We consider a mechanical system with n degree-of-freedom whose generalized coordinates are $q_{1}, q_{2}, \ldots, q_{n}$. The Lagrange equations describing the motion of the system are

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{r}}\right)-\frac{\partial \mathcal{L}}{\partial q_{r}}=\tau_{r}, \quad r=1,2, \ldots, n \tag{1}
\end{equation*}
$$

where $\mathcal{L}=T-P, T$ and P are the kinetic and potential energy respectively, and τ_{r} is the generalized force. The kinetic energy can be expressed as

$$
\begin{equation*}
T=\frac{1}{2} \sum_{i, j=1}^{n} a_{i j} \dot{q}_{i} \dot{q}_{j} \tag{2}
\end{equation*}
$$

where $a_{i j}$ is a function of the generalized coordinates.
In the following, we denote $\mathbf{q}=\left[\begin{array}{lll}q_{1} & q_{2} & \ldots\end{array} q_{n}\right]^{T}$, then Lagrange's equation (1) can be manipulated to derive

$$
\begin{equation*}
D(\mathbf{q}) \ddot{\mathbf{q}}+F(\dot{\mathbf{q}}, \mathbf{q}) \dot{\mathbf{q}}+G(\mathbf{q})=\tau \tag{3}
\end{equation*}
$$

where the $n \times n$ matrix $D(\mathbf{q})$ is positive definite and symmetric, and is related to the inertial properties of system, the vector function $F(\dot{\mathbf{q}}, \mathbf{q}) \dot{\mathbf{q}}$ is in general a nonlinear function of its arguments and $\tau=\left[\tau_{1}, \tau_{2}, \ldots \tau_{n}\right]^{T}$.

In the following development we only consider the systems with the following two simplifying properties.

Property 1: A suitable definition of $F(\mathbf{q}, \dot{\mathbf{q}})$ makes the matrix $(\dot{D}-2 F)$ skew-symmetric. In particular, this is true if the elements of $F(\mathbf{q}, \mathbf{q})$ are defined as

$$
\begin{equation*}
F_{i j}=\frac{1}{2}\left[\dot{\mathbf{q}}^{T} \frac{\partial D_{i j}}{\partial \mathbf{q}}+\sum_{k=1}^{n}\left(\frac{\partial D_{i k}}{\partial q_{j}}-\frac{\partial D_{j k}}{\partial q_{i}}\right) \dot{q}_{k}\right] \tag{4}
\end{equation*}
$$

Property 2: There exists a m-vector α with components depending on mechanical parameters (masses, moments of inertia, etc.), such that

$$
\begin{equation*}
D(\mathbf{q}) \ddot{\mathbf{q}}+F(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}}+G(\mathbf{q})=\Phi(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}) \alpha \tag{5}
\end{equation*}
$$

where Φ is a $n \times m$ matrix of known functions of $\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}$; and α is the m-vector of inertia parameters.

The control objective can be specified as: given desired $\mathbf{q}_{d}, \dot{\mathbf{q}}_{d}$, and $\ddot{\mathbf{q}}_{d}$, which are assumed to be bounded, determine a control law for τ such that \mathbf{q} asymptotically converge to \mathbf{q}_{d}, satisfying the following conditions:

- All the parameters in the manipulator system (3) are unknown
- Use only joint position measurements
- Bounded torque inputs are used (an explicit bounds on the torques should be delivered)

It is necessary to use a two-link manipulator with the parameters given to verify your control algorithm.

