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A B S T R A C T   

Crop classification provides essential information for ensuring global food security, allowing early 
crop monitoring practices and water irrigation management. Despite of high importance of sat-
ellite imagery in identifying agricultural products, a significant number of optical images could 
become inaccessible due to cloud cover, which makes mapping agricultural products difficult. 
Therefore, the provision of up-to-date data integration methods and the availability of time series 
of optical and radar images such as Sentinel-1 data have provided new opportunities for mapping 
agricultural products with high spatial and temporal resolution. In this study, the results of 
classification accuracy were investigated based on the phenology of agricultural products and 
using time series of Landsat 8, Sentinel-1 and the digital elevation model (DEM). To do so, the key 
phenological parameters of the products such as start of season, length of season and end of 
season were first extracted using time series of the NDVI vegetation index calculated from the 
optical images and the TIMESAT model. Then, based on vegetation phenology of crops using 
optical (Landsat-8) and radar (Sentinel-1) time series data along with Digital Elevation Model 
(DEM) to increase the accuracy of classification, we applied the support vector machine method 
based on machine learning. The performance of this model was investigated on a part of Mian-
doab catchment basin located in the catchment of Lake Urmia in the northwest of Iran. Also, five 
major agricultural products of the study area, such as alfalfa, wheat, sugar beet, apple and grape 
were identified with overall accuracy of 89% using the support vector machine algorithm. 
Classification results demonstrated that using a combination of different data (overall accuracy 
(OA) = 89%, Kappa = 0.78) were more accurate than the only single-sensor inputs (OA = 77%, 
Kappa = 0.64), and when differences between crop types were largest, classification performance 
increased throughout the season until July.  

Abbreviations 

% Percent 
DEM Digital Elevation Model 
NDVI Normalized Difference Vegetation Index 
EVI Enhanced Vegetation Index 
LAI Leaf Area Index 
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GNDVI Green Normalized Difference Vegetation Index 
VV Vertical Vertical 
VH Vertical Horizontal 
MSI Multi Spectral Instrument 
SAR Synthetic Aperture Radar 
OLI Operational Land Imager 
ETM+ Enhanced Thematic Mapper Plus 
TM Thematic Mapper 
EMISAR Electro Magnetics Institute Synthetic Aperture Radar 
ERS European Remote-Sensing Satellite 
SVM Support Vector Machine 
MLC Maximum Likelihood Classification 
DT Decision Trees 
NN Neural Network 
ULRP Urmia Lake Restoration Program 
GRD Ground Range Detected 
SRTM Shuttle Radar Topography Mission 
GLCM Gray-Level Co-Occurrence Matrix 
OA Overall Accuracy 
Ce Commission Error 
Oe Omission Error 
PA Producer Accuracy 
UA User Accuracy  

1. Introduction 

In the future, more agricultural products will be needed to provide food (Foley et al., 2011). In addition, biofuel production and 
urban growth will increase the pressure on the agricultural sector (Godfray et al., 2010). All of these factors will have consequences for 
natural ecosystems (Green et al., 2005). Knowledge about types of agricultural products can help managers and farmers to apply 
appropriate management and executive policies to determine the type of cultivation specific to each region, estimate the potential for 
harvesting, manage agricultural lands in accordance with local needs and conditions, manage water resources (Demarez et al., 2019). 
A map of crop sequences can be produced by combining information from multiple years, thus providing an indicator of agricultural 
land use intensity. Both duration and diversity of crop sequences are directly related to landscape complexity (Tscharntke et al., 2021). 

One of the effective tools for monitoring, studying, and determining types of agricultural products is satellite data (Van Tricht et al., 
2018). Remote sensing techniques are widely used in all sectors including agriculture due to their ability to provide update data and 
high image analysis (Bégué et al., 2018). In Iran, estimation of the area under cultivation of various agricultural products is usually 
made through three methods: expert estimation, estimation through cataloging, and the use of remote sensing and GIS (Kenduiywo 
et al., 2018). Studies have shown that the accuracy of the first and second methods is very low and they have many errors 
(Ziaeian-Firoozabadi et al., 2009).Therefore, it is necessary to use more accurate, faster, and less expensive methods to promote 
various macro-planning, including agriculture (Nirbhay Bhuyar, 2020). Biophysical parameters, including fresh and dry weight and 
leaf area index can also be obtained using vegetation indices calculated from Landsat 8 OLI and Landsat 7 ETM+ (Ahmadian et al., 
2016). 

However, in spite of potential of optical remote sensing data in crop classification, there are some questions about where mete-
orological conditions can affect the behavior of the optical signal especially in cloud condition. Similarly, even though SAR remote 
sensing is a good choice to overcome a part of the meteorological conditions, its potential to gain information on the physical char-
acteristics and structure of crop is still unknown for the identification and characterization in detail of cloud condition crop patterns 
(Carrasco et al., 2019). 

Research has suggested that full-polarization radar data are needed to achieve high-quality results in mapping crop types, but other 
researchers have come to different conclusions based on their experience. Moreover, although the use of reflection coefficients has an 
overall accuracy (OA) less than 50% (Roychowdhury, 2020), more accurate classification is possible using the combination of haralic 
textures, the VV/VH polarization ratio, and the local mean with VV reflection coefficients (Inglada et al., 2016). 

Combination of optical data (Sentinel-2 or Landsat 8) and SAR data, such as Sentinel-1 data could improve the identification and 
differentiation between crops type, whose detection is difficult using only optical images (Vuolo et al., 2018). By combining optical, 
SAR, and environmental data, overall accuracy was increased by 6%–10% compared to single-sensor approaches, where optical data 
performed better than SAR. The mapped areas corresponded well to agricultural statistics at a regional and national level, and their 
accuracy ranged between 78% and 80% (Blickensdörfer et al., 2022). 

Agricultural products mapping in different climates and cultivation systems using optical time series are presented (Sonobe et al., 
2018). However, optical images affected by cloud cover reduce the performance of these images in mapping agricultural products. 
Some studies have shown that the phenological properties of agriculture products obtained from optical sensors are also useful for 
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estimating the area under crop (Zhang et al., 2017). Therefore, to achieve this goal, combining optical and radar time series data could 
be a smart method due to the regular revisit times and the independence of radar images from weather conditions. Further studies have 
examined the suitability of X- and C-band SAR data to determine the growth stages of rice (Yuzugullu et al., 2017). 

Likewise, the multi-temporal classification method has been demonstrated in several studies using a combination of optics and 
radar time series data (Larrañaga and Álvarez-Mozos, 2016). Most methods used to classify agricultural products have used all 
available data during the growing season, regardless of vegetation phenology of agricultural products (Skriver, 2012). Although these 
studies have yielded significant results on the classification of agricultural products, a number of them have encountered difficulties in 
distinguishing and identifying some products such as cereals (Bargiel and Herrmann, 2011). Therefore, knowledge about vegetation 
phenology of crops can play a decisive role in improving the results of agricultural products classification (Bargiel, 2017). 

Furthermore, examining the views related to the production of agricultural products maps, it was concluded that it is not possible to 
accurately classify them by selecting images related to specific dates and all available data should be used (Inglada et al., 2016). 
However, in a study, using the Electro Magnetics Institute Synthetic Aperture Radar (EMISAR) airborne system showing monthly 
polarimetric data at 20% error rate in some areas, they could use the images taken at the most appropriate and optimal time for 
mapping agricultural products (Skriver, 2012). In another study, using multi-temporal ERS-1 data, 12 crops were separated with 80% 
accuracy (Schotten et al., 1995).To achieve this goal, they needed to choose the best images from 14 available im-ages during the 
agricultural season. Moreover, in a similar study, only two Sentinel-1 images were used to identify some land uses(Balzter et al., 2015). 

In addition to good quality remote sensing data, classification algorithms are necessary to produce accurate maps of agricultural 
products. Based on multi-temporal NDVI curves, the RF and SVM classifiers performed better than the SAM classifier in identifying 
crops (Ouzemou et al., 2018). For example, in one study, four methods of supervise classification such as support vector machine 
classification (SVMs), decision trees (DTs), neural network classification, and maximum likelihood classification (MLC) were analyzed 
on Landsat TM data. Results showed that support vector machine (SVMs) outperformed the other three algorithms (Huang et al., 
2007). 

This study aims to assess the potential of optical (Landsat-8) and radar (Sentinel-1) time series data along with DEM for crop 
classification based on vegetation phenology when optimal remote sensing data are not available due to atmospheric effects such as 
cloud and haze contamination. The case study considered in this article is located in the northwestern part of Iran. To classify agri-
cultural products, the support vector machine method based on machine learning algorithm was applied. Finally, the results of the 
classification were validated using ground data collected in 2014. The main reason for selecting the year 2014 was the availability of 
ground truth data fo this year in order to validation of the results of classification. 

1.1. Study area 

The location of the study area has been shown in Fig. 1. Miandoab plain, with an area of 438,000 ha in the northwestern part of 
Iran, forms a large part of western Miandoab, which is one of the suitable areas for agricultural production downstream of Lake Urmia 

Fig. 1. Geographic location of study area in northwestern Lake Urmia, Iran.  
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catchment due to its favorable climate. The geographical coordinates of the study area is from 45◦ 43′ 11′′ to 46◦ 50′ 42′′ east longitude 
and from 36◦ 40′ 49′′ to 37◦ 44′ 2′′ north latitude. This region has a cold and semi-arid cold climate according to Umberg classification 
and a cold semi-arid climate according to De Martonne classification. The annual rainfall in the study area is about 254 mm. 

1.2. Reference dataset 

To evaluate and validate the results, ground truth data are of great importance along with satellite data. In this study, this data 
included information about the crop calendar, land harvested points, and cadastral map. In Fig. 2, a few of the points and cadastral data 
retrieved from Google Earth are shown with area photos taken during the field visit. In the study area, the Urmia Lake Restoration 
Program (ULRP) and Novinabyari website provided most of the ground truth data during the growth period. 

The ground truth data collected in this study were related to the 2014–2015 crop years and no data were available for the sub-
sequent years. Therefore, since the Sentinel-2A was launched in June 2015, firstly, these images did not cover the growing season of 
the products in the desired years. Secondly, it was not possible to validate the results without ground data. Table 1 shows the area of 
major agricultural products in the study area and the percentages of these lands in relation to the total agricultural lands in the 
Miandoab catchment area. The number of points used in the classification were 18500, to avoid training data imbalances that might 
negatively affect the SVM algorithm, 50% training samples and 50% validation samples were used for each land-use classification. 

1.3. Satellite data 

The Landsat8 satellite was successfully launched in February 2013. This satellite uses OLI as well as infrared thermal sensors. Also, 
Landsat 8 have ability to acquire images from the surface of the earth with a spatial resolution of 30 m and a temporal resolution of 16 
days, as a georeference likewise other satellites of the Landsat series. Each image frame obtained from the Landsat 8 satellite can cover 
an area, which is 170 km north-south wide and 183 km east-west long (Zanter, 2016). In the present study, processed Landsat 8 images 
of Level 2A (atmospherically corrected surface reflectance by masking clouds, cloud shadows, water, and snow) were used. The study 
area was covered by one Landsat 8 image frame. All Landsat 8 images were resampled by Cubic Convolution to 10 m to be combined 
with radar images (Torres et al., 2012). According to the study time, radar images of Sentinel-1 (Interferometric Wide Swath mode) 
with a 12-day revisit time were used. Currently, the revisit time is in the range of 3–6 days depending on the combination of S1-A and 
S1–B platforms. In Sentinel-1, synthetic aperture radar (SAR) data has been acquired in the C-band for a dual-polarization system. 
There are three resolutions (10, 25, or 40m) and four bands (corresponding to scene polarization) available in Sentinel-1 data. These 
images were taken with a spatial resolution of 10 m with a constant incidence angle in VV and VH polarizations. All images were Level 
1-GRD (Ground Range Detected) and radiometric and orthorectified corrections were applied on them using SNAP software. Then, 
From the two original bands, two new bands were calculated as (VV + VH) and (VH/VV). Lee 3 filter was also used to reduce the 
speckle noise. The acquisition date of Landsat8 and Sentinel-1A images has been shown in Table 2. It should be also noted that Iota2 
software was used to fill temporal gap of cloud pixels (Inglada et al., 2015). The used gap-filling model relied on linear interpolation. 
Moreover, masked cloud pixels were estimated by linear interpolation using pixel information of the images taken of a date after and a 
date before when it was not cloudy. Therefore, a Landsat-8 image became available every 16 days. Since different agricultural products 

Fig. 2. The figures of (a), (b), (c), (d) and (e) illustrates ground truth points and cadaster on Google Earth of wheat, Alfalfa, apple, grape and sugar beet respectively, 
also the photos of agriculture land which are taken during growing season in the study area has shown. 
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are grown at different elevation, therefore, the effect of SRTM Digital Elevation Model with a spatial resolution of 30 m on classifi-
cation was evaluated. 

2. Materials and methods 

In Fig. 3, the flowchart of the general implementation process of the study is shown. In this study, it was tried to identify and classify 
the agricultural products of the study area by using time series of optical and radar images. This goal was achieved through several 
stages. Firstly, the images of the Landsat8 satellite images with a spatial resolution of 30 m and the Sentinel-1 satellite images with a 
spatial resolution of 10 m were downloaded and processed. Secondly, various vegetation indices were calculated using Landsat8 
images for the studied years. Then, the key phenological parameters were extracted using the TIMESAT model. Finally, the agricultural 
products of the study area were classified using the support vector machine algorithm. To train and evaluate the obtained results, the 
ground truth data (cadaster and harvested land points) of the study area were used. 

2.1. Extraction of vegetation phenological information 

In some studies, various vegetation indices have been used to extract phenological parameters. In the present study, to find the most 
effective vegetation indices, four vegetation indices, including normalized difference vegetation index (NDVI), enhanced vegetation 
index (EVI), leaf area index (LAI), and green normalized difference vegetation index (GNDVI) were evaluated. 

Vegetation indices for the cultivation period (seven months) of 2014, 2015, and 2016 were also calculated and the trend of crop 
changes in these indices was examined. Table 3 summarizes VIs that are sensitive to changes in vegetation cover and plant health 
conditions and have been used to improve land coverage classification and crop mapping accuracy in similar studies. Fig. 4 shows the 
vegetation indices calculated for date of 29 July 2014 image of Landsat8. 

Furthermore, the time series of vegetation indices were obtained from satellite spectral measurements to analyze the structural and 
functional characteristics of land cover. To put in another way, this indices can be used to determine the necessary information about 
seasonal changes in vegetation. Today, there are a limited number of methods for detecting and extracting the variability of time series 
data. One of these models is the TIMESAT model developed to extract oscillating parameters (Eklundha and Jönsson, 2017). Three 
methods available in TIMESAT are performed based on the least squares fitting and the highest numerical value of the vegetation 
index. The first method is based on local polynomial functions known as the Savitzky-Golay adaptive filter, a digital filter that can be 

Table 1 
Overview of ground truth data for the vegetation season 2014/2015.  

Land cover Total area (ha) Percentage to total area Number of ground truth 

Alfalfa 12566 73.12 4800 
Sugar beet 6269 35.6 2500 
Wheat 25179 51.25 3500 
Apple 16251 46.16 3500 
Grape 11280 43.11 3000 
Other Gardens 235 24 1200  

Table 2 
Dates of Landsat 8 and Sentinel-1 data acquisition for the study area.  

Dates of Landsat-8 imagery Dates of Sentinel-1 imagery 

Year Month Day Year Month Day 

2014 April 8; 24 2015 April 3 
May 10; 26  July 8 
June 11; 27  August 1; 25 
July 13; 29 2016 April 3 
August 14; 30  July 2; 14 
September 15  August 19 
October 1; 17  September 18 

2015 April 11; 27    
May 13; 29    
June 14; 30    
July 16    
August 1; 17    
September 2; 18    
October 4; 20    

2016 April 13; 29    
May 15; 31    
June 16    
July 2; 18    
August 3; 19    
September 4; 20    
October 6; 22     
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applied to a set of points to smooth the data. The other two methods, asymmetric Gaussian and double logistics, fit information with 
complex nonlinear functions. All these three processing methods use a preliminary definition of the actual growing season (unimodal 
or bimodal) along with the approximate time of the growing season (Eklundha and Jönsson, 2017). Studies (Jensen and Lulla, 1987) 
indicate that Savitzky-Golay method is not always successful in finding good results when applied to uneven time series (with high 
fluctuations). An asymmetric Gaussian or double logistics model may be more appropriate in such cases. It has been shown in recent 
studies (Inglada et al., 2016) that NDVI provides useful information about agricultural patterns in images with high spatial and 
temporal resolution. In order to achieve this, the double logistic model, which is modeled in Eq. (1) will be used in the present study 
(Eklundha and Jönsson, 2017). 

Fig. 3. Flowchart of crop classification map based phenology information using time-series of optical and SAR data.  

Table 3 
The vegetation indices computed in this study from the Landsat 8.  

Name Formula Reference 

NDVI 
NDVI =

ρ(NIR) − ρ(R)
ρ(NIR) + ρ(R) Rousel et al. (1973) 

EVI 
EVI =

( P*
NIR − P*

RED
P*

NIR + C1P*
RED − C2P*

BLUE + 1

)

1+L 
Huete (1988) 

LAI 

LAI = −

ln
( 0.69 − SAVIID

0.59

)

0.91 

Bastiaanssen et al. (2000) 

GNDVI 
GNDVI =

ρ(NIR) − ρ(G)
ρ(NIR) + ρ(G) Gitelson et al. (1996)  
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Eq. (1) was applied to the vegetation index of NDVI calculated from Landsat8 images. In Eq. (1), x1 determines the position of the 
left inflection point while x2 gives the rate of change. Similarly x3 determines the position of the right inflection point while x4 gives the 
rate of change at this point. Also for this function the parameters are restricted in range to ensure a smooth shape. 

g(t; x1, ..., x4)=
1

1 + exp
(

x1 − t
x2

) −
1

1 + exp
(

x3 − t
x4

) (1) 

TIMESAT model provides key information about plant phenology, such as beginning of growing season, maximum date of growth, 
date of end of growth, and length of growing season by examining plant phenology during growth period using time series of vege-
tation indices. Then, the most optimal images can be selected for high-precision classification by matching this information with the 
crop calendar of the region. Finally, the map of crops is prepared using selected images (based on plant phenology) and training data. 

2.2. Definition of phenological stages 

The phenological stages of crops occur at different times in the growing season. This process depends on the type of crop, sowing 
date, climatic conditions, and soil type in the area. The crop calendar of 2014 for each crop varies according to the specific location, the 
climatic conditions, and the crop year. Fig. 5 shows the crop calendar of major agricultural products in the study area, including wheat, 

Fig. 4. Vegetation indices for 29 July 2014 image of Landsat-8.  
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sugar beet, alfalfa, apples, and grapes. According to the crop calendar in the year 2014 in Miandoab plain, land preparation for 
cultivation of irrigated wheat begins in mid-September and usually lasts until early December. Also, cultivation time for irrigated 
wheat is October and November and sometimes lasts until mid-December. Moreover, harvesting this crop starts from early October 
(after planting and the first irrigation) and lasts until the end of June. In the study area, harvesting irrigated wheat begins in early July 
and lasts until mid-September. In order to cultivate sugar beet, the land is plowed with a reversible plow from October to late 
November, and in April, the land is plowed and disked again. Then, the land is leveled using a roller. Planting sugar beet starts in April 
and continues until early May. Harvesting sugar beet begins in mid-October and lasts until mid-December. In the study area of 
Miandoab, as for most parts of Iran, alfalfa is cultivated in two seasons of early spring and early autumn and gives 3–4 harvests a year. 
The first harvest begins in July and the last harvest is usually in October. The operation related to the preparation of apple garden is 
also performed from early October to late December. This crop is planted and harvested in April and during October, respectively. 
Furthermore, according to the crop calendar, operations related to the preparation of vineyards are performed from early October to 
late November. The planting date and harvest time of this crop are also April and the second half of September, respectively. 

2.3. Crop-classification using time series data 

Generally, information on the classification of agricultural products is obtained from radar images (SAR imagery) with VV po-
larization, Haralik texture (entropy and inertia calculated from VV polarization), and polarization ratio (VV/VH). In a study, VH 
polarization as well as entropy and inertia calculated from VH polarity were used (Zhou et al., 2019a). The GLCM is the most widely 
used method of extracting texture from remote sensing images. This method was proposed by Haralik in 1973, which is a second-order 
texture index, and it has been used in many studies to increase the accuracy of classification (Zhou et al., 2019b). In this study, the 
GLCM method was used for extracting texture. In current study, 16 textural matrices are calculated (Conners et al., 1984; Hall-Beyer, 
2017). provide more details on the equation of each textural matrix. In another study, using time series images of Landsat 5 (TM) 
(1995–2005), changes in land use in agricultural lands were investigated by two methods of pixel-based and object-oriented classi-
fication. They found that both methods had the same accuracy, except for the object-oriented method having problems, such as not 
considering small classes and merging them with larger ones, which in turn reduced accuracy (Robertson and King, 2011). In the study 
area, it is noticed that due to the small area of agricultural land, object-oriented classification did not have high efficiency and accuracy 
in the separation and segregation of small agricultural land. Therefore, the support vector machine (SVM) method was used as the most 
effective classification methods that have been widely used with the Gaussian kernel function (Burges, 1998). This method has been 
introduced as a powerful method in detecting and determining different types of soil along with five agricultural products with an 
overall accuracy of 92% (Foody and Mathur, 2004). The main reason for using this method and its favorable results in comparison with 
other classifiers is that SVM algorithm use geometric features of training data instead of statistical features (Karjalainen et al., 2008). 

2.4. Validation of results 

The use of any kind of thematic information requires knowledge of its correctness and accuracy. Each classification is evaluated and 
performed using reference datasets, which are randomly divided into two parts: 50% of ground truth data is used for training, while the 
other 50% is used for validation of results. In the present study, the coefficients of overall accuracy, Kappa coefficient, producer 
accuracy, user accuracy, Omission error, and Commission error were used to check the classification accuracy. A detailed explanation 
of the equation of overall accuracy and the kappa coefficient can be found in (Jensen, 1986). 

3. Results and discussion 

3.1. Investigating the trend of changes in vegetation index 

Using the coordinates of the existing land points, the trend of changes in agricultural products in the study area was separately 
investigated in the calculated vegetation indices. As mentioned earlier, the main agricultural products of the region included: apples, 

Fig. 5. Crop calendar for agriculture products in the study area.  
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grapes, alfalfa, wheat, sugar beet, and various orchards. The trend of changes in orchard class and apple were close to each other and 
due to the fact that these crops are tree-type and have high greenery during the growing period, they had higher values in terms of the 
studied vegetation indices compared to other products. In addition, these crops had more peaks during their growth period due to their 
different phenological stages, such as leaf production, flowering, and fruit production. On the other side, there were no fluctuations in 
the process of changing vineyards and its maximum growth occurred in July. In addition, according to the diagram drawn for grapes, 
this crop was harvested in late August. In the case of crops such as alfalfa, the maximum growth occurred in 31st August which is 
shown in Fig. 6. Alfalfa is also one of the crops in the study area that is planted and harvested two to three times a year; therefore, its 
growth trends can be completely variable from one year to the next. Beginning in June, wheat was entered the growing stage, reaching 
its peak by the end of July. Additionally, sugar beet has a longer growth period than other crops due to the way it is processed. In Fig. 6, 
the trend of changes in NDVI in the study area is shown for each crop during the cultivation period. 

3.2. TIMESAT model 

The trend of phenological changes of the studied crops with more focus on parameters, such as the beginning of crops season, the 
end of crops season, and the length of crops season was obtained from the TIMESAT model. Results of this model were adapted to the 
crop calendar. Since the TIMESAT model is able to detect n-1 seasons and considering that the time series data of the present study 
were related to three years (2014, 2015, and 2016), the model was able to determine two seasons or two cultivation periods; therefore, 
the results of 2014 were used considering the available ground truth data in the present study. In addition, by reviewing the results of 
the performance of indices and the adaptation of the outputs obtained from the TIMESAT model with the crop calendar, the most 
efficient index among vegetation indices was selected. According to the results of TIMESAT model, although the results of the four 
vegetation indices were closely related, the NDVI’s phenological parameters were more closely related to the crop calendar; thus, this 
index was used for mapping crops. Table 4 shows the results of the TIMESAT model derived from the NDVI. 

According to the information obtained from the TIMESAT model and the crop calendar of agricultural products in the study area in 
2014, the dates of cultivation and harvest of grapes are April and the second half of September, respectively. The crop calendars of 
apple and grape, which fall into the horticultural category are very close to each other. Moreover, the operation related to the 
preparation of apple land is performed from late September to late November. The planting date of this product is April and its harvest 
is done from September 22 to October 11. Furthermore, in the study area, the crop calendar of horticultural crops, including plum, 
cherry, etc., is similar to apple orchards and very close to each other so that like apple, their land preparation operations is performed 
from late September to late November. The planting date of these crops is April and their harvest is done from September 22nd, 2014 to 
October 11th, 2014. On the other side, alfalfa is known as a spring-autumn crop, whose land preparation operations start from late 
February to early April. The planting date of this product is from 1st to 10th April. Indeed, alfalfa is harvested twice when 10% of the 
whole field alfalfa has the flowering stage. Harvesting this product includes three stages of cutting, collecting, and packing. In the study 
area, alfalfa is harvested three times with an almost 45-day interval. In Miandoab, the first harvest of alfalfa is performed around the 
end of June and the last harvest is performed in late September. In addition, wheat is an autumn crop, whose land preparation 
operation is from late August to early October. Planting date of this product is from October 2nd to October 22nd. The best time to 
harvest wheat is when the grains have a moisture content of about 14%. Depending on the planting date, this stage starts from around 
the end of June in the study area. Considering sugar beet, it is a spring crop, whose land is prepared from late February to the first 
decade of April. The planting date of this crop is April 10th to April 20th. Also, harvesting of sugar beet begins when its old leaves turn 
yellow and the growth of young leaves inside the plant slows down (reduction of growth of aerial organs). In Miandoab, the date of 
harvesting sugar beet has been scheduled for the first half of September. Fig. 7 illustrates the plant’s phenological development for 
major crops in the study area. 

Fig. 6. Changes trend of NDVI for agriculture products in 2014.  
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In the current study, by comparing the results of the TIMESAT model and examining the phenological trend for the five products, it 
can be concluded that each plant has the most changes at certain times during its growth period. These changes are more obvious at 
three time intervals, including the beginning of the season (April 8th and May 10th), when the plant reaches its maximum growth 
(June 27th and August 30th), and the end of the season (September 18th and October 1st) than other stages of the plant growth period. 
Therefore, by examining the phenological efficiency of plants, the classification algorithm was run using the selected images obtained 
from the TIMESAT model shown in Table 5. The use of selected images not only accelerated the classification process, but also it 
improved the classification results (see Table 6). 

3.3. Evaluating the accuracy of results 

After the classification operation, its results were quantitatively estimated by comparing the classified map with the ground reality 
and using accuracy criteria. The result of this evaluation is presented in the form of a confusion matrix (Jensen and Lulla, 1987). In the 
confusion matrix, the reference data (matrix columns) were compared with the classification data (matrix rows). In fact, correctly 
classified pixels were placed in the diameter of the table and non-diagonal pixels had not been classified properly. The confusion matrix 
obtained from the SVM method is given in Table 5. Moreover, Kappa coefficient and the overall accuracy for the classified map were 
estimated to be 0.88 and 89%, respectively. Overall accuracy is a measure of the accuracy of classification. One of the limitations of 

Table 4 
Extraction of key phonological parameters for agriculture products from NDVI time series using TIMESAT model.  

Input TIMESAT model Agriculture Products Start of season Maximum growth End of season 

NDVI Grape 10 May 2014 30 Aug 2014 1 Oct 2014 
Apple 8 Apr 2014 29 Jul 2014 1 Oct 2014 
Wheat 16 Apr 2014 18 May 2014 19 Jun 2014 
Garden 8 Apr 2014 27 Jun 2014 30 Aug 2014 
Alfalfa 11 Jun 2014 29 July 2014 1 Oct 2014 
Sugar beet 27 Jun 2014 30 Sep 2014 17 Oct 2014  

Fig. 7. Plant’s phenological stages for agriculture products in Miandoab, Images of plants are taken from (Meier, 1997).  

Table 5 
Date of optimal Images for Classification.  

Year Month Day 

2014 April 8 
May 10 
June 27 
August 30 
September 18 
October 1  
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overall accuracy is that pixels that have been erroneously assigned to a class as well as pixels that have not been classified into their 
actual class are not taken into account (Jensen and Lulla, 1987). The kappa coefficient is the same as the overall accuracy criterion; 
however, because the kappa coefficient considers the incorrectly classified pixels, it is better than the overall accuracy criterion. The 
accuracy of UA and PA classification for each crop is shown in Table 7. It is also clear that the accuracy of classifying each crop 
individually is higher than the overall classification accuracy of the whole map. In general, the classification accuracy of alfalfa, apple, 
and wheat classes is higher than others. Also, due to the fact that the garden class may be a combination of several different products, it 
has a lower classification accuracy than other classes. 

The classification map of crops is given in Fig. 8. As shown in Fig. 8, the five major crops of the study area (wheat, sugar beet, 
alfalfa, apple, and grape) can be well-distinguished from each other using optical and radar time series data. Further, each color on the 
map represents a crop; for example, red color on the map shows the area under apple cultivation and the yellow, light blue, and green 
areas show the area under wheat, alfalfa, and orchards, respectively. Also, purple, black, and gray represent the class of grapes, sugar 
beets, and non-agricultural lands, respectively. 

In a number of fields in the study area, alfalfa crop is planted first and after harvesting alfalfa (in July of the same year), sugar beet 
and wheat crops are still in the growth and greening stage. Therefore, on these lands, there are crop and green cover throughout the 
spring and summer. In addition, due to the presence of more weeds in May than in September, there is a possibility that more fallow 
lands would be mistakenly considered as wheat and alfalfa crops. However, in this study, the use of radar satellite data played a 
decisive role in eliminating such errors, increasing the accuracy of classification by 10%, and better separation of different crops due to 
their sensitivity to the shape and size of crops and the study of plant phenology. Classification results demonstrated that using a 
combination of different data (Optical and SAR) (overall accuracy (OA) = 89%, Kappa = 0.78) were more accurate than the only 
single-sensor inputs (OA = 77%, Kappa = 0.64), and when differences between crop types. 

In this paper, a crop classification map was presented to differentiate and identify crops types using Landsat 8 and Sentinel-1 time 
series data and digital elevation model in agricultural areas based on plant phenological changes during the growing season (Chong 
et al., 2021). found that using time-series images is significantly more accurate than using single-period images, since time-series 
images show spectral information and phenological characteristics that contribute to better crop classification. However, the accu-
racy of some months, in particular May and October, was better than others. Winter and summer are the transitional months between 
the two seasons. As most of the cultivated lands are herbaceous crops, this could be unique to this study area (Nabil et al., 2022). 

A map achieved with overall accuracy of 89% and a Kappa coefficient of 0.78 when Landsat 8 spectral bands, DEM and vegetation 
indices were stacked with Radar monthly polarization bands. The results are slightly better than those based solely on Sentinel-1 bands 
and indices, but a significant improvement over those based solely on Sentinel-1 bands. 

Tree-fruit classification was influenced by Sentinel-1 polarization channels. In tree crop discrimination, Sentinel-1 VH cross- 
polarization played a crucial role. Since the VH is extremely sensitive to changes in vegetation phenology, it can be widely used to 
extract phonological information from vegetation (Stendardi et al., 2019), Increasing the accuracy of crop classification(Chakhar et al., 
2021). 

Phenological identification in satellite images has been done in order to improve the classification of agricultural products based on 
the TIMESAT model. Classification based on plant phenology focuses on different growth stages, such as the beginning of the growing 
season, the maximum growth, the length of the growing season, and the end of the season for each crop. It was found that spectral 
similarity between deciduous species reduced the accuracy of separability, and if there is a noticeable phenological difference between 
species, segregation of species would be more desirable. In the current investigation, the result presented that by examining the 
spectral reflectance of major crops (wheat, sugar beet, grapes, alfalfa and apples) based on the time series of satellite images as well as 
the results obtained from applying vegetation index on each image, the area under cultivation of crops according to the type of 
cultivation and the cultivation pattern cannot be extracted by using only a single image. In other words, spectral similarity of crops in 
the study area was the main reason for the inefficiency of an image in separating different agricultural products. Each phenological 
stage of a crop contains specific information that makes it possible to distinguish the products from each other. Therefore, according to 
the processing performed on the time series of NDVI, the optimal dates were identified using the TIMESAT model. Finally, classifi-
cation was performed using optical and radar images through the SVM method. Therefore, by focusing on data, whose date is optimally 
determined based on the TIMESAT model, more accurate classification results can be achieved. Furthermore, the use of SVM classi-
fication algorithm in classifying crops provides relatively good results due to its high flexibility for different conditions and purposes. It 
should be also noted that determining the optimal conditions in this method is of great importance. Whereas the results demonstrate 
the performance of Landsat 8 and Sentinel-1 individually, they also emphasize that classification using the Landsat8 dataset always 
outperformed that using the Sentinel-1 dataset. The effect of elevation on classification accuracy is significant until late May, while it is 
not after that. In this study, the use of DEM significantly affected the early stages of crop growth, but when the crops reached their final 
stages of full growth, DEM was not significant. Also, the Sentinel-1 images alone did not perform well in the detection and segregation 
of agricultural products, but the combination of these images with optical and DEM data significantly increased the accuracy of the 
results. Therefore, to develop a robust method, which is applicable over time and in large areas, it is necessary to use radar data which 
are not dependent on weather conditions unlike optical data. In fact, this study evaluated the respective advantages of using a 
combination of Optical and SAR parameters with OA ranging from 89% (Kappa = 0.78). Meanwhile, it is very important to prepare a 
product map and know the type of cultivation pattern in a region, because by knowing a region’s cultivation pattern, it is possible to 
eliminate those products having high water consumption and lower yields. The optimal cultivation pattern can be obtained according 
to the area conditions. For example, crops with high water consumption and resistant to drought and salinity, such as sorghum and 
sesame can be used considering that water wastage in Iran and many countries is higher than the global average and the agricultural 
sector has been introduced as the largest consumer of water in many countries. As a result, knowing the pattern of cultivation is the 
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Table 6 
Confusion matrix of SVM classification (%).  

Crop types Alfalfa Sugar beet Wheat Apple Grape Gardens 

Alfalfa 88.6 7.1 6.4 0.1 0.1 2.4 
Sugar beet 10.2 88.3 1.2 0 0.7 0 
Wheat 0.9 4.4 92.1 0 0 0 
Apple 0.3 0 0 88.1 5.8 13.2 
Grape 0 0.2 0.3 3.2 87.3 3.9 
Gardens 0 0 0 8.6 6.1 80.5  

Table 7 
Producer’s accuracies (PA) and user’s accuracies (UA) achieved by SVM classifier.  

class PA UA 

Alfalfa 88.62 95.91 
Sugar beet 88.35 90.32 
Wheat 92.14 77.15 
Apple 88.11 95.12 
Grape 87.37 78.54 
Gardens 80.50 68.95  

Fig. 8. Crop classification map of the study area, during the growing season 2014–2015.  
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most important method to reduce agricultural water consumption and develop the agricultural area. 

4. Conclusion 

This study was conducted to improve the accuracy in classification results based on crops phenology obtained from combining the 
time series of optical and radar data with the digital elevation model. The results showed that combining Sentinel-1 and Landsat 8 data 
improved classification accuracy compared to the case performed with only optical or radar images. The use of radar data limits the use 
of temporal gap-filled models to generate interpolated data from other images for filling masked cloud pixels. This in turn increases the 
accuracy of classification results. This method can also determine the type of products in very large areas under different climatic 
conditions. It was found that using optimal time series Landsat 8 spectral bands and vegetation indices could yield a high level of 
classification accuracy (89%), whereas using Sentinel-1 polarization channels with added textural features could result in a high level 
of classification accuracy (77%). The Kappa coefficient and overall accuracy were estimated 0.78 and 89% for the crops map classified 
by support vector machine. The results of this study also showed that satellite images had a high capability for segregation of crops and 
preparation of crop-type maps as well as maps of area under cultivation with appropriate accuracy at the regional scale. Therefore, 
satellite data could be applied in the agricultural sectors, such as forecasting and estimating damage, plant stress, drainage status, and 
so on. In addition, in order to stabilize the market, maps of cultivation of crops in the region can be used for many cases, including 
surveying statistics of the region and remotely determining the type of product, calculating the area under cultivation of crops in the 
region, estimating the number of machines required for cultivation of different crops in the region, determining the amount of net 
production, as well as the amount of shortage or surplus of agricultural products. According to our results, it is suggested to use our 
developed method to prepare a map for different agricultural products with different images and sensors in other areas. 
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