Hindawi

Security and Communication Networks
Volume 2018, Article ID 7247095, 16 pages
https://doi.org/10.1155/2018/7247095

Research Article

WILEY

Hindawi

Detecting Malware with an Ensemble Method Based on

Deep Neural Network

Jinpei Yan ®), Yong Qi @, and Qifan Rao

Department of Computer Science and Technology, Xian Jiaotong University, Xian, Shaanxi, China
Correspondence should be addressed to Yong Qi; giy@xjtu.edu.cn

Received 18 August 2017; Revised 3 December 2017; Accepted 6 February 2018; Published 12 March 2018
Academic Editor: Zonghua Zhang

Copyright © 2018 Jinpei Yan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Malware detection plays a crucial role in computer security. Recent researches mainly use machine learning based methods heavily
relying on domain knowledge for manually extracting malicious features. In this paper, we propose MalNet, a novel malware
detection method that learns features automatically from the raw data. Concretely, we first generate a grayscale image from malware
file, meanwhile extracting its opcode sequences with the decompilation tool IDA. Then MalNet uses CNN and LSTM networks
to learn from grayscale image and opcode sequence, respectively, and takes a stacking ensemble for malware classification. We
perform experiments on more than 40,000 samples including 20,650 benign files collected from online software providers and
21,736 malwares provided by Microsoft. The evaluation result shows that MalNet achieves 99.88% validation accuracy for malware
detection. In addition, we also take malware family classification experiment on 9 malware families to compare MalNet with other
related works, in which MalNet outperforms most of related works with 99.36% detection accuracy and achieves a considerable

speed-up on detecting efficiency comparing with two state-of-the-art results on Microsoft malware dataset.

1. Introduction

Nowadays, various kinds of software provide wealth re-
sources for users but also bring a certain potential danger;
thus malware detection is always a highly concerned issue
in computer security field. According to the recent study,
the number of malicious samples is rapidly increasing.
For instance, 69,277,289 kinds of malicious objects (scripts,
exploits, executable files, etc.) are detected by Kaspersky Lab
in 2016 [1]. The total number of malware samples increased
22% in the past four quarters to 670 million samples detected
by McAfee Labs [2] in 2017 The number of samples is too
large, requiring a highly effective way to detect malwares.

A large number of researches have studied methods for
analyzing and detecting malware. Traditional commercial
antivirus products usually rely on signature-based method,
which needs a local signature database to store patterns
extracted from malware by experts. However, this approach
has great limitations since specific minor changes to malware
can change the signature, so more and more malware could
easily evade signature-based detection by encrypting, obfus-
cating, or packing. Hence, many different malware detection

approaches with machine learning technology have been
proposed in recent years, such as static analysis which learns
statistical characteristics like API calls, N-grams, and so on
[3, 4] or dynamic behavior analysis [5]. Though dynamic
analysis does not require complex reverse engineering, it
needs to simulate the operation environment for malwares,
which is difficult to arouse all malware behaviors. At the same
time, it is time-consuming for malware behavior monitoring
since some malicious behaviors hide for a long time before
attack. For static analysis, a great strength is that it can achieve
rapid detection for massive malwares. However, various
encryption and obfuscation techniques are the major issue
for static analysis. Attackers can deliberately make various
changes on malwares, hence static analysis is difficult to
capture the characteristics of malware. Meanwhile, malware
uses packing technologies to prevent reverse engineering
which leads to high costs for static analysis.

At present, several machine learning methods [5-7] are
paid the most attention for solving the above problems
and have been applied to malware detection in the indus-
try. However, many of them heavily rely on the relevant
domain knowledge for malware analysis and artificial features

http://orcid.org/0000-0002-2959-6165
http://orcid.org/0000-0003-2386-4154
https://doi.org/10.1155/2018/7247095

extraction. These features are used to train a classification
machine learning model and finally make the classification
for a new file sample. But a serious problem is that malware
is constantly being created, updated, and changed. To deal
with this, a great deal of expert knowledge is required
to catch up the changing malware environment, and the
original well-designed features may not be applicable to a new
malware family (a malware family refers to a malware variants
group with homogeneous attack behaviors), resulting in
heavy and inefficient feature engineering work. Thus, how
to reduce the cost of artificial feature engineering and how
to extract useful information from the raw data and let
the model achieve features of self-learning to improve the
accuracy and efficiency for malware detection are our main
motivations.

In this paper, we present MalNet, a novel malware detec-
tion method for detecting whether a Windows executable file
is malware. MalNet performs a comprehensive static analysis
which includes two novel methods based on deep neural
networks. One method is learning from grayscale images by
Convolution Neural Network (CNN). The grayscale image
is extracted from raw binary file in which CNN can get
the structure features of a malware from its local image
patterns. The other method is learning from opcode sequence
by Long-Short Term Memory (LSTM). Opcode sequences
are extracted by decompilation tool where LSTM can learn
features about malicious code sequences and patterns. In
reality, since malware often contains very long opcode
sequences which cause the gradient vanishing problem of
LSTM when training, we take truncated backpropagation
algorithm based on subsequence to solve this problem in this
paper which can also allow LSTM parallel computing on a
bunch of subsequences to improve training efficiency. Mean-
while considering that malicious codes may be implanted into
a normal file by attackers, in this case malicious features or
behaviors only appear in some opcode subsequences; hence
we come up with subsequence selection method to filter out
benign subsequences of a malware which may mislead LSTM.
Overall, MalNet uses these two networks to learn features
from the raw data and then uses stacking ensemble to fuse
two networks’ discriminant result with extra metadata feature
and finally generates a binary classification result for malware
detection.

To verify the performance of MalNet, we perform evalu-
ation experiments on a large dataset, which contains 21,736
malware samples from Microsoft and 20,650 benign samples
collected by us. We choose 1/10 samples as validation dataset,
where MalNet achieves detection accuracy of 99.88% and
true positive rate of 99.14% with a false positive rate of 0.1%,
much higher than the N-gram baseline result. Meanwhile we
also make a malware family classification for 21,736 malware
samples in 9 malware families to compare MalNet with
other related works, where MalNet achieves 99.36% overall
accuracy outperforming most of other methods. Besides,
since rapid growing malware samples require a fast and
efficient malware detection method, we evaluate the detection
efficiency for MalNet. The result shows that since MalNet
does not need to do special feature extraction, it only takes
0.03 s to give a prediction in detection phase which is superior

Security and Communication Networks

comparing with two state-of-the-art methods only costing a
little detection accuracy behind.

In summary, we make the following contributions in this
paper:

(i) We propose a novel approach using deep neural net-
works for malware detection which takes CNN and
LSTM networks to automatically learning features
from the raw data to capture the malicious file struc-
ture patterns and code sequence patterns. It greatly
reduces the cost of artificial features engineering.

(ii) We design and implement MalNet, a malware detec-
tion method, and solve practical problems such
as grayscale image generation, very long sequences
learning and gradient vanishing problem for LSTM,
parallel computation for LSTM, and noise data pro-
cessing. And we further use stacking ensemble for
MalNet to combine networks’ results to optimize the
detection accuracy.

(iii) We make a series of evaluation experiments for
MalNet including malware detection and malware
family classification. The results show that MalNet
outperforms most of other related approaches on mal-
ware detection accuracy and gets a superior detecting
efficiency.

The rest of this paper is organized as follows. Related work
is discussed in Section 2. MalNet detection methodology
is introduced in Section 3. Experiments and analysis are
presented in Section 4. Sections 5 and 6 discuss and conclude
the paper.

2. Related Work

Malware detection has always been a concern area of research
in recent years. Several methods and techniques have been
proposed to counter the growing amount and sophistication
of malware.

Static Analysis for Malware Detection. Static analysis often
uses lexical analysis, parsing, control flow, and data flow
analysis techniques [8] to mine the program. One common
static malware detection method for the previous industry
communities is signature-based method. For an unknown
executable file, they can determine whether it is a known
malware by searching whether there is a matching signature
in the malicious code database. This detection method
[9] generated a unique signature identifier for a malware
based on some specific manually designed features. However,
signature-based methods are limited to detect unknown mal-
wares, since an unknown malware may contain new features
not captured by signatures. In addition, these signatures
present a series of fixed malicious characteristics. So if the
malware passes through the some encryption or obfuscation
operation, it will get a high probability to evade the signature-
based detection.

The current situation has promoted the development of
dynamic analysis. Moser et al. [8] explored the shortcomings
of static analysis methods and introduced a code obfuscation

Security and Communication Networks

scheme that make it harder to complete the detection relying
solely on static analysis. Since the dynamic analysis is not
susceptible to code obfuscation conversion, it is an important
complement to static analysis.

Dynamic Analysis for Malware Detection. Dynamic analysis
is used by running a malware in a controlled environment
(virtual machine, simulator, emulator, sandbox, etc.) and
analyzing the behavior of malicious code (interaction with
the system) [10]. Before executing the malware sample, the
corresponding monitoring tools are required to open first
such as Process Monitor, Capture BAT (for monitoring file
system and registry), Process Explorer, and Process Hacker-
replace (for monitoring process), Wireshark (for monitoring
network), and Regshot (for detecting system change).

In the process of dynamic analysis, malware detection
result comes from behavior information (including system
calls traces, network access, and file and memory modifi-
cations [5, 11]) collection and analysis from the operating
system (the execution environment of the program) through
software runtime. These techniques have been widely studied
as malware detection solutions, but they have also been
noted to be less robust when exposed to large dataset [12].
Since it is hard to simulate every situation that can arouse
malware behavior, it is difficult to determine the effective
time for monitoring malware activity and when to stop.
Hence, simulating all malware behaviors needs continuous
monitoring of malware behavior which results in colossal
waste of computer resources, and it will be an arduous task
when detecting mass malwares in present. However, antivirus
engines today receive a flood of new malware samples each
day, so an automated approach is needed to be fast and save
the cost of extensive manual analysis. A variety of machine
learning based techniques have been proposed and used for
malware detection.

Machine Learning Based Malware Detection. Recently, ma-
chine learning methods (e.g., Support Vector Machines
(SVM), Decision Trees (DT)) have been used to detect and
classify unknown samples for malware family due to its
scalability, rapidity, and flexibility. Schultz et al. [13] first
proposed to apply the data mining method to detect malware
and used three different types of static features, respectively,
PE head, string sequence, and byte sequence. Then a rule-
based algorithm called Ripper [14] is applied to DLL data
mining and used naive Bayesian as a learning algorithm to
find the character data and pattern feature information of
byte sequence. It takes the malicious code data as input and
obtains their best classification accuracy rate of 97.11%. Kolter
and Maloof [15] then achieved a better result by using N-
gram instead of nonoverlapping byte sequence features for
data mining. Their conclusion suggests that the best decision
can be obtained by using the boost decision tree.

Saxe and Berlin [16] instead proposed a method to
distinguish malware from benign one with a neural network.
In their research, entropy histogram is calculated from binary
data and the number of callings of the contextual byte
data, and metadata of execution files and DLL import are
extracted. Those four types of features are transformed to

256 dimensions vector one by one. Unknown samples are
classified with feature vectors which are learned in a four-
layer neural network. Their TPR result is 95.2% while FPR
is 0.1%.

And there are some novel ideas for malware detection.
Nataraj et al. [17] proposed a visualized malware classification
approach through image processing. Specifically, the malware
binary data is transformed into a grayscale image, and
the classification was done by kNN model with Euclidean
distance calculation. The experiments show that it is a fast
malware detection method, but this method uses global
image features so that attacker can use some local transfor-
mation for malware to evade. So in their follow-up paper
[18], they compared two methods of image feature processing
with dynamic analysis. The experimental results show that the
method based on image feature is efficient and scalable and
can obtain an accuracy closing to the dynamic analysis result.
They also found that this improved method can perfectly
deal with both packed and unpacked malware samples. Kong
and Yan [19] proposed a framework for automatic malware
classification based on unsupervised clustering learning by
structured information (function call graphs). After extract-
ing the fine-grained feature for function call graph of the
malware, it will calculate the similarity of the malware by
the distance matrix based discrimination learning method
to cluster samples with the same malware family. After that,
these pairs of malware distances are used for classification
by an ensemble classifier. Santos et al. [20] proposed a
method using N-gram features to distinguish malware from
benignware. In their research, unknown malware is detected
by k-nearest samples with most similar N-gram features. And
there are more approaches with similar idea using N-gram
based on byte, opcode, or API call frequency for identifying
malware [15, 21].

Moreover, since it is difficult to accurately and efficiently
complete malware detection from a single point of view
of static or dynamic analysis, some studies have begun to
integrate both dynamic and static features. Santos et al. [22]
proposed a hybrid malware detection tool based on machine
learning algorithms called OPEM that utilizes a set of features
obtained from static and dynamic analysis of malicious
code. Static features are obtained by mining opcodes from
the executable files, and dynamic features are obtained by
monitoring system calls, operations, and exceptions. The
maximum accuracy of their malware detection rate is 96.60%
with SVM classifier. The experiments proved that the hybrid
method could get a better performance compared with
running static or dynamic analysis separately.

The above machine learning based malware detection
has achieved pretty good results; however, most of these
methods rely heavily on expert knowledge for the design of
features. At the same time, as the malware continues to grow
and change dynamically, the human-designed features face
many challenges which require a significant cost for manually
updating features in response to new malware. Therefore,
this paper tries to extract useful information from massive
raw data and reduce the cost of artificial feature engineering
by automatic feature learning characteristic of deep neural
network.

Grayscale image
generation & preprocessing

Security and Communication Networks

Malware
database

Malware Opcode sequence

extraction & preprocessing

samples

Subsequence
selection

\
:

Classification

Stacking

classification & fusion

ensemble result

Subsequence

Metadata feature |

extraction |

I
I
1
1
1
I
I
I
1
1
1
I
I
I
1
1
1
I
I
I
1

FIGURE 1: The overview of our proposed malware detection process. MalNet is the core malware detection method.

3. Detection Methodology

In this section, we introduce the proposed method for
malware detection and come up with a malware detection
method called MalNet which uses CNN and LSTM networks.
For malware detection, MalNet actually performs a binary
classification task, receiving the raw file data as input, and
outputs a discrimination probability indicating how likely it
is a malware.

Concretely, the detection process by MalNet can be
divided into two stages (see in Figure 1). The first stage is to
preprocess malware sample data, it takes a binary form of a
Windows executable file, generates a grayscale image from
it, and extracts opcode sequence and metadata feature with
decompilation tool. So this stage generates the appropriate
data format as the input of the follow-up CNN and LSTM
networks. The second stage applies the core process of
MalNet, which takes CNN and LSTM networks, respectively,
learning from the grayscale image and the opcode sequence.
To optimize the detection performance, we use stacking
ensemble to integrate two networks’ output and metadata
features and get final prediction result.

MalNet actually learns three different kinds of feature sets
from the raw data; first MalNet learns malicious file structure
features from the grayscale image by CNN and then learns
malicious code pattern features from opcode sequence by
LSTM. These two feature sets are reflecting the local pattern
information; hence we add some simple metadata features as
a description of the global information. The specific design
of MalNet and the detection process are described in the
following section.

3.1. Learning Malware Grayscale Image through CNN. In this
section, we introduce CNN networks and describe how to
construct malware structure feature by learning malware
grayscale image through CNN. This method is inspired by
Nataraj et al. [17], which visualizes malware binaries as
grayscale images and these images can clearly reflect the
structural characteristics of malware files.

3.1.1. Malware Grayscale Image Generation. In order to gen-
erate malware grayscale image, the raw data requires being
processed and transformed into an image format. We take
an executable file as input data and treat it as raw .bytes
binary stream file. The binary stream file can be regarded
as a hexadecimal stream file by converting every 4 bits into

a hexadecimal number. Considering that the range of a
hexadecimal number is exactly from 0 to 16, and we combine
every two hexadecimal numbers exactly corresponding to the
gray value of a 256-level image pixel. So the raw data can
be converted to a grayscale image by this simple mapping
transformation. The whole bunch of binary stream sequence
is segmented for every 8 bits which corresponds to gray level
of each pixel, and it is arranged sequentially to form the
corresponding gray image. The generated grayscale images
are shown in Figure 2(a).

Incidentally, we can use a similar method to generate
grayscale images from decompiled files and only need to
decompile the executable file first, obtaining .asm decom-
piled file, and then also treat it as binary stream for the same
mapping transformation. However, in the actual process we
found that the grayscale image generated by the decompiled
file lost a lot of structure patterns (the generated grayscale
images are seen in Figure 2(b)). Executable files with obvious
differences still have very similar grayscale images presenta-
tions. The reason is that the decompiled file has a relatively
fixed and organized structure since decompiled tool will out-
puta normal format. For example, we use IDA Pro [23] which
generates a decompiled file whose beginnings of each line are
the PE segment name and the starting file address, followed
by the decompile instruction. Therefore, all the decompiled
files tend to have similar generated grayscale images. Thus,
the grayscale image generated by the decompiled file is not
suitable for further learning process.

3.1.2. Convolution Neural Network. MalNet takes a CNN
to learn from grayscale images. As a typical deep neural
network, CNN is widely used in computer vision area and
image related tasks. The most notable characteristic of CNN
is that it reduces a huge amount of calculation by the idea
of weights sharing, local field, and subsample in space. It
shares the same weight between a group of CNN neurons,
mining patterns on local fields by convolution operation.
CNN directly takes the raw image as input and outputs
the classification or regression result with an end-to-end
structure. And the neuron weights of CNN are trained by
backpropagation algorithm. A typical application of CNN
[24] is used for handwritten digital recognition through
multiple convolution layers and pooling layers to handle
the input data. Each convolution layer outputs a set of
feature maps, while each feature map represents a high-level
features extracted via one specific convolution filter. And the

Security and Communication Networks

Raw malware file:
0100110101101...

Segmentation
for every 8 bits

.asm file

IDA Pro

grayscale pixel:

Segmentation
for every 8 bits

8 bits represents one

8 bits represents one
grayscale pixel:

FIGURE 2: The generated grayscale images. (a) Grayscale images are generated from the raw binary file. (b) Grayscale images are generated

from the decompiled file.

pooling layer mainly uses the principle of local correlation to
complete the downsampling, so the subsequent convolution
layer can extract features from a more global perspective.
These greatly reduce the number of weight parameters and
calculation for training a deep network.

3.1.3. Data Preprocessing for Grayscale Image. In order to
meet CNN requirements for input data, we first preprocess
the grayscale image. When CNN performs a task like image
classification, it takes the input image data with the same
sizes. Generally, the image data should have the same length
and width (length to width ratio is 1:1). It is for the conve-
nience of subsequent convolution operation. Since executive
files have different file sizes, various grayscale image sizes also
have big differences. In fact, a large grayscale image can reach
1.04 MB (2048 x 1036 pixels), while a small one is only 120 KB
(512 x 472 pixels). So it is necessary to normalize all grayscale
images.

We use bilinear interpolation algorithm, an image scaling
method for normalization. It makes use of the four nearest
pixels values in the original image to determine a virtual pixel
value of the target image, which achieves better effect than the
nearest neighbor interpolation. Also, the normalized size of
grayscale image is a hyperparameter, which reflects the trade-
off between classification accuracy and calculation cost. The
larger the normalized image size, the richer the information
received by the CNN input; then with more complex network
structure better detection result will be obtained, but the
corresponding cost is longer time-consuming for network
training. To this end, we finally choose 64 x 64 as the
normalized size of grayscale images.

3.2. Learning Opcode Sequence through LSTM. In this sec-
tion, we introduce another important part of MalNet, which
deals with opcode sequence with LSTM to learn mali-
cious sequence features and patterns. Opcode sequences are
extracted from decompiled files. These sequences actually
reflect code logic and program execution logic of executive
files. Hence, LSTM can mine malicious code sequence fea-
tures corresponding to high-level malicious behavior from
them.

3.2.1. Opcode Sequence Extraction. To learn from opcode
sequence, first we need to extract opcode sequence from raw
executive files. We decompile the executive file through IDA
Pro which generates .asm format decompiled file. IDA Pro is
a common decompilation and debugging tool that resolves
malware into Intel x86 assembly instructions.

Then for the .asm file, we traverse all lines and slice
sentences through space character as a delimiter to match
each phrase to our predefined opcode set which contains all
common Intel x86 assembly instructions. If the matching is
successful, we retain the opcode; otherwise, we delete the
phrase. During this process we find that there are a large num-
ber of duplicate opcode subsequences on decompiled files,
suchasdd,dd,...,ddordb,db,db,...,db.Soitisrequired to
filter these duplicate subsequences by adding some rules. The
pseudocode of our opcode sequence extraction algorithm is
shown in Algorithm 1.

In the process of opcode sequence extraction, the size
of the opcode set will affect the average length of opcode
sequences. Larger opcode set will accept more kinds of
opcodes. Since there are many noise data and too long opcode
sequence will cause difficult learning problem with LSTM,
we need to limit the size of the opcode set in a reasonable
range so that it only contains the most valid information.
So we treat all decompiled .asm files as text and instructions
as vocabularies. Then we make frequency statistics and filter
out the low frequency vocabularies. After that we use each
vocabulary frequency as a feature and perform a classification
by a random forests model, random forests can give a ranking
for all features importance. We choose the vocabularies which
give the best feature importance. Finally we get opcode set
including 185 elements and extract opcode sequences with
that. By now these opcode sequences should be digitized
before being used as input of neural network; we use one-hot
encoding which simply takes a mapping transformation to get
a sparse vector like [0,0,0,1,0,...,0] whose N binary status
bits represent N states only containing one nonzero element.
And each opcode gets a unique one-hot representation.

3.2.2. Very Long Sequence Learning by LSTM. We first
briefly introduce LSTM network. As a deep neural network,

Security and Communication Networks

Input: Executive file
Output: Opcode sequence

(2) for i in files;

(4) for line infile; // Read in line;
(5) words = line.split(“ ”
(6) for word in words;

(12) end for
(13) end for
(14) end for

(1) files = get_files(); /] Get all executive files;

(3) file = open(i.asm); // Open the corresponding IDA pro decompiled file;

); // Cut the line into phrases by space character;

//To judge each phrase, it requires to meet the following two points at the same time:

(1) The current word belongs to opcode set opcode_set;
(2) The last three words are not duplicated opcodes.

(7) if word in opcode_set and (word! = last_word and last_last_word! = last_word) :
(8) last _last_word = last_word,;

9) last_word = word,;

(10) filter words.add(word);

11) end if

ALGoRITHM 1: Opcode sequence extraction algorithm for executive files.

Long-Short Term Memory (LSTM) [25] is widely used for
processing time series data, which is an improved model
based on Recurrent Neural Networks (RNNs). RNN uses an
internal state to represent previous input values which allows
it to capture temporal context. Based on this, LSTM uses
the Constant Error Carousel (CEC) and well-designed “gate”
structures to ease the vanishing gradient problem during
errors backpropagation. So loss can flow backwards through
longer timestep, which enables LSTM to learn long-term
dependency and context. In brief, LSTM adds three gates
(input gate, forget gate, and output gate) to decide and control
the CEC state. Here MalNet uses LSTM network to learn from
opcode sequence for malware detection.

However, one existing problem for LSTM is that it is
difficult to effectively train when the input sequence is
too long, though LSTM can capture longer time series
context than RNN. In our work, if the size of executive
file is very large, then the length of extracted opcode
sequence is very long. For example, the average opcode
sequence length of Ramnit malware family samples reaches
36,000. But the performance of LSTM is reduced fast
when the length of input sequence exceeds 200. So how
to process very long sequence with LSTM network is
critical.

One simple strategy for very long sequences processing
with LSTM network is Truncating And Padding (TAP). In
particular, TAP first sets a fixed length N, truncates and
discards the part of long sequences exceeding length N, and
pads short sequences to length N with predefined identifier.
It is convenient but it abandons a lot of information due to the
truncation operation. Truncated Backpropagation Through
Time (truncated BPTT) is another solution [26], which adds
a time window constraint to limit the maximum distance for
error backpropagation operation. So the error propagation
and gradient calculation are only performed in the window,
and the weights of nodes beyond the window are not updated.

It enhances the computational efficiency by sacrificing a small
part of the accuracy comparing with standard BPTT (or
full BPTT) since standard BPTT calculation is less effective
when backpropagation distance is too long. In addition,
truncated BPTT is more suitable for online learning, as it
can quickly adapt to the newly generated part of a very long
sequence. Overall, truncated BPTT is reasonable and effective
since it learns all sequence information comparing with TAP
strategy.

In our scenario, we come up with a practical implement
based on truncated BPTT algorithm for LSTM network. Since
gradients are only propagated in the window, we first divide
an opcode sequence into multiple subsequences, where the
length of each subsequence equals the window length of
truncated BPTT. Then for each subsequence we just do
a full BPTT which equals doing the truncated BPTT for
the whole sequence with no intersection window division.
Most importantly, this allows LSTM to train in parallel on
a bunch of subsequences. One of the major problems with
LSTM is that the recurrent structure restricts it to train a
sequence serially, which is inefficient. However, with these
subsequences, our LSTM training process can be 3 times
faster.

3.2.3. Subsequence Selection and Subsequence Fusion. With
the above subsequence training strategy, subsequences
become the input of LSTM network while the output is
generated for each subsequence. It can be regarded as the
discrimination result that LSTM thought how likely this sub-
sequence is malicious. However, subsequences may contain
a lot of noise especially for malware samples. Because, for
many malware authors, they just implanted a malicious code
snippet into a benignware, so many subsequences of this
kind of sample are harmless. For this reason, it is crucial to
take care of these subsequences in malware. Here we come
up with a subsequence selection method for cleaning up

Security and Communication Networks

LSTM training

convergence

No

Test error

reduction End

Subsequence
selection

-Yes

FIGURE 3: The process of subsequence selection in LSTM.

Opcode sequence S

subl H sub2 H sub3 H sub4 H subs} =) -

MalNet LSTM

[
C

L= ZIIPH

W w mom J.

FIGURE 4: The process of subsequence fusion. Suppose that red, blue, and green represent three different prediction labels. By using relative
majority weighted voting method, then final result follows the label /; owning the most weighted votes.

these subsequences and providing a higher quality dataset to
LSTM.

We utilize LSTM network itself without additional model
to complete subsequence selection. In binary classification
task (for malware detection), the output layer of LSTM
network uses a logistic regression giving a probability value
to identify negative class or positive class. This is similar to
a recent work [27] using reconstruction error as the basis
for subsequence anomaly detection by LSTM-based Encoder-
Decoder. Specifically, the logistic regression layer takes the
output of hidden layer and calculates the probability p(y | x;)
of the current subsequence sample x;. y is the corresponding
labels where y = 0 presents negative class (benign label)
and y = 1 presents positive class (malware label) and the
actually logistic output can be presented as p(y = 1 | x;).
The intuition is the higher or lower p(y = 1 | xj), the more
confidence of LSTM for current sample. Since the benign
subsequence in malware lacks malicious features but still with
a malicious label, which will confuse LSTM, the confidence
given by LSTM is relatively lower. Hence, we can use p(y =
1 | x;) to help subsequence selection.

In order to use the LSTM’s output p(y | xj) to
perform the subsequence selection for x ;, we set a threshold
0 and compare it to the maximum likelihood probability. The
formula is shown as follows:

52max{P(y= 1|x»),1—P(y=1|xj)}.

@

For current subsequence x, if the above formula holds,
it means that LSTM sets a low confidence level that current
subsequence belongs to any category, indicating that sub-
sequence x; cannot provide sufficient valid information for
LSTM to judge or just with wrong label (benign subsequence
of malware). So it can be seen as noisy subsequence and has
been filtered out.

At the beginning of LSTM training process, since LSTM
parameters are randomly initialized, the output of LSTM
cannot be trusted so we use another threshold 7 to determine
when the network has enough capacity to start subsequence
selection after several iterations. Specifically we calculate the

training error of a batch of inputs. If training errors of
continuous M input batches are lower than the threshold
n, then LSTM triggers subsequence selection, where M is
a hyperparameter we set to 5. All these hyperparameters
are chosen through experiment. Moreover, since training
error will always decrease through subsequence selection, we
divide a validation set and use validation error to find the
right time to stop subsequence selection. Once validation
error cannot reduce anymore, it is considered to be the
appropriate time for ending subsequence selection (the whole
process is seen in Figure 3).

By now LSTM output the classification results for sub-
sequences; we need to use these results for completing the
classification of original opcode sequence. We can use a
simple fusion to solve it. One common fusion strategy is the
voting method. In our scenario, we use the relative majority
weighted voting method to fuse the discrimination result of
subsequences.

T .
H(x) = Cargmaijwih; (x), (2)
i=1

where w; represents the weight of subsequence discrimina-
tion result i/ (x). Normally, w; > 0 and Z:T:1 w, = 1.

Considering that the classification output result of each
subsequence is a nonnormalized probability given from the
logistic regression layer of LSTM, here we can directly use
these nonnormalized probabilities as weights w; for each
subsequence (see Figure 4).

Figure 4 shows how the weighted voting method is
applied to subsequence fusion. Each of the original sequence
is divided into subsequences, which are the input for trained
LSTM network and get corresponding classification results.
Finally, we use these subsequence results and corresponding
weights w; to get the prediction for the original opcode
sequence.

3.24. Data Augmentation Strategy Based on Sliding Win-
dow. When dealing with classification tasks using neural

networks, there is often a category imbalance problem in
reality. For example, the number of benignware in reality is
much more than malware and is easily accessible. While the
distribution of different malware families is more uneven,
those malware families which are widely spread have a
bigger number of accessible samples and unpopular malware
family only has few samples as dataset. In order to avoid
these unpopular categories being ignored by the classifier
resulting in poor recognition accuracy, data augmentation
strategy is often used to solve category imbalance problem
in the real world where oversamples on unpopular categories
combined with negative sampling of popular categories to
achieve a more balanced distribution of different category
samples.

However, some data augmentation methods, such as
mapping transformation (widely used in image data) and
SMOTE algorithm (based on interpolation), are not suitable
for sequence data. Here we propose a data augmentation
strategy based on sliding window which is used for category
imbalance problem on the subsequent malware family classi-
fication task. In the previous section, the way of subsequence
segmentation for very long sequence has no intersections,
which means there is no repetitive element between any
two subsequences. For expanding data samples, we consider
a segmentation method with intersection for very long
sequence by using a sliding window. The window length is
exactly equal to the window length of truncated BPTT, and
then the number of generated subsequences is controlled by
setting the step length of the sliding window.

So, the smaller the step length, the more the number of
generated subsequences. To ensure that the original sequence
of information is not lost, we add the constraint where
the step length should be no more than the length of the
sliding window. Suppose that the number of samples of the
current category [; is f3;; each sample length is «;; where j €
(0,1,...,f3;) and the length of the sliding window is set as 7.
To expand the data sample for current class /; to y, we first
calculate the total length of the sequence of category I, as
follows:

B;
=0

For current category [;, the step length d; of the sliding
window is calculated as follows:

Bi
T — T
PR (4)

1 4 - 1=

Y

Since the minimum length of step length is set to 1, there
is a corresponding upper limit on the number of samples y to
be expanded:

Bi
y < Z(xij -T. (5)
j=0
In subsequent malware family classification task, this
data augmentation strategy can achieve a relatively balanced
distribution on the data sample numbers of different malware
families.

Security and Communication Networks

3.3. Stacking Ensemble. MalNet also extracts some metadata
features of the malware apart from using LSTM and CNN.
The main reason is that LSTM and CNN capture local
feature and metadata feature in contrast can get the global
description for malware. And these metadata features are easy
to obtain such as the size of malware source files, the starting
address of the byte file, the size of decompiled file, number of
rows, and the length of different PE segments.

Now MalNet has three parts of temp results which are
LSTM discrimination result, CNN discrimination result, and
metadata features. To achieve a final detection result, we
integrate these three parts by stacking ensemble. A general
procedure of a stacking ensemble method [28] involves a
learner trained to combine other heterogeneous learners’
results. Here learner usually means a machine learning
model. The individual learners are called the first-level
learners which gives a temp result, while the combiner is
called the second-level learner to stack the output of first-level
learners for making a better predictions. The basic idea is to
train the first-level learners using the original training set and
then use their output to generate a new dataset for training the
second-level learner.

By now the above three parts are designed to obtain
malware features from different perspectives, containing local
level and global level. We use CNN network, LSTM network,
and feature extraction as first-level learners and take a logistic
regression as the second-level learner for stacking ensemble.
The process of stacking ensemble can be seen in Figure 5.

And the objective function of logistic regression is defined
as

1

Py(x) = ——————,
b () 1+ exp (—0"x)

(6)
where 0 is the parameter. The range of Py(x) value is (0, 1).
For the training data (x, y” = i), the maximum likelihood
probability is calculated and the loss is used to optimize 0
through backpropagation algorithm. We use the Stochastic
Gradient Decent (SGD) to train the logistic regression model
as the second-level learner.

4. Experiments and Evaluations

In this section, we will describe the experiment environment
and the concrete implementation of MalNet. To evaluate
and optimize MalNet, we focus on four parts: performance
of MalNet CNN, performance of MalNet LSTM, stacking
ensemble result, and comparison with other works, respec-
tively.

4.1. System Implementation. The core part of MalNet relies
on deep neural networks. Table 1 summarizes the major
hardware and software platforms environment for MalNet,
which mainly contains a series of dependencies for CNN
network and LSTM network.

Moreover, our datasets consist of 21,736 malware samples
and 20,650 benignware samples. Herein, the malware dataset
is provided by Microsoft [29], which contains 21,736 malware
samples of 9 malware families on the Windows operating

Security and Communication Networks

.“

File structure |
feature |

! |
! Opcod : Logisti Final
: i pcode sequence ogistic ina
tfaifr?ilr?g LSTM 1 feature ! ﬁ[regression prediction]

The second-level learner

dataset i
| Feature |
extraction :
N e e e e e e o e o —— e
I R—
The first-level learners
L Hold-outfold
L J

The first-level learners training phase

)

The second-level learner training phase

FIGURE 5: The learning process of stacking ensemble model.

TaBLE 1: The platforms environment for MalNet.

Content
NVIDIA GPU Maxwell-based GTX980
16 GB of memory
Ubuntu 14.04 LTS
Python 2.7.6
Numpy 1.8.2
Scipy 0.13.3
Tensorflow 0.7.0
Theano 0.9.0.dev
Lasagne 0.1
Nolearn 0.6.0.dev
Scikitlearn 0.15.2
Pandas 0.15.2
Mabhotas 1.2.4
NVIDIA GPU driver
CUDA 75
cuDNN V4

Platforms

Hardware dependencies

Software dependencies

GPU components

system taking more than 500 GB space. For each sample, two
file formats are provided, the malware source files (binary
stream files without the PE head) and the corresponding
decompiled files by IDA Pro, respectively. And the benign-
ware source files are collected by us from some software
providers, such as Cnet [30] and Baidu Software Center [31].

In evaluation experiments, we measure the following
performance metrics: accuracy, true positive rate (TPR), false
positive rate (FPR), equal error rate (EER), and receiver
operating characteristic (ROC). EER is the same as FPR value
when operating threshold is adjusted such that FPR and false
reject rate (FRR) become equal. The main metrics are defined
as follows:

(i) TPR is defined as the probability that the current
malicious sample is correctly identified:
True Positives

TPR = — —— 7)
True Positives + False Negatives

(ii) FPR is defined as the probability that the benign
sample is wrongly identified as malware:

FPR False Positives

(8)

~ False Positives + True Negatives

Note that TPR reflects the usability of MalNet while
FPR shows the security. Here, due to the bias for security
considerations, we evaluate MalNet TPR value when FPR
equals to 0.1%, which keeps a very low FPR as a prerequisite.
In addition, to determine the detection efficiency of MalNet,
we calculate the time consumptions on training phase and
detecting phase.

4.1.1. MalNet CNN. We build two CNN network structures,
called BaseNet and VGGNet. For BaseNet, we use the 5 x
5 convolution kernel and stride size 1. Also, to simplify the
design of CNN network, the edges of the image are padded so
that the output feature map size of the convolution operation
is consistent with the input image. At the same time, BaseNet
uses 2 x 2 max pooling operation and stride size 2, so the
length and the width of sampled images are reduced to half of
the original. BaseNet totally uses 2 convolution layers, 2 max-
pooling layers, and 1 fully connected layer and adds Dropout
layer [32] for each pooling layer and fully connected layer to
prevent overfitting.

Since BaseNet uses a large convolution window, it cannot
support deeper network structure when the input image
size is small. To this end, we build VGGNet according to
Simonyan and Zisserman work [33], which uses small win-
dow convolution filter to apply a deeper network. Specifically
VGGNet uses 3 x 3 convolution kernel, stride size 1, and 1-
pixel edge padding. Also, 3 X 3 max-pooling operation is used
and stride size is set to 2. So it can deal with input images
with larger size under the same size of feature map, only
requiring a small amount of additional calculation. VGGNet
has deeper network structure, a total of 3 convolution layers,
2 pooling layers, and 2 fully connected layers. Also, we use
Leaky ReLU activation function [34], uniform distribution
weight initialization, and batch normalization [35] which

10

Security and Communication Networks

TaBLE 2: The list of two CNN network structures parameters.

Network layer type Size Output dimension
Input layer - 1,1, 64, 64)
Convolutional Layer 32 5 x 5 Convolution kernel (1, 32, 64, 64)
Max pooling layer 2 x 2, stride 1 (1, 32, 32, 32)
Dropout layer - (1, 32, 32, 32)
BaseNet Convolutional layer 64 5 x 5 Convolution kernel (1, 64, 32, 32)
Max pooling layer 2 x 2, stride 1 (1, 64, 16, 16)
Dropout layer - (1, 64, 16, 16)
Fully connected layer Logistic regression (1024,1)
Dropout layer - (1024, 1)
Output layer - 1
Input layer - (1,1, 64, 64)
Convolutional layer 32 3 x 3 Convolution kernel (1, 32, 64, 64)
Convolutional layer 16 3 x 3 Convolution kernel (1, 16, 64, 64)
Max pooling layer 2 x 2, stride 1 (1,16, 32, 32)
Dropout layer - (1,16, 32, 32)
Convolutional layer 32 3 x 3 Convolution kernel (1, 32, 32, 32)
VGGNet Max pooling layer 2 x 2, stride 1 1, 32,16, 16)
Dropout layer - (1, 32,16, 16)
Fully connected layer 512 maxout unit (32,512)
Dropout layer - (32,512)
Fully connected layer Logistic regression (32,1)
Dropout layer - (32,1)
Output layer - 1

enhance CNN network convergence performance. The speci-
ficity of BaseNet and VGGNet structures and parameters is
concluded in Table 2.

4.1.2. MalNet LSTM. LSTM network consists of two layers,
and each layer has 185 neuron nodes. We also use Dropout
as regularization mechanism to reduce overfitting. We add
Dropout layer for two hidden layers of LSTM and set the
probability value p (the selection of p determines the intensity
of Dropout) of 0.5. Besides, Dropout mechanism only takes
effect in the training phase. It can be regarded that Dropout
helps training many subnetworks during the training phase
and the predicting phase; it combines all subnetworks to
make an ensemble prediction.

Moreover, we use SGD and set the batch size (=30) for
training. And Adam optimization algorithm [36] is used
as the optimizer; it combines momentum factor with Ada-
grad optimization algorithm, which provides a fine-grained
control of the learning rate decay. Adam optimizer only
needs an initial learning rate (=2e — 3) as a hyperparameter,
and the learning rate during the training process can be
adjusted adaptively without manually setting weight decay.
The summary settings and parameters for LSTM networks are
listed in Table 3.

4.2. Performance of MalNet CNN. The corresponding gray-
scale images of 21,736 malware samples and 20,650 benign-
ware samples are first generated and normalized to the size of
64 x 64. And we use 6-fold cross validation to evaluate two
CNN networks, BaseNet and VGGNet.

TABLE 3: The list of LSTM network parameters.

Model parameters LSTM
Maximum iterations 6.40E + 04
Weights initialization [-0.04, +0.04]
Truncated BPTT length 120
Batch training samples 30
Initial learning rate 2.00E- 03
Dropout probability 0.5
Gradient regularization factor 10
Activation function Tanh
Optimization algorithm Adam
Propagation direction of time series One-way
Hidden layers 2
Hidden nodes 185

For the above two CNN network structures we do a
comparative experiment to evaluate their detection perfor-
mance. We use their output discriminant result for grayscale
images as corresponding malware detection result. Apart
from network structure, the rest of the basic settings are
consistent for BaseNet and VGGNet, such as the Leaky
ReLU activation function, Adam optimization algorithm,
and the initial learning rate. Figures 6 and 7 represent
ROC curves of validation result for two networks and the
list of 6 groups of experiment results corresponding to 6-
fold cross validation, respectively. The results show that
VGGNet achieves an average AUC of 0.99952 and average

Security and Communication Networks

2
E
[
2
2
2
L
2
H
0.80 + . . .
107 107 1072 107! 10°
False positive rate
- - - exprl, Ir = 3e — 4; BaseNet
—— expr2, Ir = 3e — 4; BaseNet
-+~ expr3, Ir = 3e — 4; BaseNet
expr4, Ir = 3e — 4; BaseNet
-~ expr5, Ir = 3e — 4; BaseNet
‘‘‘‘‘‘ expr6, Ir = 3e — 4; BaseNet
F1GURE 6: The ROC curve of BaseNet classification result.
1.00 et '
— (r
| %~
-]
209541 -
e | I
g
Z 0907 | 3
3 -
o | |
°]
=]
= 085 L
|
0.80 T T T
107 107 1072 107! 10°

False positive rate
- - exprl, Ir = 3e — 4; VGGNet
—— expr2, Ir = 3e — 4; VGGNet
-+~ expr3, Ir = 3e — 4; VGGNet
expr4, Ir = 3e — 4; VGGNet
- - expr5, Ir = 3e — 4; VGGNet
<<<<<< expr6, Ir = 3e — 4; VGGNet

F1GURE 7: The ROC curve of VGGNet classification result.

detection accuracy of 98.14%, which are better than the
average AUC of 0.99896 and average classification accuracy
of 96.82% for BaseNet. Since the grayscale image contains a
wealth of local slight information, we consider that VGGNet
can achieve a better performance due to its deeper net-
work structure which can capture more localized image
association. And although deeper network often requires
longer training time-consuming, VGGNet greatly reduces
the number of nodes required for the fully connected layer
by using maxout mechanism, resulting in no increase of
network parameters and no decrease on training efficiency.
Hence VGGNet is used as the CNN network part for
MalNet.

4.3. Performance of MalNet LSTM. In data preprocessing
phase, we first define an opcode set containing 185 candidate
opcodes and use this to extract opcode sequences from the
decompiled files. And then we divide all opcode sequences

1

ROC curve of different subsequence selection strategies

True positive rate
(=]

0.70
0.000 0.002 0.004 0.006 0.008 0.010

False positive rate

~~ o = 90% (auc = 0.99839)
o = 100% (auc = 0.99936)

— & =99% (auc = 0.99973)
o = 95% (auc = 0.99977)

+—* 0 = 97.5% (auc = 0.99989)

FIGURE 8: The classification results for different subsequence selec-
tion rates.

into multiple subsequences for subsequent LSTM training
with truncated BPTT.

One important task is to evaluate and optimize our
proposed subsequence selection strategy. The main function
of subsequence selection is to filter noisy subsequences,
especially the benign part of a malware to ensure high quality
input data for LSTM network. Here a quantitative indicator
for subsequence selection is required to identify the degree
of tolerance for noise in opcode sequences. We define a
hyperparameter called selection rate ¢ whose value refers
to the proportion of training subsequences pass through
subsequence selection. The choice for ¢ in fact reflects
the trade-off between MalNet generalization performance
and data quality. In our experiment, we compare with five
different selection rates o (=100%, 99%, 97.5%, 95%, 90%).

In Figure 8, we can see that the AUC value is the lowest
when o = 90% and the highest when o = 97.5%. The AUC
values of the rest subsequence selection rate are better than
the benchmark results without subsequence selection (o
= 100%), which proves that subsequence selection strategy
is effective. However, the detection performance declines
rapidly when o decreases to 90%. We think the reason is that
LSTM network usually has a certain antinoise ability, which
means the input data with certain noise (not too much) only
has little interference on the discriminant result of LSTM and
LSTM can automatically perceive and resist noise from the
data. In contrast, filtering out too many subsequences will
cause LSTM to lack enough data for learning. So we choose
0 = 97.5% as optimized hyperparameter for our subsequence
selection strategy.

In the later experiment, we further compare the detection
performance of TAP strategy and truncated BPTT on differ-
ent BPTT length o, where TAP strategy just truncates the
part of sequence exceeding « before training and truncated
BPTT divides opcode sequence into subsequence with length
a for training. The experiment result (seen in Figure 9)
shows that truncated BPTT is superior to TAP strategy in

12 Security and Communication Networks
TABLE 4: The experiment results for different LSTM networks.
Strategy Models ACE%“CY AUC TPR(FPR=0.1%) EER (%) gﬁ?&%
LSTM (& = 30) 71.43 0.8863 52.03 - 0.41
TAP LSTM (« = 60) 87.13 0.9791 81.67 6.45 0.54
LSTM (« = 80) 91.56 0.9854 85.39 4.88 0.89
LSTM (« =120) 94.86 0.9931 91.53 3.17 -
LSTM (« = 30) 94.37 0.9928 9L.11 3.10 -
LSTM (« = 60) 96.83 0.9950 93.37 - -
Truncated BPTT LSTM (c = 80) 98.08 0.9989 95.13 ; 1.24
LSTM (« = 120) 98.47 0.9993 96.81 - 1.36
LSTM (« =180) 97.82 0.9987 95.42 - 1.53
LSTM (a =120, 0 = 90%) 97.98 0.9988 95.01 1.34 116
Truncated BPTT + subsequence selection LSTM (« =120, 0 = 95%) 98.83 0.9997 97.22 0.84 -
LSTM (& =120, 0 = 99%) 98.66 0.9996 96.69 0.92 -
LSTM (a =120, 0 = 97.5%) 99.13 0.9999 98.69 0.54 1.34

100

95 -

90

85

80 —

Detection accuracy (%)

75

70 —

65 T T T T
30 50 60 80

BPTT Length

T T
120 180 250
Strategy
m TAP

I Truncated BPTT based on subsequence

FIGURE 9: The detection results for different strategies in different
BPTT lengths.

all length «. For a small BPTT length «, TAP strategy loses
a large amount of sequence information due to truncating
operation and this defect can be compensated when «
gets larger. But we can see when « is more than 120, the
performance of TAP strategy can no longer grow up due
to the gradient vanishing. In contrast, truncated BPTT does
not discard any sequence segment but splits sequence into
subsequences, training and predicting them, respectively, and
then makes a fusion prediction. So even if « is small, it
can still get considerable detection performance. But we can
see its performance only gets slight improvement when «
increases and even begins to decrease when « is over 180;
this is because when « is too large, truncated BPTT on each
subsequence will encounter gradient vanishing problem and
in this case the subsequence should be further divided and

trained separately. So we finally choose o =120 for our MalNet
LSTM.

Finally, we conclude all experiments about LSTM net-
work in Table 4. The optimal LSTM network setting for
MalNet is containing 2 hidden layers of 185 neurons nodes
combined with truncated BPTT and subsequence selection
strategies, where the truncated BPTT length « is 120 and
subsequence selection rate o is 97.5%. The training process
for this takes 1.34 hours with GPU and the detection result
achieves 99.13% accuracy and TPR reaches to 98.69% when
FPR is 0.1%.

4.4. Stacking Ensemble Result. MalNet fuses CNN network
and LSTM network results by stacking ensemble. Concretely,
stacking ensemble combines three parts (CNN discriminant
result, LSTM discriminant result, and metadata features) to
train a second-level learner, which is a logistic regression
classifier.

Besides, we reproduce an N-gram based malware detec-
tion method according to relevant studies [15, 20, 21] and
use it as a baseline in our dataset. It extracts 1-gram, 2-gram,
and 3-gram features on both bytes and opcodes, discards
low frequency features, makes a further feature selection
according to the feature importance from random forest,
and finally constructs a 12,834-dimensional feature vector
for each sample and trains a SVM classifier for malware
detection.

We make a malware detection experiment using 21,736
malware samples and 20,650 benignware samples. After
training all models to make a prediction whether it is a
malware on test set containing 2,000 malware samples and
2,000 benignware samples, the comparison results are seen
in Table 5 (MF represents metadata feature).

4.5. Comparison with Other Works. Due to the sensitivity of
malware data, many datasets used by other related works are
not public, which increased the difficulty for comparison of
different malware detection methods. Fortunately, our paper

Security and Communication Networks

13

TABLE 5: The malware detection experiment results for different methods.

Models Accuracy (%) AUC TPR (%) FPR(%) EER(%) Trainingtime (h) Detection time (ms)
N-gram 93.21 0.9864 89.22 0.1 3.94 4.18 2304
LSTM 99.13 0.9999 98.69 0.1 0.54 1.34 13.62
CNN 98.14 0.9989 96.92 0.1 1.55 146 15.97
LSTM + CNN + MF (MalNet) 99.88 0.9999 99.14 0.1 0.37 2.91 30.33

TABLE 6: The comparison with other works.
Methods Accuracy (%) Training time (h) Detection time (s)
Kaggle Winner Solution [37] 99.83 72 13.33
Novel Features [38] 99.77 21.86 4
Linear kNN [39] 96.6 - -
Random Forest [40] 95.62 - -
One-class SVM [41] 92 - -
tGAN [42] 96.39 - -
Strand Gene Sequence [43] 98.59 0.75 0.3
MalNet 99.36 291 0.03

uses a publicly available malware dataset from Microsoft
released in 2015. This dataset is for a Kaggle competition
and so far some works have done their experiments on this
dataset, making it easy to do a convincing comparison for
malware detection. Since this dataset was originally designed
for malware family classification task, here we need to make
minor changes to MalNet to complete malware family classi-
fication. Specifically, since the only difference is that malware
detection is a binary classification problem and malware
family classification is a multiclass classification problem, we
simply change MalNet’s output layer from logistic regressions
to softmax regressions. On the other hand, Microsoft pro-
vided nine malware families (Ramnit, Lollipop, Kelihos_ver3,
Vundo, Simda, Tracur, Kelihos_verl, Obfuscator. ACY, and
Gatak) in this dataset. However, the samples of different
malware families are unevenly distributed. One malware
family has fewer than 100 samples, while the largest one
contains nearly 6,000 samples. Such unbalanced sample size
will have a negative impact on the multiclass classification
results, so we use the data augmentation strategy of LSTM
mentioned earlier to mitigate category imbalance problem.

For CNN this grayscale image does not have rota-
tional invariance, since the pixels of the grayscale image
are extracted from the binary stream line by line, and the
rotate transformation would break these textures. Similarly,
grayscale image does not support tilt transformation of a
certain angle. Hence we customize some mapping transfor-
mations for data augmentation including horizontal rollover,
horizontal shift (randomly shift —10 to 10 pixels to the right),
and longitudinal stretch (randomly cut into 3 to N parts with
vertical, each part stretches in ratio with 1/1.3 to 1.3).

So, we conduct the same malware family classification
experiment with MalNet using the same Microsoft malware
dataset as other related works; the results are summarized as
shown in Table 6. It can be seen that MalNet achieves 99.36%
classification accuracy and outperforms most of related
works, which closes to Kaggle Winner Solution [37] with

99.83% accuracy. It is noteworthy that although there are two
approaches [37, 38] having slightly better detection accuracy
over MalNet, both approaches rely on a large number of
feature engineering works. And the biggest problem with this
is the potential inefficiency performance on both training and
detecting phase from the experiment results they claimed.

As we can see Kaggle Winner Solution takes almost 3
days to train their model with a relatively good hardware
environment including Google Compute Engine with 16
CPUs, 104 GB RAM, and 1TB of disk space. And the authors
claimed that the real model training time is only 1 hour
and the remaining time is fully used for feature engineering.
This is because they extracted massive features (around 70 K
original features) to make up for the lack of expert knowledge
in this area. The work of Novel Feature [38] performs
feature engineering more effectively through a certain expert
knowledge and avoids huge time-consuming calculation like
3-gram and 4-gram feature extraction. However, it still takes
approximately 1 day to extract features from the training data.
More seriously, this has a greater impact on the efficiency of
the detection phase. Novel Features take about 4 seconds to
predict a sample, while Kaggle Winner Solution takes around
13 seconds. These seem difficult to satisfy the efficiency for a
real antivirus scenario.

On detecting phase, the model prediction is often very
fast and makes the slowness of feature extraction more
obvious. MalNet is able to detect one sample in 0.03 seconds
(note that the computation time for decompiling is not taken
into account as this step is required by all methods), which
is faster than other related works, especially comparing with
Novel Features and Kaggle Winner Solution. This is because
the most time-consuming part for deep neural network is
in the training phase in which backpropagation needs to
calculate plenty of gradients to complete the training of the
mass parameters. However, the prediction phase only needs
one forward propagation and it is even more efficient with
GPU acceleration. Actually, since the training phase is offline,

14

Feature extraction

Security and Communication Networks

Original malware
detection process:

Original
malware file

Keep malicious
behaviors unchanged

Feature vector Malware detection Result F:
representations X classifier MalNet malware
Loop until result changes Calculate gradient of F

Crafting adversarial
malware samples:

Some
restrictions

Perturbation o

W For maximal positive gradient o IF(X)

) F=ox

Add adversarial perturbations

Evading malware detection!

Craftin,
Adversarial g Feature vector Malware detection Result F:
adversarial . . .
crafting attack: representations X + o classifier MalNet benignware
sample

FIGURE 10: The adversarial crafting attack on malware detection.

the key factor is detection efficiency rather than training
efficiency. Nowadays, the emergence of massive amounts of
malware per day is a challenge to the malware detection
efficiency. Therefore, although MalNet is slightly behind the
best detection accuracy, its detection efficiency gets greatly
enhanced in return, more suitable for the real-life application
scenarios.

5. Discussion

Some recent works try to evade the detection of machine
learning based malware classifiers by adversarial learning
[44, 45]. Their experiments show that it is possible to generate
adversarial samples based on a trained machine learning
classifier. The core of adversarial sample crafting is to find
a small perturbation o on feature vectors X of original
malware sample to change the classification results F to
benign. Formally, they compute the gradient of F with respect
to X to estimate the direction in which a perturbation o in X
would maximally change F’s output. The basic idea is shown
in Figure 10.

This attack scene is mainly caused by the characteristics
of discriminative model and lacking of sufficient data. When
dealing with a classification task with discriminative model,
since it is almost impossible to have enough data to help
model make decision in whole feature space, discriminative
model will try to expand the distance between samples
and decision boundary for better classification result and,
meanwhile, expand the area of each category in feature space.
The benefit of this is to make the classification easier, but the
downside is that it also includes a lot of feature spaces that do
not clearly belong to current category, which enables attackers
generating adversarial samples from this feature space.

The earliest work of this topic came from Nguyen et al.
[46] which found that a slight change in the image could
trick the image classifier, and then it has been introduced
into the security area in recent years to attack security
systems that rely on machine learning model. According to
the conclusions of some of these related works, we make
several changes to MalNet to prevent adversarial crafting
attacks as much as possible. First is to add regularization
so that the model does not get too overfitting to the

training set and promote enclosure of the feature space of
benign category. Here we add L2 regularization to MalNet
which keeps a conservative discrimination result to unknown
feature space to prevent adversarial samples using these
feature spaces fooling malware detection classifier. Second,
we try adversarial training which crafts adversarial samples in
advance and let MalNet train these samples by online learning
which enhances MalNet from resisting adversarial crafting
attack. Third, as Biggio et al. [45] discovered that ensemble
learning with different classifiers can generate a more robust
classifier for adversarial crafting attack, here we use a stacking
ensemble for MalNet. Fourth, Biggio et al. believed some
of features are not easily evaded, such as N-gram; here we
use LSTM to mine features like N-gram from raw opcode
sequences. Finally we take the idea of “gradient masking”
[47] in our real system, which let model output hard decision
(the predicted target category) rather than probabilities of
different categories, so it is hard for the attackers to obtain a
useful gradient to build adversarial samples (a minor change
cannot affect the output result).

Nevertheless, there is no detailed analysis in this paper of
whether MalNet is susceptible to adversarial crafting attacks
or a quantitative assessment of the effects of above changes
we take. Besides, some defenses to adversarial attack are
claimed not robust enough in last few years [48, 49] and other
methods came up [50]. In general, adversarial crafting attack
is a big, important, and popular topic; we have not given a
complete analysis to MalNet for adversarial attack, and in
the future we will consider conducting some exploration and
detailed analysis with relevant experiments for evaluation.

6. Conclusion

In this paper, we propose a malware detection method called
MalNet, which uses two deep neural networks CNN and
LSTM to, respectively, learn from grayscale image and opcode
sequence extracted from raw binary executive files, followed
by a stacking ensemble to fuse them. We use MalNet to
complete a malware detection experiment for 42,386 samples
(1/10 samples for validation) and it achieves 99.88% accuracy
and 99.14% of TPR with FPR of 0.1%. We also make a
malware family classification experiment for comparison to

Security and Communication Networks

other related works, and MalNet outperforms most of other
works with 99.36% accuracy and raises detecting efficiency a
lot comparing with two state-of-the-art results on Microsoft
malware dataset.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is partially supported by the National Natural
Science Foundation of China under Grant no. 61672421.

References

[1] “Kaspersky Security Bulletin 2016. Overall statistics for 2016,”
https://securelist.com/kaspersky-security-bulletin-2016-execu-
tive-summary/76858/.

[2] “McAfee Labs Threats Report in June 2017, https://www.mcafee
.com/us/resources/reports/rp-quarterly-threats-jun-2017.pdf.

[3] D.K.S.Reddyand A. K. Pujari, “N-gram analysis for computer
virus detection,” Journal of Computer Virology and Hacking
Techniques, vol. 2, no. 3, pp. 231-239, 2006.

[4] M. Narouei, M. Ahmadi, G. Giacinto, H. Takabi, and A. Sami,
“DLLMiner: Structural mining for malware detection,” Security
and Communication Networks, vol. 8, no. 18, pp. 3311-3322, 2015.

[5] G. Willems, T. Holz, and F. Freiling, “Toward automated
dynamic malware analysis using CWSandbox,” IEEE Security
and Privacy, vol. 5, no. 2, pp. 32-39, 2007.

[6] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic anal-
ysis of malware behavior using machine learning,” Technical
Report, University of Mannheim, 2009.

[7] M. Zakeri, F. Faraji Daneshgar, and M. Abbaspour, “A static
heuristic approach to detecting malware targets,” Security and
Communication Networks, vol. 8, no. 17, pp. 3015-3027, 2015.

[8] A.Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for

malware detection,” in Proceedings of the 23rd Annual Computer

Security Applications Conference (ACSAC °07), pp. 421-430,

December 2007.

C. Wressnegger, K. Freeman, F. Yamaguchi, and K. Rieck, “Auto-

matically inferring malware signatures for anti-virus assisted

attacks,” in Proceedings of the 2017 ACM Asia Conference on

Computer and Communications Security, (ASIA CCS ’I7), pp.

587-598, UAE, April 2017.

[10] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. Mitchell,
“A layered architecture for detecting malicious behaviors,” in
Proceeding of the International Symposium on Recent Advances
in Intrusion Detection (RAID ’08), 2008.

[11] W. Lee and S. J. Stolfo, “A framework for constructing features
and models for intrusion detection systems,” ACM Transactions
on Information and System Security, vol. 3, no. 4, pp. 227-261,
2000.

[12] P. Li, L. Liu, D. Gao, and M. K. Reiter, “On challenges in eval-
uating malware clustering,” in Proceedings of the International
Symposium on Recent Advances in Intrusion Detection (RAID
’10), vol. 6307, 2010.

[13] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, “Data
mining methods for detection of new malicious executables,”
in Proceedings of the IEEE Symposium on Security and Privacy
(S ¢ P), pp. 38-49, May 2001.

&

15

»

[14] W. Cohen, “Fast effective rule induction,” in Proceeding of the
12th International Conference on Machine Learning, 1995.

[15] J. Z. Kolter and M. A. Maloof, “Learning to detect and classify
malicious executables in the wild,” Journal of Machine Learning
Research, vol. 7, pp. 2721-2744, 2004.

[16] J. Saxe and K. Berlin, “Deep neural network based malware
detection using two dimensional binary program features,” in
Proceedings of the 10th International Conference on Malicious
and Unwanted Software, (MALWARE °15), pp. 11-20, USA,
October 2015.

[17] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath,
“Malware images: Visualization and automatic classification,” in
Proceedings of the 8th International Symposium on Visualization
for Cyber Security, (VizSec ’11), USA, July 2011.

[18] L. Nataraj, V. Yegneswaran, P. Porras, and J. Zhang, “A compar-
ative assessment of malware classification using binary texture
analysis and dynamic analysis,” in Proceedings of the 4th ACM
Workshop on Security and Artificial Intelligence (AlSec ’I1), pp.
21-30, 2011.

[19] D. Kong and G. Yan, “Discriminant malware distance learning
on structural information for automated malware classifica-
tion,” in Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, (KDD
13), pp. 1357-1365, USA, August 2013.

[20] I. Santos, Y. K. Penya, J. Devesa, and P. G. Bringas, “N-grams-
based file signatures for malware detection,” in Proceedings of
the ICEIS 2009 - 1ith International Confeence on Enterprise
Information Systems, pp. 317-320, May 2009.

[21] A. Shabtai, R. Moskovitch, C. Feher, and etal., “Detecting
unknown malicious code by applying classification techniques
on opcode patterns,” Security Informatics, vol. 1, no. 1, 2012.

[22] L. Santos, J. Devesa, F Brezo, J. Nieves, and P. G. Bringas,
“OPEM: A static-dynamic approach for machine-learning-
based malware detection,” in Proceedings of the International
Joint Conference CISIS12-ICEUTEI2-SOCOI2 Special Sessions,
2013, vol. 189, pp. 271-280.

[23] IDA Pro., http://www.hexrays.com/products/ida/support/down-
load_freeware.shtml.

[24] A. Graves and J. Schmidhuber, “Framewise phoneme classi-
fication with bidirectional LSTM and other neural network
architectures,” Neural Networks, vol. 18, no. 5-6, pp. 602-610,
2005.

[25] S. Hochreiter and J. Schmidhuber, “Long short-term memory;’
Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[26] R.J. Williams and J. Peng, “An eflicient gradient-based algo-
rithm for on-line training of recurrent network trajectories,”
Neural Computation, vol. 2, no. 4, pp. 490-501, 1990.

[27] P. Malhotra, A. Ramakrishnan, and G. Anand, “LSTM-
based encoder-decoder for multi-sensor anomaly detection,”
https://arxiv.org/abs/1607.00148.

[28] Z.-H. Zhou, Ensemble methods foundations and algorithms.
Machine Learning & Pattern Recognition, Taylor & Francis,
London, UK, 2012.

[29] Microsoft Malware, https://www.kaggle.com/c/malware-classi-
fication.

[30] PC. Windows Software, http://download.cnet.com/windows/.

[31] Baidu Software Center, http://rj.baidu.com/.

[32] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by prevent-

ing co-adaptation of feature detectors,” https://arxiv.org/abs/
1207.0580.

https://securelist.com/kaspersky-security-bulletin-2016-executive-summary/76858/
https://securelist.com/kaspersky-security-bulletin-2016-executive-summary/76858/
https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-jun-2017.pdf
https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-jun-2017.pdf
http://www.hexrays.com/products/ida/support/download_freeware.shtml
http://www.hexrays.com/products/ida/support/download_freeware.shtml
https://arxiv.org/abs/1607.00148
https://www.kaggle.com/c/malware-classification
https://www.kaggle.com/c/malware-classification
http://download.cnet.com/windows/
http://rj.baidu.com/
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1207.0580

16

(33]

(34]

(35]

[36]

(37]

(38]

(39]

(40]

(41]

[42]

[46]

(47]

(48]

K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proceedings of
the 3rd International Conference for Learning Representations
(ICLR ’15), 2015.

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlineari-
ties, improve neural network acoustic models,” in In Proceeding
of the 30th International Conference on Machine Learning (ICML
13), 2013.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” in
Proceedings of the 32nd International Conference on Machine
Learning (ICML ’I5), pp. 448-456, July 2015.

D. Kingma and J. B. Adam, “A method for stochastic opti-
mization,” in Proceedings of the 3rd International Conference for
Learning Representations (ICLR °2015), 2015.

L. Wang, “Microsoft Malware Classification Challenge (BIG
2015) First Place Team: Say No To Overfitting,” https://github
.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/
Saynotooverfitting.pdf.

M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G.
Giacinto, “Novel feature extraction, selection and fusion for
effective malware family classification,” in Proceedings of the 6th
ACM Conference on Data and Application Security and Privacy,
(CODASPY ’16), pp. 183-194, USA, March 2016.

B. N. Narayanan, O. Djaneye-Boundjou, and T. M. Kebede,
“Performance analysis of machine learning and pattern recog-
nition algorithms for Malware classification,” in Proceedings of
the 2016 IEEE National Aerospace and Electronics Conference
and Ohio Innovation Summit, (NAECON-OIS ’16), pp. 338-342,
USA, July 2016.

E C. Garcia and E P. Muga, “Random forest for malware
classification,” https://arxiv.org/abs/1609.07770.

E. Burnaev and D. Smolyakov, “One-class SVM with privi-
leged information and its application to malware detection,”
https://arxiv.org/abs/1609.08039.

J. Kim, S. Bu, and S. Cho, “Malware detection using deep

transferred generative adversarial networks,” in Proceedings of
the International Conference on Neural Information Processing
(ICONIP), 2017.

J. Drew, M. Hahsler, and T. Moore, “Polymorphic malware
detection using sequence classification methods and ensembles:
BioSTAR 2016 Recommended Submission - EURASIP Journal
on Information Security, EURASIP Journal on Information
Security, vol. 2017, no. 1, article no. 2, 2017.

K. Grosse, N. Papernot, P. Manoharan, M. Backes, and
P. McDaniel, “Adversarial perturbations against deep neu-
ral networks for malware classification,” https://arxiv.org/abs/
1606.04435.

B. Biggio, I. Corona, D. Maiorca et al., “Evasion attacks against
machine learning at test time,” in Proceedings of the Joint
European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML PKDD), 2013.

A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable
images,” https://arxiv.org/abs/1412.1897.

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik,
and A. Swami, “Practical black-box attacks against machine
learning,” in Proceedings of the 2017 ACM Asia Conference on
Computer and Communications Security, (ASIA CCS ’I7), pp.
506-519, April 2017.

N. Carlini and D. Wagner, “Defensive distillation is not robust
to adversarial examples,” https://arxiv.org/abs/1607.04311.

Security and Communication Networks

[49] N. Carlini and D. Wagner, “Adversarial examples are not easily

detected: Bypassing ten detection methods,” https://arxiv.org/
abs/1705.07263.

[50] E Liao, M. Liang, and Y. Dong, “Defense against adversar-

ial attacks using high-level representation guided denoiser;’
https://arxiv.org/abs/1712.02976.

https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/Saynotooverfitting.pdf
https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/Saynotooverfitting.pdf
https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/Saynotooverfitting.pdf
https://arxiv.org/abs/1609.07770
https://arxiv.org/abs/1609.08039
https://arxiv.org/abs/1606.04435
https://arxiv.org/abs/1606.04435
https://arxiv.org/abs/1412.1897
https://arxiv.org/abs/1607.04311
https://arxiv.org/abs/1705.07263
https://arxiv.org/abs/1705.07263
https://arxiv.org/abs/1712.02976

International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal —— Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

