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DeprNet: A Deep Convolution Neural Network
Framework for Detecting Depression Using EEG
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Abstract— Depression is a common reason for an increase in
suicide cases worldwide. Thus, to mitigate the effects of depres-
sion, accurate diagnosis and treatment are needed. An electroen-
cephalogram (EEG) is an instrument used to measure and record
the brain’s electrical activities. It can be utilized to produce the
exact report on the level of depression. Previous studies proved
the feasibility of the usage of EEG data and deep learning (DL)
models for diagnosing mental illness. Therefore, this study
proposes a DL-based convolutional neural network (CNN) called
DeprNet for classifying the EEG data of depressed and normal
subjects. Here, the Patient Health Questionnaire 9 score is used
for quantifying the level of depression. The performance of
DeprNet in two experiments, namely, the recordwise split and the
subjectwise split, is presented in this study. The results attained
by DeprNet have an accuracy of 0.9937, and the area under
the receiver operating characteristic curve (AUC) of 0.999 is
achieved when recordwise split data are considered. On the other
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hand, an accuracy of 0.914 and the AUC of 0.956 are obtained,
while subjectwise split data are employed. These results suggest
that CNN trained on recordwise split data gets overtrained on
EEG data with a small number of subjects. The performance of
DeprNet is remarkable compared with the other eight baseline
models. Furthermore, on visualizing the last CNN layer, it is
found that the values of right electrodes are prominent for
depressed subjects, whereas, for normal subjects, the values of
left electrodes are prominent.

Index Terms— Convolutional neural network (CNN), electroen-
cephalography, measurement of depression, pattern classification,
visualization.

I. INTRODUCTION

ENTAL illness, also known as mental health disorders,

is a physical illness of the brain that might affect the
thinking process, behavior, and mood. It also leads to loss of
interest and energy, may cause adverse effects on relationships,
performance at the workplace, and increase the risk of suicide.
Worldwide, almost 13% of the child population, 46% of
adolescents, and 19% of the adult population struggle with
mental illness each year [1]. Thus, the diagnosis of depression
in the early curable stages is crucial to prevent it from
reaching a severe and irreversible state and to save the life of
depressed individuals. Generally, the symptoms of depression
are reflected in the behavior of the patient. Hence, doctors
conduct talking sessions and use questionnaires as screening
tools for determining the level of depression. However, the out-
come of a talking session is dependent on the psychiatrist’s
or counselor’s proficiency. Moreover, depressed patients are
less likely to seek help due to the stigma attached to mental
illness. As a result, a significant number of depressed indi-
viduals do not get the best possible medication and sufficient
revival time. Thus, finding suitable and efficient approaches
for detecting depression is an emerging field of study, and the
recent developments in the instrument or sensor technology
open up new horizons to diagnose depression. Among elec-
troencephalogram (EEG), magnetoencephalography, magnetic
resonance imaging, functional magnetic resonance imaging,
and physiological data, EEG is a portable technology that
can capture the electrical activity of brain neurons from the
scalp surface in real time. It is observed that most of the
cognitive behavior and psychological activities are analyzed
by EEG [2] because the EEG signal acquired from the parietal
lobe of the human brain is related to the cognitive tasks
and emotional states [3]. Thus, the EEG signal could be
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exploited in order to understand the human cognitive process
and diagnose mental illness. However, it is difficult to interpret
nonstationary, nonlinear, and complex EEG signal visually.
Moreover, it is a tedious task to fetch task-relevant features
from the EEG signal. Naturally, linear methods cannot observe
the complex dynamic variations in the EEG signal. Therefore,
the deep learning (DL)-based approaches could be used to
extract features from the EEG signal for computer-aided
diagnosis (CAD) of depression because DL-based methods
can extract extremely complex and highly nonlinear features
automatically from raw data with little or no effort [4]—[6].

Neuroscience, psychology, and cognitive science
researchers have analyzed EEG data extensively in various
aspects. However, Craik et al. [4] revealed that 37% of
the previous studies did not preprocess the EEG data, 49%
removed artifacts manually, and 14% used automatic artifact
removal techniques. The study also presented that 41% of
previous studies considered calculated features, 39% employed
signal values, and 20% used images, which were transformed
from EEG data as input data for the network. In addition,
for network architecture, 53% exploited convolutional neural
network (CNN)-based models, 18% explored the deep belief
network (DBN), 10% used the recurrent neural network (NN),
11% employed multilayer perceptron-based models, and rest
8% considered the stacked autoencoder. The study suggested
that, due to less preprocessing, CNN is the favorite choice of
the scholars dealing with EEG data.

A. Motivation and Contributions

It is clear from the literature that, primarily, two feature
extraction techniques, namely, manual and automatic, were
explored for identifying depression using EEG. However,
the accuracies reported by most of the previous studies are
not satisfactory. Thus, these methods are not suitable for
practical use. The previous studies using DL models com-
pletely missed the spatial information for the classification as
single-channel raw EEG data were considered as input for
the network [7]. However, the performance of CNN-based
methods can be improved by selecting the hyperparameters
of the architecture [8]. It motivates us to work further in this
direction. This study aims to design a simple CNN, which
considers both spatial information and temporal information
for attaining high classification accuracy. The simple network
architecture helps in understanding the role of the left and
right hemispheres activities of the brain for the classification
of depression. The salient contributions of the proposed study
are listed as follows.

1) A novel CNN framework called DeprNet is introduced
for classifying depressed and normal subjects based on
short EEG recordings of 4 s from 19 channels. The use
of short EEG recording facilitates the deployment of the
proposed method in practical scenarios.

2) This study includes 17307 samples and obtains
0.914 accuracy, which is the highest among the other
similar CNN-based architectures. In addition, other
quantitative classification metrics, namely, precision,
recall, and F1-score, are considered while comparing the
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performance of the proposed method with the results of
some of the state-of-the-art methods due to the accuracy
paradox.

3) Furthermore, this study presents that the consequences
of depression are different in the activities of the right
and the left hemispheres of the brain. This conclusion
is drawn by analyzing and visualizing the last layer of
the proposed CNN and showing that this layer uses the
values of right electrodes for depressed subjects and left
electrodes for the nondepressed subjects while detecting
the level of depression.

The structure of this article is given as follows. A brief
review of some of the existing works related to depression
classification is discussed in Section II. The proposed method
is illustrated in Section III. Section III includes the obtained
results of the DeprNet along with other baseline methods. The
visualization of the deepest DeprNet’s layer is also presented
in the same section. Finally, the conclusion of our work is
drawn in Section V.

II. RELATED WORK

All the related works can broadly be divided into two cate-
gories: handcrafted feature-based methods and raw data-based
methods. This section presents the works related to both the
categories, sequentially. The first notable contribution in this
field came from Puthankattil and Joseph [9] in 2012. They
considered 15 depressed and 15 nondepressed subjects for the
training of a two-layer feedforward artificial NN. They used all
frequency ranges of EEG signals for the extraction of relative
wavelet energy and signal entropy-based features. Since this
was a preliminary study, a small set of features and a conven-
tional machine learning technique were employed for clas-
sification. In the same year, Ahmandlou et al. [10] exploited
nonlinear features, wavelet filter banks, and fractal dimensions
with enhanced probabilistic NN. Their results of Higuchi’s
fractal dimensions showed higher complexity of left, right,
and overall frontal lobes of the brain of people with major
depressive disorder (MDD) compared to non-MDD in beta
and gamma subbands. Hosseinifard ez al. [11] also confirmed
that nonlinear features are significantly effective for analyzing
EEG data. They used a large data set of EEG recordings
of 90 subjects (45 normal and 45 depressed) and compared
three machine learning algorithms, namely, logistic regression,
linear discriminant analysis, and k-nearest neighbor (KNN) for
classification. They displayed that, among nonlinear features,
the correlation dimension was a powerful feature for analyzing
EEG signals while identifying depressed and nondepressed
subjects. However, a combined model of linear and nonlin-
ear features can provide better recognition accuracies. Faust
et al. [12] exploited wavelet packet decomposition and other
nonlinear features with PNN and compared the left electrodes
results with right electrodes results. They also compared the
results of seven classical classification algorithms. Despite
the great accuracy of the models, there are some flaws in
the methods. This study had not considered redundancy of
the features and ignored the step of feature selection. Also,
the reported high accuracy might be the result of overfitting
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as the data were divided into training and testing groups in a
recordwise manner. Moreover, Acharya et al. [13] employed
nonlinear methods with a support vector machine (SVM)
for classification and developed a depression diagnosis index.
They also introduced a depression diagnosis index through a
judicious combination of the nonlinear features. Since there is
no evidence of the relation of nonlinear features used in the
study for defining depression diagnosis index with depression,
the use of depression diagnosis index for the classification
is questionable. Similarly, an investigation was conducted by
Cai et al. [14] on 178 subjects using three-electrode pervasive
EEG collectors. This study showed that the DBN performs
better than the traditional shallow models [14]. Although the
accuracy of the model was 78.24%, it showed the feasibility
of the usage of a small pervasive EEG collector for the
detection of depression. However, in order to understand
the generalizability of the method, its performance should
be tested on other electrodes as well. Mumtaz et al. [15]
employed alpha interhemispheric asymmetry and power of
frequency bands with SVM. Many other researchers also tested
the importance of the alpha asymmetry and the power of
different frequency bands in detecting depression. Liao et al.
[16] used SVM and performed principal component analysis
to extract features. Bairy et al. [17] adopted linear prediction
coding with the bagged tree. Sharma er al. [18] examined
the role of handcrafted features and SVM. Cai et al. [19]
considered 213 subjects’ data for comparing the classification
performance of four algorithms and achieved the best results
with the KNN classifier. Although the number of subjects
used in this study is significantly higher than other studies,
the maximum average accuracy attained by the method is
76.98%. Their recent work [20] compared the performance of
KNN, DT, and SVM on the same data set. Their KNN model
obtained the highest accuracy of 89.98%. Shen et al. [21]
presented an improved empirical mode decomposition (EMD)
applying singular value decomposition (SVD)-based feature
extraction method that can fetch the features coefficients of
expansion using all intrinsic mode functions accurately.
Since depression affects both superficial and deeper struc-
tures of the brain [22], handcrafted features may not capture
most of the depression-related effects. However, DL-based
approaches can be better for understanding the brain of
depressed people. Acharya et al. [23] described a model
on screening of depression by EEG signals using DL. They
showed that the EEG signals from the left hemisphere of the
brain are less distinctive than those from the right hemisphere.
Since previous literature suggested that depression affects the
whole brain, the performance of the presented networks can
be increased by considering more EEG channels for training.
Ay et al. [24] exploited long short-term memory (LSTM)
networks and obtained a relatively higher performance than
other methods on the same data set. They considered a 1-D
input vector containing EEG recording of a single channel for
classification. However, due to the possibility of overfitting
of their model, it cannot be considered for practical appli-
cation. As they trained and tested the model on data of the
same subjects, their model will not perform satisfactorily on
untrained subjects. This limits the usability of their method.
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Fig. 1. Positions of 19 electrodes used in data set according to the
10-20-electrode positioning system [28], [29].

Recently, Li et al. [25] employed a spectrogram as input to
the network and trained a CNN model. They targeted mild
depression recognition in clinical practice; thus, they intro-
duced a CAD system using CNN. Their method considered
128 channels’ EEG recording for classification. Furthermore,
this study used both special and temporal information of EEG
data for classification. However, placement time for 128 elec-
trodes is huge and not all clinics can afford such a costly
system. There is a scope for improving the performance of the
network. Shah et al. [26] exploited spiking NN-based archi-
tecture named NewCube. They used resting-state EEG col-
lected from 22 subjects, including healthy and mild-depressed
patients. They further exploited the multilayer perceptron for
comparative analysis. Thoduparambil et al. [27] designed a
model comprised of CNN and LSTM layers to learn local
characteristics and the EEG signal sequence, respectively.

III. METHODOLOGY

The methodology used for quantifying and comparing the
performance of DeprNet with other baseline methods is
explained in this section.

A. Data Set Description

In this study, we use resting-state EEG recording of
33 subjects with a duration of 9 minutes each because the
effects of depression are reflected in the resting state. Out
of 33 subjects, 18 subjects are normal, and 15 subjects
are depressed. Moreover, the Patient Health Questionnaire 9
(PHQ-9) score of each subject is computed by conducting an
interview session and consulting a psychologist. According to
10-20-electrode positioning system (as shown in Fig. 1) [28],
[29], 19 channels with mean of ear electrodes (Al and A2) as
common references are considered while developing the data
set.

During the recording, a 0.1-Hz high-pass filter, a 100-Hz
low-pass filter, and a 50-Hz notch filter are considered to
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Fig. 2. Pictorial representation of raw EEG data used as input by the proposed
method. (a) Sample time-series plot of a data sample showing raw EEG data
of 19 channels and duration of 4 s. The y-axis corresponds to voltage values of
the signal (#V), and the x-axis corresponds to time points (4 s = 1024 time
points). (b) Sample input matrix is shown, which is constructed from the
values of all channels and time points of one sample. The y-axis corresponds
to channels, the x-axis corresponds to time points, and the color corresponds
to the voltage values (x«V). The normalized version of this image is then used
as an input image of the network.

remove the low-frequency noise, irrelevant signals, and the
baseline noise from the data, respectively. The independent
component analysis (ICA) is performed on the signals of open
eye state to extract and remove artifacts related to eye move-
ments [30]. The ICA assumes that the signal can be thought of
as a weighted sum of statistically independent non-Gaussian
components [31]. The ICA is applied to the signal using the
EEGLAB toolbox with the “runica” algorithm with its default
settings. After preprocessing the data of all subjects, a total
of 17310-s EEG recording is considered for further analysis.
The data is split into 17307 data points, and two data matrices
of different dimensions 17307 x 19 x 1.024 and 17307 x 1
are constructed. The first matrix is the input data matrix,
whereas the second one is the output data matrix (contained
class of subjects). In the input data matrix, each data point has
data of 4 s (with 75% overlapping) and 19 channels. As the
sampling frequency of the data is 256 Hz, the 4-s recording
has 1024 (4 x 256) time points (see Fig. 2). In the output
data matrix, each data point has a value of either “0” or “1.”
“0” indicates that the data point belongs to a nondepressed
subject, while “1” is used to represent the data point that
belongs to a depressed subject. The categorization of each
subject is made based on the PHQ-9 score and the expertise
of a psychologist. The reasons for choosing a time window
of 4 s with 75% overlapping are as follows.

1) Four seconds have 1024 samples, which are sufficient
for representing frequency components up to 512 Hz
(Nyquist frequency). Thus, the network can extract all
the essential features.

2) The data set of 33 subjects is divided into 17307 data
points, which are enough for training, testing, and vali-
dating a binary classifier.

3) The 75% overlapping can remove any phase shift effect
in the data and also increases the number of data points
without using any other data augmentation technique.
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B. Architecture of DeprNet

The proposed CNN, DeprNet, consists of five convolutional
layers, five batch normalization layers, five max-pooling lay-
ers, and three fully connected layers. The last fully connected
layer uses softmax activation function, while all other layers
use leaky rectified linear unit (LeakyReLU) activation function
[32], [33]. The arrangement of these layers is shown in Fig. 3.
The details of parameters and filters are reported in Table I.
Even though the input data are 2-D, the network performs
a 1-D convolution operation. The 1-D convolution is applied
on the time dimension, i.e., y-axis, and it ensures that the
information associated with the spatial dimension, i.e., x-axis,
remains as it is. This method of keeping the spatial information
separated is useful in understanding how spatial information
is processed by the network and which channels are important
for the detection of depression (explained in Section III-C).

1) Convolutional Layers: Convolution is an operation
applied on a signal to get transformed and relevant signals. For
convolution, a filter or linear and time-invariant is required,
which is multiplied and translated on the signal to get new
signal values. In DeprNet, the first convolutional layer is
preceded by the input layer. The number of filters used is either
128 or 64 or 32 for all layers. The first three convolutional
layers are convolved with a filter size of 1 x 5. The filter
sizes in the fourth and fifth convolutional layers are 1 x 3 and
1 x 2, respectively. When convolution is implemented using
a NN, a kernel/filter is slid over the input signals to obtain
an output, which is also known as the activation map of the
layer [34]. We choose 128 filters for C1 to extract most of the
essential low-level features and reduce the number of features
with the depth of the network to convert the EEG data into a
low-dimensional space. The C5 layer only contains important
high-level relevant features.

2) Batch Normalization: The batch normalization is
adopted to stabilize the network by normalizing the output of
the previous layer [35]. In DeprNet, five batch normalization
layers are included, one layer after each convolutional layer.
The network uses the LeakyReLLU activation function on the
output of the batch normalization layers. We find a better
convergence rate when the batch normalization is employed
than when batch normalization is not considered.

3) Pooling Layers: In DeprNet, max-pooling layers are
exploited for down-sampling the data [36]. The network
applies 1-D pooling operations on the time dimension. The
filter size of all five layers is equal to 1 x 2.

4) Fully Connected Layers: After five rounds of convolu-
tion, batch normalization, and pooling layers, two dense layers
are kept. The first layer has 16, while the second consists
of eight neurons. After visualizing the activation map of the
15th layer, we find that CNN layers can extract essential fea-
tures for detecting the depression. Therefore, we use a fewer
number of neurons in the fully connected layers (as shown in
Section IV-G).

5) Softmax Layer: The last layer that predicts the final
output is a dense layer with a softmax activation function.
The softmax function gives a vector as output that rep-
resents the probability distributions of a list of potential
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Fig. 3. Architecture of the proposed DL-based CNN model, DeprNet.

TABLE I
ARCHITECTURE OF DEPRNET

S.No | Layer Name | Layer Type Filter size | Layer parameters | Stride x | Stride y Output size Parameters
1 C1 convolutional 1 1x5 128 filters 1 2 19%x1020x 128 | 768

2 N1 Batch_normalization 1 19x1020%x128 | 512

3 Ml Max_pooling 1 1x2 1 2 19%x510%x 128

4 C2 convolutional 2 1x5 64 filters 1 2 19x506 x 64 41024
5 N2 Batch_normalization 2 19x506x 64 256

6 M2 Max_pooling 2 1x2 1 2 19x253x64

7 C3 convolutional 3 1x5 64 filters 1 2 19x249x 64 20544
8 N3 Batch_normalization 3 19x249x 64 256

9 M3 Max_pooling 3 1x2 1 2 19% 124 x64

10 C4 convolutional 4 1x3 32 filters 1 2 19%x122x32 6176
11 N4 Batch_normalization 4 19x122x32 128

12 M4 Max_pooling 4 1x2 1 2 19%61x32

13 C5 convolutional 5 1x2 32 filters 1 2 19x60x32 2080
14 N5 Batch_normalization 5 19x60x32 128

15 M5 Max_pooling 5 1x2 1 2 19%30x32

16 D1 Dense 1 16 neurons 16 291856
17 D2 Dense 2 8 neurons 8 136

18 D3 Dense 3 (softmax) 2 neurons 2 18

outcomes [37], [38]. In this case, there are two potential
outcomes; thus, we need two neurons to represent them.

6) Loss Function: The loss function considered in the
DeprNet network is binary cross-entropy loss, J(®) [38], for
binary classifiers, which is computed using the following
equation:

|
J(©) = =+ > yilog(9) + (1 = ylog(1 =) (1)
i=1
where y; and y; are the predicted label and the actual class
label of the ith sample, respectively, and N is the total number
of samples. The model is trained over multiple iterations to
minimize the value of J(®).

C. Visualization of Features Learned by
Convolutional Layers

The convolutional layers and fully connected layers of a
NN are responsible for extracting features and performing
classification, respectively. Since the number of neurons in the
last three layers is small (16 + 8 + 2 = 26), most of the deci-
sions related to classification are dependent on convolutional
layers. This suggests that the last layer of CNN may contain
useful information about the decisions the network takes while
classifying the subjects. Therefore, this study includes the
visualization of the activation map of the max-pooling layer,
MS5 [39]-[41].

For this analysis, the network is trained on all data points,
i.e., 17207 samples. After training the network, the data points
are feedforwarded to the network to get their activation maps.
For each data point, the output volume of size 19 x 30 x 32 is
obtained from layer 15, which is then converted into a vector
of size 19 by taking the average of responses across 32 filters
and 30 time points. We further average the responses of all
data points corresponding to a subject and, finally, construct
response vectors having 19 values for each subject. The
method explained above gives average values of 19 channels
of filtered data (filtered from all convolutional layers) for
each subject. These values can suggest which channels are
more responsible for depression. For better presentation, these
response vectors are plotted as heat maps (see Fig. 4). From
these 19 values, eight, eight, and three values correspond to
the left-hand side, right-hand side, and middle electrodes,
respectively. A parameter denoting skewness of the spatial
distribution of values of the electrodes for each subject is
computed by the following equation:

oa=L—R 2)

where L and R are the values of the left and right electrodes of
the response vector, respectively. A positive value of a denotes
that the values of the response vector of left electrodes are
more than of the response vector of right electrodes. Similarly,
the negative value of o denotes that the values of the response
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Fig. 4. Process of computing heat map for a subject is explained in this
figure. Step a) Averaging the convoluted volume across filters. The convoluted
volume extracted from the 15th layer of DeprNet is averaged across its filters.
Step b) Averaging across 30 time points. This averaging results in the response
vector of a sample. Step ¢) Averaging across all sample points of subjects. This
output vector is referred to as the response vector of the given subject. Step d)
Conversion of response vector into a heat map. The values’ response vector is
normalized and mapped to their corresponding locations in the channel space.

TABLE 11
SPECIFICATION OF THE SYSTEM

Name Parameter
GPU RAM 16GB
System RAM 13GB
CPU Intel(R) Xeon(R)@ 2.30GHz
Graphics processor Tesla P100-PCIE
Cuda cores 2560
Memory type GDDR5X
Language Python 3.8.1

vector of the left electrodes are less than that of the response
vector of the right electrodes.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Environment Settings

In this study, the Keras framework and Google Colab
platform are used for the training and testing of a DL model.
Python 3.8.1 language is employed since many of the DL
libraries are developed using it. The specification of the system
is noted in Table II.

B. Evaluation Metrics

Accuracy, precision, recall, Fl-score, and area under the
receiver operating characteristic curve (AUC) are considered
for evaluating the performance of the DeprNet. The definition
of each of these evaluation metrics is beyond the scope
of this study. However, the interested readers can refer to
[42]-[44] to know about these parameters in detail. The AUC
is a graph showing the performance of a classification model at
all classification thresholds. This curve plots two parameters:
true positive rate/recall and false-positive rate. The value of
each of these metrics lies between 0 and 1. A higher value
close to 1 is expected. A higher value of each of these metrics
signifies the better performance of a model. The AUC is
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considered in this study to visualize the performance of a
model graphically [45].

C. Computational Protocol

The classification report of the DeprNet is compared with
three recent DL-based models, namely, AchLSTM: auto-
mated depression detection using deep representation and
sequence learning with EEG signals [24]; AchCNN: auto-
mated EEG-based screening of depression using deep CNN
[23]; and T-LSTM: EEG-based DL model for the automatic
detection of clinical depression [27], and five recent hand-
crafted feature-based methods, namely, H-KNN1: a pervasive
approach to EEG-based depression detection [19]; H-KNN2:
feature-level fusion approaches based on multimodal EEG data
for depression recognition [20]; S-EMD: an improved EMD
of electroencephalogram signals for depression detection [21];
S-SVM: automated detection of abnormal EEG signals using
localized wavelet filter banks [46]; and H-DBN: pervasive
EEG diagnosis of depression using DBN with three-electrode
EEG collector [14]. The scholars have not used any names to
refer to their works, so we provide meaningful names. The
detailed descriptions of these models are given as follows.

1) AchLSTM [24] was based on a hybrid network of
CNN and LSTM layers, and it acquired the highest
classification accuracy, among the other similar methods.
That makes it an obvious choice for comparison. The
architecture of AchLSTM consisted of eleven layers.
The first, second, fifth, and sixth layers were convo-
lutional layers with a filter size of 5, 3, 13, and 7,
respectively, with the number of filters as 64, 128, 128,
and 32, respectively. The third layer was a max-pooling
layer with a filter size of 2 and a stride of 2. The
fourth and tenth layers were dropout layers with a
dropout rate of 0.2. The eighth layer was a flatten layer
used for flattening the data volume received from the
LSTM layer. The ninth and eleventh layers were dense
layers with the number of neurons equal to 64 and 2,
respectively. The last layer employed softmax as an
activation function and other layers considered ReLLU as
an activation function. Since the performance reported
in the original paper of AchLSTM was better for right
side electrodes, we train it on Fp2-T4 electrodes during
its implementation. First, the data are converted into
data points, where each data point contains EEG data
of 2000 sample points. Then, these data points are scaled
to a range of [0, 1]. Then, the network is trained with the
number of epochs of 15 and a batch size of 32. These
values are considered for training after trying many other
combinations.

2) AchCNN [23] is the most relevant study for our
network, as its architecture is similar to DeprNet.
Depression affects various regions of the brain differ-
ently. Therefore, a multidimensional analysis, including
time-varying activities of various regions of the brain,
is needed to capture the effects of depression on the
brain. The AchCNN only considered temporal informa-
tion of EEG signals, while DeprNet uses both spatial
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3)

4)

5)

0)

and temporal information for predicting the level of
depression. Moreover, the working of DeprNet was more
focused on extracting significant information from EEG
signals in the form of features, while the working of
AchCNN is more focused on using more number of fully
connected neurons for the classification. The data points
used in this method are the same as the AchLSTM. The
AchCNN was made up of five convolutional layers, five
pooling layers, and three dense layers. The first layer
was a convolutional layer, and each convolutional layer
was followed by a max-pooling layer. Each convolu-
tional layer considered a filter of size 5 and stride of 1
and each max-pooling layer used a filter of size 2 and
stride 2. Then, the network was trained with a number
of epochs of value 25 and a batch size of 64. These
values were considered for training after trying many
other combinations.

T-LSTM [27] also implemented CNN and LSTM units
for the detection of depression. T-LSTM had three CNN
layers each followed by a max-pooling layer of filter
size 2. The three CNN layers had 128 x 7, 64 x 5, and
32 x 3 filter sizes. These CNN layers were followed
by two LSTM Ilayers with a unit size of 2 and two
dense layers with unit sizes of 10 and 2. These dense
layers had a dropout rate of 0.2. First, the raw EEG
data are preprocessed by removing the eye blinks from
the z-normalized data. The preprocessed data are then
passed to T-LSTM as the input layer.

Since H-KNN1 [19] used data from 213 subjects for
designing the method, it is worthy of considering it
for comparison. Fpl, Fp2, and Fpz electrodes were
considered by Cai et al. [19] in H-KNN. However,
the value of Fpz electrodes is interpolated in our analysis
because the reading of Fpz electrodes is not available in
our data set. First, the data are divided into 6-s epochs;
then, 270 handcrafted combining linear and nonlinear
features from all frequency range, namely, alpha, beta,
gamma, delta, and theta, are extracted. These features are
z-normalized before training the model. The interested
reader can refer to [19] to see the process of extraction
of these features. The value of the number of neighbors
for H-KNN is tuned, and the best accuracy is obtained
at 50.

H-KNN2 [20] exploited 60 linear features and 36 non-
linear features of EEG signals in the whole band
(0.5-50 Hz), theta, alpha, beta, and gamma bands. The
parameters of KNN used are the number of neighbors
as 3, the algorithm as ball tree, and the metric as the
Euclidean distance. The interested reader can refer to
[20] to know the process of extraction of these features.
S-EMD [21]: The EEG data of three channels (Fp1, Fp2,
and Fpz) are preprocessed, as explained in [21]. Then,
an improved EMD applying the SVD-based feature
extraction method is used for extracting the features
coefficients of expansion based on all intrinsic mode
functions. The parameters and methodology of the mod-
ified EMD feature extraction technique used the same
that is discussed in [21]. Then, the SVM algorithm is

7)

8)
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exploited for classifying the signals into depressed and
healthy classes.

S-SVM [46] was exploited for automated detection
of epilepsy using stopband energy (SBE) minimized
orthogonal wavelet filter bank. S-SVM is tested for
depression classification by considering the methods,
as mentioned in [46]. The EEG data are split into
channels, followed by the preprocessing of the data of
T5-0O1 and F4-C4. Then, the two-band SBE minimized
orthogonal wavelet filter bank for the wavelet decompo-
sition is exploited for decomposing the EEG signal [46].
Then, fuzzy entropy, fractal dimension features, and
logarithmic squared are extracted from the data (as
explained in [46]). Then, the SVM model is exploited
for classification purposes.

H-DBN [14] is considered for comparison due to its
robustness reported by the researchers. The data are
divided into 6-s epochs, then 85 linear and nonlinear
features are extracted from theta, alpha, beta, and gamma
frequency range, and then, the data are normalized.
We consider other parameters from the original paper.
The interested reader can refer to [14] to see the process
of extraction of these features.

D. Training and Testing of the Network

Two experiments are conducted based on recordwise and
subjectwise data splitting.

Y

2)

Recordwise Split Data: For training, validation, and
testing, the data are randomly divided into three parts.
Training has 53.3%; validation has 13.4%; and testing
has 33.3% of the whole data. In other words, the network
is trained on 9230 samples, validated on 2308 samples,
and tested on 5769 samples.

Subjectwise Split Data: For training, validation, and
testing, the data of 33 subjects are divided into ten
groups such that no two groups have a common subject.
Among these groups, seven groups contain data of three
subjects each, and the remaining three groups contain
data of four subjects each. During the division, it is
ensured that each group contains at least one subject
from each category of depression, i.e., no depression,
mild depression, and severe depression. By doing this,
it is tried to divide subjects into groups uniformly. Then,
the network is trained with tenfold cross-validation.
One group is used as the testing set in each fold, and
the remaining nine groups are used as training and
validation sets. The remaining nine groups’ data points
are randomly shuffled before splitting into two parts
of 80% (training set) and 20% (validation set).

For all nine methods mentioned in Section IV-C, including
DeprNet, tenfold cross-validation with the same data set was
implemented. Even for each fold, the same training, validation,
and testing sets are used across all methods including DeprNet.
In other words, the data set of 33 subjects is divided into ten
groups in a subjectwise manner, and all methods in tenfold
cross-validation use these same ten groups.

Authorized licensed use limited to: Miami University Libraries. Downloaded on June 15,2021 at 08:46:35 UTC from IEEE Xplore. Restrictions apply.



2505413

Training and validation loss

0.175
0.150
0.125
0.100
0.075
0.050

0.025

Fig. 5. Training of DeprNet on recordwise split data: training (dotted) and
validation (line) loss (y-axis) with training epochs (x-axis).
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Fig. 6. Training of DeprNet on recordwise split data: training (dotted) and
validation (line) accuracy (y-axis) with training epochs (x-axis).

The Adam optimizer, with a learning rate of 0.0005, f, =
0.9, fo = 0999, and € = 1077, is used for updating the
weight of the network [47]. f; and f, are the exponential
decay rates of the first- and second-moment estimates of the
Adam optimizer algorithm, respectively [47]. Before the actual
training of the model, we manually verify that the model
typically converges in about 20 epochs. Thus, we use the value
of a maximum number of training epochs as 25. Equation 1
is considered for calculating training loss and validation loss
during the training. A model checkpoint of early stopping with
seven epoch points on validation loss is employed to avoid
overfitting of the model. The network is trained with a batch
size of 64 and with 25 as the number of epochs. For recordwise
split data, the training and validation loss and accuracy of
the network during the training are shown in Figs. 5 and 6,
respectively. For subjectwise split data, the training and val-
idation loss and accuracy of the network during the train-
ing are averaged across the folds shown in Figs. 7 and 8,
respectively.

E. Results and Comparison

The classification reports of the abovementioned eight
baseline methods and DeprNet on recordwise split data and
subjectwise split data are reported in Tables III and IV,
respectively. Figs. 9 and 10 show the ROC and value of AUC
of each of the above-said methods, including DeprNet on
recordwise split data and subjectwise split data, respectively.
For subjectwise split data, data from all folds are considered
for computing the values of the ROC curves. These results sug-
gest that CNN trained on recordwise split data gets overtrained
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Fig. 7. Training of DeprNet on subjectwise split data: training (dotted) and

validation (line) loss (y-axis) with training epochs (x-axis).
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Fig. 8. Training of DeprNet on subjectwise split data: training (dotted) and

validation (line) accuracy (y-axis) with training epochs (x-axis).

TABLE III
EXPERIMENT RECORDWISE SPLIT DATA: THE CLASSIFICATION REPORT
OF ACHCNN, ACHLSTM, T-LSTM, H-KNN1, H-KNN2, S-EMD,
S-SVM, H-DBN, AND DEPRNET

Precision | Recall | Fl-score | Accuracy
AchCNN [23] 0.661 0.628 0.644 0.692
AchLSTM [24] | 0.677 0.791 0.730 0.740
T-LSTM [27] 0.868 0.835 0.851 0.837
H-KNNI [19] 0.567 0.636 0.599 0.623
H-KNN2 [20] 0.683 0.731 0.706 0.730
S-EMD [21] 0.784 0.740 0.761 0.742
S-SVM [46] 0.629 0.694 0.660 0.683
H-DBN [14] 0.605 0.687 0.643 0.662
DeprNet 0.994 0.991 0.993 0.9937
TABLE IV

EXPERIMENT SUBJECTWISE SPLIT DATA: THE CLASSIFICATION REPORT
OF ACHCNN, ACHLSTM, T-LSTM, H-KNN1, H-KNN2,
S-EMD, S-SVM, H-DBN, AND DEPRNET

Precision | Recall | Fl-score | Accuracy
AchCNN [23] 0.581 0.639 0.610 0.681
AchLSTM [24] | 0.613 0.913 0.734 0.744
T-LSTM [27] 0.780 0.818 0.799 0.817
H-KNNI [19] 0.527 0.655 0.588 0.641
H-KNN2 [20] 0.766 0.725 0.745 0.724
S-EMD [21] 0.667 0.735 0.699 0.720
S-SVM [46] 0.617 0.680 0.647 0.671
H-DBN [14] 0.529 0.778 0.627 0.642
DeprNet 0.919 0.887 0.895 0.914

on EEG data with a small number of subjects. Furthermore,
results also illustrate that DeprNet is outperforming other
methods on our data set.
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Fig. 9. Experiment recordwise split data: ROC curve of all nine networks:
violet: DeprNet; blue: AchLSTM [24]; orange: AchCNN [23]; light Green:
T-LSTM [27]; green: H-KNN1 [19]; purple: H-KNN2 [20]; brown: S-EMD
[21]; yellow: S-SVM [46]; and red: H-DBM [14].
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Fig. 10. Experiment subjectwise split data: ROC curve of all nine networks:
violet: DeprNet; blue: AchLSTM [24]; orange: AchCNN [23]; light green:
T-LSTM [27]; green: H-KNN1 [19]; purple: H-KNN2 [20]; brown: S-EMD
[21]; yellow: S-SVM [46]; and red: H-DBM [14].

There are three possible reasons for the better performance
of DeprNet than other networks. First, other methods failed
to use both spatial and temporal dimensions of the EEG data,
while DeprNet used both dimensions during the training. Other
methods either considered data of single-channel or employed

2505413

TABLE V

ABLATION STUDY 1 ON SUBJECTWISE SPLIT DATA: THE CLASSIFICATION
REPORT OF S-DEPRNET, T-DEPRNET, AND DEPRNET

Precision | Recall | Fl-score | Accuracy
S-DeprNet | 0.479 0.533 0.505 0.537
T-DeprNet | 0.869 0.822 | 0.845 0.860
DeprNet 0.919 0.887 0.895 0.914
TABLE VI

ABLATION STUDY 2 ON SUBJECTWISE SPLIT DATA: THE CLASSIFICATION
REPORT OF DEPRNET WITH VARIABLE SAMPLE SIZE

Number of samples | Precision | Recall | Fl-score | Accuracy
2000 0.669 0.617 | 0.642 0.670
10000 0.779 0.817 | 0.797 0.816
17307 0.919 0.887 | 0.895 0.914
TABLE VII

ABLATION STUDY 3 ON SUBJECTWISE SPLIT DATA: THE CLASSIFICATION
REPORT OF DEPRNET WITH AND WITHOUT BATCH

NORMALIZATION LAYERS
Batch normalization | Precision | Recall | Fl-score | Accuracy
No 0.583 0.636 0.610 0.637
Yes 0.919 0.887 0.895 0.914

only a few channels for classification. In other words, they did
not consider spatial information of EEG data appropriately.
Moreover, feature extraction-based methods fetch features
from epochs of data; thus, these features do not represent
temporal information efficiently. Second, the large sample
size might be the reason for the fast convergence and better
performance of DeprNet. Since the data set is divided by
splitting it into epochs of a 4-s sliding window with 75%
overlapping, we get 17307 samples without using any data
augmentation technique. In comparison, other methods take
input of either 7.8125 or 6 s without overlapping, which gives
2215 samples and 2885 samples, respectively. The third is the
use of batch normalization. Batch normalization layers add
stability and faster convergence of DeprNet.

F. Ablation Study and Time Efficiency

The architecture of DeprNet is decided after performing
ablation studies. In the first study, the effect of spatial dimen-
sion and temporal dimension on the performance of DeprNet is
evaluated. S-DeprNet uses only spatial dimensions, T-DeprNet
considers only temporal dimensions, and DeprNet utilizes both
spatial and temporal dimensions. The sizes of the input layer
of S-DeprNet, T-DeprNet, and DeprNet are 19, 1024, and
19 x 1024, respectively. Their performances are mentioned
in Table V. In the second study, the effect of varying sample
size on the performance of DeprNet is assessed. The results
of this study are presented in Table VI. In the third study,
the effect of the batch normalization layer on the performance
of DeprNet is evaluated. The results of the third study are
presented in Table VII. In the fourth study, the number of
convolutional layers and batch normalization layers on the
performance of DeprNet is assessed. The results of this study
are presented in Table VIIIL.
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TABLE VIII

ABLATION STUDY 4 ON SUBJECTWISE SPLIT DATA: THE CLASSIFICATION
REPORT OF DEPRNET WITH VARIABLE NUMBER OF CONVOLUTIONAL
LAYERS AND BATCH NORMALIZATION LAYERS

Number of layers | Precision | Recall | Fl-score | Accuracy
0 0.502 0.552 | 0.526 0.558
1 0.483 0.545 | 0.516 0.540
2 0.739 0.703 | 0.720 0.746
3 0.848 0.886 | 0.867 0.879
4 0.911 0.888 | 0.899 0.910
5 0.919 0.887 | 0.895 0.914
TABLE IX

TIME EFFICIENCY (ONEFOLD) OF ACHCNN, ACHLSTM, T-LSTM,
H-KNN1, H-KNN2, S-EMD, S-SVM, H-DBN, AND DEPRNET

Method Training time | Testing time of one sample
AchCNN [23] 4859 0.0052
AchLSTM [24] 8652 0.0425
T-LSTM [27] 20254 0.2303
H-KNNI [19] 36956 13.0665
H-KNN2 [20] 24852 6.5622
S-EMD [21] 18920 5.6340
S-SVM [46] 21888 15.6515
H-DBN [14] 29604 9.6442
DeprNet 2230 0.0036

The time efficiency of a NN is highly dependent on the
parameters of a model and the specifications of the system’s
hardware. The training of DeprNet can be considered as two
processes: data acquisition and model training. As suggested
by Table VII, for training DeprNet to obtain 90%+ accuracy,
around 17307 samples (33 subjects) are needed. Each data
acquisition session takes around 39 min, 20 min for setting
up the EEG device and placing the electrodes on the scalp,
9 min for recording the EEG signals, and 10 min for removing
and cleaning the electrodes. The time needed for recording
the EEG is 39 x 33 = 1287 min. The time required for
preprocessing the data set and training the DeprNet (one-fold)
is 30 + 88 x 25 = 2230 s. Here, preprocessing takes 30 s and
training of DeprNet with epoch size of 25, and a batch size
of 64 takes 88 x 25 = 2200 s. On the other hand, the process
of screening a patient for depression using DeprNet takes very
little time. The data acquisition takes around 31 min, 20 min
for setting up the EEG device and placing the electrodes
on the scalp, 1 min for recording the EEG signals, and
10 min for removing and cleaning the electrodes. Although
DeprNet needs only a short window of four seconds of EEG
signals for predicting depression level, its performance can be
improved by taking the average of predicted values of more
than one sample; 1 min of recording the EEG signals will
result in 15 samples (without overlapping), which can give
better screening accuracy. The time required for preprocessing
the data set and testing the DeprNet is 0.001 + 0.0036 x 15 =
0.055 s. Here, preprocessing takes 0.001 s, and forward com-
putations of a model for one sample take 0.0036 s. The time
efficiency of the abovementioned eight baseline methods and
DeprNet is reported in Table IX. All abovementioned training
and testing related timings are calculated on a computer system
having specifications listed in Table II.
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Fig. 11.
of a nondepressed subject. Top right: sample topo heat map of values of the
last layer of CNN of a depressed subject. Bottom left: average topo heat map
of values of the last layer of CNN of a nondepressed subject. Bottom right:
average topo heat map of values of the last layer of CNN of a depressed
subject.

Top left: sample topo heat map of values of the last layer of CNN

G. Analysis of the Features Learned by the
Convolutional Layer

After analyzing the features learned by the last convo-
lutional layer, it is found that most of the nondepressed
subjects have higher values of the left-hand side electrodes
than the value of right-side electrodes, while most of the
depressed subjects have higher values of the right-side elec-
trodes than the value of left-hand side electrodes. For testing
the significance of visualization results, one-way Analysis of
Variance (ANOVA) is performed on a values of depressed and
nondepressed groups. A p-value of 0.0015 is obtained from
ANOVA, which indicates that « is negative for a nondepressed
subject and positive for a depressed subject. For graphical
visualization of the results, we normalize the vector between
0 and 1 and show their values through a topo heat map for
each subject. The sample topo heat map of a subject not
having depression and the sample topo heat map of a subject
having depression are shown in the upper half of Fig. 11. The
averaged topo heat map of the nondepressed subject and the
averaged topo heat map of the depressed subject are shown in
the lower half of Fig. 11. These results suggest that depression
affects the activities of different hemispheres of the brain
differently. Moreover, this asymmetric effect is captured and
used by CNN very efficiently for classification.

H. Discussion

The EEG signals are rich in information; they contain neural
responses to the computations performed by the brain. Also,
the greater affordability and portability of the EEG devices
opened up new avenues for their use [48]. This study attempts
to present a robust system that can be used for screening
people for depression in practical scenarios. The psychiatrist
can perform EEG tests on the patient regularly and keep track
of their mental state during the treatment. However, there
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are a few limitations of the proposed methods. The use of
DeprNet with present technologies may be limited to clinical
use only due to three reasons. First, it involves the use of an
EEG device, which is a costly apparatus. Second, the data
acquisition of EEG is a time-consuming process, and it also
demands expertise. Third, DeprNet needs 19 EEG channels
for classification, while the present personal use EEG headset
mostly has only one electrode. Another limitation of DeprNet
is the assumption that depression affects the patient’s brain
significantly. Minor changes in the patient’s brain due to
depression may not always be reflected in EEG signals. Thus,
the use of EEG, which is an indirect measure of depression,
may not always give accurate results.

The detection of depression using conventional methods,
such as questionnaires, is a tricky task. Since these methods
try to measure the severity of depression using indirect means,
they sometimes fail to detect the exact level of depression.
On the other hand, advanced technologies, such as EEG
records, direct brain activity and can provide more robust
results. However, the detection of mental disorders, such as
depression, autism, and mood disorders from EEG signals,
is not a trivial task. The EEG device indeed records neural
activities related to these disorders, but dissociating these
signals from noise is complicated due to their low amplitude.
Modern advancements in DL methods can provide a solution
to this problem as they can extract complex nonlinear features
from the data.

We aim to develop two brain—computer interfaces (BCIs):
one for the clinical use of psychiatric and another for the
personal use of patients. The first BCI will use the EEG
signal of the whole brain for detecting the level of depression,
level of anxiety, and other abnormalities in the patient’s brain.
The BCI will upload the data to a cloud server and suggest
possible treatments. The interface will serve as an assistant to
the psychiatrists, and we help them in maintaining the history
of the treatments of the patients. The second BCI will use
EEG recording from a single electrode portable EEG headset.
It will show a graphical representation of the report of the
level of depression, level of anxiety, and other abnormalities
in the patient’s brain on a mobile phone app. This BCI will
help them in regularly monitoring and improving their mental
health. The method proposed in this study is an initial attempt
in the direction of improving the mental health of individuals
by providing better diagnosis techniques.

V. CONCLUSION

This study successfully makes use of DL models for ana-
lyzing the EEG data and demonstrating the transformation of
brain activities in depression. It can be concluded that the
DeprNet, a CNN-based DL model proposed in this study,
performs better than the other baseline methods. Accuracy
of 0.9937 and the AUC of 0.999 are achieved when recordwise
split data are considered. Accuracy of 0.914 and the AUC
of 0.956 are obtained, while subjectwise split data are adopted.
These results suggest that CNN trained on recordwise split
data gets overtrained on EEG data with a small number of
subjects. However, most of the previous studies presented in
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Section II employed recordwise split data for the training
and testing their models. It is also observed that the network
can distinguish both the normal and depressed classes at the
DeprNet level itself. The activation maps of the last layer of
DeprNet suggest that the value of left electrodes is more than
the values of right electrodes in nondepressed subjects, and
the value of right electrodes is more than the values of left
electrodes in depressed subjects. Moreover, the authors believe
that depression affects the activities of both the hemispheres
of the brain differently. The results obtained in this study are
very promising, and this work can be extended by considering
multiple factors in the future. Furthermore, based on the
proposed diagnosis pipeline, a personalized mobile phone
application can be developed to show the real-time depression
level of a patient.
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