3.2 Model Formulation

By considering the challenges of last-mile distribution, the problem of delivering multiple
lightweight relief packages to remote areas using one or more drones is examined. The model
incorporates three types of geographical locations:

1. 0, representing the Depot or central station from which drones depart. It is assumed that all
drones originate from a single station, making O a singleton set. Additionally, drones are
assumed to return empty to the warehouse.

2. L, representing demand locations where relief packages must be delivered.

3. R, representing recharging stations where drones can recharge their batteries.

Finally, the set N includes all locations in the system comprising O (depot), L (demand locations),
and R (charging stations).

It is assumed that relief packages are available only at the warehouse. Therefore, drones depart
from the warehouse with fully charged batteries, carrying a nonnegative number of packages and
may stop at additional charging stations if necessary. The distance a drone must travel from the
location i to j is associated with a symmetric length & ;; (i.e., § ;; = & j;). Each drone can carry a
maximum of P, relief packages and E,,,, represents the maximum energy supplied by a fully
charged battery. A detailed description of the notations is provided in Table 2.

Objective Function

The objective function of the proposed model is designed to optimize travel time and travel time
reliability simultaneously. Travel time is modeled as a fuzzy stochastic variable. Unlike travel
time, this research treats reliability as a fuzzy variable.

To summarize, since the goal of this model is to minimize travel time while maximizing reliability,
an initial fractional objective function may be set as follows:

Travel Time(x)

Minf (x) = Reliability(x)

(1)

Where x specifies the number of times the drone traverses each arc in the network. However, given
the above considerations, the fractional objective function (1) is rewritten as follows:

Travel Time(x) = Z tjxij + to
(i./))EN

Reliability(x) = Z Tij Xij + 1o
(i,j)enN



Where it is assumed that fisj~ (ufisj, O'les,) is a normally distributed random variable with a fuzzy
ij

mean and variance, representing the travel time of the drone from the location i to j, and 7;;
denotes the fuzzy reliability of the travel time for this route. The variable x;; represents the number
of times the drone travels from the location i to location j. The parameters 7, and ¢, are constant
values determined based on the problem conditions. Furthermore, without loss of generality, it is

assumed that Y(; ey Tij Xij + 1o > 0, which ensures the feasibility of the problem.

Constraints

In the proposed model, it is assumed that each demand location in L must be visited exactly once
and by only one drone. Therefore, we define:

ZiEN\{j} xij = 1' VJ € Ll (2)

Since drones must travel from the warehouse to demand points and eventually return to the
warehouse, the flow of drones must be balanced within the network. In the proposed model, each
drone can visit charging stations and warehouses as often as necessary, either to recharge the
battery or load the relief supplies. However, for all network nodes, the number of entries to any
node must equal the number of exits from that node. This means that any drone entering a point
other than the warehouse must also exit from the same point.

z:iEN\{j} Xij = ZieN\{j} Xji, Vj€EN 3)
Constraint (3) ensures that no node is visited in an unbalanced manner and the movement paths of

the drones within the network are logically and coherently organized.

At least one drone must be used to deliver relief packages to demand locations. Therefore, the
number of drone trips between the warehouse and demand locations or charging stations must be
greater than zero. Thus:

ZjeN\{O} x>0, €0 4
Table 2: Description of Notations
Notations Description
Indices
N Set of all locations (Depot O, demand locations L, and recharging stations R).
Parameters
d; Demand for location i € L.
Prax The maximum payload capacity of the drone.
Epmax Maximum energy capacity of the drone's battery.
bij Distance between locations i and j.
el Base energy needed for takeoff and landing of an empty drone.
efL: Additional energy needed for takeoff and landing per package.
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el Energy required to fly per unit distance for an empty drone

ep Additional energy required to fly per unit distance per package
fisj Travel time for the drone to move from location i to location j.
7ij Travel time reliability on (i, j).

A% and AP Environmental impact on energy consumption baseline energy and load-

dependent energy
Decision Variables

Xij Number of times the drone moves from location i to location j.
Vij Number of packages carried by the drone when it leaves location i for j.
e Level of energy in the drone's battery when leaving the location i to j.

Constraint (4) ensures that the operation begins with a drone movement from the warehouse to a
demand location. Without this constraint, no drone might initiate its journey, leaving the system
inactive. Therefore, this constraint indicates that at least one drone must start its journey to a
demand location to initiate the delivery process and activate the system.

Since each drone has limited payload and energy capacities, the number of packages a drone can
carry from location i to location j cannot exceed the drone maximum capacity. Here, selecting the
appropriate type of drone based on payload and energy capacity is one of the most critical
challenges. Each type of drone has different payload and energy capacities, directly affecting travel
time and operational reliability. Therefore, the right drone for each mission must be carefully
selected to ensure the system provides optimal performance with minimum travel time and
maximum reliability. The best way to address this multi-choice challenge is by considering the
drone's maximum payload and energy capacity. Hence, the maximum payload and energy
capacities of the drone are defined as multi-choice parameters such that PY,,,t = 1,2,..,T
represents the maximum payload capacity of a drone t, and Ef,,,,t = 1,2, ..., T represents its
maximum energy capacity. T is the finite number of drones that will realize their delivery function.
This can be expressed by constraints (5) to (7):

yij < (Prlnaxf Pznax» ---rpz‘nax)-xij' Vi'j EN (5)

eij = (Emaxs Efaxs o Emax)-Xij, Vi€ OUR,j € N\{i}, (6)
eij < (Emax Eaxs 0 Emax)- X5, Vi €L,j € N\{i}, (7)

Where y;; represents the number of packages carried by the drone when traveling from a location
i to location j, and e;; denotes the energy available in the drone battery when traveling from
location i to location j. Constraint (6) specifies that the drone battery is always fully charged when
the drone moves from the warehouse or charging station to another destination. However,
constraint (7) indicates that the energy level in the battery at demand locations will always be less
than or equal to the maximum energy level. Therefore, these two constraints are necessary to
ensure the battery is fully charged at the start of the journey and to prevent excessive energy



consumption along the subsequent paths. Using multi-choice parameters here allows us to evaluate
the issue in a single model instead of considering it across t different scenarios.

Accurate estimation of drone energy consumption ensures efficient operational decisions for drone
distribution systems and all applications, including humanitarian missions. However, in many
optimization models designing drone distribution systems, energy consumption is indirectly
calculated only as a fixed limit to determine the flight range. Few studies have directly calculated
energy based on a physical force-based energy consumption model or field measurements.

Various factors must be considered for the drone battery energy level. These include drone design
(such as the number of rotors, rotor size, battery weight, battery energy capacity, and flight
mechanism), environmental conditions (including air density, gravity, wind speed, and flight
regulations), drone dynamics (including speed, vibrations, acceleration, type of rotation, and flight
altitude), and finally, delivery operations (including payload weight and size, fleet size, type of
delivery (throw/release or landing), and operational area), all of which significantly affect energy
consumption. This research divides the drone battery energy level into two main components. The
first component is base energy, which includes energy required for takeoff, flight without
packages, and landing. This amount of energy is consumed even when no package is carried. The
second component is payload-induced energy, which depends on the payload weight and the
distance traveled, determining the additional energy required for transporting the load.
Furthermore, environmental conditions affecting the drone energy level are considered in both
components. The combination of these factors determines the total energy consumed by the drone.
Given these considerations, the energy balance constraint for the drone at each demand location i
in the set L of demand locations is defined as follows:

Yiem € — Sjemi € = Ljem(@ix + Biyi) Vi€ L, 3

where a;; represents the base energy required for moving the drone between locations i and j. This
amount includes the energy required for the takeoff and landing of an empty drone (es;), the
energy required for flying one unit distance for an empty drone (e?2), and the impact of
environmental conditions A% :

— ,0 0 a
aji =ér + 6jieF + A1

p;i represents the additional energy required for carrying packages between location i and j, which

includes the extra energy required for takeoff and landing with the additional package (ef), the
extra energy required for flying one unit distance with the package (e;), and the impact of

environmental conditions /'lB :
Bji = ef, + Sjier + A

This constraint represents the energy consumed when moving from any location to a demand
location. In addition, the impact of environmental conditions on energy consumption is considered



to make the model more realistic. To calculate A% and A* , an FIS is used, with environmental
conditions such as wind speed W, temperature T, and altitude A as its inputs. These inputs are then

transformed into the outputs A% and AP by using fuzzy rules. Each input variable is modeled as a
fuzzy set F, with corresponding linguistic terms:

Fy = {low, medium, high}
Fr = {cold, moderate, hot}
F, = {low, medium, high}

Each input x is mapped to a membership function pg_(x) that determines its degree of belonging

to each linguistic term. The fuzzy inference system applies a rule base Ry, consisting of expert-
defined rules of the form:

R:Ifw € Ff and t € Ff and a € Ff then A* € Ff,

Where k is the index of the fuzzy rule in the set of rules R and F Ak represents the fuzzy set for the
environmental impact factor A¥ | with linguistic values {low, medium, high}. The aggregation of
rule outputs A is performed using the max-min composition:

pa %) = maemin (g (W), (), g (@)

Finally, the defuzzification process, using the centroid method, computes a crisp value for 1%5:

a — ZeAm (%)
AT = Y ua(ak) ©)
M =291+ (10)
where
§ = (1)

FIS is applied to model energy consumption under varying environmental conditions. The input
variables (wind speed, temperature, and altitude) are represented as fuzzy sets with linguistic
values (low, medium, high). Triangular membership functions are used to map numerical values
to their corresponding degrees of membership. The system output, representing the environmental
impact factor on energy (4), is also modeled using three fuzzy membership functions (low,
medium, high). These functions form the basis for evaluating fuzzy rules and computing the final
A value through aggregation and defuzzification.
On the other hand, the battery energy level of the drone at the moment of departure from location



i to reach the next destination j must be sufficient. In other words, the drone should not start a path
unless the remaining energy in the battery is enough to cover that path. Therefore:

el'j > (aijxij + Bl]yl])i Vi € N,V] € N\{l}, (12)

According to the model's assumption, drones should not carry any package when returning to the
warehouse. This assumption is made because the warehouse is the only loading point.

yii=0, Vi€O,jeN\{0} (13)

This constraint ensures that no package is carried on the return paths to the warehouse. The number
of packages a drone carries changes when it enters and exits a location. These changes must be
adjusted according to the demand of the demand locations and the nature of the charging stations.
Therefore:

d, VIi€ELjEN

yﬁ_yu':{o, VieRj€EN (14)

Constraint (14) states that for each demand location, the difference between the number of
packages a drone carries when it enters the area and the amount it holds when it exits is equal to
the demand of that location. Also, it states that at charging stations, the number of packages a drone
has when it enters is equal to the number it has when it exits. In other words, the package amount
does not change. However, this constraint alone is not sufficient, as the model still considers
charging stations as intermediate nodes. Therefore, the following two constraints have been
defined to prevent such behavior in the model.

Vi~ Vjp < M(2 = xi; — x) (15)
YVip ~ ¥y < M(2 = xi; = x5) (16)

Let M be a large enough positive constant to ensure that the constraint becomes non-binding when
at least one of the related arcs is not employed. The value of M can be used to set an upper limit
on the number of packages that can be delivered between any two nodes.

Finally, in order to prevent direct flights of drones between depots and charging stations,
constraints have been defined to eliminate the possibility of such routes in the model. Therefore:

ZjEOyij = 0, Vieo (17)
ZjERyl'j =0, Vi €ER (18)

4- Deterministic Approach

The objective function of the problem includes fuzzy stochastic variables and constraints (5) to (7)
and involve multi-choice parameters, therefore the model cannot be directly solved using
conventional methods. In such cases, one approach to overcoming fuzzy stochastic variables and
multi-choice parameters is to transform the model into its equivalent deterministic form.



4-1- Probability-Credibility Approach

In addressing uncertainty from fuzzy stochastic variables, three major approaches have been
widely used in the literature: probability-possibility, probability-necessity, and probability-
credibility. This paper adopts the probability-credibility approach because credibility measurement
is defined based on both possibility and necessity measures. Accordingly, the probability-
possibility form of the objective function (1) is expressed as follows:

Min f,
prler (i, j)eN fiijij + &
(i.nenTij Xij + 1o

< fo] = 50] = Yo (19)

Where Pr(.) and Cr(.) represent the probability measure and the fuzzy credibility measure,
respectively. Additionally, §, and y, are predefined confidence levels determined by the decision-
maker or the client. fj is the target variable to the objective function. In this approach, the decision-
maker aims to achieve at least f;, such that the fractional objective function (1) remains less than
or equal to f; with confidence levels 6,y € [0,1]. Higher value of &, known in the literature as the
fuzzy credibility degree, increases the number of real-world scenarios in which the obtained
solution holds. Therefore, a risk-seeking decision-maker may choose lower values of §, whereas
a risk-averse decision-maker may opt for higher values. On the other hand, a lower & reduces
operational costs. Consequently, selecting a higher § implies an additional cost for obtaining a
more stable solution. Given the importance of post-disaster relief operations in this research, the
credibility degree is set to be greater than 0.5 to ensure stable solutions for the problem.

A review of the existing literature indicates no specific guidelines for selecting the shape of fuzzy
numbers for fuzzy parameters in a given problem. In decision-making problems, fuzzy numbers
are typically chosen in an LR form (triangular or trapezoidal) to maintain the linearity of the
problem. However, trapezoidal fuzzy numbers are used when the data includes an interval in which
all values are equally valid (having the highest membership degree). This condition rarely occurs
in real-world scenarios. Based on this, in this research, fuzzy parameters are defined as LR-type
triangular fuzzy numbers as follows:

t3. = (t.s. t% t'B)
Y Yrtur Ty J e
o a B
fiy = (rip 76515 )LR

where tl-sj and 7;; represent the central values of the fuzzy number, while tf‘j and ri‘} denote the left

spreads, and tiﬂj and rif denote the right spreads. Unlike deterministic numbers, which have exact

values, a fuzzy number represents the membership degree to a specific value within the range
[0,1]. The membership function determines this degree of membership between 0 and 1. This
concept allows for incorporating uncertainty and imprecision in mathematical models. For the
proposed model, the membership function of the fuzzy numbers is defined as follows:



fL(tiz;x)’ xStiSj
ij
pes GO =1 [y S 20)
L\
(L(Tli;x>’ xSrij
ij
M (x) = 1 p— 21
kR r_ﬁ , X = rij
ij

where L(.) and R(.) are the left and right non-increasing continuous functions from [0,1] to [0,1],
such that L(0) = R(0) =1 and L(1) =R(1) =0.

Now, using the concepts of fuzzy credibility measure and expressions (20) and (21) for §, > 0.5,
we have (Tavana 2012):

Cr [Z(i,j)eN tixij + to

. < fo| = 6o
Y jen Tij xij + 1o ]

= z (tfj + ti‘j.L‘l(Z(l - 60)))xij + to
(i.))EN

< fo (Z(i,j)eN (Tij +rfL(2(1 - 50))) xij + To) (22)

Since t;; in (22) is a random variable with a normal distribution, by assuming that mes, and Oy,

are its mean and standard deviation, respectively, we can express the following for y, € [0,1] by
using probability theory concepts (Bavandi and Nasseri 2022):

X(ij)eN <mtisj + tﬁ-L‘l(Z(l - 50))) xij + to + P 1(yo) /Z(i,j)ezv thziijizj

Z(i,j)EN (rij + T'iC;L_l(Z(l - 60))) Xij + 7y

<fo (23)

Expression (23) represents the deterministic form of (19).

4-2 Lagrange Interpolation Polynomial Approach

Constraints (5) to (7) include multi-choice parameters, making solving this problem infeasible.
Therefore, as a first step, multi-choice parameters are transformed using interpolation polynomials.
The interpolation polynomial is constructed by introducing a non-negative integer variable
corresponding to each multi-choice parameter. In fact, if the corresponding parameter has n
options, each integer variable exactly covers n knot points. In the proposed model, there are two
multi-choice parameters, P4, and Ej, 4y, so the integer variables u and v are introduced for these



two parameters, respectively. Since P, ., and E,,,., have T options, u and v, therefore, cover
exactly T knot points. Each node corresponds exactly to one functional value of a multi-choice
parameter, as shown in Table 3. The Lagrange interpolation polynomials corresponding to these
two multi-choice parameters are denoted by gp_  (u) and g; . (v).

Table 3: Data Related to the Multi-Choice Parameters P, and E,,,

u&v 0 1 2 T-1
1 2 3 T
IEmax (v) Emax Emax Emax o Emax

Based on the information provided in Table 3 and the Lagrange interpolation formula, the
interpolating polynomials for the multi-choice parameters of the problem are obtained as follows:

_ (-1 (w-2)..(u-T+1) (1)

IPax (u) = CDT-D(T—1)1 max
u(u-2)(u-3)..(u-T+1) ,(2)

+ -)T-D1y(T-2)r ~Mmax

24)

u(u—1)(u—-2)..(u-T+2) (T)
+ (T—1)! Pmax

_ (w-1)Ww-2)..(v-T+1) (1)
gEmax(v) - (—1)(T_1)(T—1)! max
n v(w-2)(v-3)..(v-T+1) (2)
(-1)T-2)1(T-2)1 ~Max (25)

v(w-1)(w=2)..(v-T+2) p(T)
+ (T-1)! Prnax

Using (24) and (25), and given that minimizing f, is equivalent to minimizing the left-hand side
of (23), the deterministic model of the problem is obtained as follows:

Z(i,j)eN<mtlgj+t5.L—1(2(1—50))>xij+to+q>—1(y0) IZ(i,j)ENUtZS.xizj
. 13
Min d (26)

Sapen{ry +r1(20-50) Jrij4ro

st (2)-(4), (8)-(12)

k=1 yikj < Ippa(W-Xi5, Vi, jEN (27)
ejj = gEmax(v).xij, Vi € O UR,j € N\{i}, (28)
€ij < JEma,(V)-Xij, Vi€LjJEN\{i}, (29)

X €Lyl €LY, e; =0

The latest model is a deterministic fractional model that can be solved using the bisection method
(Yano 2012) or the Dinkelbach algorithm (Dinkelbach 1967). In this research, we employ



Dinkelbach’s algorithm to solve the above nonlinear fractional programming problem.

Dinkelbach algorithm is summarized as follows:
Algorithm 1: Dinkelbach’s Algorithm

Step 1: Consider the fractional objective function (26). For convenience, we set:
N@ = D (e + L7200 - 60) oy + £+ 07 ) | D o2
(i.))eN (i.))eN

D(x) = Z (rij +riL (201 - 80))) xij + 19

(.J)EN

The

For all x € X, where X is the feasible set, it follows that N(x) = 0 and D(x) > 0. Let x* denote

the initial solution in the feasible set X. set

_NQ(xYH
© D(xY

1

and k = 1.

Step 2: Solve the problem
Min N(x) — ¢*D(x)

s.t. x€X
Let x**1 be the optimal solution of this subproblem.
Step 3: Check the convergence condition:
n = Nk — kD (xk+1)
If 0 <7 < &, then x**1 is the optimal solution and stop. Otherwise, go to step 4.
Step 4: Update

k
o+l = N ()
D(xk+1)

Set k « k + 1, and return to step 2.
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