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3.2 Model Formulation 

By considering the challenges of last-mile distribution, the problem of delivering multiple 

lightweight relief packages to remote areas using one or more drones is examined. The model 

incorporates three types of geographical locations: 

1. 𝑂, representing the Depot or central station from which drones depart. It is assumed that all 

drones originate from a single station, making 𝑂 a singleton set. Additionally, drones are 

assumed to return empty to the warehouse. 

2. 𝐿, representing demand locations where relief packages must be delivered. 

3. 𝑅, representing recharging stations where drones can recharge their batteries. 

Finally, the set 𝑁 includes all locations in the system comprising 𝑂 (depot), 𝐿 (demand locations), 

and 𝑅 (charging stations). 

It is assumed that relief packages are available only at the warehouse. Therefore, drones depart 

from the warehouse with fully charged batteries, carrying a nonnegative number of packages and 

may stop at additional charging stations if necessary. The distance a drone must travel from the 

location 𝑖 to 𝑗 is associated with a symmetric length 𝛿 𝑖𝑗 (i.e., 𝛿 𝑖𝑗 = 𝛿 𝑗𝑖). Each drone can carry a 

maximum of 𝑃𝑚𝑎𝑥 relief packages and 𝐸𝑚𝑎𝑥 represents the maximum energy supplied by a fully 

charged battery. A detailed description of the notations is provided in Table 2.  

Objective Function 

The objective function of the proposed model is designed to optimize travel time and travel time 

reliability simultaneously. Travel time is modeled as a fuzzy stochastic variable. Unlike travel 

time, this research treats reliability as a fuzzy variable. 

To summarize, since the goal of this model is to minimize travel time while maximizing reliability, 

an initial fractional objective function may be set as follows: 

(1)                                                      𝑀𝑖𝑛𝑓(𝑥) =
𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒(𝑥)

Re𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥)
 

Where 𝑥 specifies the number of times the drone traverses each arc in the network. However, given 

the above considerations, the fractional objective function (1) is rewritten as follows: 

𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒(𝑥) = ∑ 𝑡̃𝑖𝑗
𝑠 𝑥𝑖𝑗

(𝑖,𝑗)∈𝑁

+ 𝑡0 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥) = ∑ 𝑟̃𝑖𝑗 𝑥𝑖𝑗
(𝑖,𝑗)∈𝑁

+ 𝑟0 
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Where it is assumed that 𝑡̃𝑖𝑗
𝑠 ~(𝜇𝑡̃𝑖𝑗

𝑠 , 𝜎𝑡̃𝑖𝑗
𝑠
2 ) is a normally distributed random variable with a fuzzy 

mean and variance, representing the travel time of the drone from the location 𝑖 to 𝑗, and 𝑟̃𝑖𝑗  

denotes the fuzzy reliability of the travel time for this route. The variable 𝑥𝑖𝑗 represents the number 

of times the drone travels from the location 𝑖 to location 𝑗. The parameters 𝑟0 and 𝑡0 are constant 

values determined based on the problem conditions. Furthermore, without loss of generality, it is 

assumed that ∑ 𝑟̃𝑖𝑗 𝑥𝑖𝑗(𝑖,𝑗)∈𝑁 + 𝑟0 > 0, which ensures the feasibility of the problem.  

Constraints 

In the proposed model, it is assumed that each demand location in 𝐿 must be visited exactly once 

and by only one drone. Therefore, we define: 

∑ 𝑥𝑖𝑗𝑖∈𝑁\{𝑗} = 1,       ∀𝑗 ∈ 𝐿,                                          (2) 

Since drones must travel from the warehouse to demand points and eventually return to the 

warehouse, the flow of drones must be balanced within the network. In the proposed model, each 

drone can visit charging stations and warehouses as often as necessary, either to recharge the 

battery or load the relief supplies. However, for all network nodes, the number of entries to any 

node must equal the number of exits from that node. This means that any drone entering a point 

other than the warehouse must also exit from the same point. 

∑ 𝑥𝑖𝑗𝑖∈𝑁\{𝑗} = ∑ 𝑥𝑗𝑖𝑖∈𝑁\{𝑗} ,     ∀𝑗 ∈ 𝑁                                    (3)  

Constraint (3) ensures that no node is visited in an unbalanced manner and the movement paths of 

the drones within the network are logically and coherently organized.  

At least one drone must be used to deliver relief packages to demand locations. Therefore, the 

number of drone trips between the warehouse and demand locations or charging stations must be 

greater than zero. Thus : 

∑ 𝑥𝑖𝑗𝑗∈𝑁\{𝑂} > 0,       𝑖 ∈ 𝑂                                         (4) 

 

Table 2: Description of Notations  

Description Notations 
 Indices 

Set of all locations (Depot 𝑂, demand locations  𝐿, and recharging stations 𝑅). 𝑁 

 Parameters 

Demand for location 𝑖 ∈ 𝐿. 𝑑𝑖 
The maximum payload capacity of the drone. 𝑃𝑚𝑎𝑥 

Maximum energy capacity of the drone's battery. 𝐸𝑚𝑎𝑥 

Distance between locations 𝑖 and 𝑗. 𝛿𝑖𝑗 

Base energy needed for takeoff and landing of an empty drone. 𝑒𝑇𝐿
0  

Additional energy needed for takeoff and landing per package. 𝑒𝑇𝐿
+ : 
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Energy required to fly per unit distance for an empty drone 𝑒𝐹
0 

Additional energy required to fly per unit distance per package 𝑒𝐹
+ 

Travel time for the drone to move from location 𝑖 to location 𝑗. 𝑡̃𝑖𝑗
𝑠  

Travel time reliability on (𝑖, 𝑗). 𝑟̃𝑖𝑗  

Environmental impact on energy consumption baseline energy and load-

dependent energy 
𝜆𝛼 𝑎𝑛𝑑 𝜆𝛽 

 Decision Variables 

Number of times the drone moves from location 𝑖 to  location 𝑗. 𝑥𝑖𝑗  
Number of packages carried by the drone when it leaves location 𝑖 for 𝑗. 𝑦𝑖𝑗 

Level of energy in the drone's battery when leaving the location 𝑖 to 𝑗. 𝑒𝑖𝑗 

Constraint (4) ensures that the operation begins with a drone movement from the warehouse to a 

demand location. Without this constraint, no drone might initiate its journey, leaving the system 

inactive. Therefore, this constraint indicates that at least one drone must start its journey to a 

demand location to initiate the delivery process and activate the system. 

Since each drone has limited payload and energy capacities, the number of packages a drone can 

carry from location 𝑖 to location 𝑗 cannot exceed the drone maximum capacity. Here, selecting the 

appropriate type of drone based  on payload and energy capacity is one of the most critical 

challenges. Each type of drone has different payload and energy capacities, directly affecting travel 

time and operational reliability. Therefore, the right drone for each mission must be carefully 

selected to ensure the system provides optimal performance with minimum travel time and 

maximum reliability. The best way to address this multi-choice challenge is by considering the 

drone's maximum payload and energy capacity. Hence, the maximum payload and energy 

capacities of the drone are defined as multi-choice parameters such that 𝑃𝑚𝑎𝑥
𝑡 , 𝑡 = 1,2, … , 𝑇 

represents the maximum payload capacity of a drone 𝑡, and 𝐸𝑚𝑎𝑥
𝑡 , 𝑡 = 1,2, … , 𝑇 represents its 

maximum energy capacity. 𝑇 is the finite number of drones that will realize their delivery function. 

This can be expressed by constraints (5) to (7): 

                                                𝑦
𝑖𝑗
≤ (𝑃𝑚𝑎𝑥

1 , 𝑃𝑚𝑎𝑥
2 , … , 𝑃𝑚𝑎𝑥

𝑇 ). 𝑥𝑖𝑗 ,         ∀𝑖, 𝑗 ∈ 𝑁                        (5) 

𝑒𝑖𝑗 = (𝐸𝑚𝑎𝑥
1 , 𝐸𝑚𝑎𝑥

2 , … , 𝐸𝑚𝑎𝑥
𝑇 ). 𝑥𝑖𝑗 ,       ∀𝑖 ∈ 𝑂 ∪ 𝑅, 𝑗 ∈ 𝑁\{𝑖},      (6) 

𝑒𝑖𝑗 ≤ (𝐸𝑚𝑎𝑥
1 , 𝐸𝑚𝑎𝑥

2 , … , 𝐸𝑚𝑎𝑥
𝑇 ). 𝑥𝑖𝑗 , ∀𝑖 ∈ 𝐿, 𝑗 ∈ 𝑁\{𝑖},              (7) 

Where 𝑦𝑖𝑗 represents the number of packages carried by the drone when traveling from a location 

𝑖 to location 𝑗, and 𝑒𝑖𝑗 denotes the energy available in the drone battery when traveling from 

location 𝑖 to location 𝑗. Constraint (6) specifies that the drone battery is always fully charged when 

the drone moves from the warehouse or charging station to another destination. However, 

constraint (7) indicates that the energy level in the battery at demand locations will always be less 

than or equal to the maximum energy level. Therefore, these two constraints are necessary to 

ensure the battery is fully charged at the start of the journey and to prevent excessive energy 
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consumption along the subsequent paths. Using multi-choice parameters here allows us to evaluate 

the issue in a single model instead of considering it across 𝑡 different scenarios. 

Accurate estimation of drone energy consumption ensures efficient operational decisions for drone 

distribution systems and all applications, including humanitarian missions. However, in many 

optimization models designing drone distribution systems, energy consumption is indirectly 

calculated only as a fixed limit to determine the flight range. Few studies have directly calculated 

energy based on a physical force-based energy consumption model or field measurements. 

Various factors must be considered for the drone battery energy level. These include drone design 

(such as the number of rotors, rotor size, battery weight, battery energy capacity, and flight 

mechanism), environmental conditions (including air density, gravity, wind speed, and flight 

regulations), drone dynamics (including speed, vibrations, acceleration, type of rotation, and flight 

altitude), and finally, delivery operations (including payload weight and size, fleet size, type of 

delivery (throw/release or landing), and operational area), all of which significantly affect energy 

consumption. This research divides the drone battery energy level into two main components. The 

first component is base energy, which includes energy required for takeoff, flight without 

packages, and landing. This amount of energy is consumed even when no package is carried. The 

second component is payload-induced energy, which depends on the payload weight and the 

distance traveled, determining the additional energy required for transporting the load. 

Furthermore, environmental conditions affecting the drone energy level are considered in both 

components. The combination of these factors determines the total energy consumed by the drone. 

Given these considerations, the energy balance constraint for the drone at each demand location 𝑖 

in the set 𝐿 of demand locations is defined as follows: 

∑ 𝑒𝑗𝑖𝑗∈𝑁\{𝑖} − ∑ 𝑒𝑖𝑗𝑗∈𝑁\{𝑖} = ∑ (𝛼𝑗𝑖𝑥𝑗𝑖 + 𝛽𝑗𝑖𝑦𝑗𝑖), ∀𝑖 ∈ 𝐿,𝑗∈𝑁\{𝑖}                     (8) 

where 𝛼𝑗𝑖 represents the base energy required for moving the drone between locations 𝑖 and 𝑗. This 

amount includes the energy required for the takeoff and landing of an empty drone (𝑒𝑇𝐿
0 ), the 

energy required for flying one unit distance for an empty drone (𝑒𝐹
0), and the impact of 

environmental conditions 𝜆𝛼 : 

𝛼𝑗𝑖 = 𝑒𝑇𝐿
0 + 𝛿𝑗𝑖𝑒𝐹

0 + 𝜆𝛼 

𝛽𝑗𝑖 represents the additional energy required for carrying packages between location 𝑖 and 𝑗, which 

includes the extra energy required for takeoff and landing with the additional package (𝑒𝑇𝐿
+ ), the 

extra energy required for flying one unit distance with the package (𝑒𝐹
+), and the impact of 

environmental conditions 𝜆
𝛽

: 

𝛽𝑗𝑖 = 𝑒𝑇𝐿
+ + 𝛿𝑗𝑖𝑒𝐹

+ + 𝜆
𝛽  

This constraint represents the energy consumed when moving from any location to a demand 

location. In addition, the impact of environmental conditions on energy consumption is considered 
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to make the model more realistic. To calculate 𝜆𝛼  and  𝜆
𝛽

, an FIS is used, with environmental 

conditions such as wind speed 𝑊, temperature 𝑇, and altitude 𝐴 as its inputs. These inputs are then 

transformed into the outputs 𝜆𝛼  and  𝜆
𝛽

 by using fuzzy rules. Each input variable is modeled as a 

fuzzy set 𝐹𝑥 with corresponding linguistic terms: 

𝐹𝑊 = {𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ} 

𝐹𝑇 = {𝑐𝑜𝑙𝑑,𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒, ℎ𝑜𝑡} 

𝐹𝐴 = {𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ} 

Each input 𝑥 is mapped to a membership function 𝜇𝐹𝑥(𝑥) that determines its degree of belonging 

to each linguistic term. The fuzzy inference system applies a rule base 𝑅𝑘, consisting of expert-

defined rules of the form: 

𝑅𝑘: If 𝑤 ∈ 𝐹𝑊
𝑘  and 𝑡 ∈ 𝐹𝑇

𝑘 and 𝑎 ∈ 𝐹𝐴
𝑘 then 𝜆𝑘 ∈ 𝐹𝜆

𝑘, 

Where  𝑘 is the index of the fuzzy rule in the set of rules 𝑅 and 𝐹𝜆
𝑘 represents the fuzzy set for the 

environmental impact factor 𝜆𝑘 , with linguistic values {low, medium, high}. The aggregation of 

rule outputs 𝜆 is performed using the max-min composition: 

𝜇𝜆(𝜆
𝑘) = 𝑚𝑎𝑥

𝑘
𝑚𝑖𝑛 (𝜇𝐹𝑤𝑘(𝑤), 𝜇𝐹𝑡𝑘

(𝑡), 𝜇𝐹𝑎𝑘(𝑎)) 

Finally, the defuzzification process, using the centroid method, computes a crisp value for 𝜆𝛼,𝛽: 

𝜆𝛼 =
∑ 𝜆𝑘.𝜇𝜆(𝜆

𝑘)𝑘

∑ 𝜇𝜆(𝜆
𝑘)𝑘

                                                                   (9) 

𝜆𝛽 = 𝜆𝛼(1 + 𝜉)                                                                    (10) 

where 

𝜉 =
𝑒𝐹
+−𝑒𝐹

0

𝑒𝐹
0                                                                              (11) 

 

FIS is applied to model energy consumption under varying environmental conditions. The input 

variables (wind speed, temperature, and altitude) are represented as fuzzy sets with linguistic 

values (low, medium, high). Triangular membership functions are used to map numerical values 

to their corresponding degrees of membership. The system output, representing the environmental 

impact factor on energy (𝜆), is also modeled using three fuzzy membership functions (low, 

medium, high). These functions form the basis for evaluating fuzzy rules and computing the final 

𝜆 value through aggregation and defuzzification. 
On the other hand, the battery energy level of the drone at the moment of departure from location 
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𝑖 to reach the next destination 𝑗 must be sufficient. In other words, the drone should not start a path 

unless the remaining energy in the battery is enough to cover that path. Therefore: 

𝑒𝑖𝑗 ≥ (𝛼𝑖𝑗𝑥𝑖𝑗 + 𝛽𝑖𝑗𝑦𝑖𝑗),   ∀𝑖 ∈ 𝑁, ∀ 𝑗 ∈ 𝑁\{𝑖},                                 (12) 

According to the model's assumption, drones should not carry any package when returning to the 

warehouse. This assumption is made because the warehouse is the only loading point. 

𝑦𝑗𝑖 = 0,      ∀𝑖 ∈ 𝑂, 𝑗 ∈ 𝑁\{𝑂}                                          (13) 

This constraint ensures that no package is carried on the return paths to the warehouse. The number 

of packages a drone carries changes when it enters and exits a location. These changes must be 

adjusted according to the demand of the demand locations and the nature of the charging stations. 

Therefore: 

𝑦
𝑗𝑖
− 𝑦

𝑖𝑗
= {

𝑑𝑖,       ∀𝑖 ∈ 𝐿, 𝑗 ∈ 𝑁
0,         ∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝑁

                                                   (14) 

Constraint (14) states that for each demand location, the difference between the number of 

packages a drone carries when it enters the area and the amount it holds when it exits is equal to 

the demand of that location. Also, it states that at charging stations, the number of packages a drone 

has when it enters is equal to the number it has when it exits. In other words, the package amount 

does not change.  However, this constraint alone is not sufficient, as the model still considers 

charging stations as intermediate nodes. Therefore, the following two constraints have been 

defined to prevent such behavior in the model. 

𝑦
𝑖𝑗
− 𝑦

𝑗𝑝
≤ 𝑀(2 − 𝑥𝑖𝑗 − 𝑥𝑗𝑝)                                              (15) 

𝑦
𝑗𝑝
− 𝑦

𝑖𝑗
≤ 𝑀(2 − 𝑥𝑖𝑗 − 𝑥𝑗𝑝)                                              (16) 

Let 𝑀 be a large enough positive constant to ensure that the constraint becomes non-binding when 

at least one of the related arcs is not employed. The value of 𝑀 can be used to set an upper limit 

on the number of packages that can be delivered between any two nodes. 

Finally, in order to prevent direct flights of drones between depots and charging stations, 

constraints have been defined to eliminate the possibility of such routes in the model. Therefore: 

∑ 𝑦𝑖𝑗𝑗∈𝑂 = 0,       ∀𝑖 ∈ 𝑂                                            (17) 

∑ 𝑦𝑖𝑗𝑗∈𝑅 = 0,       ∀𝑖 ∈ 𝑅                                            (18) 

4- Deterministic Approach 

The objective function of the problem includes fuzzy stochastic variables and constraints (5) to (7) 

and involve multi-choice parameters, therefore the model cannot be directly solved using 

conventional methods. In such cases, one approach to overcoming fuzzy stochastic variables and 

multi-choice parameters is to transform the model into its equivalent deterministic form. 
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4-1- Probability-Credibility Approach 

In addressing uncertainty from fuzzy stochastic variables, three major approaches have been 

widely used in the literature: probability-possibility, probability-necessity, and probability-

credibility. This paper adopts the probability-credibility approach because credibility measurement 

is defined based on both possibility and necessity measures. Accordingly, the probability-

possibility form of the objective function (1) is expressed as follows: 

 

 

(19) 

𝑀𝑖𝑛  𝑓0 

𝑃𝑟 [𝐶𝑟 [
∑ 𝑡̃𝑖𝑗

𝑠 𝑥𝑖𝑗 + 𝑡0(𝑖,𝑗)∈𝑁

∑ 𝑟̃𝑖𝑗 𝑥𝑖𝑗 + 𝑟0(𝑖,𝑗)∈𝑁

≤ 𝑓0] ≥ 𝛿0] ≥ 𝛾0 

 
Where 𝑃𝑟(. ) and 𝐶𝑟(. ) represent the probability measure and the fuzzy credibility measure, 

respectively. Additionally, 𝛿0  and 𝛾0  are predefined confidence levels determined by the decision-

maker or the client. 𝑓0 is the target variable to the objective function.   In this approach, the decision-

maker aims to achieve at least 𝑓0 such that the fractional objective function (1) remains less than 

or equal to 𝑓0 with confidence levels 𝛿, 𝛾 ∈ [0,1]. Higher value of 𝛿, known in the literature as the 

fuzzy credibility degree, increases the number of real-world scenarios in which the obtained 

solution holds. Therefore, a risk-seeking decision-maker may choose lower values of 𝛿, whereas 

a risk-averse decision-maker may opt for higher values. On the other hand, a lower 𝛿 reduces 

operational costs. Consequently, selecting a higher 𝛿 implies an additional cost for obtaining a 

more stable solution. Given the importance of post-disaster relief operations in this research, the 

credibility degree is set to be greater than 0.5 to ensure stable solutions for the problem. 

A review of the existing literature indicates no specific guidelines for selecting the shape of fuzzy 

numbers for fuzzy parameters in a given problem. In decision-making problems, fuzzy numbers 

are typically chosen in an 𝐿𝑅 form (triangular or trapezoidal) to maintain the linearity of the 

problem. However, trapezoidal fuzzy numbers are used when the data includes an interval in which 

all values are equally valid (having the highest membership degree). This condition rarely occurs 

in real-world scenarios. Based on this, in this research, fuzzy parameters are defined as 𝐿𝑅-type 

triangular fuzzy numbers as follows: 

𝑡̃𝑖𝑗
𝑠 = (𝑡𝑖𝑗

𝑠 , 𝑡𝑖𝑗
𝛼 , 𝑡𝑖𝑗

𝛽
)
𝐿𝑅

 

𝑟̃𝑖𝑗 = (𝑟𝑖𝑗, 𝑟𝑖𝑗
𝛼, 𝑟𝑖𝑗

𝛽
)
𝐿𝑅

 

where 𝑡𝑖𝑗
𝑠  and 𝑟𝑖𝑗 represent the central values of the fuzzy number, while 𝑡𝑖𝑗

𝛼  and 𝑟𝑖𝑗
𝛼 denote the left 

spreads, and 𝑡𝑖𝑗
𝛽    and 𝑟𝑖𝑗

𝛽
 denote the right spreads. Unlike deterministic numbers, which have exact 

values, a fuzzy number represents the membership degree to a specific value within the range 

[0,1]. The membership function determines this degree of membership between 0 and 1. This 

concept allows for incorporating uncertainty and imprecision in mathematical models. For the 

proposed model, the membership function of the fuzzy numbers is defined as follows: 
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𝜇𝑡̃𝑖𝑗
𝑠 (𝑥) =

{
 
 

 
 𝐿 (

𝑡𝑖𝑗
𝑠 −𝑥

𝑡𝑖𝑗
𝛼 ) ,   𝑥 ≤ 𝑡𝑖𝑗

𝑠

𝑅 (
𝑥−𝑡𝑖𝑗

𝑠

𝑡
𝑖𝑗
𝛽 ) ,   𝑥 ≥ 𝑡𝑖𝑗

𝑠

                        

                                                (20) 

𝜇
𝑟𝑖𝑗
(𝑥) =

{
 
 

 
 𝐿 (

𝑟𝑖𝑗 −𝑥

𝑟𝑖𝑗
𝛼 ) ,   𝑥 ≤ 𝑟𝑖𝑗

𝑅 (
𝑥−𝑟𝑖𝑗

𝑟
𝑖𝑗
𝛽 ) ,   𝑥 ≥ 𝑟𝑖𝑗

                        

                                               (21) 

where 𝐿(. ) and  𝑅(. ) are the left and right non-increasing continuous functions from [0,1] to [0,1], 

such that  𝐿(0) = 𝑅(0) = 1  and  𝐿(1) = 𝑅(1) = 0.   

 

Now, using the concepts of fuzzy credibility measure and expressions (20) and (21) for  𝛿0 > 0.5, 

we have (Tavana 2012): 

𝐶𝑟 [
∑ 𝑡̃𝑖𝑗

𝑠 𝑥𝑖𝑗 + 𝑡0(𝑖,𝑗)∈𝑁

∑ 𝑟̃𝑖𝑗 𝑥𝑖𝑗 + 𝑟0(𝑖,𝑗)∈𝑁

≤ 𝑓0] ≥ 𝛿0 

⟺ ∑ (𝑡𝑖𝑗
𝑠 + 𝑡𝑖𝑗

𝛽
𝐿−1(2(1 − 𝛿0))) 𝑥𝑖𝑗 + 𝑡0

(𝑖,𝑗)∈𝑁

 

≤ 𝑓0 (∑ (𝑟𝑖𝑗 + 𝑟𝑖𝑗
𝛼𝐿−1(2(1 − 𝛿0))) 𝑥𝑖𝑗 + 𝑟0(𝑖,𝑗)∈𝑁 )                      (22) 

Since 𝑡𝑖𝑗
𝑠   in (22) is a random variable with a normal distribution, by assuming that 𝑚𝑡𝑖𝑗

𝑠  and 𝜎𝑡𝑖𝑗
𝑠  

are its mean and standard deviation, respectively, we can express the following for 𝛾0 ∈ [0,1] by 

using probability theory concepts (Bavandi and Nasseri 2022): 

∑ (𝑚𝑡𝑖𝑗
𝑠 + 𝑡𝑖𝑗

𝛽
𝐿−1(2(1 − 𝛿0))) 𝑥𝑖𝑗 + 𝑡0(𝑖,𝑗)∈𝑁 +Φ−1(𝛾0)√∑ 𝜎𝑡𝑖𝑗

𝑠
2 𝑥𝑖𝑗

2
(𝑖,𝑗)∈𝑁

∑ (𝑟𝑖𝑗 + 𝑟𝑖𝑗
𝛼𝐿−1(2(1 − 𝛿0))) 𝑥𝑖𝑗 + 𝑟0(𝑖,𝑗)∈𝑁

≤ 𝑓0      (23) 

Expression (23) represents the deterministic form of (19). 

4-2 Lagrange Interpolation Polynomial Approach 

Constraints (5) to (7) include multi-choice parameters, making solving this problem infeasible. 

Therefore, as a first step, multi-choice parameters are transformed using interpolation polynomials. 

The interpolation polynomial is constructed by introducing a non-negative integer variable 

corresponding to each multi-choice parameter.  In fact, if the corresponding parameter has 𝑛 

options, each integer variable exactly covers 𝑛 knot points. In the proposed model, there are two 

multi-choice parameters, 𝑃𝑚𝑎𝑥 and 𝐸𝑚𝑎𝑥 , so the integer variables 𝑢 and 𝑣 are introduced for these 



9 
 

two parameters, respectively. Since 𝑃𝑚𝑎𝑥 and 𝐸𝑚𝑎𝑥,  have 𝑇 options, 𝑢 and 𝑣, therefore, cover 

exactly 𝑇 knot points. Each node corresponds exactly to one functional value of a multi-choice 

parameter, as shown in Table 3. The Lagrange interpolation polynomials corresponding to these 

two multi-choice parameters are denoted by 𝑔𝑃𝑚𝑎𝑥(𝑢) and 𝑔𝐸𝑚𝑎𝑥(𝑣). 

Table 3: Data Related to the Multi-Choice Parameters 𝑃𝑚𝑎𝑥 and 𝐸𝑚𝑎𝑥 

𝑢 & 𝑣 0 1 2 … 𝑇 − 1 

𝑔𝑃𝑚𝑎𝑥(𝑢) 𝑃𝑚𝑎𝑥
(1)

 𝑃𝑚𝑎𝑥
(2)

 𝑃𝑚𝑎𝑥
(3)

 … 𝑃𝑚𝑎𝑥
(𝑇)

 

𝑔𝐸𝑚𝑎𝑥(𝑣) 𝐸𝑚𝑎𝑥
(1)

 𝐸𝑚𝑎𝑥
(2)

 𝐸𝑚𝑎𝑥
(3)

 … 𝐸𝑚𝑎𝑥
(𝑇)

 

Based on the information provided in Table 3 and the Lagrange interpolation formula, the 

interpolating polynomials for the multi-choice parameters of the problem are obtained as follows: 

𝑔𝑃𝑚𝑎𝑥(𝑢) =
(𝑢−1)(𝑢−2)…(𝑢−𝑇+1)

(−1)(𝑇−1)(𝑇−1)!
𝑃𝑚𝑎𝑥
(1)   

+
𝑢(𝑢−2)(𝑢−3)...(𝑢−𝑇+1)

(−1)(𝑇−2)1!(𝑇−2)!
𝑃𝑚𝑎𝑥
(2)   

⋮  

+
𝑢(𝑢−1)(𝑢−2)...(𝑢−𝑇+2)

(𝑇−1)!
𝑃𝑚𝑎𝑥
(𝑇)

  

 

 

 
(24) 

  

𝑔𝐸𝑚𝑎𝑥(𝑣) =
(𝑣−1)(𝑣−2)…(𝑣−𝑇+1)

(−1)(𝑇−1)(𝑇−1)!
𝑃𝑚𝑎𝑥
(1)   

+
𝑣(𝑣−2)(𝑣−3)...(𝑣−𝑇+1)

(−1)(𝑇−2)1!(𝑇−2)!
𝑃𝑚𝑎𝑥
(2)

  

⋮  

+
𝑣(𝑣−1)(𝑣−2)...(𝑣−𝑇+2)

(𝑇−1)!
𝑃𝑚𝑎𝑥
(𝑇)

  

 

 
(25) 

Using (24) and (25), and given that minimizing 𝑓0 is equivalent to minimizing the left-hand side 

of (23), the deterministic model of the problem is obtained as follows: 

𝑀𝑖𝑛  

∑ (𝑚
𝑡𝑖𝑗
𝑠 +𝑡𝑖𝑗

𝛽
𝐿−1(2(1−𝛿0)))𝑥𝑖𝑗+𝑡0(𝑖,𝑗)∈𝑁 +Φ−1(𝛾0)√∑ 𝜎

𝑡𝑖𝑗
𝑠
2 𝑥𝑖𝑗

2
(𝑖,𝑗)∈𝑁

∑ (𝑟𝑖𝑗 +𝑟𝑖𝑗
𝛼𝐿−1(2(1−𝛿0)))𝑥𝑖𝑗+𝑟0(𝑖,𝑗)∈𝑁

                                                     (26) 

s.t.        (2)-(4), (8)-(12) 

       ∑ 𝑦𝑖𝑗
𝑘𝐾

𝑘=1 ≤ 𝑔𝑃𝑚𝑎𝑥(𝑢). 𝑥𝑖𝑗 ,     ∀𝑖, 𝑗 ∈ 𝑁                                             (27) 

 𝑒𝑖𝑗 = 𝑔𝐸𝑚𝑎𝑥(𝑣). 𝑥𝑖𝑗 ,     ∀𝑖 ∈ 𝑂 ∪ 𝑅, 𝑗 ∈ 𝑁\{𝑖},                        (28) 

𝑒𝑖𝑗 ≤ 𝑔𝐸𝑚𝑎𝑥(𝑣). 𝑥𝑖𝑗 ,     ∀𝑖 ∈ 𝐿, 𝑗 ∈ 𝑁\{𝑖},                               (29)  

                     𝑥𝑖𝑗 ∈ ℤ+, 𝑦𝑖𝑗
𝑘 ∈ ℤ+, 𝑒𝑖𝑗 ≥ 0 

The latest model is a deterministic fractional model that can be solved using the bisection method 

(Yano 2012) or the Dinkelbach algorithm (Dinkelbach 1967). In this research, we employ 
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Dinkelbach’s algorithm to solve the above nonlinear fractional programming problem. The 

Dinkelbach algorithm is summarized as follows:   

Algorithm 1: Dinkelbach’s Algorithm 

Step 1: Consider the fractional objective function (26). For convenience, we set: 

𝑁(𝑥) = ∑ (𝑚𝑡𝑖𝑗
𝑠 + 𝑡𝑖𝑗

𝛽
𝐿−1(2(1 − 𝛿0))) 𝑥𝑖𝑗 + 𝑡0

(𝑖,𝑗)∈𝑁

+Φ−1(𝛾0)√ ∑ 𝜎𝑡𝑖𝑗
𝑠
2 𝑥𝑖𝑗

2

(𝑖,𝑗)∈𝑁

 

𝐷(𝑥) = ∑ (𝑟𝑖𝑗 + 𝑟𝑖𝑗
𝛼𝐿−1(2(1 − 𝛿0))) 𝑥𝑖𝑗 + 𝑟0

(𝑖,𝑗)∈𝑁

 

For all 𝑥 ∈ 𝑋, where 𝑋 is the feasible set, it follows that 𝑁(𝑥) ≥ 0 and 𝐷(𝑥) > 0. Let 𝑥1 denote 

the initial solution in the feasible set 𝑋. set 

𝜑1 =
𝑁(𝑥1)

𝐷(𝑥1)
, 

and 𝑘 = 1. 

Step 2: Solve the problem 

𝑀𝑖𝑛  𝑁(𝑥) − 𝜑𝑘𝐷(𝑥) 

𝑠. 𝑡.        𝑥 ∈ 𝑋 

Let 𝑥𝑘+1 be the optimal solution of this subproblem. 

Step 3: Check the convergence condition: 

𝜂 = 𝑁(𝑥𝑘+1) − 𝜑𝑘𝐷(𝑥𝑘+1) 

If 0 ≤ 𝜂 ≤ 𝜀, then 𝑥𝑘+1 is the optimal solution and stop. Otherwise, go to step 4. 

Step 4: Update 

𝜑𝑘+1 =
𝑁(𝑥𝑘+1)

𝐷(𝑥𝑘+1)
 

Set 𝑘 ← 𝑘 + 1, and return to step 2. 

 


