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Abstract— This paper offers an improved finite time sliding mode 

controller scheme for a class of robotic manipulators with external 

disturbances. Since conventional sliding mode controllers have a 

discontinuous signum function, an important problem called chattering 

phenomenon can occur in them. The proposed scheme presents a new 

Lyapunov candidate functional containing an absolute function based on a 

fractional power of the switching surface such that the designed control 

law is continuous and smooth. The recommended control technique is 

designed using the Lyapunov stability theory and satisfies the presence of 

the sliding mode around designed switching surface in the finite time. The 

presented method eliminates the chattering problem produced by the 

switching controller and satisfies high precision action. Besides, the 

adaptive tuning controllers are designed to approximate the unknown 

bound of external disturbance. An extension of the proposed control 

technique based on the barrier function adaptive terminal sliding mode 

control is also suggested for better performance and robust tracking 

control of the nonlinear systems with external disturbances. Some 

simulation and experimental outcomes exhibit the efficacy of the planned 

technique. 

 
Index Terms— Robotic manipulator; continuous sliding mode control; 

chattering phenomenon; second-order dynamics; finite time convergence.  

I. INTRODUCTION 

he classical Sliding Mode Control (SMC) technique has been 

provided to be an operative and robust control procedure for 

stabilization/tracking of various nonlinear processes in the 

existence of perturbations. The chief advantages of sliding mode 

control are the robustness versus uncertainty, rapid response, 

computational easiness, insensitivity to disturbance, and acceptable 

transient efficiency [1, 2]. For this purpose, the SMC approach has 

formed a great consideration of industrial and academic societies in the 

previous years. This method has been extensively applied in nearly all 

aspects of engineering, for example, civil, chemical, mechanics, 

robotics, electrical, and interdisciplinary engineering [3]. Specifically, 

in recent years, SMC has been broadly employed for the 

control/tracking of robotic manipulators [4-6]. The SMC approach has 

two principle phases: sliding phase and reaching phase. In this method, 

by employing a nonlinear control law, SMC changes the system 

dynamics and excites it to reach a pre-defined switching manifold in 

finite time [7]. The classical SMC procedure is based on definition of 
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mobayens@yuntech.edu.tw). K.A. Alattas is with Department of Computer Science and 

Artificial Intelligence, College of Computer Science and Engineering, University of 

the exponentially stable switching surface as a function of the state 

trajectories and employment of the Lyapunov stability theory to 

guarantee all states reach this curve in finite time. 

The concepts of asymptotic and exponential stabilization present 

the reachability of the states to equilibrium over the infinite horizon 

[8]. However, in some applications such as bipedal locomotion, 

sampled-data systems, robotic manipulators, attitude control, aero-

elastic systems, hypersonic vehicles, and other time-sensitive tasks, it 

is required to force the state responses to converge the stable equilibria 

in finite time. In recent years, the nonlinear Terminal Sliding Mode 

Control (TSMC) scheme has been planned, which makes the states to 

converge to zero in the finite time. TSMC offers superior 

characteristics, for instance, finite-time stability, low steady-state error 

and fast dynamic performance. Due to the mentioned superior 

characteristics, TSMC has been extensively employed in numerous 

applications such as robot manipulators, wheeled mobile robots, 

actuated exoskeleton, ship autopilot systems, multi-robot networks, 

nonholonomic systems and other robotic systems [9]. Both SMC and 

TSMC suffer from the unwanted oscillations called chattering 

problem. These oscillations are built via discontinuous control input 

which have sign functions and are destructive to practical actuators. 

The chattering phenomenon often exists in various types of the SMC. 

There are several techniques to eliminate the chattering problem in 

SMC, such as High-Order Sliding-Mode (HOSM) approach [10], 

boundary layer scheme [11] and disturbance estimation technique [12]. 

The boundary layer approach comprises the saturation and sigmoid 

functions. The main influence of HOSM is that the discontinuous sign 

function is available in time-derivative of controller signal; thus, the 

actual control input originated by integration is a continuous signal 

which can remove the chattering phenomenon. HOSM typically allows 

the reduction of the chattering effect while providing the convergence 

to surface in finite time.  In the systems with parameter uncertainty and 

exterior disturbance which are immeasurable in practice, a disturbance 

estimation procedure is required. Actually, one main issue in the 

design process of SMC is the necessity of the perturbations bounds 

which are used in the switching control law. 

In [13], an adaptive TSMC technique is suggested for nonlinear 

differential inclusion systems with external disturbance. In [14], a 
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second-order adaptive TSMC approach is offered for stabilization of a 

two-link robotic manipulator. An adaptive decentralized attitude 

synchronization control based on nonsingular fast TSMC for 

spacecraft formation is designed in [15]. An adaptive fast TSMC 

scheme combined with the Global Sliding Mode Control (GSMC) is 

presented in [16] for tracking control of nonlinear systems with 

uncertainties. Reference [17] proposes an adaptive nonsingular TSMC 

for finite time tracking of a gyroscope of Micro-Electro-Mechanical 

System (MEMS) in the existence of parameter variations and high-

amplitude perturbations. In [18], the TSMC scheme is planned for a 

hypersonic vehicle via a disturbance observer. In [19], a continuous 

adaptive fast TSMC method is planned for tracking of the position of 

robotic manipulators. Reference [20] proposes an adaptive robust 

TSMC approach for near-space vehicles via Second-Order Sliding 

Mode (SOSM). A novel fast nonsingular TSMC is investigated in [21] 

to plan the terminal angle constraint guidance for interception of the 

maneuvering target with command chattering reduction in the 

guidance law. In [22], a nonsingular chattering-free TSMC technique 

based on super-twisting is planned for attitude tracking of a quad-rotor. 

In [23], in the light of the nonlinear disturbance observer, an adaptive 

TSMC method is recommended for hypersonic flight vehicles. An 

adaptive TSMC approach with projection operator is recommended in 

[24] for tracking control of hybrid energy storage system. A nonlinear 

disturbance-observer-based adaptive TSMC approach is proposed in 

[25], which is employed to stabilize the reentry vehicle attitude. In 

[26], an adaptive high-order TSMC with delay estimation is suggested 

for robot manipulator in the existence of backlash hysteresis. An 

adaptive nonsingular fractional order super-twisting TSMC based on 

delay estimation is planned in [27] for cable-driven manipulators. In 

[28], a nonsingular adaptive fractional-order TSMC with delay 

estimation is designed for the high-precision tracking of cable-driven 

manipulators in the existence of lumped uncertainty. In [29], a robust 

non-singular adaptive TSMC based on dynamic inversion is designed 

for position / attitude tracking of a practical quadrotor. References [30] 

proposes an adaptive observer-based composite TSMC for the stability 

of uncertain nonlinear dynamical systems. A delay-estimation-based 

adaptive super-twisting nonsingular fast TSMC technique is presented 

in [31] to satisfy the high-precise tracking of uncertain cable-driven 

manipulator. In [32], using a neural dynamic manifold, an adaptive 

integral TSMC technique is proposed for robust tracking of fully-

actuated mechanical systems. In [33], an adaptive back-stepping 

integral fast TSMC is planned for the finite time tracking control of 

quadrotor vehicles, where some parameter-tuning laws are designed 

for estimation of  mass and inertia moment of quadrotor, and 

compensation of unknown bounds of external disturbances. In [34], an 

adaptive continuous-twisting control method is proposed for the 

double-integrator with a Lipschitz continuous perturbation, which 

assures the states convergence to the origin in the finite time. Two 

output feedback controllers based on the continuous-twisting 

algorithm are designed in [35], where the proposed state observers are 

based on the first and second order robust exact differentiators. In [36], 

the continuous integral super-twisting SMC approach is proposed for 

linear and nonlinear systems with matched disturbances, substituting 

the discontinuous term of feedback controller by a super-twisting law. 

However, none of the researches [34-36] have been focused on the 

adaptive barrier-function-based TSMC approach for development of 

robust tracking control of nonlinear perturbed systems. All the 

methodologies presented in the above-stated works stimulate 

investigators to establish the suggested technique of the proposed 

article. To the highest of the author's familiarity, very little endeavors 

have been done to propose an adaptive robust TSMC approach which 

can eliminate discontinuity in the control laws. In this paper, we 

propose yet another technique to avoid chattering phenomenon in 

TSMC, which is the main drawback of SMC and TSMC. We 

incorporate the notions of finite time stability and disturbance observer 

to attain finite time tracker for robotic manipulators with the nonlinear 

second-order structure and external disturbances. The planned control 

approach proposes a novel Lyapunov candidate function including a 

fractional-power absolute function of the switching surface, where the 

designed controller is continuous and smooth. This technique removes 

the chattering phenomenon created via the switching law and 

guarantees the high precision efficiency. A parameter-tuning adaptive 

control scheme is designed to guesstimate the unknown bound of 

disturbance. 

This article is presented as the following layout: the problem 

formulation for the robotic manipulators is presented in Sect. 2. In 

Sect. 3, main results containing the novel Lyapunov candidate function 

with an absolute term and two adaptive finite time (discontinuous/ 

continuous) controllers are proposed. In Sect. 4, the simulation and 

experimental outcomes are provided and finally, conclusions are 

specified in Sect. 5. 

II. PROBLEM DESCRIPTION 

Consider the Euler-Lagrange dynamical equation of the robotic 

manipulators as 

𝐵0(𝑞(𝑡), �̇�(𝑡))�̈�(𝑡) + 𝐶0(𝑞(𝑡), �̇�(𝑡))�̇�(𝑡) + 𝐺0(𝑞(𝑡)) = 𝑢(𝑡), 
(1) 

where 𝑞(𝑡), �̇�(𝑡), �̈�(𝑡) indicate the joint position, joint velocity and 

joint acceleration, correspondingly; 𝑢(𝑡) signifies the control vector 

indicating the torque employed on the joints; 𝐵0(𝑞(𝑡), �̇�(𝑡)) signifies 

the inertia matrix; 𝐶0(𝑞(𝑡), �̇�(𝑡)) represents the centripetal Coriolis 

matrix; 𝐺0(𝑞(𝑡)) shows the gravity vector. The dynamical equation (1) 

are denoted in second-order form with disturbance as 

�̈�𝑖(𝑡) = 𝑔𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡)) + ℎ𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡))𝑢𝑖(𝑡)
+ 𝑑𝑖(𝑥𝑖(𝑡), 𝑡), (2) 

where
 

𝑥𝑖 ∈ 𝑅 signifies the states (joint positions) of robotic 

manipulator, 𝑢𝑖(𝑡) ∈ 𝑅 signifies the controller signal, 𝑔𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡)) 

and
 

ℎ𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡)) ≠ 0
 

represent two known functions, and 

𝑑𝑖(𝑥𝑖(𝑡), 𝑡) indicates the unknown disturbance but bounded as 
|𝑑𝑖(𝑥𝑖(𝑡), 𝑡)| < 𝐷𝑖.   

Assumption 1: The states 𝑥𝑖(𝑡) and �̇�𝑖(𝑡) are available as measured 

outputs, then, the relative degree is one over �̇�𝑖(𝑡) ≠ 0.   

The second-order robotic manipulator (2) is assumed to track the 

desired reference 𝑥𝑑𝑖(𝑡). The error signal is formed as 

�̃�𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑥𝑑𝑖(𝑡). (3) 

Let us consider the sliding surface expressed as follow: 

𝑠𝑖(𝑡) = �̇̃�𝑖(𝑡) + 𝜆𝑖�̃�𝑖(𝑡), (4) 

where the constant parameter 𝜆𝑖 should be positive to satisfy the 

closed-loop stability when the states reach the switching surface.  

Lemma 1 [37]: Let 𝑥 ∈ ℵ ⊂ 𝑅𝑛, �̇� = ℑ(𝑥), ℑ : 𝑅𝑛 → 𝑅𝑛 is a 

continuous function on an open neighborhood ℵ of the origin and 

locally Lipschitz on ℵ\{0} and ℑ(0) = 0. Assume there is a 

continuous function 𝑉 : ℵ → 𝑅 where (a) 𝑉 is positive-definite; (b) �̇� 

is negative on ℵ\{0}; (c) there exist real-positive values 𝑚 and 0 <
𝛼 < 1, and a neighborhood 𝑁 ⊂ ℵ of the origin where 

�̇� + 𝑚𝑉𝛼 ≤ 0 
(5) 

on 𝑁\{0}. So, the origin is finite-time stable for system �̇� = ℑ(𝑥).    

Then, for the initial time 𝑡0 , the Lyapunov functional reaches zero 

in finite time as 

𝑡s = 𝑡0 +
𝑉1−𝛼(𝑡0)

𝑐(1 − 𝛼)
 (6) 

where 𝑡𝑠 is the settling time. 
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III. MAIN RESULTS 

In what follows, a novel technique defining a Lyapunov candidate 

function with an absolute term is proposed as a solution to feature a 

continuous and smooth adaptive control law in the sliding approach. 

The main objective of the new continuous SMC scheme is to design a 

controller such that the chattering problem is removed. In this work, 

the subsequent control law is planned for the robotic manipulator (2):  

𝑢𝑖(𝑡) = ℎ𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡))−1 (�̈�𝑑𝑖(𝑡) −
𝜇𝑖𝑛

𝜂𝑖𝑚
𝑠𝑖(𝑡)𝑏+1−

𝑚
𝑛

− 𝜆𝑖 �̇̃�𝑖(𝑡) − 𝑔𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡))) 

(7) 

where 𝜂𝑖 and 𝜇𝑖 indicate two positive constants to adjust the speed of 

the reaching to the sliding surface; m and n specify two positive odd 

integers with 𝑚 > 𝑛; b is a positive odd integer.   

To verify the stability of the robotic manipulator (2) under the 

controller (7), we define the novel Lyapunov candidate function as 

𝑉𝑖(𝑡) = 𝜂𝑖|𝑠𝑖(𝑡)|
𝑚
𝑛  

= 𝜂𝑖𝑠𝑖(𝑡)
𝑚
𝑛 𝑠𝑔𝑛( 𝑠𝑖(𝑡)

𝑚
𝑛 ) 

= 𝜂𝑖𝑠𝑖(𝑡)
𝑚
𝑛 𝑠𝑔𝑛( 𝑠𝑖(𝑡)). 

(8) 

Taking the time derivative of Lyapunov function (8), one obtains 

�̇�𝑖(𝑡) = 𝜂𝑖

𝑚

𝑛
𝑠𝑖(𝑡)

𝑚
𝑛

−1�̇�𝑖(𝑡) 𝑠𝑔𝑛( 𝑠𝑖(𝑡)). (9) 

In order to satisfy the stabilization of the robotic manipulator (2), 

the differentiation of the Lyapunov function (8) must be negative. 

Hence, for �̇�𝑖(𝑡) < 0, one has    

�̇�𝑖(𝑡) = −𝜇𝑖|𝑠𝑖(𝑡)|𝑏 
= −𝜇𝑖𝑠𝑖(𝑡)𝑏 𝑠𝑔𝑛( 𝑠𝑖(𝑡)) < 0, 

(10) 

where using (9) and (10), we have 

�̇�𝑖(𝑡) = −
𝜇𝑖𝑛

𝜂𝑖𝑚
𝑠𝑖(𝑡)𝑏+1−

𝑚
𝑛 . (11) 

Substituting the time-derivative of switching surface (4) into (11) 

leads to 

�̈̃�𝑖(𝑡) + 𝜆𝑖 �̇̃�𝑖(𝑡) = −
𝜇𝑖𝑛

𝜂𝑖𝑚
𝑠𝑖(𝑡)𝑏+1−

𝑚
𝑛 . (12) 

Then, using (2), (3) and (12), the equivalent controller is obtained 

as (7). Now, substituting (7) into (9), one obtains 

�̇�𝑖(𝑡) = 𝜂𝑖

𝑚

𝑛
𝑠𝑖(𝑡)

𝑚
𝑛

−1 𝑠𝑔𝑛( 𝑠𝑖(𝑡)) (𝑑𝑖(𝑥𝑖(𝑡), 𝑡)

−
𝜇𝑖𝑛

𝜂𝑖𝑚
𝑠𝑖(𝑡)𝑏+1−

𝑚
𝑛 ) 

(13) 

where because 𝑠𝑖(𝑡)
𝑚

𝑛
−1 𝑠𝑔𝑛( 𝑠𝑖(𝑡)) > 0 and �̇�𝑖(𝑡) < 0 (for 

guarantying the stability), the following condition must be fulfilled:  

𝑑𝑖(𝑥𝑖(𝑡), 𝑡) −
𝜇𝑖𝑛

𝜂𝑖𝑚
𝑠𝑖(𝑡)𝑏+1−

𝑚
𝑛 ≤ 0 (14) 

or equivalently 

𝜇𝑖 ≥
𝜂𝑖𝑚𝐷𝑖

𝑛
𝑠𝑖(𝑡)

𝑚
𝑛

−𝑏−1. (15) 

Eq. (15) satisfies the robust stability of the robotic manipulator 

dynamics (2).  

The upper bounds of external disturbance are unknown practically 

and hence, it is hard to find a suitable parameter 𝐷𝑖. In what follows, 

two adaptive finite time (discontinuous/continuous) controllers are 

presented to approximate the unknown upper bound of disturbance. 

Theorem 1: Consider the robotic manipulator (2) and sliding surface 

(4). Assume that disturbance 𝑑𝑖(𝑥𝑖(𝑡), 𝑡) is unknown but bounded with 

|𝑑𝑖(𝑥𝑖(𝑡), 𝑡)| < 𝐷𝑖. Suppose �̂�𝑖(𝑡) as estimation of 𝐷𝑖 which is 

adapted as    

�̇̂�𝑖 = 𝜓𝑖|𝑠𝑖(𝑡)|,  (16) 

where 𝜓𝑖 > 0. Using the adaptive controller as 

𝑢𝑖(𝑡) = ℎ𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡))−1(�̈�𝑑𝑖(𝑡) − 𝑔𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡))

− �̂�𝑖(𝑡) 𝑠𝑔𝑛( 𝑠𝑖(𝑡)) − 𝜆𝑖 �̇̃�𝑖(𝑡)) 
 

(17) 

then, the state trajectories of robotic manipulator (2) are converged to 

switching surface (4) in finite time.  

Proof: Consider positive-definite Lyapunov functional is described as 

𝑉𝑖(𝑡) = 0.5𝜇𝑖�̃�𝑖(𝑡)2 + 0.5𝑠𝑖(𝑡)2, 
 (18) 

where �̃�𝑖(𝑡) = �̂�𝑖(𝑡) − 𝐷𝑖 and 𝜇𝑖 is a scalar with 0 < 𝜇𝑖 < 𝜓𝑖
−1

. 

Differentiating (18) with respect to time and using (4) and (16), we 

find  

�̇�𝑖(𝑡) = 𝜇𝑖�̃�𝑖(𝑡)�̇̂�𝑖(𝑡) + 𝑠𝑖(𝑡)�̇�𝑖(𝑡) 

= 𝜇𝑖𝜓𝑖�̃�𝑖(𝑡)|𝑠𝑖(𝑡)| + 𝑠𝑖(𝑡)(�̈̃�𝑖(𝑡) + 𝜆𝑖 �̇̃�𝑖(𝑡)). 
 

(19) 

From (2) and (3), it follows from (19) that 

�̇�𝑖(𝑡) = 𝜇𝑖𝜓𝑖�̃�𝑖(𝑡)|𝑠𝑖(𝑡)| + 𝑠𝑖(𝑡)(𝑔𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡)) 
+ℎ𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡))𝑢𝑖(𝑡) + 𝑑𝑖(𝑥𝑖(𝑡), 𝑡) + 𝜆𝑖 �̇̃�𝑖(𝑡) − �̈�𝑑𝑖𝑖(𝑡)), 

 

(20) 

where substituting (17) into (20) yields 

�̇�𝑖(𝑡) = 𝜇𝑖𝜓𝑖�̃�𝑖(𝑡)|𝑠𝑖(𝑡)|

+ 𝑠𝑖(𝑡)(𝑑𝑖(𝑥𝑖(𝑡), 𝑡) − �̂�𝑖(𝑡) 𝑠𝑔𝑛( 𝑠𝑖(𝑡))) 

≤ 𝜇𝑖𝜓𝑖�̃�𝑖(𝑡)|𝑠𝑖(𝑡)| + |𝑠𝑖(𝑡)||𝑑𝑖(𝑥𝑖(𝑡), 𝑡)| 
−�̂�𝑖(𝑡)|𝑠𝑖(𝑡)| + 𝐷𝑖|𝑠𝑖(𝑡)| − 𝐷𝑖|𝑠𝑖(𝑡)| 
≤ −(1 − 𝜇𝑖𝜓𝑖)�̃�𝑖(𝑡)|𝑠𝑖(𝑡)| − (𝐷𝑖 − |𝑑𝑖(𝑥𝑖(𝑡), 𝑡)|)|𝑠𝑖(𝑡)| 

 

(21) 

Since 𝐷𝑖 > |𝑑𝑖(𝑥𝑖(𝑡), 𝑡)| and 𝜇𝑖𝜓𝑖 < 1, hence, Eq. (21) is 

expressed as  

�̇�𝑖(𝑡) ≤ −√2(𝐷𝑖 − |𝑑𝑖(𝑥𝑖(𝑡), 𝑡)|)
|𝑠𝑖|

√2

− √
2

𝜇𝑖

(1 − 𝜇𝑖𝜓𝑖)|𝑠𝑖|√
𝜇𝑖

2
�̃�𝑖 

≤ − 𝑚𝑖𝑛 {√2(𝐷𝑖 − |𝑑𝑖(𝑥𝑖(𝑡), 𝑡)|), √
2

𝜇𝑖

(1

− 𝜇𝑖𝜓𝑖)|𝑠𝑖(𝑡)|} (
|𝑠𝑖(𝑡)|

√2
+ √

𝜇𝑖

2
�̃�𝑖(𝑡)) 

= −𝛯𝑖𝑉𝑖(𝑡)0.5, 

 

(22) 

where 𝛯𝑖 = 𝑚𝑖𝑛 {√2(𝐷𝑖 − |𝑑𝑖(𝑥𝑖(𝑡), 𝑡)|), √
2

𝜇𝑖

(1 − 𝜇𝑖𝜓𝑖)|𝑠𝑖(𝑡)|} >

0. In conclusion, according to Lemma 1, via the adaptive controller 

(17), the trajectories of robotic manipulator (2) reach the sliding 

surface in the finite time.        □ 

Theorem 2: Consider the robotic system described by the nonlinear 

second-order equation (2) and the proportional-derivative sliding 

surface (4). Suppose that the external disturbance 𝑑𝑖(𝑥(𝑡), 𝑡) is 

unknown and bounded, where 𝐷𝑖 > 0 is unknown scalar. Assume that 

�̂�𝑖(𝑡) is the estimate of 𝐷𝑖 with the following adaptation law: 

�̇̂�𝑖(𝑡) = 𝜓𝑖|𝑠𝑖(𝑡)|
𝑚

𝑛
−1

,  (23) 

where 𝜓𝑖 > 0. Employing the adaptive controller as 
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𝑢𝑖(𝑡) = ℎ𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡))−1 (�̈�𝑑𝑖(𝑡) −
𝜇𝑖𝑛

𝜂𝑖𝑚
𝑠𝑖

𝑏+1−
𝑚
𝑛

− 𝑔𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡)) − 𝜆𝑖 �̇̃�𝑖(𝑡) − �̂�𝑖(𝑡)) 
 (24) 

then the finite time convergence of state trajectories to the surface (4) 

is fulfilled.  

Proof: The new Lyapunov function is defined as 

𝑉𝑖(𝑡) = 𝜂𝑖𝑠𝑖(𝑡)
𝑚

𝑛 𝑠𝑔𝑛( 𝑠𝑖(𝑡)) + 0.5ℓ𝑖�̃�𝑖(𝑡)2,  (25) 

where �̃�𝑖(𝑡) = �̂�𝑖(𝑡) − 𝐷𝑖 and 0 < ℓ𝑖 <
𝜂𝑖𝑚

𝜓𝑖𝑛
. Differentiating Eq. (25), 

and using (4) and (23) yields 

�̇�𝑖(𝑡) =
𝜂𝑖𝑚

𝑛
𝑠𝑖(𝑡)

𝑚
𝑛

−1�̇�𝑖(𝑡) 𝑠𝑔𝑛( 𝑠𝑖(𝑡)) + ℓ𝑖�̃�𝑖(𝑡)�̇̃�𝑖(𝑡) 

=
𝜂𝑖𝑚

𝑛
𝑠𝑖(𝑡)

𝑚
𝑛

−1(�̈̃�𝑖(𝑡) + 𝜆𝑖 �̇̃�𝑖(𝑡)) 𝑠𝑔𝑛( 𝑠𝑖(𝑡))

+ ℓ𝑖𝜓𝑖�̃�𝑖(𝑡)|𝑠𝑖(𝑡)|
𝑚
𝑛

−1. 

 (26) 

From (2) and (3), Eq. (26) is written as 

�̇�𝑖(𝑡) = ℓ𝑖𝜓𝑖(�̂�𝑖(𝑡) − 𝐷𝑖)|𝑠𝑖(𝑡)|
𝑚
𝑛

−1

+
𝜂𝑖𝑚

𝑛
𝑠𝑖(𝑡)

𝑚
𝑛

−1(𝑔𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡)) 

+ℎ𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡))𝑢𝑖(𝑡) + 𝑑𝑖(𝑥𝑖(𝑡), 𝑡) + 𝜆𝑖 �̇̃�𝑖(𝑡)

− �̈�𝑑𝑖(𝑡)) 𝑠𝑔𝑛( 𝑠𝑖(𝑡)) 

 (27) 

where substituting (24) into (27) leads to 

�̇�𝑖(𝑡) = ℓ𝑖𝜓𝑖(�̂�𝑖(𝑡) − 𝐷𝑖)|𝑠𝑖(𝑡)|
𝑚
𝑛

−1 − 𝜇𝑖|𝑠𝑖(𝑡)|𝑏 

−
𝜂𝑖𝑚

𝑛
�̂�𝑖(𝑡)|𝑠𝑖(𝑡)|

𝑚
𝑛

−1 +
𝜂𝑖𝑚

𝑛
𝑑𝑖(𝑥𝑖(𝑡), 𝑡)|𝑠𝑖(𝑡)|

𝑚
𝑛

−1. 
 (28) 

Eq. (28) can be rewritten as 

�̇�𝑖 ≤ ℓ𝑖𝜓𝑖�̃�𝑖(𝑡)|𝑠𝑖(𝑡)|
𝑚
𝑛

−1 −
𝜂𝑖𝑚

𝑛
�̂�𝑖(𝑡)|𝑠𝑖(𝑡)|

𝑚
𝑛

−1 

+
𝜂𝑖𝑚

𝑛
|𝑑𝑖(𝑥𝑖(𝑡), 𝑡)||𝑠𝑖|

𝑚
𝑛

−1 +
𝜂𝑖𝑚

𝑛
(𝐷𝑖 − 𝐷𝑖)|𝑠𝑖|

𝑚
𝑛

−1 

≤ −
𝜂𝑖𝑚

𝑛
(𝐷𝑖 − |𝑑𝑖(𝑥𝑖(𝑡), 𝑡)|)|𝑠𝑖(𝑡)|

𝑚
𝑛

−1 

− (
𝜂𝑖𝑚

𝑛
− ℓ𝑖𝜓𝑖) �̃�𝑖(𝑡)|𝑠𝑖(𝑡)|

𝑚
𝑛

−1. 

 (29) 

Since 𝐷𝑖 > |𝑑𝑖(𝑥𝑖(𝑡), 𝑡)| and ℓ𝑖𝜓𝑖 <
𝜂𝑖𝑚

𝑛
, then, we have  

�̇�𝑖 ≤ −
𝑚√𝜂𝑖

𝑛
(𝐷𝑖 − |𝑑𝑖(𝑥𝑖(𝑡), 𝑡)|)|𝑠𝑖(𝑡)|

𝑚
2𝑛

−1 (√𝜂𝑖|𝑠𝑖(𝑡)|
𝑚
2𝑛)

− √
2

ℓ𝑖
(

𝜂𝑖𝑚

𝑛

− ℓ𝑖𝜓𝑖) |𝑠𝑖(𝑡)|
𝑚
𝑛

−1 (√
ℓ𝑖

2
�̃�𝑖(𝑡)) 

≤ − 𝑚𝑖𝑛 {
𝑚√𝜂𝑖

𝑛
(𝐷𝑖 − |𝑑𝑖(𝑥𝑖(𝑡), 𝑡)|)|𝑠𝑖(𝑡)|

𝑚
2𝑛

−1 

, √
2

ℓ𝑖
(

𝜂𝑖𝑚

𝑛
− ℓ𝑖𝜓𝑖) |𝑠𝑖(𝑡)|

𝑚
𝑛

−1} (√𝜂𝑖|𝑠𝑖(𝑡)|
𝑚
2𝑛 + √

ℓ𝑖

2
�̃�𝑖(𝑡)) 

= −𝛺𝑖𝑉𝑖(𝑡)0.5, 

 

(30) 

where 𝛺𝑖 = 𝑚𝑖𝑛 {
𝑚√𝜂𝑖

𝑛
(𝐷𝑖 − |𝑑𝑖(𝑥𝑖(𝑡), 𝑡)|)|𝑠𝑖(𝑡)|

𝑚

2𝑛
−1, √

2

ℓ𝑖
(

𝜂𝑖𝑚

𝑛
−

ℓ𝑖𝜓𝑖) |𝑠𝑖(𝑡)|
𝑚

𝑛
−1} > 0. Finally, according to Lemma 1, using the 

adaptive controller (24), states of robotic manipulator (2) are 

converged to surface 𝑠𝑖 = 0 in finite time.         □ 

Remark 1: As it can be observed from (24), the suggested control 

scheme gives insights for the elimination of the chattering 

phenomenon because no signum function is employed in (24). Hence, 

the offered control law is continuous and smooth. The schematic 

diagram of the proposed control configuration is displayed in Fig.1. 

 
Fig.1. Schematic diagram of the proposed control method.  

Remark 2: By some modifications, the proposed control technique 

can also be employed on n-dimensional nonlinear systems. 

Remark 3: For the extension of the proposed control method, the 

barrier function-based adaptive terminal sliding mode control method 

is studied for the robust tracking control of the nonlinear second-order 

systems in the presence of external disturbances. Then, a new adaptive 

control law based on the barrier function is designed in this section. 

The external disturbances can be estimated by using the barrier-based 

adaptive TSMC more efficiently, and the closed-loop system becomes 

more stable. Using the control law (24) with  

�̂�𝑖(𝑡) = {
�̂�𝑖𝑎

(𝑡),      if      0 < 𝑡 ≤ �̄�

�̂�𝑖𝑝𝑠𝑑
(𝑡),      if         𝑡 > �̄�

  

(31) 

where �̄� denotes the time that the error converges to the neighborhood 

𝜀 of the surface 𝑠(𝑡). The adaptation law and the positive-semi-definite 

(PSD) barrier function are provided by  

�̇̂�𝑖𝑎
(𝑡) = 𝜓𝑖|𝑠𝑖(𝑡)|

𝑚
𝑛

−1
  

(32) 

�̂�𝑖𝑝𝑠𝑑
(𝑡) =

|𝑠𝑖(𝑡)|

𝜀𝑖−|𝑠𝑖(𝑡)|
,  

(33) 

where 𝜀 is a positive scalar. Using the adaptation law (32), the control 

gain is tuned to be increased until the error trajectories reach the 

neighborhood 𝜀 of the surface at time �̄�. For the times bigger than �̄�, 

the adaptation gain switches to the PSD barrier function which 

decreases the convergence region and maintains the error trajectories 

in that region. For the condition 0 < 𝑡 ≤ �̄�, the controller design is 

proposed in Theorem 2. For the condition that the time is greater that 

�̄� (𝑡 > �̄�), the barrier-function-based adaptive controller is designed as  

𝑢𝑖(𝑡) = ℎ𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡))−1 (�̈�𝑑𝑖(𝑡) − 𝑔𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡))

− 𝜆𝑖 �̇̃�𝑖(𝑡) − �̂�𝑖𝑝𝑠𝑑(𝑡)𝑠𝑔𝑛(𝑠𝑖(𝑡))) 

 

(34) 

then the error trajectories reach the convergence region |𝑠𝑖(𝑡)| ≤ 𝜀 in 

the finite time.  

Consider the Lyapunov candidate functional as 

𝑉𝑖(𝑡) = 0.5 (𝑠𝑖(𝑡)2 + (�̂�𝑖𝑝𝑠𝑑
(𝑡) − �̂�𝑖𝑝𝑠𝑑

(0))2),  

(35) 

where using the time-derivate of the Lyapunov function (35), we have  

�̇�𝑖(𝑡) = 𝑠𝑖(𝑡)�̇�𝑖(𝑡) + (�̂�𝑖𝑝𝑠𝑑
(𝑡) − �̂�𝑖𝑝𝑠𝑑

(0))�̇̂�𝑖𝑝𝑠𝑑
(𝑡),  

(36) 

where substituting �̇�𝑖(𝑡) and �̂�𝑖𝑝𝑠𝑑
(0) = 0 in the above equation, we 

obtain  

�̇�𝑖(𝑡) = 𝑠𝑖(𝑡)(𝑔𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡))+ℎ𝑖(𝑥𝑖(𝑡), �̇�𝑖(𝑡))𝑢𝑖(𝑡) +

𝑑𝑖(𝑥𝑖(𝑡), 𝑡) + 𝜆𝑖 �̇̃�𝑖(𝑡) − �̈�𝑑𝑖(𝑡)) + �̂�𝑖𝑝𝑠𝑑
(𝑡)�̇̂�𝑖𝑝𝑠𝑑

(𝑡), 
 

(37) 

Replacing the control input (34) into (37) yields   
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�̇�𝑖(𝑡)

= 𝑠𝑖(𝑡) (−�̂�𝑖𝑝𝑠𝑑
(𝑡)𝑠𝑔𝑛(𝑠𝑖(𝑡)) +𝑑𝑖(𝑥𝑖(𝑡), 𝑡))

+ �̂�𝑖𝑝𝑠𝑑
(𝑡)�̇̂�𝑖𝑝𝑠𝑑

(𝑡)

≤ |𝑠𝑖(𝑡)| {|𝑑𝑖(𝑥𝑖(𝑡), 𝑡)| − �̂�𝑖𝑝𝑠𝑑
(𝑡)} + �̂�𝑖𝑝𝑠𝑑

(𝑡)�̇̂�𝑖𝑝𝑠𝑑
(𝑡)

≤ |𝑠𝑖(𝑡)| {|𝑑𝑖(𝑥𝑖(𝑡), 𝑡)| − �̂�𝑖𝑝𝑠𝑑
(𝑡)}

+ �̂�𝑖𝑝𝑠𝑑
(𝑡)

𝜀

(𝜀 − |𝑠𝑖(𝑡)|)2
𝑠𝑔𝑛( 𝑠𝑖(𝑡))�̇�𝑖(𝑡)

≤ |𝑠𝑖(𝑡)| {|𝑑𝑖(𝑥𝑖(𝑡), 𝑡)| − �̂�𝑖𝑝𝑠𝑑
(𝑡)}

+ �̂�𝑖𝑝𝑠𝑑
(𝑡)

𝜀

(𝜀 − |𝑠𝑖(𝑡)|)2 [𝑑𝑖(𝑥𝑖(𝑡), 𝑡)

− �̂�𝑖𝑝𝑠𝑑
(𝑡)𝑠𝑔𝑛(𝑠𝑖(𝑡))] 𝑠𝑔𝑛( 𝑠𝑖(𝑡)) 

 

(38) 

Equation (38) can be written as  

�̇�𝑖(𝑡) ≤ − {�̂�𝑖𝑝𝑠𝑑
(𝑡) − |𝑑𝑖(𝑥𝑖(𝑡), 𝑡)|} |𝑠𝑖(𝑡)|

− �̂�𝑖𝑝𝑠𝑑
(𝑡)

𝜀

(𝜀 − |𝑠𝑖(𝑡)|)2 [�̂�𝑖𝑝𝑠𝑑
(𝑡)

− |𝑑𝑖(𝑥𝑖(𝑡), 𝑡)|] 

 

(39) 

where since �̂�𝑖𝑝𝑠𝑑
(𝑡) ≥ |𝑑𝑖(𝑥𝑖(𝑡), 𝑡)| and 

𝜀

(𝜀−|𝑠𝑖(𝑡)|)2 > 0, one finds  

�̇�𝑖(𝑡) ≤ −√2 {�̂�𝑖𝑝𝑠𝑑
(𝑡) − |𝑑𝑖(𝑥𝑖(𝑡), 𝑡)|}

|𝑠𝑖(𝑡)|

√2

−
√2𝜀

(𝜀 − |𝑠𝑖(𝑡)|)2 [�̂�𝑖𝑝𝑠𝑑
(𝑡)

− |𝑑𝑖(𝑥𝑖(𝑡), 𝑡)|]
�̂�𝑖𝑝𝑠𝑑

(𝑡)

√2
 

≤ −𝑍 (
|𝑠𝑖(𝑡)|

√2
+

�̂�𝑖𝑝𝑠𝑑
(𝑡)

√2
) ≤ −𝑍𝑉𝑖(𝑡)0.5 

 

(40) 

where 𝑍 = √2 {�̂�𝑖𝑝𝑠𝑑
(𝑡) − |𝑑𝑖(𝑥𝑖(𝑡), 𝑡)|} 𝑚𝑖𝑛 {1,

√2𝜀

(𝜀−|𝑠𝑖(𝑡)|)2}.        □ 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

 Example 1: Three degrees of freedom manipulator 

In this part, the controller planned in Theorems 1 and 2 are 

employed on three-degrees of freedom manipulator displayed in Fig.2. 

In the case study, 𝑙1, 𝑙2, 𝑙3 are distances of center of mass of three rigid 

links from joint axis, 𝑚𝑙1
, 𝑚𝑙2

, 𝑚𝑙3
 introduce the masses of links, 𝑚𝑚1

, 

𝑚𝑚2
, 𝑚𝑚3

 indicate the rotors’ masses, 𝐼𝑙1
, 𝐼𝑙2

, 𝐼𝑙3
 are inertia moments 

of the links, and 𝐼𝑚1
, 𝐼𝑚2

, 𝐼𝑚3
 are inertia moments of the rotors. 

Consider the dynamic equations of three-degrees of freedom 

manipulator as   

𝐵0�̈� + 𝐻0�̇� + 𝐹𝑑�̇� + 𝐹𝑠�̇� + 𝛵0 + 𝐺0 = 𝑢(𝑡) 
(41) 

with 𝐵0 = [

𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

𝑏31 𝑏32 𝑏33

], 𝐻0 = [

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

], 𝐹𝑑�̇� = [

𝑓𝑑�̇�1

𝑓𝑑�̇�2

𝑓𝑑�̇�3

],  

 
Fig.2. Three-degrees of freedom rigid manipulator. 

𝐹𝑠�̇� = [

𝑓𝑠 𝑠𝑔𝑛( �̇�1)

𝑓𝑠 𝑠𝑔𝑛( �̇�2)
𝑓𝑠 𝑠𝑔𝑛( �̇�3)

], 𝛵0 = [

𝜏1

𝜏1

𝜏1

] and 𝐺0 = [

𝑔1(𝑞)

𝑔2(𝑞)
𝑔3(𝑞)

], where the system 

parameters are defined in Appendix 1. The parameters of the rigid 

manipulator and controller are given as 𝑓𝑑 = 𝑓𝑠 = 5, 𝑙1 = 𝑙2 = 𝑙3 =
0.5𝑚, 𝑚𝑙1

= 𝑚𝑙2
= 𝑚𝑙3

= 10𝑘𝑔, 𝑚𝑚1
= 𝑚𝑚2

= 𝑚𝑚3
= 1𝑘𝑔, 𝐼𝑙1

=

𝐼𝑙2
= 𝐼𝑙3

= 1𝑘𝑔. 𝑚2, 𝑚 = 5, 𝑎1 = 𝑎2 = 1, 𝑘𝑟1
= 𝑘𝑟2

= 𝑘𝑟3
= 1, 

𝐼𝑚1
= 𝐼𝑚2

= 𝐼𝑚3
= 0.01𝑘𝑔. 𝑚2, 𝜇1 = 𝜇2 = 𝜇3 = 0.4, 𝑛 = 3,𝜏1 =

10(1 + 𝑐𝑜𝑠( 0.5𝜋𝑡) + 𝑠𝑖𝑛( 2𝑡) + 𝑠𝑖𝑛( 1.5𝑡) + 𝑠𝑖𝑛( 0.5𝜋𝑡)),𝜆 = 8. 

The initial condition is given as 𝑞(0) = [−2 −1 5]𝑇. The desired 

trajectory is specified as 𝑞𝑑 = [2 𝑠𝑖𝑛( 𝑡) + 1, 2 𝑠𝑖𝑛( 𝑡) − 3,
8 𝑠𝑖𝑛( 𝑡)]𝑇. Comparing the dynamical equations (2) and (41), we 

obtain 𝑥(𝑡) = 𝑞, �̇�(𝑡) = �̇�, �̈�(𝑡) = �̈�, ℎ(𝑥(𝑡), �̇�(𝑡)) = −𝐵0
−1{𝐻0�̇� +

𝐹𝑑�̇� + 𝐹𝑠�̇�}, ℎ(𝑥(𝑡), �̇�(𝑡)) = 𝐵0
−1 and 𝑑(𝑥(𝑡), 𝑡) = −𝐵0

−1{𝛵0 + 𝐺0}.   

The proposed adaptive parameter-tuning control law is designed 

as (24). Time histories of position of joints are displayed in Fig.3. It is 

exhibited from this figure that the states of position track the reference 

trajectories, suitably. Time responses of switching surfaces are 

displayed in Fig.4, exhibiting that the surface is chattering-free. Fig.5 

illustrates time response of controller signals and time responses of 

adaptation gains are demonstrated in Fig.6. It can be observed from 

Fig.5 that the proposed control signals have suitable amplitude and 

they have no high-frequency oscillations. Moreover, as can be 

confirmed from Fig.6, since the time-derivative of �̂�𝑖 is in the form of 

an absolute term, the estimation of the external disturbance has a slight 

slope, which is negligible in the results (also for longer time). The final 

values of the adaptation gains are found as �̂� =
[0.4338, 0.9665, 0.4142]𝑇. This simulation shows the feasibility and 

effectiveness of the suggested scheme.  

 
Fig.3. Time histories of position of joints (reference signals=red dashed red line, actual 

signals=black solid line). 
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Fig.4. Sliding surfaces. 

 
Fig.5. Trajectories of control signals. 

 
Fig.6. Adaptation gains. 

Example 2: Rotational inverted pendulum 

In this section, a rotational inverted pendulum is employed to 

investigate efficacy of proposed controller via Real-Time toolbox and 

MATLAB® /Simulink®  software. It this case study, the suspended 

pendulum is stabilized in upright position [38]. The schematic view of 

rotational inverted pendulum and a picture of the practical system are 

displayed in Fig. 7, consisting of a rotational servo-motor driving the 

gear of output, rotational arm and suspended pendulum. In Fig. 7, the 

pendulum mass 𝑚𝑝, pendulum angle 𝛼𝑝, arm angle 𝜃𝑎, pendulum 

length 𝑙𝑝, arm length 𝑟𝑎, inertia moment of effective mass 𝐽𝑏, control 

input  𝑢 and motor torque 𝜏𝑎 are introduced. Dynamical equation of 

rotational inverted pendulum is formed as [39] 

[
𝐴𝑝 + 𝐵𝑝 𝑠𝑖𝑛2 𝛼𝑝 𝐶𝑝 𝑐𝑜𝑠𝛼𝑝

𝐶𝑝 𝑐𝑜𝑠𝛼𝑝 𝐵𝑝
] [

�̈�𝑎

�̈�𝑝
] + [

𝐺𝑝 𝑠𝑔𝑛( �̇�𝑎) + 𝐻𝑝𝜃𝑎

−𝐷𝑝 𝑠𝑖𝑛𝛼𝑝
] 

+ [
𝐹𝑝 + 𝐵𝑝(𝑠𝑖𝑛 2 𝛼𝑝)�̇�𝑝 −𝐶𝑝(𝑠𝑖𝑛𝛼𝑝) �̇�𝑝

−0.5𝐵𝑝(𝑠𝑖𝑛 2 𝛼𝑝)�̇�𝑎 𝐸𝑝
] [

�̇�𝑎

�̇�𝑝
] = [

𝐼𝑝𝑢

0
] 

(42) 

where 𝐴𝑝 = 𝑚𝑝𝑟𝑎
2 + 𝐽𝑏, 𝐵𝑝 =

1

3
𝑚𝑝𝑙𝑝

2
, 𝐶𝑝 =

1

2
𝑚𝑝𝑟𝑎𝑙𝑝, 𝐷𝑝 =

1

2
𝑚𝑝𝑔𝑙𝑝; 𝐸𝑝 is the pendulum damping constant, 𝐹𝑝 is the arm damping 

coefficient, 𝐼𝑝 represents the control coefficient, 𝐻𝑝 denotes the 

elasticity constant and 𝐺𝑝 is the arm Coulomb friction. The initial states 

are given as [𝛼𝑝(0), �̇�𝑝(0), 𝜃𝑎(0), �̇�𝑎(0)] = [𝜋, −1, −4,2]. The 

constant parameters are given as 𝐴𝑝 = 3.291, 0.125,pB = 𝐶𝑝 =

0.237, 𝐷𝑝 = 6.052, 𝐸𝑝 = 0.0132, 𝐹𝑝 = 14.283, 14.283,pF = 𝐺𝑝 =

1.428, 1.72,pH = 𝐼𝑝 = 6.38. 

 
Fig. 7. Schematic view and apparatus of rotational inverted pendulum.  
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The simulations of the inverted pendulum system are represented in 

Figs. 8- 11. The angular position of the rotational pendulum tracks the 

desired trajectory 0.5sin (𝑡). From Fig.8, it can be displayed that the 

position and velocity of inverted pendulum suitably track the desired 

trajectories. Time history of the switching surface is demonstrated in 

Fig.9, which shows that the sliding variable converges to zero. Time 

response of control input is illustrated in Fig.10, which displays that 

the control signal has slight vibration and is robust to perturbations. 

Moreover, the time trajectory of the adaptation gain is exposed in 

Fig.11, where it demonstrates that the adaptation gain is a constant 

value and does not varies with time. Finally, simulation results on the 

rotational inverted pendulum system approve the effectiveness of the 

suggested technique. 

 
Fig.8. Time histories of pendulum’s angular position and velocity.  

 
Fig.9. Time response of the sliding surface. 

 
Fig.10. Time history of the control input 

 
Fig.11. Adaptation gain 

In this section, experimental results are done on the experimental 

inverted pendulum system which is developed by TeraSoft®  company 

in Taiwan. The system components are demonstrated in Fig. 12. This 

system has a support package in MATLAB®  as Embedded Coder 

Toolbox which supports the Texas instruments C2000 Processors. 

After implementation of the proposed method on the rotational 

inverted pendulum system, the following experimental results are 

obtained. Time histories of the angular position and velocity of the 

inverted pendulum and arm are illustrated in Fig. 13 and Fig. 14, 

respectively. It is confirmed that the angular position of arm is 

stabilized near 0.9 radian. The pendulum angular position is converged 

to 𝜋. Also, in Fig. 15, the time trajectory of the applied voltage to the 

DC motor is demonstrated. This experimental result reveals the 

efficiency and success of the control scheme in practice.     

 
Fig. 12. Components of the practical apparatus.  

 

Fig. 13. Angular position and velocity of the pendulum. 
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Fig. 14. Angular position and velocity of the arm. 

 
Fig. 15. Time response of the control signal. 

V. CONCLUSIONS 

In this article, a new method for finite-time stability of a robotic 

manipulator with nonlinear second-order equation was proposed. The 

suggested control method was derived from a new idea of Lyapunov 

candidate functional including an absolute function based on a 

fractional power of the sliding surface. The new scheme can eliminate 

discontinuity in the control laws, which is the principal disadvantage 

of SMC called chattering phenomenon. Furthermore, an adaptive 

control procedure was planned to estimate the unknown bound of 

external disturbance. Moreover, an extension of the recommended 

control procedure based on the barrier function adaptive TSMC is 

advised for better performance and robust tracking control of the 

perturbed nonlinear systems. Some simulation and experimental 

outcomes demonstrated efficiency of planned technique in avoiding 

the chattering problem as well as maintaining the robust performance. 

This novel concept of Lyapunov candidate functional can be combined 

with any classes of sliding mode techniques to form smooth and 

continuous controllers.  

Appendix 1 

The parameters on model  are given by [40] 

𝑏11 = 𝐼𝑙1
+ 𝑚𝑙1

𝑙1
2 + 𝑘𝑟1

2 𝐼𝑚1
+ 𝐼𝑙2

+ 𝑚𝑚2
𝑎1

2 + 𝐼𝑚2

+ 𝑚𝑙2
(𝑎1

2 + 𝑙2
2 + 2𝑎1𝑙2𝑐2) + 𝐼𝑙3

 

+𝐼𝑚3
+ 𝑚𝑚3

(𝑎1
2 + 𝑎2

2 + 2𝑎1𝑎2𝑐1) 

+𝑚𝑙3
(𝑎1

2 + 𝑎2
2 + 𝑙3

2 + 2𝑎1𝑎2𝑐2 + 2𝑎1𝑙3𝑐23 + 2𝑎2𝑙3𝑐3), 

𝑏22 = 𝐼𝑙2
+ 𝐼𝑙3

+ 𝑘𝑟2
2 𝐼𝑚2

+ 𝐼𝑚3
+ 𝑚𝑚3

𝑎2
2 + 𝑚𝑙2

𝑙2
2

+ 𝑚𝑙3
(𝑎2

2 + 𝑙3
2 + 2𝑎2𝑙3𝑐3), 

𝑏33 = 𝐼𝑙3
+ 𝑘𝑟3

2 𝐼𝑚3
+ 𝑚𝑙3

𝑙3
2, 

𝑏12 = 𝑏21 = 𝐼𝑙2
+ 𝐼𝑙3

+ 𝑘𝑟2
𝐼𝑚2

+ 𝐼𝑚3
+ 𝑚𝑚3

(𝑎2
2 + 𝑎1𝑎2𝑐2)

+ 𝑚𝑙2
(𝑙2

2 + 𝑎1𝑙2𝑐2) 

+𝑚𝑙3
(𝑎2

2 + 𝑙3
2 + 𝑎1𝑎2𝑐2 + 𝑎1𝑙3𝑐23 + 2𝑎2𝑙3𝑐3), 

𝑏13 = 𝑏31 = 𝐼𝑙3
+ 𝑘𝑟3

𝐼𝑚3
+ 𝑚𝑙3

(𝑙3
2 + 𝑎1𝑙3𝑐23 + 𝑎2𝑙3𝑐3), 

𝑏23 = 𝑏32 = 𝐼𝑙3
+ 𝑘𝑟3

𝐼𝑚3
+ 𝑚𝑙3

(𝑙3
2 + 𝑎2𝑙3𝑐3), 

ℎ11 = −𝑚𝑚3
𝑎1𝑎2𝑠1�̇�1

− (𝑚𝑙2
+ 𝑎1𝑙2𝑠2 + 𝑚𝑙3

𝑎1𝑎2𝑠2 + 𝑚𝑙3
𝑎1𝑙3𝑠23)�̇�2 

−(𝑚𝑙3
𝑎1𝑙3𝑠23 + 𝑚𝑙3

𝑎2𝑙3𝑠3)�̇�3, 

ℎ22 = −(𝑚𝑙3
𝑎2𝑙3𝑠3)�̇�3, 

ℎ33 = −(𝑚𝑙3
𝑎1𝑎2𝑠2)�̇�2 − (𝑚𝑙3

𝑎2𝑙3𝑠3)�̇�3, 

ℎ12 = −(𝑚𝑙2
𝑎1𝑙2𝑠2 + 𝑚𝑙3

𝑎1𝑎2𝑠2 + 𝑚𝑙3
𝑎1𝑙3𝑠23)�̇�1

− (𝑚𝑙3
𝑎1𝑙3𝑠23 + 𝑚𝑙3

𝑎2𝑙3𝑠3)�̇�3 

−(𝑚𝑙3
𝑎1𝑎2𝑠2 + 𝑚𝑙3

𝑎1𝑙3𝑠23 + 𝑚𝑚3
𝑎1𝑎2𝑠2 + 𝑚𝑙2

𝑎1𝑙2𝑠2)�̇�2, 

ℎ13 = −(𝑚𝑙3
𝑎1𝑙3𝑠23 + 𝑚𝑙3

𝑎2𝑙3𝑠3)�̇�1

− (𝑚𝑙3
𝑎1𝑙3𝑠23 + 𝑚𝑙3

𝑎2𝑙3𝑠3)�̇�2 

−(𝑚𝑙3
𝑎2𝑙3𝑠2 + 𝑚𝑙3

𝑎1𝑙3𝑠23)�̇�3, 

ℎ21 = (𝑚𝑙2
𝑎1𝑙2𝑠2 + 𝑚𝑙3

𝑎1𝑎2𝑠2 + 𝑚𝑙3
𝑎1𝑙3𝑠23)�̇�1 − (𝑚𝑙3

𝑎2𝑙3𝑠3)�̇�3, 

ℎ23 = −(𝑚𝑙3
𝑎2𝑙3𝑠3)�̇�1 − (𝑚𝑙3

𝑎2𝑙3𝑠3)�̇�2 − (𝑚𝑙3
𝑎2𝑙3𝑠3)�̇�3, 

ℎ31 = (𝑚𝑙3
𝑎1𝑙3𝑠23 + 𝑚𝑙3

𝑎2𝑙3𝑠3)�̇�1 + (𝑚𝑙3
𝑎2𝑙3𝑠3)�̇�2, 

ℎ32 = (𝑚𝑙3
𝑎2𝑙3𝑠3)�̇�1 + (𝑚𝑙3

𝑎2𝑙3𝑠3)�̇�2 − (𝑚𝑙3
𝑎2𝑙3𝑠3)�̇�3, 

𝑔1(𝑞) = (𝑚𝑙1
𝐼1 + 𝑚𝑙2

𝑎1 + 𝑚𝑚2
𝑎1 + 𝑚𝑙3

𝑎1 + 𝑚𝑚3
𝑎1)𝑔𝑐1 

+(𝑚𝑙2
𝐼2 + 𝑚𝑙3

𝑎2 + 𝑚𝑚3
𝑎2)𝑔𝑐12 + 𝑚𝑙3

𝑙3𝑔𝑐123, 

𝑔2(𝑞) = (𝑚𝑙2
𝑙2 + 𝑚𝑙3

𝑎2 + 𝑚𝑚3
𝑎2)𝑔𝑐12 + 𝑚𝑙3

𝑙3𝑔𝑐123, 

𝑔3(𝑞) = 𝑚𝑙3
𝑙3𝑔𝑐123, 

with 𝑐1 = 𝑐𝑜𝑠𝑞1, 𝑠1 = 𝑠𝑖𝑛𝑞1, 𝑐2 = 𝑐𝑜𝑠𝑞2, 𝑠2 = 𝑠𝑖𝑛𝑞2, 𝑐3 = 𝑐𝑜𝑠𝑞3, 

𝑐12 = 𝑐𝑜𝑠( 𝑞1 + 𝑞2), 𝑐123 = 𝑐𝑜𝑠( 𝑞1 + 𝑞2 + 𝑞3), 𝑠12 = 𝑠𝑖𝑛( 𝑞1 + 𝑞2) 

and 𝑠123 = 𝑠𝑖𝑛( 𝑞1 + 𝑞2 + 𝑞3).  

REFERENCES 

[1] J. Wang, T. Ru, J. Xia, H. Shen, and V. Sreeram, "Asynchronous Event-

Triggered Sliding Mode Control for Semi-Markov Jump Systems Within 
a Finite-Time Interval," IEEE Transactions on Circuits and Systems I: 

Regular Papers, vol. 68, no. 1, pp. 458-468, 2021. 

[2] X. Zhang, W. Huang, and Q.-G. Wang, "Robust H∞ Adaptive Sliding 
Mode Fault Tolerant Control for TS Fuzzy Fractional Order Systems With 

Mismatched Disturbances," IEEE Transactions on Circuits and Systems 

I: Regular Papers, vol. 68, no. 3, pp. 1297-1307, 2021. 
[3] P. Chen, L. Yu, and D. Zhang, "Event-triggered sliding mode control of 

power systems with communication delay and sensor faults," IEEE 

Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 2, 

pp. 797-807, 2022. 

[4] J. Oliveira, P. M. Oliveira, J. Boaventura-Cunha, and T. Pinho, "Chaos-

based grey wolf optimizer for higher order sliding mode position control 
of a robotic manipulator," Nonlinear Dynamics, vol. 90, no. 2, pp. 1353-

1362, 2017. 

[5] Z. Ma and G. Sun, "Dual terminal sliding mode control design for rigid 
robotic manipulator," Journal of the Franklin Institute, 2017. 

[6] A. Goel and A. Swarup, "MIMO Uncertain Nonlinear System Control via 
Adaptive High-Order Super Twisting Sliding Mode and its Application to 



IEEE Transactions on Circuits and Systems I: Regular Papers 

Robotic Manipulator," Journal of Control, Automation and Electrical 
Systems, vol. 28, no. 1, pp. 36-49, 2017. 

[7] Y. Feng, M. Zhou, X. Zheng, F. Han, and X. Yu, "Full-Order Terminal 

Sliding-Mode Control of MIMO Systems with Unmatched 
Uncertainties," Journal of the Franklin Institute, 2017. 

[8] M. Ghasemi, S. G. Nersesov, and G. Clayton, "Finite-time tracking using 

sliding mode control," Journal of the Franklin Institute, vol. 351, no. 5, 
pp. 2966-2990, 2014. 

[9] X.-T. Tran and H.-J. Kang, "Adaptive hybrid high-order terminal sliding 

mode control of MIMO uncertain nonlinear systems and its application to 
robot manipulators," International Journal of Precision Engineering and 

Manufacturing, vol. 16, no. 2, pp. 255-266, 2015. 

[10] Y. Zhang, R. Li, T. Xue, Z. Liu, and Z. Yao, "An analysis of the stability 
and chattering reduction of high-order sliding mode tracking control for a 

hypersonic vehicle," Information Sciences, vol. 348, pp. 25-48, 2016. 

[11] I. M. Boiko, "Chattering in sliding mode control systems with boundary 
layer approximation of discontinuous control," International Journal of 

Systems Science, vol. 44, no. 6, pp. 1126-1133, 2013. 

[12] J. Yang, S. Li, and X. Yu, "Sliding-mode control for systems with 
mismatched uncertainties via a disturbance observer," IEEE Transactions 

on Industrial Electronics, vol. 60, no. 1, pp. 160-169, 2013. 

[13] J. Huang, L. Sun, Z. Han, and L. Liu, "Adaptive terminal sliding mode 
control for nonlinear differential inclusion systems with disturbance," 

Nonlinear Dynamics, vol. 72, no. 1-2, pp. 221-228, 2013. 

[14] S. Mondal and C. Mahanta, "Adaptive second order terminal sliding mode 
controller for robotic manipulators," Journal of the Franklin Institute, vol. 

351, no. 4, pp. 2356-2377, 2014. 
[15] L. Zhao and Y. Jia, "Decentralized adaptive attitude synchronization 

control for spacecraft formation using nonsingular fast terminal sliding 

mode," Nonlinear Dynamics, vol. 78, no. 4, pp. 2779-2794, 2014. 
[16] S. Mobayen, "An adaptive fast terminal sliding mode control combined 

with global sliding mode scheme for tracking control of uncertain 

nonlinear third-order systems," Nonlinear Dynamics, vol. 82, no. 1-2, pp. 
599-610, 2015. 

[17] W. Wang, Q. Zhao, Y. Zhao, and D. Du, "A nonsingular terminal sliding 

mode approach using adaptive disturbance observer for finite-time 
trajectory tracking of MEMS triaxial vibratory gyroscope," Mathematical 

Problems in Engineering, vol. 2015, 2015. 

[18] N. He, C. Jiang, B. Jiang, and Q. Gao, "Terminal sliding mode control 
with unidirectional auxiliary surfaces for hypersonic vehicles based on 

adaptive disturbance observer," Mathematical Problems in Engineering, 

vol. 2015, 2015. 
[19] S. He, D. Lin, and J. Wang, "Chattering-free adaptive fast convergent 

terminal sliding mode controllers for position tracking of robotic 

manipulators," Proceedings of the Institution of Mechanical Engineers, 
Part C: Journal of Mechanical Engineering Science, vol. 230, no. 4, pp. 

514-526, 2016. 

[20] Q. Zhang, H. Liu, C. Wang, and Y. Li, "Robust adaptive terminal control 
for near space vehicle based on second order sliding mode disturbance 

observer," in Control Conference (CCC), 2016 35th Chinese, 2016, pp. 

591-595: IEEE. 
[21] S. Lyu, Z. H. Zhu, S. Tang, and X. Yan, "Fast Nonsingular Terminal 

Sliding Mode to Attenuate the Chattering for Missile Interception with 

Finite Time Convergence," IFAC-PapersOnLine, vol. 49, no. 17, pp. 34-
39, 2016. 

[22] W. Wang and X. Yu, "Chattering free and nonsingular terminal sliding 

mode control for attitude tracking of a quadrotor," in Control And 
Decision Conference (CCDC), 2017 29th Chinese, 2017, pp. 719-723: 

IEEE. 

[23] Y.-j. Wu, J.-x. Zuo, and L.-h. Sun, "Adaptive terminal sliding mode 
control for hypersonic flight vehicles with strictly lower convex function 

based nonlinear disturbance observer," ISA transactions, vol. 71, pp. 215-

226, 2017. 
[24] D. Xu, Q. Liu, W. Yan, and W. Yang, "Adaptive Terminal Sliding Mode 

Control for Hybrid Energy Storage Systems of Fuel Cell, Battery and 

Supercapacitor," Ieee Access, vol. 7, pp. 29295-29303, 2019. 
[25] B. An, B. Wang, Y. Wang, and L. Liu, "Adaptive Terminal Sliding Mode 

Control for Reentry Vehicle Based on Nonlinear Disturbance Observer," 

IEEE Access, vol. 7, pp. 154502-154514, 2019. 
[26] S. Ahmed, H. Wang, and Y. Tian, "Adaptive high-order terminal sliding 

mode control based on time delay estimation for the robotic manipulators 

with backlash hysteresis," IEEE Transactions on Systems, Man, and 
Cybernetics: Systems, 2019. 

[27] Y. Wang, J. Chen, F. Yan, K. Zhu, and B. Chen, "Adaptive super-twisting 
fractional-order nonsingular terminal sliding mode control of cable-driven 

manipulators," ISA transactions, vol. 86, pp. 163-180, 2019. 

[28] Y. Wang, B. Li, F. Yan, and B. Chen, "Practical adaptive fractional‐order 
nonsingular terminal sliding mode control for a cable‐driven 

manipulator," International Journal of Robust and Nonlinear Control, 

vol. 29, no. 5, pp. 1396-1417, 2019. 
[29] U. Ansari, A. H. Bajodah, and M. T. Hamayun, "Quadrotor control via 

robust generalized dynamic inversion and adaptive non‐singular terminal 

sliding mode," Asian Journal of Control, vol. 21, no. 3, pp. 1237-1249, 
2019. 

[30] X. Liu, S. Qi, R. Malekain, and Z. Li, "Observer-based composite 

adaptive dynamic terminal sliding-mode controller for nonlinear 
uncertain SISO systems," International Journal of Control, Automation 

and Systems, vol. 17, no. 1, pp. 94-106, 2019. 

[31] Y. Wang, K. Zhu, F. Yan, and B. Chen, "Adaptive super-twisting 
nonsingular fast terminal sliding mode control for cable-driven 

manipulators using time-delay estimation," Advances in Engineering 

Software, vol. 128, pp. 113-124, 2019. 
[32] J. Keighobadi, M. Hosseini-Pishrobat, and J. Faraji, "Adaptive neural 

dynamic surface control of mechanical systems using integral terminal 

sliding mode," Neurocomputing, vol. 379, pp. 141-151, 2020. 
[33] K. Eliker and W. Zhang, "Finite-time Adaptive Integral Backstepping 

Fast Terminal Sliding Mode Control Application on Quadrotor UAV," 

International Journal of Control, Automation and Systems, vol. 18, no. 2, 
pp. 415-430, 2020. 

[34] J. A. Moreno, D. Y. Negrete, V. Torres-González, and L. Fridman, 
"Adaptive continuous twisting algorithm," International Journal of 

Control, vol. 89, no. 9, pp. 1798-1806, 2016. 

[35] T. Sanchez, J. A. Moreno, and L. M. Fridman, "Output feedback 
continuous twisting algorithm," Automatica, vol. 96, pp. 298-305, 2018. 

[36] A. Chalanga, S. Kamal, and B. Bandyopadhyay, "Continuous integral 

sliding mode control: A chattering free approach," in 2013 IEEE 
International Symposium on Industrial Electronics, 2013, pp. 1-6: IEEE. 

[37] C. Xiu and P. Guo, "Global terminal sliding mode control with the quick 

reaching law and its application," IEEE Access, vol. 6, pp. 49793-49800, 
2018. 

[38] O. Boubaker, "The inverted pendulum benchmark in nonlinear control 

theory: a survey," International Journal of Advanced Robotic Systems, 
vol. 10, no. 5, p. 233, 2013. 

[39] I. Hassanzadeh and S. Mobayen, "Controller design for rotary inverted 

pendulum system using evolutionary algorithms," Mathematical 
Problems in Engineering, vol. 2011, no. Article ID 572424, p. 17 Pages, 

2011. 

[40] S. Mobayen, F. Tchier, and L. Ragoub, "Design of an adaptive tracker for 
n-link rigid robotic manipulators based on super-twisting global nonlinear 

sliding mode control," International Journal of Systems Science, pp. 1-13, 

2017. 
 

View publication stats

https://www.researchgate.net/publication/354998709

