7.3 LINEAR REGRESSION ANALYSIS

Most mathematical models in engineering and science are nonlinear in the parameters.
However, for a complete understanding of nonlinear regression methods, it is necessary to
develop first the linear regression case and show how this extends to nonlinear models.

The exact representation of a linear relationship may be shown as

y =0+ px (7.109)

where y represents the true value of the dependent variable, x is the true value of the
independent variable, f is the slope of the line, and « is the y-intercept of the line. This
deterministic relationship is not useful in this form because it requires knowledge of the true
values of y and x. Instead, the linear model is rewritten in terms of the observations of the
values of the variables

Y =a +BX +u (7.110)

where Y is the vector of observations of the dependent variable, X is the vector of
observations of the independent variable, and u is the vector of disturbance terms. The
purpose of the u term is to characterize the discrepancies that emerge between the true values
and the observed values of the variables. These discrepancies can be attributed mainly to
experimental error. Later in this section, # will be assumed to be a stochastic variable with
some specified probability distribution.

Eq. (7.110) can be extended to include more than one independent variable:

Y*'=pB,X, + BX, + ... + BX, +u (7.111)

where X}, X, . .., X, are the vectors of observations of & independent variables. To allow for
a y-intercept, the vector X, can be taken as a vector whose components are all unity; thus, B,
becomes the parameter specifying the value of the y-intercept.
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The correlation between parameters causes the axes of the confidence ellipsoids of the
linear model to be at an angle to the coordinates of the parameter space. Therefore, the
individual parameter confidence limits will not represent the true interval within which a
parameter b, may lie and still remain within the confidence ellipsoid.

In nonlinear models, the confidence hyperspace is no longer a hyperellipsoid. The
amount of distortion depends on the extent of the nonlincarity of the model. Therefore, the
calculation of the confidence intervals is not as rigorous an exercise as in the linear model,
Still, alot of valuable information can be extracted from the correlation coefficient matrix that
approximates the maximume-likelihood hyperspace in the vicinity of the solution where the
model is nearly linear. If the absolute values of the oft-diagonal elements of R are close to 1.0,
the parameters associated with those elements are highly correlated with cach other. Davies
[6] tests the values of r, against a normal distribution with zero mean, that is, no correlation,
He classifies the cnrrel.ltmn as “significant” and “highly significant” if the value of r;;is higher
than the 0.05 and 0.01 significance points of the normal distribution, respectively. High
correlation between parameters implies that it is very difficult to obtain separate estimates of
these parameters with the available data.

The eigenvectors w of the matrix R give the direction of the major and minor axes of the
hyperellipsoidal confidence region of the parameter space. The length of the axes are
proportional to the square root of the eigenvalues A of the matrix. Box [7] calculated the
values of the parameters at the ends of the axes by

b-l.- £ W, {l(s a, ) kF,

0 wkon = k)2 (7.156)
where r=1,2,...,k

k = number of parameters

n = number of points used in estimating b,

F, ((k, n = k) = value of the F distribution with k and (n - k) degrees of freedom.

Subsequently, he uses these parameter values to calculate the sum of squares at cach end of
the axes and to compare them with the sum of squares at the center of the hyperellipsoid. This
sum-of-squares scarch, which is based on a lincar model, may give vital information for
nonlinear models as well. In the case where the solution has only converged on a local
minimum sum of squares, it is very likely that the search in the direction of one of the axes
will produce a lower sum of squares. In such a case, the regression must be repeated, starting
from a different initial position, so that the local minimum may be bypassed.

7.4 NONLINEAR REGRESSION ANALYSIS

We have stated this earlier in the chapter, and we state it again: The mathematical models
encountered in engineering and science are often nonlinear in their parameters. Consider, for
example, the analysis of a chemical reaction such as
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Figure 7.10 Simulated data for batch reactor experiment.
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This is only one possible formulation of the reaction mechanism. It contains five
unknown parameters, k,, k,, k5, n, and m, which must be calculated by fitting the model to
experimental data. Suppose that experiments for this chemical system are carried out in a
batch reactor and data of the form shown in Fig. 7.10 are collected. Because experimental data
are available forall four dependent variables, C,, C,, C, and Cp, multiple nonlinear regression
can be performed by simultaneously fitting all four equations of (7.157) to the data.

A model consisting of differential equations, such as Eq. (7.157), may be shown in the
form:

1Y
;—x - g(x,Y,b) (7.158)

where dY/dx = vector of derivatives of ¥
g = vector of functions
x = independent variable
Y = vector of dependent variables
b = vector of parameters.

We assume that if the boundary conditions are given and if the vector b can be estimated, then
the differential equations (7.158) can be integrated numerically or analytically to give the
integrated results, which are

Y = f(x,b) (7.159)

For the simple case where the model consists of only one dependent variable, the sum
of squared residuals is given by

®=-€ee=(Y"-Y)(Y"-Y) (7.160)

where Y = vector of experimental observations of the dependent variable
Y = vector of calculated values of the dependent variables obtained from

Eq. (7.159).

There are several techniques for minimization of the sum of squared residuals described
by Eq. (7.160). We review some of these methods in this section. The methods developed in
this section will enable us to fit models consisting of multiple dependent variables, such as the
one described earlier, to multiresponse experimental data, in order to obtain the values of the
parameters of the model that minimize the overall (weighted) sum of squared residuals. In
addition, a thorough statistical analysis of the regression results will enable us to

1. Decide whether the model gives satisfactory fit within the experimental error of the
data.

2. Discriminate between competing models.
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3. Measure the accuracy of the estimation of the parameters by constructing the
confidence region in the parameter space.

4. Measure the correlation between parameters by examining the correlation coefficient
matrix.

5. Perform tests to verify that repeated experimental data come from the same
population of experiments,

6. Perform tests to verify whether the residuals between the data and the model are
randomly distributed.

MATLAB does the single nonlinear regression calculation by applying the function
curvefit, which comes with the Optimization TOOLBOX of MATLAB. The statement
b = curvefit(*file_name’, by, x, y) starts the regression calculations at the vector of initial
guesses of the parameters b, and uses the least squares technique to find the vector
of parameters b that best fit the nonlinear expression, introduced in the MATLAB
function file_name.m, to the data y. Inputs to the function file_name should be the vector
of parameters b and the vector of independent variable x. The function file_name should
return the vector of dependent variable y. The default algorithm is Marquardt (see Sec. 7.4.4).
A Gauss-Newton method (see Sec. 7.4.2) may be selected via the options input to the function.

7.4.1 The Method of Steepest Descent

A simple method, which has been used to arrive at the minimum sum of squares of a nonlinear
model, is that of steepest descent. We know that the gradient of a scalar function is a vector
that gives the direction of the greatest increase of the function at any point. In the steepest
descent method, we take advantage of this property by moving in the opposite direction to
reach a lower function value. Therefore, in this method, the initial vector of parameter
estimates is corrected in the direction of the negative gradient of ®:

Ab - —K( @J

7.161
ab ( )

Where K is a suitable constant factor and Ab is the correction vector to be applied to the
estimated value of b to obtain a new estimate of the parameter vector:

b = pm oy Ap (7.162)
where m is the iteration counter. Combining Egs. (7.160) and (7.161) results in
Ab = 2KJ(Y" - Y) (7.163)

where J is the Jacobian matrix of partial derivatives of ¥ with respect to b evaluated at all n
points where experimental observations are available:
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[ 3y, 3y, ]
o, 1 ab,
I=| ....... (7.164)
3y, 3y,
| ab, ab,

The steepest descent method has the advantage that guarantees moving toward the
minimum sum of squares without diverging, provided that the value of K, which determines
the step size, is small enough. The value of K may be a constant throughout the calculations,
changed arbitrarily at each calculation step, or obtained from optimization of the step size [8].
However, the rate of convergence to the minimum decreases as the search approaches this
minimum, and the method loses its attractiveness because of this shortcoming.

7.4.2 The Gauss-Newton Method

Once again, we restate that in the least squares method, our objective is to find the vector of
parameters & such that it minimizes the sum of squared residuals ®. Thus, the vector # may
be found by taking the partial derivative of @ with respect to b and setting it to zero:

9% 7.165
ab (' )

Becausc Y is nonlinear with respect to the parameters, Eq. (7.165) will yield a nonlinear
equation that would be difficult to solve for b. This problem was alleviated by Gauss, who
determined that fitting nonlinear functions by least squares can be achieved by an iterative
method involving a series of linear approximations. At each stage of the iteration, linear
squares theory can be used to obtain the next approximation.

This method, known as the Gauss-Newton method, converts the nonlinear problem into

a lincar one by approximating the function ¥ by a Taylor series expansion around an estimated
value of the parameter vector b:

Y(x,b) = Y(x,b'™ +Ab) = Y(x,b"™) - Z—:lb...Ab =Y + JAb (7.166)

where the Taylor series has been truncated after the second term. Eq. (7.166) is linear in Ab.
Therefore, the problem has been transformed from finding b o that of finding the correction
to b, that is, Ab, which must be added to an estimate of b to minimize the sum of squared
residuals. To do this we replace ¥ in Eq. (7.160) with the right-hand side of Eq. (7.166) to get

D= (Y -Y-JAb) (Y - Y - JAbD) (7.167)
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Taking the partial derivative of ® with respect to Ab, setting it equal to zero, and solving for
Ab, we obtain

Ab = (J' DIy -Y) (7.168)

The Gauss-Newton method applies to both the one-variable model and the multiple
regression case (see Sec. 7.4.5). The algorithm of the Gauss-Newton method involves the
following steps:

2. Assume initial guesses for the parameter vector b.

3. If the model is in the form of differential equation(s), then use the vector b and the
boundary condition(s) to integrate the equation(s) to obtain the profile(s) of Y. If the
model is in the form of algebraic equation(s), then simply use the vector b to evaluate
Y from the equation(s).

4. Evaluate the Jacobian matrix J from the equation(s) of the model.

Use Eq. (7.168) to obtain the correction vector Ab.

6. Evaluate the new estimate of the parameter vector from Eq. (7.162):

gt

pimeD) = plm) L Ap (7.162)

7. It is also possible to apply the relaxation factor in order to prevent the calculation
from diverging (see Sec. 1.8).
8. Repeat steps 2-5 until either (or both) of the following conditions are satisfied:
a. @ does not change appreciably.
b. Ab becomes very small.

The Gauss-Newton method is based on the linearization of a nonlinear model; therefore,
this method is expected to work well if the model is not highly nonlinear, or if the initial
estimate of the parameter vector is near the minimum sum squares. The contours of constant
@ in the parameter space of a linear model are ellipsoids (Fig. 7.11a). For a nonlinear model,
these contours are distorted (Fig. 7.115), but in the vicinity of the minimum @, the contours
are very nearly elliptical. Therefore, the Gauss-Newton method is quite effective if the initial
starting point for the search is in the nearly elliptical region. On the other hand, this method
may diverge if the starting point is in the highly distorted region of the parameter hyperspace.

7.4.3 Newton’'s Method

Eq. (7.165) represents a set of nonlinear equations; therefore, Newton's method may be
applied to solve this set of nonlinear equations. First, let us expand ® by Taylor series up to
the third term:
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(m) 2 (m)
®(x.0) = 0(x.b™) + | S21 " Aap + Lap| Z2| A (7.169)
b 2 ab?
Taking the partial derivative of both sides of Eq. (7.169) with respect to b gives
(m) W (m)
0 _[32)", | &2y, (7.170)
ob ob ob?
The first derivative of ¢ with respect to b can be calculated by differentiating Eq. (7.160):
ad | "
it = -2J/(Y* -Y) 7.171
(2 )

and the second derivative of @ with respect to b is called the Hessian matrix of the second-
order partial derivatives of @ with respect to b evaluated at all n points where experimental
observations are available:

Fe IO 20 |
ap? 0bdb, 9bb,
Fe D &> ®
H =|9b,0b,  gp] ~ 3byb, (7.172)
Fo *d o
| 0b,db, db,0b, b,
(a) (b)
B
2 Bg (IJa
(¢)
o
0 o
b, B, b, By

Figure 7.11 Contours for constant sum of squares in parameter space. (a) Linear
model. (b) Nonlinear model.
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By applying the necessary condition of having a local minimum of ®, Eq. (7.165), into

Eq. (7.170) and combining with Eqgs. (7.171) and (7.172), we can evaluate the correction
vector Ab:

Ab =2H'J(Y" - Y) (7.173)

It is interesting to note that in the case of single parameter regression, Eq. (7.165) becomes

4% g/ -9
db
and Eq. (7.173) simplifies to
f(m)
Ab = - s
o /i(m)

which is the Newton-Raphson solution of the nonlinear equation @’ = 0,

The calculation procedure for Newton's method is almost the same as that of
Gauss-Newton method with the exception that the vector of corrections to the parameters
is calculated from Eq. (7.173). If @ is quadratic with respect to b (that is, linear regression),
Newton's method converges in only one step. Like all other methods applying Newton's
technique for the solution of the set of nonlinear equations, a relaxation factor may be used
along with Eq. (7.173) when correcting the parameters.

7.4.4 The Marquardt Method®

Marquardt [9] has developed an interpolation technique between the Gauss-Newton and the
steepest descent methods. This interpolation is achieved by adding the diagonal matrix (A7)
to the matrix (J'J) in Eq. (7.168):

Ab = (J'J + AD'J(Y" - Y) (7.174)

The value of 2 is chosen, at each iteration, so that the corrected parameter vector will result
in a lower sum of squares in the following iteration. It can be easily seen that when the value
of A is small in comparison with the elements of matrix (J'J), the Marquardt method
approaches the Gauss-Newton method; when A is very large, this method is identical to
steepest descent, with the exception of a scale factor that does not affect the direction of the
parameter correction vector but that gives a small step size.

According to Marquardt, it is desired to minimize @ in the maximum neighborhood over
which the linearized function will give adequate representation of the nonlinear function.

® Also known as the Levenberg-Marquardt method.
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Therefore, the method for choosing A must give small values of A when the Gauss-Newton
method would converge efficiently and large values of A when the steepest descent method
is necessary.

The Marquardt method may likewise be applied to Newton’s method. In this case, the
diagonal matrix A7 is added to the Hessian matrix in Eq. (7.173):

Ab = 2(H + AD'J(Y" - Y) (7.175)
The Marquardt method consists of the following steps:

1. Assume initial guesses for the parameter vector b.

Assign a large value, say 1000, to A. This means that in the first iteration the steepest

descent method is predominant and would assure that the method is moving toward

the lower sum of squared residuals.

3. Evaluate the Jacobian matrix J from the equation(s) of the model. Also evaluate the
Hessian matrix H if using Newton’s method.

4. Use either Eq. (7.174) or Eq. (7.175) to obtain the correction vector Ab.

5. Evaluate the new estimate of the parameter vector from Eq. (7.162).

1~

b(m+l] = blm) + Ab (7.162)

6. Calculate the new value of ®. If ®*" < @, reduce the value of A, by a factor

of 4, for example. If @ > @ keep the old parameters [6""*" = b""] and increase
the value of A, by a factor of 2, for example.

7. Repeat steps 3-6 until either (or both) of the following conditions are satisfied:
a. @ does not change appreciably.
b. Ab becomes very small.

7.4.5 Multiple Nonlinear Regression

In the previous four sections, the sum of squared residuals that was minimized was that given
by Eq. (7.160). This was the sum of squared residuals determined from fitting one equation
to measurements of one variable. However, most mathematical models may involve
simultaneous equations in multiple dependent variables. For such a case, when more than one
equation is fitted to multiresponse data, where there are v dependent variables in the model,
the weighted sum of squared residuals is given by

v v
- ve ! - y
D = z; WE '€ = Z; u}.¢f.
I= J=

¥

=3 w(¥; - Y)Y - Y) (7.176)

i=1
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where w, = weighting factor corresponding to the jth dependent variable
¢, = sum of squared residuals corresponding to the jth dependent variable.

To minimize @ by the Gauss-Newton method, we first linearize the models using Eq. (7.166)
and combine with Eq. (7.176) to obtain

® =) wi(Y; - Y, - JAb) (Y] - ¥; - J,Ab) (7.177)
j=1

Taking the partial derivative of ® with respect to Ab, setting it equal to zero, and solving for
Ab we obtain

it

Ab = |3 w(J; ’J_,.) Z wld, (Y] - Y) (7.178)

j=1

Eq. (7.178) gives the correction of the parameter vector when fitting multiple dependent
variables simultancously. Eq. (7.178) becomes identical to Eq. (7.168) when v = I, that is,
when only one dependent variable is fitted. When using the Marquardt method, the correction
of the parameter vector is calculated from

. -1

Ab = |AT + 3 wi(J;'J) Z wd, (Y] - ¥ (7.179)

Jj=1

The weighting factors w; are determined as follows: The basic assumption in the
derivation of the regression algorithm was that the variance o of the distribution of the error
in the measurements was constant throughout the profile of a single dependent variable.
However, in the case of multiple regression, it is very unlikely that the variance 013 of all the
curves will be the saume. Therefore. in order to form an unbiased weighted sum of squared
residuals, the individual sum of squares must be multiplied by a weighting factor that is
proportional to llof. The equation for evaluating the weighting factors is given by

1/a°
W, = / (7.180)

Bz
En' 9

where of or g = variance for each curve
n, = number of experimental points available for each curve
v = number of variables being fitted.
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The denominator of Eq. (7.180) accounts for the possibility that each curve may have a
different number of experimental points 1, and weighs that accordingly. If the assumption that
Uf is constant within one curve does not hold, then Eq. (7.180) can be extended so that
weighting factor can be calculated m each point with the appropriate value of cr*’"

In most cases, the values of o/ > would not be known; however, the Lqumdlce of these
variances s; * can be obtained from I'C]IJLdl(:d experiments, and the values of 5, * are then used in
Eq. (7. 180) to calculate the weighting factors. In the worst case, w hc:c no repeated
experiments are made and no a priori knowledge of cr is available, then the values of w, must
be guessed. Otherwise, the nonlinear regression : 1Iﬂor1thm would introduce a bias tow*u‘d
fitting more satisfactorily the curve with the highest ¢, and partially ignoring the curves with
low ¢,

The nonlinear regression can also be extended to fit multiple experimental values of the
dependent variable at each value of the independent variable. This can be done by changing
Eq. (7.176) so that the squared residuals are also summed up within each group of points.
Finally, if the value of the variance of the error is proportional to the value of the dependent
variable. the residual in the sum-of-squares calculation must be divided by the theoretical
(calculated) value of the dependent variable at each point in the calculation.
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