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A B S T R A C T   

Discount is an efficient way to reduce the closed-loop supply chain costs, and applying it would make the model 
closer to real ones. In this paper, the quantity discount is firstly applied along with fixed and variable trans-
portation costs. The application of well-known, efficient algorithms, alongside developing modified versions to 
address the developed model is another contribution of this study. To calibrate the proposed algorithms’ pa-
rameters and operators, the Taguchi method is used. In this regard, several test problems in different sizes are 
generated considering the concerns of real-world cases, and the algorithms’ efficiencies are investigated by the 
relative percentage deviation method. The results show the superior performance of the hybrid algorithm of 
modified differential evolution and restart mechanism (MDE_Restart) and the algorithm of modified differential 
evolution (MDE) compared to the other employed algorithms.   

1. Introduction and literature review 

Closed-loop supply chain (CLSC) is one of the important topics in 
supply chain (SC) areas that includes both forward and reverse supply 
chains and has attracted both academia and industrial practitioners, 
especially during the last decade (Salehi-Amiri, Zahedi, Gholian- 
Jouybari, Calvo, & Hajiaghaei-Keshteli, 2022). Generally, the goods 
are transferred from the suppliers to customers, namely forward logis-
tics, and the used, damaged, or unsold goods are transferred backward 
from the customers to the suppliers, namely reverse supply chain or 
logistics (Kannan, Sasikumar, & Devika, 2010; Ali, Paksoy, Torğul, & 
Kaur, 2020). Both forward and reverse configurations effect on perfor-
mances of each other, considerably. Therefore, their network design 
should be considered in an integrated fashion to avoid any side opti-
mizations due to the separate design (Hosseini, Paydar, & Hajiaghaei- 
Keshteli, 2021). 

As one of the main important and primary works in this area, 
Fleischmann, Beullens, Bloemhof-Ruwaard, and Van Wassenhove 
(2001) developed an integrated system of forward and reverse logistics. 
The reverse stream of their model had separation and manufacturing 
centers for inspection and reproduction of the returned goods and 

landfilling centers for useless goods. Likewise, Salema, Barbosa-Povoa, 
and Novais (2007) investigated on similar network considering 
reverse logistics, capacity constraints, multiple goods, and uncertainty 
in demand and returned goods. Wang and Hsu (2010) developed a CLSC 
with distribution and recycling centers. In their model, the recyclable 
goods are sent to factories as raw materials, and the unrecyclable goods 
are landfilled. El-Sayed, Afia, and El-Kharbotly (2010) made a multi- 
period multi-echelon forward-reverse logistic network with risk. They 
used stochastic programming to address the problem of uncertainty. 
Also, Soleimani, Seyyed-Esfahani, and Akbarpour Shirazi (2013) 
developed a multi-period multi-echelon multi-product model based on 
mixed-integer linear programming. In their model, the customers could 
get the goods through the manufacturers, distributors, or warehouses. 
They applied CPLEX as a strong solution for small-scale problems and a 
developed genetic algorithm (GA) for large-scale ones. Ramezani, 
Bashiri, and Tavakkoli-Moghaddam (2013) considered the same 
network and developed a model to maximize the CLSC with return rate 
and uncertain demand. They applied a scenario relaxation algorithm for 
their proposed model. Zeballos, Mendez, Barbosa-Povoa, and Novais 
(2014) worked on uncertain supply and demand both to minimize the 
total cost and maximize recycled goods income. In addition, Özceylan, 
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Paksoy, and Bektas (2014) developed and integrated CLSC to optimize 
strategic and tactical decisions. The former refers to the goods trans-
ferred in both forward and backward SC, and the latter is about dis-
assembled lines in the reverse chains. The model was formulated to 
minimize the costs of transportation, purchasing, refurbishing, and 
disassembly. Also, Devika, Jafarian, and Nourbakhsh (2014) considered 
a multiple-criteria decision-making (MCDM) model with suppliers, 
manufacturers, distributors, retailers, customers, collection/inspection, 
and recycling centers. In their model, along with the regular cost crite-
rion, the social aspect of sustainability is considered. They solved it by 
six hybrid metaheuristic methods. Similarly, Govindan, Darbari, Agar-
wal, and Jha (2017), using the MCDM model along with minimizing the 
cost and maximizing sustainability, tried to maximize the suppliers’ 
performance. Soleimani and Kannan (2015) worked on solving a multi- 
period multi-echelon multi-product CLSC with mathematical program-
ming tools. For large-scale models, they also developed an efficient 
hybrid particle swarm genetic algorithm. Also, Soleimani, Govindan, 
Saghafi, and Jafari (2017) worked on a green fuzzy MCDM CLSC and 
solved it with GA. In this study, the wasted working days due to occu-
pational accidents are minimized. Another similar paper is, Safaei, 
Roozbeh, and Paydar (2017) used a robust optimization approach to 
address the uncertainty in their case-based CLSC model. Mohamadpour 
Tosarkani and Hassanzadeh Amin (2018) applied a fully fuzzy MCDM 
model on a CLSC case and developed it. Fathollahi Fard and Hajaghaei- 
Keshteli (2018) considered a tri-level model to formulate the same 
network, utilizing several metaheuristics. Gholizadeh and Fazlollahta-
bar (2020) applied robust optimization and metaheuristics for a green 
CLSC under uncertainty with different grades and emphasis on profit-
ability alongside a case study in the melting industry. Nayeri, Paydar, 
Asadi-Gangraj, and Emami (2020) formulated a sustainable SCLSC 
network considering a water tank and addressed the model by goal 
programming and robust fuzzy optimization. Also, Lotfi, Zare Mehrjerdi, 
Pishvaee, Sadeghieh, and Weber (2021) proposed a CLSC to minimize 
the costs, CO2 emissions, and energy, along with maximizing employ-
ment, taking into account sustainability, resilience, robustness, and risk 
aversion. Salehi-Amiri, Zahedi, Akbapour, and Hajiaghaei-Keshteli 
(2021) proposed a CLSC network in the walnut industry to decide on 

the number of facilities and optimize the intra-levels forward ad reverse 
stream cost. To solve the model, both exact and meta-heuristic methods 
are applied and finally, the best solutions are achieved by the Taguchi 
method. More recently, Lotfi, Sheikhi, Amra, AliBakhshi, and Weber 
(2021) designed to maintain robustness against changes in demand, 
minimize expenses, environmental pollution, and energy consumption 
and maximize the employment rate a resilient, and sustainable CLSC 
model. They considered the risk criterion in their model. 

In the real world, in addition to the transportation cost, there is 
usually a fixed penalty at all stages of the supply chain, independent of 
the transported goods quantity. The fixed penalty can be due to different 
reasons like setup expenses, permit charges, toll fees, and others 
(Hajiaghaei-Keshteli, Molla-Alizadeh-Zavardehi, & Tavakkoli- 
Moghaddam, 2010; Bertazzi & Maggioni, 2018; Midya, Roy, & Weber, 
2021). In the literature of CLSC, there are rarely studies with fixed-cost 
transportation. Soleimani (2018) developed a robust CLSC with two 
opposite objective functions in an Iranian case study. In the model, the 
transportation costs are considered with the fixed cost part. Then, to 
reach the Pareto front and non-dominant solutions, the repetitive 
epsilon-constraint approach was developed. Likewise, Gholamian, 
Mahdavi, Mahdavi-Amiri, and Tavakkoli-Moghaddam (2021) developed 
a model for a large-scale sustainable CLSC. To solve the model, they 
proposed a new interactive fuzzy approach. 

In most of the supply chain models, it is assumed that the cost of the 
raw materials per unit is fixed, which is not always true in the real world. 
The sellers, either suppliers or manufacturers, usually suggest discounts 
to motivate the customers to order bigger. Discounts on raw materials 
purchases could reduce the total supply chain cost considerably. Due to 
bigger orders, the sellers would reduce the price per unit, and therefore 
the buyers according to the purchase discount could choose the best 
supplier (Tsai, 2007). There are few studies in the field of supplier se-
lection based on quantity discounts for the design of CLSC. In this re-
gard, Shafiei Kisomi, Solimanpur, and Doniavi (2016) developed a CLSC 
under uncertainty with the supplier selection model considering price 
discount and solved it with robust optimization. In a study, Sadeghi Rad 
and Nahavandi (2018) developed an integrated multi-period multi- 
echelon multi-product MCDM of a green CLSC offering discounts. They 

Table 1 
Review of CLSC network design literature.  

Year Reference Fixed Cost for 
Opening 

Facility 
Capacity 

Facilities 
Location 

Transportation 
Cost 

Fixed-Charge 
Transportation 

Discount Heuristic / 
Metaheuristic 

2001 Fleischmann et al. *  * *    
2007 Salema et al. * * * *    
2010 Wang and Hsu * * * *   * 
2010 El-Sayed et al. * * * *    
2013 Soleimani et al. * * * *   * 
2013 Ramezani et al. * * * *    
2014 Zeballos et al. * *  *    
2014 Devika et al. * * * *   * 
2014 Özceylan et al.  *  *    
2015 Soleimani and Kannan * * * *   * 
2016 Shafiei Kisomi et al. * * * *  *  
2017 Govindan et al.  * * *    
2017 Soleimani et al. * * * *   * 
2017 Safaei et al.  * * *    
2018 Sadeghi Rad and Nahavandi * * * *  *  
2018 Mohamadpour Tosarkani and 

Hassanzadeh Amin 
* * * *    

2018 Fathollahi-Fard and Hajaghaei- 
Keshteli 

* * * *   * 

2018 Soleimani * * * * *   
2019 Ghahremani-Nahr et al. * * * *  * * 
2020 Gholizadeh and Fazlollahtabar  * * *   * 
2020 Nayeri et al. * * * *    
2021 Khalili Nasr et al. * * * *  *  
2021 Salehi-Amiri et al. * * * *   * 
2021 Gholamian et al. * * * * *    

This study * * * * * * *  
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did some numerical examples with CPLEX. Also, Ghahremani-Nahr, 
Kian, and Sabet (2019) developed a multi-echelon, multi-product, multi- 
period CLSC network with discounted raw materials to analyze some 
uncertain parameters like customer demand, transportation costs, a 
fraction of returned products, raw materials cost, and shortage costs by 
robust fuzzy programming. They used a novel whale optimization al-
gorithm to minimize the total network cost by using a modified priority- 
based encoding method. In the same vein, Khalili Nasr, Tavana, Alavi, 
and Mina (2021) developed a multi-objective CLSC and used the Fuzzy 
method to solve the model. Then by the fuzzy best-worst method, they 
selected the best supplier based on economic, environmental, social, and 
circular measures. 

The development of appropriate and strong solution methods in 
CLSC problems is very important to make better decisions. The literature 
contains some exact and metaheuristic methods to solve the mathe-
matical models. According to the above literature and Table 1, there is 
no CLSC study with a quantity discount and transportation fixed-charge. 
This study develops such a model for the first time and solves it with 
basic and modified metaheuristics algorithms. Based on the literature 
review and discussions of this part, there have been no studies so far that 
consider the transportation fixed cost and quantity discount concepts 
simultaneously in an integrated CLSC model. It is exactly the gap this 
study aims to fill. 

According to Fig. 1, in the forward flow after purchasing the dis-
counted raw materials from the suppliers and production by the man-
ufacturers, the goods are distributed among the customers by the hybrid 
centers of distribution and collection (HCDC). In fact, an HCDC center is 
considered first as a distributor and then as a collector on a round trip. In 
a CLSC, an HCDC center can act as both distributor and collector (Wang 
& Hsu, 2010). In the reverse flow, the used goods are given to HCDC 
before being sent to the recycling centers. The restorable returned goods 
are sent to the manufacturers in the recycling centers, and others are 
landfilled. In other words, the core concept of CLSC is recycling and 
reusing the delivered products to customers. Therefore, it has huge 
importance due to protecting the environment and decreasing costs. 

The CLSC model developed, discussed, and solved in this study in-
cludes the transportation fixed cost and quantity discounts to motivate 
the buyers for bigger orders. In this study, the developed model is solved 
with eight basic and modified metaheuristic algorithms. Table 1 shows 
the contribution this study could have to the literature on CLSCs. 

2. The model formulation 

Here a six-stage CLSC model with a quantity discount and trans-
portation fixed-charge is developed. According to Fig. 1, at stage 1, the 
suppliers deliver the product to the manufacturers with a general dis-
count and after manufacturing centers, the products are delivered to the 
customers through the distribution centers. After meeting the demand, 
the materials and products that are usable or recyclable are sent to the 
collection centers to be used as materials. The stages include suppliers 
(I), manufacturers (J), the HCDC (K), customers (L), recycling centers 
(M), and discount levels (N). The most important suppositions are as 
follows:  

• The best suppliers are selected according to the offered discounts.  
• The location, number, and capacity of each facility are specified.  
• The stream of goods is allowed only between adjacent levels.  
• The number and capacity of the facilities to open are limited.  
• The forward and reverse capacities are specified.  
• Each customer’s demand must be satisfied.  
• Dump and recycle rates are fixed.  
• Unrecyclable materials are got out of the chain.  
• Fixed transportation cost is considered for each stage of CLSC. 

2.1. The mathematical model 

The new model’s variables are as follows:  
xij Amount of goods transported from supplier i to manufacturer j 
yjk Amount of goods transported from manufacturer j to HCDC k 
zkl Amount of goods transported from HCDC k to customer l 
rzlk Amount of goods transported from customer l to HCDC k 
okm Amount of goods transported from HCDC k to recycling center m 
rdmj Amount of goods transported from recycling center m to manufacturer j 
fyxij 1 if a good is transported from supplier i to manufacturer j; 0 otherwise 
fcyjk 1 if a good is transported from manufacturer j to HCDC k; 0 otherwise 
fyzkl 1 if a good is transported from HCDC k to customer l; 0 otherwise 
fyrzlk 1 if a good is transported from customer l to HCDC k; 0 otherwise 
fyokm 1 if a good is transported from HCDC k to recycling center m; 0 otherwise 
fyrdmj 1 if a good is transported from recycling center m to manufacturer j; 

0 otherwise 
αj If manufacturer j does any production it equals 1; otherwise 0 
βk If HCDC k is founded it equals 1; otherwise 0 
δm If recycling center m is founded it equals 1; otherwise 0 
qi Number of goods that are bought from supplier i at a discounted price 
sin If the goods are bought from supplier i at the discount level of n, it equals 1; 

otherwise 0 

Fig. 1. The CLSC with quantity discount and transportation fixed cost.  
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The new model parameters are as follows:  

bj Capacity of manufacturer j 
sck Capacity of HCDC k in both forward and reverse procurement 
pdk Percentage of the total capacity for goods return in HCDC k 
pcl Percentage of recycled goods from customer l 
plm Landfilling rate of center m 
dl Demand of the customer l 
em Capacity of recycling center m 
sxij Transportation cost per unit from supplier i to manufacturer j 
tjk Transportation cost per unit from manufacturer j to HCDC k 
ukl Transportation cost per unit from HCDC k to customer l 
rulk Transportation cost per unit from customer l to HCDC k 
vkm Transportation cost per unit from HCDC k to recycling center m 
wmj Transportation cost per unit from recycling center m to manufacturer j 
fj Fixed cost of opening manufacturer j 
gk Fixed cost of opening HCDC k 
hm Fixed cost of opening recycling center m 
â ± ⋅ Fixed cost for landfilling per unit 
fxij Fixed cost of transportation per unit from supplier i to manufacturer j 
fyjk Fixed cost of transportation per unit from manufacturer j to HCDC k 
fzkl Fixed cost of transportation per unit from HCDC k to customer l 
frzlk Fixed cost of transportation per unit from customer l to HCDC k 
fokm Fixed cost of transportation per unit from HCDC k to recycling center m 
frdmj Fixed cost of transportation per unit from recycling center m to manufacturer 

j 
pqi Price of ordered goods from supplier i that could have discount 
q2in The lower bound of discount range n that is specified by supplier i 
pin Price of a product unit by supplier i discount plan when the order quantity is 

q2in 

rin Discount curve slope in the discount level n by supplier i when the order 
quantity is between q2in and q2i(n+1)

LN Large number  

The new model objective function to minimize the total cost is as fol-
lows:  

minimize TC =
∑

i

∑

j
(sxijxij + fxijfyxij) +

∑

j

∑

k
(tjkyjk + fyjkfcyjk)

+
∑

k

∑

l
(uklzkl + fzklfyzkl) +

∑

l

∑

k
(rulkrzlk + frzlkfyrzlk)

+
∑

k

∑

m
(vkmokm + fokmfyokm)

∑

m

∑

j
(wmjrdmj + frdmjfyrdmj)

+
∑

j
fjαj +

∑

k
gkβk +

∑

m
hmδm + φ

∑

m
(plm

∑

k
okm) +

∑

i
pqiqi 

(1) 

subject to.   
∑

jxij = qi ∀i (2) 
∑

kyjk ≤ bjαj ∀j (3) 
∑

ixij +
∑

mrdmj =
∑

kyjk ∀j (4) 
∑

lzkl +
∑

mokm ≤ sckβk ∀k (5) 
∑

jyjk =
∑

lzkl ∀k (6) 
∑

mokm ≤ pdksckβk ∀k (7) 
∑

lrzlk =
∑

mokm ∀k (8) 
∑

krzlk ≥ pcl
∑

kzkl ∀l (9) 
∑

kzkl = dl ∀l (10) 
∑

jrdmj + plm
∑

kokm ≤ emδm ∀m (11) 
∑

kokm =
∑

jrdmj + plm
∑

kokm ∀m (12) 
pqi =

∑
nsin(pin +rin(qi − q2in) ) ∀i (13) 

∑
nsinq2in ≤ qi ≤

∑
nsinq2i(n+1) ∀i (14) 

∑
nsin = 1 ∀i (15) 

xij ≤ LNfyxij ∀i, j (16) 
yjk ≤ LNfcyjk ∀j,k (17) 
zkl ≤ LNfyzkl ∀k, l (18) 
rzlk ≤ LNfyrzlk ∀l,k (19) 
okm ≤ LNfyokm ∀k,m (20) 
rdmj ≤ LNfyrdmj ∀m, j (21)  

Constraint (2) shows that all the goods transferred from the supplier to 
the manufacturer are discounted. Constraints (3), (5), (7), and (11), 
guarantee no facilities’ capacities are violated. Constraints (4), (6), (8), 
and (12), guarantee facilities’ input and output flows are equal. 
Constraint (9) shows the relation of customers’ returned goods with the 
recycling rate. Constraint (10) makes sure the customers’ demands are 
met. Constraint (13) shows the price of bought goods with a discount. 
Constraint (14) guarantees the purchased quantity from a supplier at a 
special discounted price is within the eligible range. Constraint (15) 
guarantees that a purchase from a supplier is only at one discount level 
and not more. Constraints (16)-(23), all are logical and obvious 
regarding the associated variables. 

2.2. Numerical example 

To validate the model, here is a small problem in which I = 3, J = 5, 
K = 2, L = 2, M = 2, and N = 2 is solved with DICOPT solver in GAMS 
(24.8.5). The output approves the proposed model validity. Taheri- 
Bavil-Oliaei, Zegordi, and Tavakkoli-Moghaddam (2021) and Babaee 
Tirkolaee, Goli, Bakhsi, and Mahdavi (2017) also used GAMS to validate 
their proposed model. The parameters are presented in Table 2. 

The GAMS outputs, that all validate (Table 3) the proposed mathe-
matical model, are as follows: 

3. Solution methodology 

Since the type of model developed in this paper is NP-hard (Wang & 
Hsu, 2010), to solve the new model, eight basic and modified meta-
heuristic algorithms are used. We propose a particular decoding plan 
used for all the employed algorithms. In designing and utilizing meta-
heuristic algorithms, considering feasibility, intensification, and diver-
sification phases are important (Chouhan, Khan, & Hajiaghaei-Keshteli, 
2021). To improve the metaheuristic algorithms and be sure about the 
feasibility of the solution during the running of the algorithms, several 
ideas are generated and put into practice as modified metaheuristics. 

3.1. Encoding scheme 

The base of each metaheuristic approach is the way the answer is 
displayed. It depends on the problem nature, i.e., the number and 
dimension of both decision variables and constraints. Here, the Random- 
Key (RK) method displays the feasible solution (Rajabi, Najafi, 
Hajiaghaei-Keshteli, & Molla-Alizadeh-Zavardehi, 2013). The applied 
display method in the proposed algorithms leads to the generation of 
feasible answer vectors. The length of an answer vector for our problem 
is (I + J) + (J + K) + (K + L) + (L + K) + (K + M) + (M + J) + I. 
Based on this method, a random vector, including numbers between 
0 and 1 for each supplier, manufacturer, HCDC, customer, and recycling 
center, is generated. Then each vector is ordered ascending, while the 
smaller numbers are of higher priority. Then, in each stage, the origin 
and destination with the highest priorities are selected, and an amount 
equal to the minimum of the facilities’ capacities is carried from the 
origin to the destination. For better illustration of this sequence by RK, 
the small example mentioned before is being used again. Fig. 2 shows 
the decoding method of the first stage. 

The decoding procedure based on the example in Fig. 2, is as follows: 
Specifying the maximum amounts of purchase from each supplier: 

qi = rand⋅(q2iN − q2i1)+ q2i1 (24)   

G. Chaharmahali et al.                                                                                                                                                                                                                        



Expert Systems With Applications 202 (2022) 117364

5

Step 1: Name the first left element of the vector S1, as the origin, i*; 
and name the first left element of the vector S2, as the destination, j*. 

xi*j* = min
(
qi, bj, total demand

)
(25)  

qi* = qi* − xi* j* (26)  

bj* = bj* − xi* j* (27)  

total demand = total demand − xi* j* (28)   

Step 2: If qi* = 0, omit the first argument of S1; If bj* = 0, omit the 
first argument of S2. 
Step 3: Repeat the above steps until the total demand is zero. 
Step 4: After the first stage, the algorithm is applied and imple-
mented for the next stages. 

Table 2 
The parameters needed to solve the numerical example.  

Table 3 
The numerical example output.  

Objective function value  25019 

xij x12 = 140 x23 = 200 x33 = 200 
yjk y22 = 500 y31 = 400  
zkl z11 = 300 z12 = 100 z21 = 500 
rzlk rz11 = 80 rz21 = 20 rz22 = 300 
okm o12 = 100 o22 = 300  
rdmj rd22 = 360   
qi q1 = 140 q2 = 200 q3 = 200 
pqi pq1 = 19.6 pq2 = 21 pq3 = 17 
sin s11 = 1 s21 = 1 s31 = 1 
αj α2 = 1 α3 = 1  
βk β1 = 1 β2 = 1  
δm δ2 = 1    

Fig. 2. The coding plan for the first stage.  
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3.2. Genetic algorithm (GA) 

The basic GA includes four steps of initial population generation, 
selection, crossover, and mutation (Holland, 1975). In this study, for 
selection, the roulette wheel sampling mechanism is used. Also, four 
crossover operators of one-point (Holland, 1975), two-point (De Jong, 
1975), arithmetic (Michalewicz & Schoenauer, 1996), and uniform 
(Syswerda, 1989) are used as well as nine mutation operators of swap 
(Larrañaga et al., 1999), big swap (Larrañaga et al., 1999), displacement 
(Michalewicz, 1996), inversion (Fogel, 1990), modified boundary, 
scramble (Syswerda, 1991), insertion (Fogel, 1988), random minor, 
random part. 

3.3. Modified backtracking search algorithm (MBSA) 

The backtracking search algorithm (BSA) was developed for the first 
time by Civicioglu (2013). This algorithm includes five stages of 
initialization, selection-1, mutation, crossover, and selection-2. In BSA, 
there is no guarantee that the mutation answer is feasible. Therefore, 
since the crossover operator may get some of the vectors from the mu-
tation stage, it may affect the feasibility of some of the final answer 
vectors. To solve the problem, in this study MBSA is developed for the 
first time. In the proposed algorithm, the movement phase of the 
Electromagnetism-like mechanism (EM) algorithm is used to modify the 
mutation step. Also, in MBSA the algorithm frontier mechanism of BSA is 
not used. The stages of the proposed algorithm of MBSA are as follows, 
while its pseudo-code is presented in Appendix A. 

3.3.1. Initialization 
At this stage, an initial population Pij is generated based on Uniform 

distribution by line 5′s equation where i and j denote the number of 
people and variables, respectively. 

3.3.2. Selection-1 
At this stage, MBSA generates a historical population of oldP ac-

cording to line 6′s equation, which is used as the search direction. With 
each iteration, MBSA has a choice to redefine oldP through comparing 
the two generated random numbers of a and b by the “if − then” rule 
according to line 11’s equation. After specifying the historical popula-
tion, MBSA changes the people’s order in oldP randomly by line 12’s 
equation. 

3.3.3. Mutation 
At this stage, Mutant is generated by line 22′s equation, which is 

inspired by the “movement” phase of the EM algorithm, as the initial 
form of the under-trial population. Since there are some precautions 
taken to control the frontier in this step, the frontier control mechanism 
of the BSA algorithm is not used. 

3.3.4. Crossover 
At this stage, Mutant changes to the final under a trial population of 

T. First, T is equal to Mutant, then a binary integer-valued matrix named 
map is generated according to line 28 to select the people. If mapi.j = 1, 
then person Ti,j is updated with Pi.j that meansTi,j = Pi,j. The number of 
members that can participate in the crossover process is controlled by 
the controlling parameter of mixrate. 

3.3.5. Selection-2 
This stage is to update and record the better solution. At this step, the 

people of population T that have better goodness of fit than their peers of 
population P, are relocated to update P. The thorough minimum of all 
the people is also updated according to the goodness of fit for T and P. 

3.4. Modified differential evolution algorithm (MDE) 

Differential evolution (DE) is a metaheuristic algorithm inspired by 
nature by Storn and Price (1997). DE is an unconstrained algorithm and 
does not apply to constrained problems. This study addresses the issue of 
making the powerful DE algorithm applicable to constrained problems. 
Therefore, the MDE algorithm is developed for the first time. The main 
difference between DE and MDE lies in the kind and trend of their 
mutation. With the MDE algorithm, the mutation is inspired by the 
movement phase of EM. The stages of the proposed algorithm of MDE 
are as follows, while its pseudo-code is presented in Appendix B. 

3.4.1. Initialization 
At this stage, first, an initial population Pij is generated based on 

Uniform distribution according to line 3 where i and j denote the number 
of people and variables respectively while all the answers are in the 
feasible region. As the next step, four members of the population are 
selected randomly according to line 10. Out of these four members, one 
member is selected as the target vector, and the others are selected as 
vectors one, two, and three randomly. 

3.4.2. Mutation 
At this stage, the movement phase of the EM algorithm is applied to 

modify the mutation of the DE algorithm to get to line 17 as the mutation 
operator of MDE. The parameter F is constant and between 0 and 1. 

3.4.3. Crossover 
At this stage, the mutated and target vectors are combined to 

generate the trial vector. The combination is performed based on the 
crossover probability coefficient, Cr, between 0 and 1. Line 25 shows 
this operator. 

3.4.4. Selection 
Line 31, chooses between the trial and target vectors. At this stage, 

the trial and target vectors are given values according to the objective 
function. Then the vector with a higher value becomes a member of the 
next generation. 

3.5. Hybrid algorithms with restart mechanism 

This technique is combined with GA, BSA, MBSA, and MDEA to 
improve their performance. The mentioned algorithms could find high- 
performance areas in the solution space in an acceptable time, but 
sometimes they are stuck in the local optimum. To get out of the local 
optimum with the algorithms, the restart mechanism is used. This 
method shocks the location in which the algorithm is in; and would 
cause more dispersions. In this study, based on the described mechanism 
to solve the model, the hybrid algorithm of genetic and restart mecha-
nism (GA_Restart), the hybrid algorithm of backtracking search and 
restart mechanism (BSA_Restart), the hybrid algorithm of modified 
backtracking search and restart mechanism (MBSA_Restart), and the 
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hybrid algorithm of modified differential evolution and restart mecha-
nism (MDE_Restart) are presented and used. 

4. Experimental design 

In this section, first, a set of random test problems with different sizes 
are generated. The Taguchi method selects the proposed algorithms’ 
best parameters (Sadeghi-Moghaddam, Hajiaghaei-Keshteli, & Mah-
moodjanloo, 2019). Then some experiments on the test problems are 
performed, and the results are compared. 

4.1. Experimental problems 

In this section, to generate test problems, we created ten problems of 
different sizes randomly. To do so, the necessary data are generated 
based on the uniform distribution. Here I, J, K, L, and M denote the 
number of suppliers, manufacturers, HCDC, customers, and recycling 
centers, respectively. The search time for all the experiments or com-
bination of operators and parameters’ levels is the same as ((I + J) +
(J + K) + (K + L) + (L + K) + (K + M) + (M + J) + I)× 100. The 
search time changes according to the problem size. Table 4 shows the 
size of the test problems. 

For each size, four different problems with different fixed costs 
ranges and the same variable cost range are considered. Therefore, there 

are a total of 40 problems that are solved with the eight proposed al-
gorithms. Table 5 shows the fixed and variable costs. Table 6 shows the 
facilities’ capacities, discount breakdown points, customers’ demands, 
returned goods percentage, and unrecyclable goods rate. 

4.2. The parameters and operators adjustment with Taguchi method 

The correct selection of parameters and operators of metaheuristic 
algorithms impacted its performance considerably. In fact, if the algo-
rithm’s parameters are not set well, the algorithm would be inefficient 
(Babaee Tirkolaee, Goli, Faridnia, Soltani, & Weber, 2020). 

In this study, Taguchi methods with the evolutionary and meta-
heuristic algorithms have proved an acceptable performance regarding 
the test problems (Chou, Chen, & Li, 2000; Tsai, Liu, & Chou, 2004). 
Table 7 shows the levels of all the parameters and operators. 

After implementing the experiments, S/N (Eq. (29)) is applied to 
specify the parameters with the best solutions, while the greater S/N, the 
better the answer. As a sample, Fig. 3 shows the GA algorithm’s averages 
of S/N for different factors’ levels. 

S/N = − 10log10(objectivefunction) (29) 

Based on the calculations, the best level parameters of the algorithms 
are shown in Table 8. 

4.3. Final experiments 

Each generated test problem is applied five times independently. For 
better results, the parameters’ best levels, according to Table 8 are 
applied. For all the algorithms, the calculation time of (coefficient) ×

Table 4 
The generated test problems’ size specifications.  

Test Problems No. I J K L M 

TP-1 3 4 3 20 2 
TP-2 5 7 6 30 4 
TP-3 12 8 9 40 6 
TP-4 13 10 11 50 7 
TP-5 18 12 14 60 9 
TP-6 20 14 16 70 10 
TP-7 25 16 18 80 13 
TP-8 30 17 20 90 14 
TP-9 35 19 22 100 16 
TP-10 40 22 24 110 18  

Table 5 
The fixed and variable costs of test problems.  

Variable cost Fixed cost A B C D 
parameters Lower 

bound 
Upper 
bound 

parameters Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

sxij 3 8 fxij 50 300 100 400 200 800 300 1200 
tjk 3 8 fyjk 50 200 100 400 150 600 300 1200 
ukl 3 8 fzkl 50 200 100 400 200 800 800 1600 
rulk 3 8 frzlk 50 200 100 400 200 800 800 1600 
vkm 3 8 fokm 50 200 100 400 200 800 800 1600 
wmj 3 8 frdmj 50 200 100 400 200 800 800 1600    

fj 2000 8000 4000 16,000 10,000 40,000 20,000 80,000    
gk 3000 12,000 5000 20,000 20,000 80,000 40,000 160,000    
hm 3000 15,000 5000 20,000 20,000 80,000 40,000 160,000  

Table 6 
Parameters of the proposed model.  

Parameters Value 

ai Uniform ~ [10000, 40000] 
bj Uniform ~ [18000, 54000] 
sck Uniform ~ [18000, 72000] 
em Uniform ~ [6000, 24000] 
q2in Uniform ~ [10000, 40000] 
q2i(n+1) Uniform ~ [15000, 60000] 
dl Uniform ~ [6000, 24000] 
pcl Uniform ~ [0.01, 0.15] 
plm 0.1 
φ 10  
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((I + J) + (J + K) + (K + L) + (L + K) + (K + M) + (M + J) + I) is 
considered while the coefficient is 3. Therefore, the bigger size of the 
problem, the greater time of calculation. Table 9, shows the five runs’ 
averages while MDE_Restart is the superior algorithm with the best 
performance over 21 out of 40 problems. Finally, with problems 12, 6, 
and 1, MDE, BSA, and MBSA perform the best, respectively. 

To compare the algorithms, the objective function value is the cri-
terion. However, since the objective functions scales are different and 
therefore could not be compared directly, relative percentage deviation 
(RPD), Eq.(30), is applied for each problem. 

After specifying the best level parameters and operators with the 
Taguchi method, the algorithms are compared based on the 40 experi-
mental problems. Since the methods are random, each problem is 
implemented five times by each algorithm. After implementing the al-
gorithms, the average RPD across the 10 problem sizes is calculated as is 
presented in Table 10 and Fig. 4. The table shows a meaningful differ-
ence between the algorithms’ performances while the four algorithms of 
MDE_Restart, MDE, BSA, and BSA_Restart are the best. Fig. 5 shows the 
four superior algorithms. 

Based on the results, four out of the best four algorithms are among 

the algorithms proposed in this study for the first time. The Restart 
mechanism combination with MDE and GA has improved the solutions 
considerably. 

RPD =
Algsol − Minsol

Minsol
× 100 (30)  

where Algsol and Minsol are the objective function and the best solution, 
respectively. 

4.4. Convergence chart 

The convergence charts for the proposed metaheuristic algorithms 
are drawn in this way that the best-found objective is analyzed. The 
algorithms must have sufficient time for convergence to reach their best 
solution. After deriving the convergence charts for all the proposed 
metaheuristic algorithms, it was revealed that all the algorithms are 
convergent in a sensible amount of time. Fig. 6 shows the convergence 
chart. 

Table 7 
The candidate levels for the proposed metaheuristic algorithms.  

Algorithm Factor Levels 

GA A: Size of population (popsize) 50, 60, 70  
B: Probability of crossover (Pc) 0.1, 0.2, 0.3  
C: Probability of mutation (Pm) 0.05, 0.1, 0.15  
D: Type of crossover (Tc) One-point, Two-point, Uniform, Arithmetic  
E: Type of mutation (Tm) Swap, Big swap, Displacement, Inversion, Modified boundary,  

Scramble, Insertion, Random minor, Random part 
GA_Restart A: Size of population (popsize) 60, 70, 80  

B: Probability of crossover (Pc) 0.2, 0.25, 0.3  
C: Probability of mutation (Pm) 0.1, 0.15, 0.2  
D: Probability of restart (Prestart) 0.7, 0.8, 0.9  
E: Maximum lack of improvement (MaxLI) 1000, 1500, 2000  
F: Type of Crossover (Tc) One-point, Two-point, Uniform, Arithmetic  
G: Type of mutation (Tm) Swap, Big swap, Displacement, Inversion, Modified boundary,  

Scramble, Insertion, Random minor, Random part 
BSA A: Size of population (popsize) 30, 40, 50  

B: Amplitude of the search-direction matrix (FV) 2, 3, 4, 5, 6  
C: Probability of crossover (Pc) 0.2, 0.4, 0.6, 0.8, 1 

BSA_Restart A: Size of population (popsize) 60, 65, 70  
B: Amplitude of the search-direction matrix (FV) 2, 3, 4, 5, 6  
C: Probability of crossover (Pc) 0.2, 0.4, 0.6, 0.8, 1  
D: Probability of restart (Prestart) 0.7, 0.8, 0.9  
E: Maximum lack of improvement (MaxLI) 600, 700, 800 

MBSA A: Size of population (popsize) 30, 40, 50  
B: Amplitude of the search-direction matrix (FV) 2, 3, 4, 5, 6  
C: Probability of crossover (Pc) 0.2, 0.4, 0.6, 0.8, 1 

MBSA_Restart A: Size of population (popsize) 40, 50, 60  
B: Amplitude of the search-direction matrix (FV) 2, 3, 4, 5, 6  
C: Probability of crossover (Pc) 0.2, 0.4, 0.6, 0.8, 1  
D: Probability of restart (Prestart) 0.7, 0.8, 0.9  
E: Maximum lack of improvement (MaxLI) 1000, 2000, 3000 

MDE A: Size of population (popsize) 50, 60, 70  
B: Probability of crossover (Pc) 0.3, 0.5, 0.9  
C: Control factor (F) 0.5, 0.8, 1 

MDE_Restart A: Size of population (popsize) 30, 40, 50  
B: Probability of crossover (Pc) 0.2, 0.4, 0.9  
C: Control factor (F) 0.3, 0.4, 0.8  
D: Probability of restart (Prestart) 0.7, 0.8, 0.9  
E: Maximum lack of improvement (MaxLI) 350, 400, 450  
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4.5. Comparing the algorithms with ANOVA 

After running the meta-heuristic algorithms and getting the RPD 
averages for the problems, to make a reliable statistical analysis to 
specify the significant differences between the algorithms’ perfor-
mances, a one-way analysis of variance (ANOVA) is applied with MIN-
ITAB software (Fasihi, Tavakkoli-Moghaddam, Najafi, & Hajiaghaei- 
Keshteli, 2021; Hamdi-Asl, Amoozad-Khalili, Tavakkoli-Moghaddam, 
& Hajiaghaei-Keshteli, 2021; Chouhan, Khan, & Hajiaghaei-Keshteli, 
2022). H0 checks if the RPD averages of the 8 algorithms are equal. 
H1 checks if at least one algorithm has a different RPD average from the 
rest of the algorithms. The results are shown in Fig. 7. For a more ac-
curate comparison of the results, the plot of the mean and the least 
significant difference (LSD) intervals at the 95% confidence level for the 
eight algorithms in Fig. 8 are presented. 

According to Fig. 7, the resulting P-Value is zero which means H0 did 
not receive any approval from the sample which led to its rejection. 
Therefore, at the significance level of 95%, H0 is rejected and H1 is 
accepted that means there is a significant difference between the algo-
rithms in terms of the objective function. Since in this study the goal is to 
decrease the costs, according to Fig. 8, the best algorithms are the ones 
with smaller RPD averages. 

4.6. Managerial implications 

Managers should always seek the profitability of their organization. 
In this study, by focusing on the cost reduction of a CLSC, the final 
achievement would be the stronger profitability of the organization. The 
suppliers are offering quantitative discounts to encourage the manu-
facturers for bigger purchases, resulting in higher profitability. Also, the 
proposed model contributes to cost reduction through the hybrid centers 
of distribution and collection by avoiding extra building centers. 
Moreover, using recycled materials is also reduced the costs 
considerably. 

Considering that the proposed CLSC focuses on both forward and 
reverse activities, it is quite compatible with different industries and 
sectors, including auto, battery, plastic, food, and chemicals 
manufacturing. 

5. Conclusion and further study 

This paper developed a multi-stage CLSC model in which the quan-
tity discount and transportation fixed-charge are considered for the first 
time. The model minimizes the total cost, including fixed and variable 
costs between the facilities, facilities opening cost, landfilling cost, and 
the discounted purchase cost of the raw materials from the suppliers. 
Since the model is NP-Hard, the study tried to contribute to the literature 
by finding good solutions through eight basic and modified meta-
heuristic algorithms. Forty test problems in different sizes were gener-
ated. Taguchi method was used to calibrate the proposed algorithms’ 
parameters and operators before the final experiments of the test 
problems. The results showed that out of the eight proposed algorithms, 
MDE_Restart and MDE algorithms developed for the first time in this 
study had the best performances, respectively. 

As the future directions, the following ideas can be considered and 
investigated. In this study, certainty in the parameters of the proposed 
model is considered. But the complexity of issues, the rapid pace of 
change, and today’s turbulent environment have increased volatility 
and further uncertainties in data from financial markets and economies. 
The high level of supply chain uncertainty has hampered the ability of 

Fig. 3. The S/N averages for each factor’s level in GA.  

Table 8 
The algorithms’ best level parameters’ values.  

Algorithm Parameters 

GA popsize = 60, Pc = 0.2, Pm = 0.15, Tc = Uniform, Tm = Inversion 
GA_Restart popsize = 60, Pc = 0.25, Pm = 0.1, Tc = Uniform, Tm = Scramble, 

Prestart = 0.8, MaxLI = 1000 
BSA popsize = 40, FV = 3, Pc = 0.2 
BSA_Restart popsize = 65, FV = 2, Pc = 0.2, Prestart = 0.9, MaxLI = 600 
MBSA popsize = 50, FV = 6, Pc = 1 
MBSA_Restart popsize = 40, FV = 6, Pc = 1, Prestart = 0.7, MaxLI = 2000 
MDE popsize = 70,Pc = 0.3, F = 0.5 
MDE_Restart popsize = 50,Pc = 0.2, F = 0.8, Prestart = 0.9, MaxLI = 350  
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Table 9 
The final results of test problems with the proposed algorithms.  

Proposed meta-heuristic 
Test Problem GA GA_Restart BSA BSA_Restart MBSA MBSA_Restart MDE MDE_Restart 

TP-1-A 165083022.2 164961963.3 163658038.6 163658045.7 163658172.5 163658261.7 163658053.3 163658038.5 
TP-1-B 280797307.9 280885183.1 280745743.4 280746322.3 280746839.6 280748508.7 280747334.6 280743878.4 
TP-1-C 809886494.3 809781767.8 809660424.5 809,660,944 809658020.8 809666364.5 809663161.3 809,659,523 
TP-1-D 1,889,037,889 1,893,373,745 1,888,491,669 1,888,495,597 1,888,493,784 1,889,585,770 1,888,493,408 1,888,489,349 
TP-2-A 274089829.2 273686387.7 272670014.8 272673672.2 272674793.4 272681288.9 272669099.6 272669065.8 
TP-2-B 490,911,617 489,559,196 488999660.7 489007560.3 489135592.2 489110220.4 488988847.4 488986774.1 
TP-2-C 2,040,222,509 2,040,746,159 2,039,333,622 2,039,374,859 2,039,410,376 2,039,478,081 2,039,346,542 2,039,349,441 
TP-2-D 3,684,668,137 3,684,736,242 3,682,256,169 3,682,268,469 3,682,418,637 3,682,450,283 3,682,232,011 3,682,233,759 
TP-3-A 361,536,603 361626429.3 360954580.4 360976847.1 361106877.6 361202254.7 360928268.1 360933631.5 
TP-3-B 831082710.9 830,803,697 830,370,487 830456421.6 830656212.1 830777217.1 830356190.6 830433867.7 
TP-3-C 2,212,156,026 2,203,741,965 2,203,052,556 2,203,003,376 2,203,184,541 2,203,131,811 2,202,961,383 2,202,980,867 
TP-3-D 5,551,977,338 5,551,961,912 5,550,766,269 5,550,847,942 5,550,852,613 5,550,994,906 5,550,643,390 5,550,625,474 
TP-4-A 461559539.1 460838477.5 459964557.1 460001821.6 460417412.8 460730369.9 459906303.6 459,895,782 
TP-4-B 817762308.4 818039182.7 816801218.2 816909267.3 817110668.4 817147957.7 816862973.5 816,812,719 
TP-4-C 3,030,269,213 3,024,638,032 3,022,196,881 3,022,225,607 3,022,395,140 3,022,862,821 3,022,119,081 3,022,091,901 
TP-4-D 5,271,785,620 5,263,472,771 5,259,627,649 5,259,744,091 5,259,987,769 5,260,654,793 5,259,745,838 5,259,760,468 
TP-5-A 562,424,477 561123880.8 558170142.4 558244048.2 558583844.3 559184854.5 557980414.2 558,050,840 
TP-5-B 1,138,607,023 1,136,265,644 1,134,273,984 1,134,311,298 1,135,313,154 1,137,238,546 1,134,151,538 1,134,142,668 
TP-5-C 3,848,154,527 3,844,846,089 3,841,456,272 3,841,620,014 3,842,386,824 3,842,125,526 3,841,342,319 3,841,316,884 
TP-5-D 5,324,919,815 5,321,045,794 5,310,940,279 5,311,119,571 5,311,482,574 5,311,258,677 5,310,929,536 5,310,857,826 
TP-6-A 706502908.6 704568601.9 703330794.1 703387094.1 704423248.2 704824204.6 703077215.4 703068953.4 
TP-6-B 1,371,968,270 1,368,400,757 1,364,632,344 1,364,820,358 1,365,746,539 1,366,875,294 1,364,510,293 1,364,554,138 
TP-6-C 3,455,114,564 3,438,436,557 3,436,620,770 3,436,645,620 3,437,317,528 3,437,948,377 3,436,633,543 3,436,535,418 
TP-6-D 7,399,308,563 7,381,233,084 7,361,058,515 7,361,436,938 7,366,790,573 7,376,842,212 7,361,033,898 7,360,866,905 
TP-7-A 794921044.4 794586599.3 790607457.4 791158078.8 792168342.8 798179073.3 791035827.8 790584238.2 
TP-7-B 1,261,985,022 1,259,685,491 1,254,242,223 1,254,619,314 1,258,137,952 1,262,917,500 1,254,069,082 1,254,159,744 
TP-7-C 3,944,493,766 3,927,657,158 3,925,361,877 3,925,575,506 3,927,723,796 3,927,011,456 3,925,410,700 3,925,253,704 
TP-7-D 9,671,894,230 9,687,872,394 9,638,856,034 9,639,189,360 9,643,613,759 9,647,242,893 9,640,082,901 9,638,796,489 
TP-8-A 960463618.6 960,749,946 956591882.7 956948418.6 965277565.2 976114175.2 956049609.9 956114578.5 
TP-8-B 1,291,400,277 1,292,030,974 1,285,286,805 1,285,455,826 1,288,465,412 1,308,998,598 1,284,705,126 1,284,861,255 
TP-8-C 5,090,314,383 5,089,465,376 5,060,837,027 5,061,422,224 5,063,459,693 5,092,839,802 5,061,158,437 5,061,078,377 
TP-8-D 11,327,717,020 11,277,545,941 11,238,193,802 11,238,812,845 11,272,022,795 11,314,293,981 11,238,610,457 11,238,443,551 
TP-9-A 1,100,251,503 1,097,280,678 1,091,639,590 1,091,803,559 1,099,002,891 1,102,613,476 1,091,376,059 1,091,434,105 
TP-9-B 1,580,832,165 1,578,342,394 1,572,039,825 1,572,291,796 1,587,213,529 1,602,641,277 1,571,570,189 1,571,671,650 
TP-9-C 6,754,883,221 6,743,857,374 6,731,921,349 6,732,652,672 6,750,522,160 6,760,630,927 6,732,288,482 6,732,018,162 
TP-9-D 10,406,301,405 10,401,358,168 10,365,738,811 10,366,146,639 10,418,846,949 10,496,609,411 10,366,021,949 10,365,575,687 
TP-10-A 1,229,682,603 1,226,102,787 1,223,731,237 1,224,122,144 1,235,761,354 1,253,977,398 1,223,051,858 1,223,074,943 
TP-10-B 1,779,999,459 1,767,124,474 1,762,001,937 1,762,554,674 1,784,926,326 1,837,721,143 1,762,579,842 1,761,813,469 
TP-10-C 6,560,879,225 6,515,950,506 6,502,283,350 6,502,755,792 6,515,399,187 6,619,804,905 6,502,831,851 6,502,139,244 
TP-10-D 12,021,837,244 12,041,778,690 11,982,639,660 11,982,860,289 12,019,767,360 12,340,044,424 11,982,947,074 11,982,165,939  

Table 10 
The algorithms’ RPD average of the objective function for the best level parameters.  

Problem Size The problem’s dimensions (I× J× K× L× M× I) The algorithms 

GA GA_Restart BSA BSA_Restart MBSA MBSA_Restart MDE MDE_Restart 

1 3×4×3×20×2×3 0.237 0.281 0.001 0.001 0.001 0.016 0.001 0 
2 5×7×6×30×4×5 0.257 0.158 0.002 0.003 0.011 0.012 0.001 0.001 
3 12×8×9×40×6×12 0.182 0.084 0.011 0.015 0.032 0.043 0.008 0.010 
4 13×10×11×50×7×13 0.252 0.135 0.011 0.017 0.049 0.074 0.010 0.008 
5 18×12×14×60×9×18 0.414 0.264 0.018 0.024 0.068 0.135 0.006 0.009 
6 20×14×16×70×10×20 0.531 0.214 0.019 0.026 0.103 0.177 0.008 0.007 
7 25×16×18×80×13×25 0.510 0.388 0.012 0.039 0.166 0.456 0.025 0.008 
8 30×17×20×90×14×30 0.597 0.501 0.032 0.049 0.409 1.332 0.009 0.013 
9 35×19×22×100×16×35 0.540 0.380 0.020 0.032 0.627 1.181 0.009 0.009 
10 40×22×24×110×18×40 0.707 0.320 0.023 0.041 0.722 2.914 0.020 0.006  

The RPD average 0.4227 0.2725 0.0149 0.0247 0.2188 0.634 0.0097 0.0071  
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Fig. 4. The average RPD values obtained for each size of the test problems.  

Fig. 5. The RPD averages for the top four algorithms.  

Fig. 6. Convergence graph of the proposed algorithms.  
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Fig. 7. The outputs of ANOVA.  

Fig. 8. Means plot and LSD intervals for the algorithms.  
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organizations to predict and decide for the future. Therefore, for better 
and more correct management and planning, attention to the issue of 
uncertainty in parameters such as demand, product prices, 
manufacturing costs, transportation costs, the amount of returned 
products, etc. in SC networks has become more important. In this regard, 
one can analyze our model in different uncertainties, such as what 
Özmen and Weber (2014), Roy, Maity, and Weber (2017), Kropat and 
Weber (2018), Khalilpourazari, Mirzazadeh, Weber, and Pasandideh 
(2019), Baltas et al. (2021) did in their research. In addition, the waste 
management (WM) system is an important and necessary problem in SC, 
especially in the case of COVID-19. The importance of WM causes many 
researchers, including Babaee Tirkolaee, Mahdavi, Esfahani, and Weber 
(2020), Babaee Tirkolaee, Abbasian, and Weber (2021), Akbarpour, 
Salehi-Amiri, Hajiaghaei-Keshteli, and Oliva (2021) offer approaches in 
this field. One can use these approaches to develop our proposed model. 
Another key issue in SC management is inventory management (IM), 
which aims to minimize investment in inventory while balancing supply 
and demand. Researchers such as Pervin, Roy, and Weber (2020), Savku 
and Weber (2020), Das, Pervin, Roy, and Weber (2021), Paul, Pervin, 
Roy, Maculan, and Weber (2021) have researched in this field that can 

be used to develop our model. Also, the developed model can be 
extended by considering environmental aspects and their impacts on 
costs to reach a green SC. The last but not least suggestion is to consider a 
three-dimension SC, like multi-product, multi-period, or multi-vehicle 
SC. 
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Appendix A  

1: function MBSA (ObjFun, N, D, maxcycle, low, up) 
Input: ObjFun, N, D, maxcycle, mixrate, low1:D, up1:D 
Output: globalminimum, globalminimizer 
// INITIALIZATION 

2: globalminimum = inf 
3: for i from 1 to N do 
4: for j from 1 to D do 
5: Pi.j = rnd⋅(upi − lowj) + lowj// Initialization of population, P 
6: oldPi.j = rnd⋅(upi − lowj) + lowj// Initialization of oldP 
7: end 
8: fitnessPi = ObjFun(Pi)// Initial-fitness values of P 
9: end 
10: for iteration from 1 to maxcycle do 

//SELECTION-I 
11: if (a < b|a. b U(0.1)) then oldP := P end 
12: oldP := permuting(oldP)
13: Generation of Trial-Population 

//MUTATION 
14: for i from 1 to N do 
15: F = 3⋅rndn 
16: move = F⋅(oldPi − Pi)

17: if norm(move) > 0 
18: move = move/norm(move)
19: end 
20: for j from 1 to D do 
21: if movej > 0 
22: mutant(i.j) = P(i.j) + movej⋅(1 − P(i.j))

23: else 
24: mutant(i.j) = P(i.j) + movej⋅(P(i.j))

25: end 
26: end 
27: end‘ 
// CROSSOVER 
28: Map1:N.l:D = 1 // Initial-map is an N-by-D matrix of ones 
29: if (c < d|c. d U(0.1)) then 
30: for i from 1 to N do 
31: mapi.u(1:[mixrate⋅rnd⋅D] )

= 0|u = permuting(< 1.2. 3.⋯.D >)

32: end 
33: else 
34: for i from 1 to N do, mapi.randi(D) = 0, end 
35: end 
// Generation of Trial Population, T 
36: T := mutant 
37: for i from 1 to N do 
38: for j from i to D do 
39: if mapi.j = 1 then Ti.j := Pi.j 

40: end 
41: end 

(continued on next page) 
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(continued ) 

42: end 
// SELECTION-II 
43: fitnessT = ObjFn(T)
44: for i from 1 to N do 
45: if fitnessTi < fitnessPi then 
46: fitnessPi := fitnessTi 

47: Pi = Ti 

48: end 
49: end 
50: fitnessPbest = min(fitnessP) | best ∊ {1. 2.3.⋯.N}

51: if fitnessPbest< globalminimum then 
52: globalminimum := fitnessPbest 
53: globalminimizer : = Pbest 
//Export globalminimum and globalminimizer 
54: end 
55: end  

Appendix B  

1: function MDE (ObjFun, N, D, maxcycle, low, up) 
2: for i from 1 to N do 
3: for j from 1 to D do 
4: Pi.j = rnd⋅( upj − lowj) + lowj// Initialization of population, P 
5: end 
6: fitnessPi = ObjFun(Pi)// Initial-fitness values of P 
7: end 
8: for iteration from 1 to maxcycle do 
9: for i = 1 to N do 
10: select randomly r1 ∕= r2 ∕= r3 ∕= i 
11: move = F⋅(P(r2 .:) − P(r3 .:))

12: if norm(move) > 0 
13: move = move/norm(move)
14: end 
15: for j from 1 to D do 
16: if move(j) > 0 
17: T(i.j) = P(r1 .j) + move(j)⋅(1 − P(r1 .j))

18: else 
19: T(i.j) = P(r1 .j) + move(j)⋅(P(r1 .j))

20: end 
21: end 
22: end 
23: for j from 1 to D do 
24: jrand = rand(1.D)
25: if (rand(0.1) < cr) or (j = = jrand) then 
26: T(i.j) = P(i.j)

27: end 
28: end 
29: fitnessT = ObjFn (T)
30: for i = 1 to N do 
31: if fitnessTi < fitnessPi then 
32: newPi = Ti 

33 else 
34: newPi = Pi 

35: end 
36 end 
37: end  
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