
COMP-10205 – Data Structure and Algorithms
Assignment#2

Sorting
Sorting and Performance Analysis

3% of course grade

Corrections to text made Oct,6,2020

Submission Requirements
Complete the following exercise and submit electronically in the assignments folder on eLearn
as an IntelliJ Project – Zip the entire folder not just the source files in MyCanvas. Please refer
the course Calendar for the exact date and time of the submission. This assignment is to be
completed individually.

Background
You are to evaluate the Sort Algorithms that were presented in class for efficiency. You have
been provided with starter code (see MyCanvas) that includes the source code for each of the
sort methods discussed (bubble, selection, insertion, merge and quick) that are to be evaluated.
You must add code to each of the methods to count the number of comparisons required to
completely sort the data. Ensure that you generate and use the same data for each sort. You
will also measure the time required to sort the data using each method by timing the algorithm
using the System.nanotime method.

Requirements
Your program must report the following information:

1. The time required in nanoseconds, the number of comparisons required and the time to
execute a basic step (the comparison) in ns for each of the sort methods provided. The
basic step is determined by taking the time required to sort an array of a size n and
dividing by the number of comparisons required for that algorithm. Report your results
for data sets of 30, 300, 30000 elements.

2. Modify the sorta, sortb, sortc, sortd, sorte methods to count the number
of comparisons and return this value from the method.
Suggested Steps:

a. Change each of the sort methods from type void to type int.
b. Add a local count variable to each method.
c. Increment the count just before the comparison of two array elements in each of

the sort methods.
d. Return the count value from the method and print to the screen in the main

method.

3. The sorta method currently counts the # of comparisons by using a global variable.
This is not a good programming technique. Modify the sorta method to count
comparisons by passing a parameter. This is a little trickier as the comparisons are done
in the part method. You should notice that the number of comparisons can be
determined before the call to the part method. You will need to return this value from
the sorta method and modify the sorta header to pass this value into each recursive
call. You will need to add the counts recursively. As an alternative to the recursive
counting, you can leave the code as is and complete the sorta counting using the
global variable.

4. Adding counting to the sortd method. Again, you can use a recursive technique or use
a global variable. Recursive counting is preferred. If this is not possible use a global
variable like sorta

5. Time the java standard Arrays.sort method for all three sizes.
6. In a Comment section at the TOP of your source file, provide answers to the following:

o Identify the type of sorts for each of the methods provided. Indicate which sort
(a,b,c,d,e) is bubble, quick, merge, selection or insertion.

o List in order (fastest to slowest) your selection of algorithm to use when the array
to be sorted contains 30 elements. Base this on your results

o List in order (fastest to slowest) your selection of algorithm to use when the array
to be sorted contains 30000 elements.

o List the algorithm and the BIG O notation (time complexity, average case) for that
algorithm. Does the Big O notation line up with your results for 30000 elements?

o Which algorithm has the best performance of the basic step? Does this have any
impact on your selection of fastest algorithm when sorting an array of 30000
elements? Why?

o For the standard Arrays.sort method, which algorithm do the performance
results most resemble.

Example Output
Lab#2 Sorting Algorithm Performance Analysis

==

Comparison for array size of 30

Number of compares for sort a = ____ time = _____ ns Basic Step = ____._ ns

Number of compares for sort b = ____ time = _____ ns Basic Step = ____._ ns

Number of compares for sort c = ____ time = _____ ns Basic Step = ____._ ns

Number of compares for sort d = ____ time = _____ ns Basic Step = ____._ ns

Number of compares for sort e = ____ time = _____ ns Basic Step = ____._ ns

Repeat for array sizes of 300 and 30000

Marking Scheme
Program Modifications – Counting implemented, recursive counting implemented - 20%
Program structure – Comments, follows best programming practices - 20%
Output displayed for 30, 300, 30000 elements correct – 20%
Discussion in comment at top of code – Questions answered based on results – 40%

