intermodal dispersion, with
the assumption that the optical power transfer between two fiber
cores can be described by the beating of the two normal modes of
the composite two-core structure. Moreover, with this approach
it is possible to analyze supermodes [9], [10] in an unperturbed
fiber, which are the spatial eigenmodes of the superstructure.
Supermodes and their propagation constants were extensively
studied for different symmetry structures of CCFs in [11]. How-
ever, these models disregarded polarization of the modes and its
inherent coupling. Hereinafter we refer to this case as the scalar
model/case, and the case where the birefringence is taken into
account will be referred as the vector model/case.

The effects of random mode coupling and group delay (GD)
spread in CCFs with perturbations can be also evaluated by
coupled-mode theory and were discussed in a recent work [12].
The coupled-mode equation in this case should account for
random variations of coupling coefficients and the concept of
the model is described by a concatenated fiber with a constant
segment length and random bending curvatures given for each
section [13]. Polarization mixing effects are taken into account
by a rotation matrix characterizing the fiber twist, which is
incorporated between each segment. The MD and its statistical
properties in CCFs has been also studied using an extension
of the formalism developed for polarization mode dispersion
(PMD) [14]. This model was generalized to the case when
mode-dependent loss (MDL) is present in the system and val-
idated by the comparison with experimental data for a three
coupled-core fiber (3CCF) [15]. The Stokes-Space analysis was
also applied in [16], where it was shown that in the regime of
strong mode coupling the intensity impulse response (IIR) of
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Fig. 1. Cross section of the 3CCF structure: d is a core pitch, r is a core
radii.

SDM links is Gaussian and its mean-square width is given by the
mean square of the MD vector of the link, confirming reported
experimental observations [17]. All these works provide studies
of MD where the polarization multiplexing is taken into account,
but lack the comparison with the scalar case. A comparative
study between the scalar and vector models can assist in analysis
of possible trade-offs in design of MIMO-DSP receivers and
conditions when the polarization effects have a strong impact
on the investigated features or how accurately the scalar model
describes the properties of a CCF.

In this work we present for the first time, to the best of our
knowledge, a comparative analysis between scalar and vector
models for a 3CCF. We derive for the first time an analytically
tractable vector model of the supermodes, their propagation
constants and GDs for an unperturbed (ideal) 3CCF, accounting
for the birefringence from the presence of nearby cores. We then
extend the model to account for the effects of random mode
coupling and analyze the IIR as well GDs in a 3CCF by using
the concatenated waveplate model. Comparisons with measured
impulse responses then enable an estimate of the correlation
length of the fiber. A comparison between the results in the
scalar and vector cases is presented for all the studied features,
which compliments Ref. [15], [16].

The article is organized as follows. In Section II we describe
the supermode analysis for the scalar and vector models for
an unperturbed 3CCF. The random coupling model is then
presented in Section III. In Section IV we present the model-
ing results for the GDs in a perturbed 3CCF and analyze its
IIR. Section V provides the discussion of the results and the
conclusion.

II. THE UNPERTURBED 3CCF

In this section, we present the supermodes and their GDs
characterization for a 3CCF with a structure depicted in Fig. 1
in the scalar case and investigate supermodes for the vector case
using coupled-mode theory [7].

A. The Scalar Model

According to coupled-mode analysis, the lossless interaction
between the modes of the individual cores in a 3CCF can be

described by the following equation:

d

dz
�A = −iM �A, (1)

where �A = (A1 A2 A3)
T is the complex amplitude of the

electrical field with D = 3 components in each core and M is
the D ×D coupling matrix. The solution then takes the form

�A = T �A0, (2)

where T is the transfer matrix of a fiber and �A0 is an input
amplitude vector.

In a fiber with no spatial randomness, the transfer matrix of a
fiber of length L would be T = exp(jML). The spatial eigen-
modes, or the supermodes, can be calculated as the eigenvectors
of the matrix T, which in the case without randomness will be
the same as the eigenvectors of the matrix M:

M(ω) =

⎛
⎜⎝ β c12 c13

c21 β c23

c31 c32 β

⎞
⎟⎠ (3)

M contains frequency-dependent propagation constants β of
the individual single mode cores (assumed to be the same) and
coefficients cik describing the mode coupling from the ith core
to the kth core, where i, k = 1. . .D. In the simplest case the
coupling of ith core to the kth core is identical to the inverse
coupling, so cik = cki and in our calculation we further simplify
it and assume that the coupling associated with all the cores is
identical, so that cik = cki = c. The relation of the coupling
coefficient c to the physical parameters of step-index cores is
presented in the Appendix. Since M is Hermitian in a system
with no mode-dependant loss, it can be diagonalized by a unitary
matrix Y:

M = YΛY−1, (4)

where Λ is a diagonal matrix containing the eigenvalues βsk of
M:

Λ =

⎛
⎜⎝βs1 0 0

0 βs2 0

0 0 βs3

⎞
⎟⎠ (5)

and Y is a unitary matrix of the corresponding eigenvectors,
which we assume to be frequency independent. Eigenvalues
βsk are the frequency dependent propagation constants of the
supermodes.

The propagation constants of the supermodes βsk(ω) can then
be calculated by solving eigenvalue problem for the matrix M:

βs1(ω) = 2c(ω) (6)

βs2(ω) = βs3(ω) = −c(ω). (7)

Note that in this calculation we neglect the propagation constant
β as it is the common contribution to all eigenvalues and not
important for further discussion.

The supermodes and their propagation constants βsk(ω) in
this case are shown in Fig. 3(a). It is seen that there are three
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Fig. 2. Illustration of birefringence axes in (a) a 2CCF and (b) a ring-array
structured 3CCF, which manifests a combination of the structure shown in (a)
with its two ±120◦-rotated 2CCF instances. The numbers 1, 2, 3 show the
enumeration of the cores.

supermodes, two of which are degenerate (have the same prop-
agation constant).

The GD is the change of the propagation constant βsk(ω) over
the frequency ω and can be calculated as

τk =
dβsk(ω)

dω
L. (8)

The GDs can also be found from the eigenvalues of the delay
operator [18]:

D = −jT† dT
dω

. (9)

Calculated GDs are shown in Fig. 3(d). Here and henceforth
we use geometrical parameters of the 1.6 km 3CCF described
in [19] for calculations related to the fiber. These parameters can
also be found in Appendix.

Supermodes and their propagation constants for the scalar
model in different CCFs were thoroughly discussed in [11] and
the reader is referred to it to get more details.

B. Vector Model

In the case when the birefringence is taken into account, the
coupled-mode equation describing the interaction between the
modes will still have a structure of (1), however, the complex
amplitude of the electrical field, �A, will contain D = 6 com-
ponents: �A = (A1x A1y A2x A2y A3x A3y)

T . The cou-
pling matrixM from (3) should be transformed to a 6× 6matrix
and contain parameters of the birefringence axes, bx and by . In
general, this matrix can be written in the form

M(ω) =

⎛
⎜⎝B1 C C

C B2 C

C C B3

⎞
⎟⎠ (10)

where B1,B2,B3 are 2× 2 matrices describing the birefrin-
gence effects due to the presence of neighboring cores, so called
form birefringence [20]. The matrices C are also 2× 2 and
characterize the coupling between the cores. Here we as well
assume that the coupling associated with all the cores is identical
and orthogonal polarizations between modes do not couple, so

that C is given by

C =

(
c 0

0 c

)
(11)

Here we neglect a birefringence in coupling coefficients for
simplicity as it is a very small contribution [20].

The birefringence matrix describing birifringence effects
from a neighboring core along the x-axis as in Fig. 2(a) can
be expressed as

B =

(
bx 0

0 by

)
(12)

and we assume for symmetry reasons that by = −bx = b. The
expression for the birefringence b is given and explained in the
Appendix, but it can be observed that for typical fiber parameters,
b is around 2 orders of magnitude smaller than c. Note that
coupling coefficients c and the birefringence b are frequency-
dependent and the group delays will be related to their frequency
derivatives.

The birefringence for a 3CCF with a ring-array structure
can be described using a superposition of birefringences from
pairwise linear-array structures as shown in Fig. 2. As can be
seen, when the cores are placed along one line, they have the
same birefringence axes (2CCF case, Fig. 2(a)). However, when
the third core is placed, so that the ring-array structure is formed,
one has to project the birefringence from the third core to the
neighboring cores (as shown in Fig. 2(b)) with the rotation matrix
R(φ):

R(φ) =

(
cosφ sinφ

− sinφ cosφ

)
(13)

The birefringence matrix for each core can be then calculated
as the contribution from its two neighbors as

B1 = B+R(−120◦) ·B ·R(120◦) (14)

B2 = B+R(120◦) ·B ·R(−120◦) (15)

B3 = R(−120◦) ·B ·R(120◦) +R(120◦) ·B ·R(−120◦)
(16)

By plugging in B1, B2, B3 and C from (11) to (10), the
coupling matrix becomes

M(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−b
2

√
3b
2 c 0 c 0

√
3b
2

b
2 0 c 0 c

c 0 −b
2

−√
3b

2 c 0

0 c −√
3b

2
b
2 0 c

c 0 c 0 b 0

0 c 0 c 0 −b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

The propagation constants of the supermodes are the eigen-
values of matrix M and found to be

βs1(ω) = − (c+ b) (18)

βs2(ω) = βs3(ω) = 0.5(c−
√
4b2 + 9c2) ≈ −c− b2

3c
(19)
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Fig. 3. Supermodes and their propagation constants in case when (a) only the coupling effects take place (scalar model), (b) only birefringence is taken into
account and (c) the coupling and birefringence are taken into account (vector model). Calculated group delays for the (d) scalar model, (e) case without coupling
and (f) vector model are illustrated at the right side.

βs4(ω) = − (c− b) (20)

βs5(ω) = βs6(ω) = 0.5(c+
√
4b2 + 9c2) ≈ 2c+

b2

3c
. (21)

As can be seen from Fig. 3(c), there will be 6 supermodes with 2
degenerate pairs. Note that the first and second supermodes for a
3CCF are the “TE”- and “TM”-like supermodes shown in [21]
which is in good agreement with these results. Supermodes and
their propagation constants in Fig. 3(b) are shown to illustrate
the difference between the other two cases.

The calculated GDs are shown in Fig. 3(f). As can be seen,
the GDs for the vector case are very close to those in Fig. 3(d)
where the birefringence is not considered. The reason for this
is that the birefringence is usually much weaker in CCFs than
the coupling effects and does not impact the calculation result
significantly. It should also be pointed out that this model agrees
with previous works [22] in absence of birefringence.

III. RANDOM COUPLING MODEL FOR A COUPLED-CORE FIBER

The core separation and ellipticity in a realistic fiber will
vary by small amounts over the length of the fiber due to
manufacturing imperfections, causing small variations in the
core coupling and birefringence parameters, which results in a
randomized core coupling and phase delay between the modes of
the coupled cores. We will model this randomness as a random
unitary coupling matrix occuring periodically along the fiber.
In the following we will present a theoretical description of a
realistic model of such a fiber with random coupling along its

Fig. 4. Illustration of the fiber in the random coupling model: A fiber with
length L is concatenated on N parts, where the length of one part should be
in the range of the correlation length Lcorr , which is larger than the coupling
length Lc.

length. The equations that will be described in this section hold
both in the scalar and vector cases.

We will model a random propagation in a CCF by using a
concatenation rule originated from PMD calculus, which allows
the determination of the PMD vector of an assembly of con-
catenated fiber sections when the PMD vectors of the individual
sections are known [23]. Fig. 4 shows the schematic of the fiber
with the total length L, which is divided into N segments with
a constant segment length. The length of each section should
be at least slightly longer than the correlation length Lcorr, so
that the local principal modes (PMs) in the different sections
can be considered independent. This condition is analogous to
the original concatenation model where short birefringent fiber
segments should have constant principal states of polarization.
A piece of length of a CCF is modeled with the delay matrix
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Fig. 5. Real (blue) and imaginary (orange) parts of the element t11 of a random
transfer matrix Ttot calculated with different number of fiber concatenations
N for the vector model.

Td:

Td = exp (jM(ω)Ld), (22)

where Ld is the element length, and M(ω) is the frequency-
dependent coupling matrix described previously.

Random perturbations in CCFs can be considered by intro-
ducing a random unitary matrix U in the coupled-mode equa-
tion and can be modeled in various ways [12]. As mentioned
above, the randomness in real CCFs is likely a variation in
core size and separations along the fiber due to manufacturing
imperfections. For symmetry reasons we argue that this matrix
should have the Haar distribution [24], and can be realized using
QR-factorization [25].

The random coupling in a CCF can thus be modeled as a
concatenated sequence ofN such matrices giving a total transfer
matrix Ttot:

Ttot(ω) = Td,N ·UN · . . . ·Td,1 ·U1. (23)

The resulting matrix Ttot has to be unitary, as it is a product
of unitary matrices.

As an example, Fig. 5 demonstrates real and imaginary parts
of the element t11 of the 6× 6 transfer function Ttot calculated

with different number of concatenations N for the wavelength
range λ = 1545− 1548 nm. To compare with the 3CCF sample
we have in our lab (and characterized in [19]), we have kept
the total fiber length L to 1.6 km, and the length of each delay
element is thus Ld = L/N . The other fiber parameters are given
in the appendix. Since all elements have the same length, the
curve is (artificially) periodic in frequency and this period is
related to the inverse GDS of each element. The periodicity
can simply be removed by also randomly changing the length of
each element. We see that the period of fluctuations in frequency
increases with N , since the GDS in each element decreases. In
simulations in the next section we have used the same fiber
parameters and scaling with N .

IV. ANALYSIS OF GROUP DELAYS AND IMPULSE RESPONSE IN

THE 3CCF WITH RANDOM MODE COUPLING

In this section we present the results that were obtained using
the random coupling model. We discuss the GDs, the total power
IIR and its RMS width and compare these characteristics for the
scalar and vector models.

A. Group Delays

In Section II we showed the analysis of the supermodes, which
are the spatial eigenmodes of the fiber. The spatial eigenmodes
enter and exit the medium in the same spatial state. However,
if the random mode coupling contributes to a wavelength de-
pendence of the transfer matrix, the spatial eigenmodes become
wavelength dependent.

As was mentioned in Section II, the GDs in a fiber with the
random coupling can be found by calculating eigenvalues of the
delay operator D, which is described by (9), where we now use
Ttot instead of T.

The GDs for one realization of the transfer matrix are shown
in Fig. 6 for both vector (blue) and scalar (red) models calculated
for the different number of fiber concatenationsN . WhenN = 1
and N = 2 it is seen that the GDs remain constant over the
frequency range, while with N = 10 they start to constitute
random, but periodic behavior and decrease to 0 with increasing
N . While the GDs converge to 0 at largeN , they do not cross. As
was discussed in [26], the delay operator is a random Gaussian
matrix, and since the probability for such a matrix to have
two identical eigenvalues is negligibly small, the GDs do not
coincide. It is also notable that when N = 1 the GDs calculated
in case of the scalar and vector random coupling models are
indistinguishable. However, with increasing N all of the delays
become distinct.

Using the GDs one can calculate a fiber GDS, which can be
defined in different ways. Ho and Kahn define the GDS as the
difference between maximum and minimum GDs [26], while the
formula derived in [27] relates the GDS to the fiber geometry and
to the statistical properties of the structural fiber perturbations.
We propose instead to use the average squared GDS and define
it as the average of the squared eigenvalues τtot,k of the delay
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Fig. 6. GDs calculated in case of the vector random coupling model (blue
curves) and scalar random coupling model (red curves) with different number
of fiber concatenations N for the 1.6 km 3CCF.

operator, i.e.

〈GDS2〉 = 1

D

D∑
k=1

〈τ2tot,k〉, (24)

In a concatenation ofN ,D-dimensional delay matrices, this can
be calculated exactly as [26]

〈GDS2〉 =
N∑
j=1

D∑
k=1

〈τ2kj〉
D

, (25)

where τkj denotes the kth eigenvalue of the delay operator of
element j. In our model of randomly connected unperturbed
(ideal) 3CCFs of equal lengths, we have τkj = τk where τk
are the eigenvalues taken from the deterministic model given
in Section II, and the squared GDS becomes

〈GDS2〉 = N

D

D∑
k=1

τ2k . (26)

The benefits of using this metric for the GDS is twofold: (i) it
scales exactly linearly with fiber length, (ii) it equals the RMS

Fig. 7. Normalized total power IIR averaged over 50 realizations calculated
for different number of fiber concatenations N in the scalar case.

intensity impulse response averaged over all modes (as will be
shown in the next section). It also should be noted that this
relation for GDS is closely related to the mean-square length of
the generalized PMD vector defined in [14].

B. Impulse Response Analysis

We studied the impulse response of the 3CCF in simulations
by exciting each of the core by a short Gaussian pulse and
observing the received intensities in each of the cores and
polarizations.

A Gaussian pulse in time domain can be expressed as

u(t) = exp

(
− t2

2T 2
0

)
, (27)

where t is the time coordinate and T0 is the 1/e half-width of the
pulse.

If a Gaussian pulse enters a fiber, the output complex ampli-
tude can be found as

�A(t) = F−1[Ttot(ω) �A0F [u(t)]], (28)

where F [x] is the Fourier transform of x. The total power IIR
then can be calculated as I(t) = �AH(t) �A(t).

The total power IIR of the 3CCF calculated using the scalar
model and averaged over 50 different realizations is shown in
Fig. 7. We used a pulse width of T0 = 8 ps and the same wave-
length range as in Section III. For N = 1 there are two distinct
peaks separated by 183 ps, which corresponds to GDS defined
as as the difference between maximum and minimum GDs [26]
and agrees well with calculation presented in Section II. As we
increase the number of concatenations, there appear more peaks
that move closer to the central position and the impulse response
starts to be Gaussian-shaped at approximately N = 20.

The total power IIR of the 3CCF calculated using the vector
model and averaged over 50 different random fiber realizations
is shown in Fig. 8. Two different colors relate to the polarization
of the input state. As can be seen, the input state of polarization
does not affect a shape of the impulse response on average. It is
also evident that these impulse responses are similar to the ones
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Fig. 8. Normalized total power IIR averaged over 50 realizations calculated
for different number of fiber concatenations N in the vector case. Orange and
blue lines are related to the instances where a Gaussian pulse is injected to x-
and y-polarizations respectively.

Fig. 9. Normalized total power IIR in case of 1 realization calculated for
different number of fiber concatenations N in the vector case. Orange and blue
lines are related to the instances where a Gaussian pulse is injected to x- and
y-polarizations of core 1 respectively.

in the scalar case shown in Fig. 7. It is interesting to compare this
case with a single realization, which is illustrated in Fig. 9. It is
clearly seen that the polarization of the input state impacts the
amplitude and the shape of the IIR. While forN = 1 the impulse
responses look the same for two different input conditions, the
shape differs considerably for N > 2.

Using the calculated total power IIRs we can obtain the RMS
width as the difference between the second moment T2 and
square of the first moment T1:

TRMS =
√

T2 − T 2
1 , (29)

where the first moment can be found as

T1 =

∫
I(t) · tdt∫
I(t)dt

(30)

Fig. 10. Numerically calculated average RMS width of the total power IIR
shown in scalar (the green curves) and vector (the red curves) cases. The blue
curves show theoretical RMS widths calculated using (32).

and the second moment is

T2 =

∫
I(t)t2dt∫
I(t)dt

. (31)

The estimated RMS width TRMS should be also compared
with ones that can be derived theoretically:

〈T 2
RMS〉theory = 〈GDS2〉+ T 2

RMS0
, (32)

where TRMS0
is the RMS width of the input Gaussian pulse and

τk are the GDs of the unperturbed fiber calculated in Section II.
Here we use the same scaling as previously, keeping the total
fiber length of 1.6 km constant, so 〈GDS2〉 is a special case of
(26) and inversly proportional to N .

The dependence of the RMS width on the number of con-
catenations N is demonstrated in Fig. 10. Here we show three
figures, where we compare the RMS widths calculated from
the scalar and vector models as well as the comparison with
theoretical results. It is seen that the scalar and vector models
give very similar results, and at N > 20 the difference becomes
indistinguishable. The results also show a good agreement with
theoretical estimates. We found out from the characterization
experiments that the RMS widths of this 3CCF are 18.5, 18.6
and 18.9 ps for different output cores [19]. As can be noted from
the Fig. 10, calculated RMS width converges to the experimental
result when N ≈ 30.

V. DISCUSSION AND CONCLUSION

In this section, we discuss the results presented in Sections II,
III and IV.

A. Group Delays

The GDs that we calculated in this work can be analyzed from
two perspectives: a comparison between the scalar and vector
model and a comparison between the GDs in an ideal fiber and in
a 3CCF subjected to perturbations. As was shown in Section II,
taking into account the birefringence effects does not change the
GDs in an unperturbed 3CCF significantly, since in CCFs the
magnitude of birefringence is much smaller than the coupling,
b << c. However, in a 3CCF subject to random perturbations,
the GDs become more polarization dependent and change much
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more significantly. Moreover, when we increaseN , they become
distinct in contrast to the ideal case, when they form 2 groups.
For example, in case when N = 50, there is a clear difference
between the GDs in the vector and scalar cases, but also the GDs
related to the vector model are spaced much more than in ideal
case within one group.

It should be pointed out that Fig. 6 illustrates the GDs only
for one realization of the transfer matrix. The randomness of
the curves that is clearly seen for cases where N = 10, 20, 50 is
averaged out when we consider many realizations and the GDs
then converge to the ideal cases discussed in Section II (Fig. 3(e)
and (f). By defining the net GDS from the average square sum of
of the individual delays we obtain almost identical results from
the scalar and vector models.

B. Impulse Response

In Section IV we demonstrated that the averaged total power
IIRs calculated for the vector and scalar cases have identical
shapes, as well as the RMS widths (Fig. 10). It is also demon-
strated that the input state of polarization does not affect the
shape significantly when the averaging takes place. On the
contrary, changing the input state of polarization alters the shape
of the IIRs in case of a singe realization.

As has been reported in [17], the shape of the impulse
response of a 3CCF is Gaussian, which was also verified by
theory and simulations in [16]. It can be noted that in our
simulations the IIR’s shape becomes Gaussian after N = 20.

Finally we verified that the average RMS width of the impulse
response agrees well with an analytical formula exploiting the
average squared GDS, defined as suggested above.

The notebooks with simulation results and calculation files
within this work are accessible at [28].

APPENDIX

The coupling coefficients in matrix M can be calculated from
the equation below [7]:

c(ω) =

√
n2
1(ω)− n2

2(ω)

n2
1(ω)

· U
2

V 3
· K0(Wd/r)

r ·K2
1 (W )

, (33)

where n1, n2 are refractive indexes of the core and cladding
accordingly, r is the core radii, d is the core pitch (diameter),
V is the normalized frequency (V-parameter) and K denotes to
the modified Bessel functions of the first kind. U and W can be
found by solving the system of equations:{

U ·K0(W ) · J1(U) = W ·K1(W ) · J0(U)

U2 +W 2 = V 2
, (34)

where where Jn(x) is the Bessel function of the first kind.
The refractive index function for the core n1(ω) is obtained

from the Sellmeier equation for fused silica [29]. The refractive
index function for the cladding n2(ω) can be calculated using
the known refractive index difference Δ:

n2(ω) = n1(ω)Δ. (35)

Fig. 11. Frequency/wavelength dependence of the (a) birefringence, (b) cou-
pling coefficient and (c) refractive indices calculated for the 1.6 km 3CCF with
r = 4.75µm, d = 22.5µm and Δ = 0.44%.

The birefringence is given by [20]

b(ω) = Δ2β · 4U2W

V 4

K0(W )

K1(W )

×
[
I1(W )

K1(W )
− I2(W )

K0(W )

]
K2(Wd/r), (36)

where In(x) is the modified Bessel function of the first kind.
The frequency dependencies of the birefringence, coupling

coefficients and refractive indices are depicted in Fig. 11. We
used parameters of the same 3CCF [19] for calculation.
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