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The progress of metaheuristic techniques, big data, and the Internet of things generates opportunities to performance
improvements in complex industrial systems. This article explores the application of Big Data techniques in the implementation
of metaheuristic algorithms with the purpose of applying it to decision-making in industrial processes. This exploration intends
to evaluate the quality of the results and convergence times of the algorithm under different conditions in the number of
solutions and the processing capacity. Under what conditions can we obtain acceptable results in an adequate number of
iterations? In this article, we propose a cuckoo search binary algorithm using the MapReduce programming paradigm
implemented in the Apache Spark tool. The algorithm is applied to different instances of the crew scheduling problem. The
experiments show that the conditions for obtaining suitable results and iterations are specific to each problem and are not
always satisfactory.

1. Introduction

With the increase of different kinds of electronic devices,
social networks, and the Internet of Things, the datasets are
growing fast in volume, variety, and complexity. Currently,
big data is emerging as a trend and working with large data-
sets typically aimed at extracting useful knowledge from
them. To address this problem, different programming
models have been developed, in which MapReduce is one
of the most powerful [1].

In complex industrial systems, the engineers face chal-
lenges daily where their job is to make decisions on how to
improve the production and reduce costs. They are continu-
ously selecting where, how, when, and what it must do to
achieve efficiency in the processes. Normally, these decisions
are based on an optimization problem. On the other hand,
nowadays, a greater data quantity is available and therefore
we can build robust optimization models that support these
decisions. However, this increase in data volume and variety

implies an increase in the complexity of the calculations and
therefore in the convergence time of the algorithms.

Moreover, computational intelligence and particularly
metaheuristics have been successful in solving complex
industrial problems. In the literature, we find metaheuristics
that have satisfactorily solved problems of resource allocation
[2, 3], vehicle routing [4], scheduling problems [5], reshuf-
fling operations at maritime container terminals problems
[6], antenna positioning problems [7], covering problems
[8, 9], and also in bioinformatics problems such as protein
structure prediction, molecular docking, and gene expression
analysis [10]. However, in the big data era, the integration of
metaheuristics into the decision-making process presents
two fundamental difficulties: the first one is to get from com-
putational intelligence algorithms, suitable results, and con-
vergence times when dealing with large datasets, because
much of the decisions must be close to real time. The second
one relates to the programming model differences usually
used in computational intelligence and big data algorithms.
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These difficulties motivate the design and study of computa-
tional intelligence algorithms in programming models used
in big data.

A recent framework in the big data area is the Apache
Spark which has been widely used to solve industry prob-
lems [11]. This framework has advantages over the tradi-
tional MapReduce model, since it uses an abstraction called
resilient distributed dataset (RDD). This abstraction allows
to carry out operations in memory with high fault tolerance,
being indicated for the use of iterative algorithms [12]. This
work is mainly focused in the behavioural performance anal-
ysis of metaheuristic algorithms implemented with the big
data Apache Spark tool. The specific objective is the reduc-
tion of their convergence times, to support the decision-
making in complex industrial systems at the right times.
For the design of the experiments, we will use the population
size of the metaheuristic and the number of executors within
the Apache Spark. To perform the evaluation, the average
value, number of iterations, and speed up will be used. The
following scenarios will be studied:

(1) The evaluation of the average value through the var-
iation of the solutions number.

(2) The evaluation of iteration number through the solu-
tion number used to solve problems.

(3) The evaluation of algorithm scalability through exec-
utor number.

These analyses aim to understand which metaheuristic
algorithm conditions, related to the solutions and executors
number, can obtain suitable results and times to support
the decision-making process in complex industrial problems.
For this study, it was decided to use the metaheuristic
Cuckoo Search; however, the method presented in this article
could be applied to different problems of the complex indus-
trial systems.

Cuckoo search is a relatively new metaheuristic that cur-
rently has been widely used in solving different types of opti-
mization problems [13]. Some examples of solved problems
by the cuckoo search algorithm are the problems in satellite
image segmentation [14], the resource allocation problems
[3, 15], the optimal power system stabilizers design problems
[16], and the optimal allocation of wind based distributed
generator problems [17] among others.

In order to carry out the experiments, two types of data-
sets were chosen. The first one is a benchmark dataset associ-
ated to the known set covering problem and a second dataset
is associated with the large-scale railway crew scheduling
problems, where the number of columns fluctuates between
fifty thousand and one million. The results show that ade-
quate scalability and convergence times are not always
obtained, what depends on the dataset type and the number
of solutions that are being used.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the crew scheduling problem.
Section 3 details the cuckoo search algorithm. The state of
the art of binarization techniques is described in Section 4.
In Section 5, we explain the Apache Spark framework. In

Sections 6 and 7, we detail the binary and distributed versions
of our algorithm. The results of numerical experiments are
presented in Section 8. Finally, we provide the conclusions
of our work in Section 9.

2. Crew Scheduling Problems

In the crew scheduling problem (CrSP), a group of crew
members is assigned to a set of scheduled trips. This allo-
cation must be such that all trips necessarily are covered,
while the safety rules and collective agreements must be
respected. These allocation and restrictions make the CrSP
one of the most difficult problems to solve in the transpor-
tation industry [18].

When a bibliographic search is performed, it was
found that CrSP is a problem of great importance at present,
appearing variations of the original problem associated
mainly to the restrictions. As an example, we found CrSP
applied to railway. In [19], CrSP with attendance rates was
solved; a version of CrSP with fairness preferences was solved
in [20]. Crew scheduling problem applications were also
found for airlines and bus transportation. In a public trans-
port of buses, in [21] a variation of CrSP was resolved. A
new heuristic was proposed in [22] to solve a crew pairing
problem with base constraints. In [23], a large-scale inte-
grated fleet assignment and crew pairing problem were
solved.

In this work, due to the addition of big data concepts,
we will approach the CrSP in its original form. The problem
is defined as follows: given a timetable of transport services
which are executed every day in a certain period of hours.
Each service is divided into a sequence of trips. A trip is
performed by a crew, and it is characterized by a departure
station, a departure time, an arrival time, and an arrival sta-
tion. Given a period of time, a crew performs a roster. This
is defined as a cyclical travel sequence and each roster
assigns a cost.

The CrSP then consists in finding a roster subset that
covers all trips, satisfying the constraints imposed and at a
minimal cost. The problem is broken down into two phases:

(1) Pairing generation: a very large number of feasible
pairings is generated. A pairing is defined as a
sequence of trips which can be assigned to a crew in
a short working period. A pairing starts and ends in
the same depot and is associated with a cost.

(2) Pairing optimization: a selection is made of the best
subset of all the generated pairings to guarantee that
all the trips are covered at minimum cost. This phase
follows quite a general approach, based on the solu-
tion of set-covering or set-partitioning problems.

In this research, we will assume that the pair genera-
tion phase has already been performed because we will
use a benchmark dataset. Therefore, we will focus efforts in
resolving the pairing optimization phase. The pairing optimi-
zation phase requires the determination of a min-cost subset
of the generated pairings covering all the trips and satisfying
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additional constraints. Usually it is solved through the set
covering problem, and depending on the specific modeled
problem, it is added as some type of constraint.

The set covering problem (SCP) is well known to be
NP-hard [24]. Nevertheless, different algorithms for solving
it have been developed. There exist exact algorithms that
generally rely on the branch-and-bound and branch-and-
cut methods to obtain optimal solutions [25, 26]. These
methods, however, need an effort for solving an SCP instance
that grows exponential with the problem size. Then, even
medium-sized problem instances often become intractable
and cannot be solved anymore using exact algorithms. To
overcome this issue, the use of different heuristics has been
proposed [27, 28].

For example, [28] presented a number of greedy algo-
rithms based on a Lagrangian relaxation (called the Lagrang-
ian heuristics); Caprara et al. [29] introduced relaxation-
based Lagrangian heuristics applied to the SCP. Metaheuris-
tics have also been applied to solve SCP, some examples are
genetic algorithms [30], simulated annealing [31], and ant
colony optimization [32]. More recently, swarm-based meta-
heuristics as cat swarm [33], artificial bee colony [34], and
black hole [9] were also proposed.

The SCP can be formally defined as follows. Let A = aij ,
be a n ×m zero-one matrix, where a column j cover a row i if
aij = 1, besides a column j is associated with a nonnegative
real cost cj. Let I = 1,… , n and J = 1,… ,m be the row
and column set of A, respectively. The SCP consists in
searching a minimum cost subset S ⊂ J for which every row
i ∈ I is covered by at least one column j ∈ J , that is,

min   f x = 〠
m

j=1
cjxj

subject to 〠
m

j=1
aijxj ≥ 1, ∀i ∈ I, and xj ∈ 0, 1 , ∀j ∈ J ,

1

where xj = 1 if j ∈ S, xj = 0 otherwise.

3. Cuckoo Search Algorithm

The cuckoo search is a bioinspired algorithm derived from
some cuckoo bird species with an obligate brood parasitism,
who lay their eggs in the nests of other bird species [13]. For
simplicity, the cuckoo search algorithm is described using the
following idealized rules:

(1) Each cuckoo lays one egg at a time and dumps it in a
randomly chosen nest.

(2) The best nests with high-quality eggs will be carried
over to the next generations.

(3) The number of available host nests is fixed, and the
egg laid by a cuckoo is discovered by the host bird
with a probability pa ∈ 0, 1 . In this case, the host bird
can either get rid of the egg or simply abandon the
nest and build a completely new nest.

The basic steps of the CS can be recapitulated as the pseu-
docode shown in Algorithm 1.

The updated cuckoo search solutions are shown in (2), in
which γ corresponds to the step size, and ⊕ corresponds to
the entry-wise multiplications. A random number denomi-
nated as Levy (κ) is given by the distribution shown in (3).

Xt+1 = Xt + γ ⊕ Levy κ , 2

Levy κ ~μ = t−1−κ 3

The search engine of the cuckoo search algorithm per-
forms naturally in continuous spaces. Nevertheless, the
crew scheduling problems are solved in discrete or binary
spaces, forcing the adaptation of the original algorithm. A
state of the art of main techniques used in the binarization
of swarm intelligence continuous metaheuristics is presented
in Section 4.

4. Binarization Methods

There exists two main categories for binarization techniques
[35]. General binarization frameworks are part of one of

Objective function: f x , x = x1, x2,… , xn
Generate an initial population of m host nests
while (t<MaxGeneration) or (stop criterion)

Get a cuckoo randomly (say, i) and replace its solution by performing Lévy flights
Evaluate its fitness Fi
Choose a nest among n (say, j) randomly
if Fi < Fj then

Replace j by the new solution
end if
a fraction pa of the worse nests are abandoned and new ones are built
Keep the best nests
Rank the nests and find the current best
Pass the current best solutions to the next generation

end while

Algorithm 1: Cuckoo search algorithm.
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these groups in which exists a mechanism that allows the
binary transformation of any continuous metaheuristic
without altering the operators. The most used of these
frameworks are the transfer functions and the angle modula-
tion. The binarizations designed specifically for a metaheur-
istic are the second group of binarization methods that
include techniques such as the set-based approach and the
quantum binarization.

The most used binarization method is the transfer func-
tion introduced by [36]. This function is an inexpensive oper-
ator that provides the probability values and models the
solution positions of the transition. The transfer function is
the beginning of the binarization method that allows to
map the ℝn solutions in [0,1]n solutions. The S shaped and
the V shaped are the most used transfer functions, well
described in [37, 38]. The next step is applying a rule to
binarize the transfer function results, which could include
the binarization rules elitist, the static probability, the com-
plement, or the roulette [37].

The sizing optimization of the capacitor banks in
radial distribution feeders was performed previously using
a binary particle swarm optimization [39]. For the reliabil-
ity analysis of the bulk power system, a transfer function
based on swarm intelligence was used [40]. A binary
coded firefly algorithm that solves the set covering
problem was performed using the same transfer function
[37]. A binary cuckoo search algorithm for solving the
set covering problem was applied previously [41]. An
improved firefly and particle swarm optimization hybrid
algorithm was applied to the unit commitment problem
[38]. A cryptanalytic attack on the knapsack cryptosystem
was approached using the binary firefly algorithm [42].
The network and reliability constrained unit commitment
problem was solved using a binary real coded firefly
algorithm [43]. Similarly, using the firefly algorithm, the
knapsack problem was solved [44].

The angle modulation method uses four parameters
which control the frequency and shift of a trigonometric
function as is shown in (4).

gi xj = sin 2π xj − ai bi cos 2π xj − ai ci + di 4

Using a set of benchmark functions, the angle modula-
tion method was first applied in the particle swarm optimiza-
tion. Assuming a n-dimensional binary problem and
X = x1, x2,… , xn as a solution. The first step uses a four-
dimensional space, in which each dimension corresponds
to a coefficient of (4). The solutions ai, bi, ci, di are linked
to a gi trigonometric function. The rule 6 is used for each ele-
ment xj:

bij =
1 if gi xj ≥ 0,
0 otherwise

5

Now for each four-dimensional initial solution ai, bi,
ci, di , we obtain a feasible n-dimensional solution binarized
for our n-binary problem bi1, bi2,… , bin . Several applica-
tions of the angle modulated method have been developed.
This include the implementation of angle modulate using

a binary PSO to solve network reconfiguration problems
[45]. Another implementation is a binary adaptive evolu-
tion algorithm applied to multiuser detection in multicar-
rier cdma wireless broadband system [46]. An angle
modulate binary bat algorithm was also previously applied
for the mapping of functions when handling binary prob-
lems using continuous-variable-based metaheuristics [47].

Evolutionary computing (EC) and quantum computing
are two research areas involving the use of three algorithms
categories [48]. First, the quantum evolutionary algorithms
are focused on the application of EC algorithms in a
quantum-computing environment. The evolutionary-
designed quantum algorithms are focused in the automatic
manufacturing of new quantum algorithms. The quantum-
inspired evolutionary algorithms use some concepts and
bases of quantum computing to generate new EC algorithms.

(1) Quantum evolutionary algorithms: these algorithms
focus on the application of EC algorithms in a
quantum-computing environment.

(2) Evolutionary-designed quantum algorithms: these
algorithms try to automate the generation of new
quantum algorithms using evolutionary algorithms.

(3) Quantum-inspired evolutionary algorithms: these
algorithms concentrate on the generation of new EC
algorithms using some concepts and principles of
quantum computing.

The quantum binary approach is part of this last cate-
gory, in which the algorithms are adapted to be used on nor-
mal computers, integrating the concepts of q-bits and
superposition. In this method, each achievable solution has
a position X = x1, x2, , xn and the quantum q-bits vector
Q = Q1,Q2,… ,Qn . Q stands for the probability of xj take

the value 1. For each dimension j, a random number between
[0,1] is obtained and compared with Qj, if rand <Qj, then

xj = 1, else xj = 0. The mechanism of Q vector updating is

distinct to each metaheuristic.
The application of quantum swarm optimization has

been used in different problems including combinatorial
optimization [49], cooperative approach [50], knapsack
problem [51], and power quality monitoring in [52]. The
application of quantum differential evolution is also
observed in the knapsack problem [53], combinatorial
problems [54], and methods of image thresholding [55].
A quantum algorithm using cuckoo search metaheuristic
was applied to the knapsack problem [56] and bin packing
problem [57]. An application to image thresholding using
quantum ant colony optimization is reported in [55]. Two
quantum binarization applications to the knapsack prob-
lem are reported previously using harmony search in
[58] and monkey algorithm in [59]. The quantum differ-
ential evolution algorithm was applied to the knapsack
problem in [53], combinatorial problems [54], and image
threshold methods in [55]. Using the cuckoo search
metaheuristic, a quantum algorithm was applied to the
knapsack problem [56] and bin packing problem [57]. A
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quantum ant colony optimization was applied to image
threshold in [55]. Using Harmony Search in [58] and
Monkey algorithm in [59], quantum binarizations were
applied to the knapsack problem.

The unsupervised learning K-means clustering method
is used to perform binarization in different problems as is
shown in Figure 1. This method starts with the cuckoo
search algorithm generating the pair p, v in a continuous
space, in which p is the position and v the velocity of the
solution (Figure 1(a)). All the velocity module elements
are considered, and the K-means is applied (Figure 1(b)).
For each cluster k, we link a value f k ∈ 0, 1 of the tran-
sition probability (Figure 1(b)). Finally, the transition is
performed using the (6). In this equation, x̂i t corre-
sponds to the complement of xi t ∈ 0, 1. These transitions
occur in the binary space (right pannel). If xi ∈ k cluster,
then TP xi = f k .

xi t + 1 ≔
x̂i t , if rand < TP xi ,

xi t , otherwise
6

In a previous work, we solved the knapsack problem by
applying the transition probability function shown in (7)
[3]. In this equation, α=0.1, β=1, and N (xi) corresponds
to the cluster that belongs xi. Ptr corresponds to the transition
probability; N can take values between 0,… , 4 . The initial
probability is run by α, and then β carries on the probability
jump between the different groups.

Ptr xi = α + βN xi α 7

5. Spark Distributed Framework

The purpose of this section is to present the Spark distributed
framework that it has a target to work with big volumes of
data. This framework will be used later in Section 7.

The Spark framework provides an interface of friendly
work that allows using of the good way the storage, the
memory, and CPU and a set of servers that have as their

purpose processing large amounts of data in memory [11].
The requirement of processing large amounts of data is a
need that is expressed in the last time, given principally
by the low that has shown the cost of data storage which
leads to a new need that is to obtain knowledge of this
information gathered across the time. This new need aris-
ing out of the available storage capacity allowed to find a
new line of action for researchers, since the amount, diver-
sity, and complexity of the data [60–64], they are not
capable of being tackled by the traditional methods of
automatic learning.

Spark has a high performance in parallel computing,
being used in machine learning algorithms [65], imaging
processing [66], bioinformatics [67], computational intelli-
gence [9], astronomy [68], medical information [69], and
so on.

A pioneer in address the treatment of bulk data based
on the principle of the locality of the data [70] was
MapReduce framework [1] which has the disadvantage of
being insufficient for applications that need to share infor-
mation across several steps or for iterative algorithms [71].
The Spark framework has been very successful becoming a
platform for generic use, such as batch processing, iterative
process, interactive analysis, flow processing, automatic
learning, and computer graphics.

The units of central data of Spark are the resilient dis-
tributed datasets (RDD). These units are distributed and
are immutable, that is, the transformation of the RDD are
RDD and abstraction of memory fault tolerant. Principally,
there are two types of operations: transformations that take
RDD and produce RDD and actions that take RDD and pro-
duce values. To execute Spark, there are several options of
administration of cluster that can be used, from the simple
independent solutions of Spark, Apache Mesos, and Hadoop
YARN [72].

In our case and based on the engineering applications, we
decide to use the management Hadoop YARN, being the lat-
est implementation that uses cloud computing [73], that has
the characteristic of putting at disposal large number of
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Figure 1: K-means binarization method.
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devices to provide such services as computation and storage
on demand that represent a lower cost of hardware, software,
and maintenance [73].

6. Binary Cuckoo Search Algorithm

The general performance of the binary cuckoo search algo-
rithm is summarized in this section. First, the algorithm
creates the initial solutions with the operator. Once this
happens, the algorithm evaluates compliance with the stop
criterion. Maximum iteration number and obtaining the
optimal value are the two stop criteria. When one of these
criteria is not obtained, the K-means transition operator is
executed to perform the binarization (detailed in Section 6.2).
When the transitions are already obtained, a repair operator
must be applied whether the solutions do not accomplish
with the problem restrictions (detailed in Section 6.3). This
iterative process is evaluated until the stop criterion is accom-
plished. A general diagram of the process described is
detailed in Figure 2.

6.1. Initial Solution Operator. To obtain a new solution, the
process begins with the random choice of a column. It is then
queried whether the current solution covers all rows. The
heuristic operator (Section 6.4) is run to add a new column,
until all rows are covered, if the previous part does not hap-
pen. The final step is to delete a column, if there are columns
that all their rows are covered by more than one column. The

initialization process to obtain the solution is detailed in
Algorithm 2.

6.2. K-Means Transition Operator. Cuckoo search is a contin-
uous swarm intelligence metaheuristic. The solutions posi-
tion at each iteration needs to be updated due its iterative
nature. This update is performed inℝn space when the meta-
heuristic is continuous. The solution position update can be
expressed in a general form for any continuous metaheuris-
tics as is shown in (8). In this equation, x t + 1 corresponds
to the x position of the solution at time t + 1. This position is
obtained from the position x at time t plus a Δ function
calculated at time t + 1. The function Δ is due to each
metaheuristic and generates values in ℝn. In cuckoo

Begin

Generates initial
solutions

Stopping criteria was
completed?

Execute K-means
transition
operator

Yes

EndNo

Execute repair
operator

Is it better than the
best solution?

Replace the best
solution

Yes

No

Figure 2: Binary cuckoo search algorithm flow chart.

1: Function Initialization()
2: Input
3: Output Initialized solution Sout
4: S ← SelecRandomColumn()
5: while All row are not covered do
6: S.append (Heuristic(S))
7: end while
8: S ← deleteRepeatedItem(S)
9: Sout ← S
10: return Sout

Algorithm 2: Initial solution operator.
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search, for example, Δ x t = γ ⊕ Levy κ x , in black hole
Δ x t = rand × xbh t − x t and in the firefly, bat, and
PSO algorithms, Δ can be expressed in simplified form
as Δ x t = v x t .

x t + 1 = x t + Δ x t 8

The movements generated by the cuckoo search algo-
rithm in each dimension for all solutions are considered
in the K-means transition operator. Δi x t is the dis-
placement magnitude of the Δ x t in the ith position
for the solution x at time t. Using abs Δi x t , the mag-
nitude of the displacement, the displacements are subse-
quently grouped. The K-means method is used to do
this, where K represents the number of clusters used. In
the final step, a generic Ptr function given in (9) is proposed
to assign a transition probability. In this case, ℤ/kℤ is
the group obtained when quotient ℤ by kℤ, that is to
say, ℤ/kℤ = 0, 1, 2,… , k − 1 , where each element of the
group identifies each of the clusters. Since Ptr i is a prob-
ability, it take values in [0,1].

Ptr
ℤ
k
ℤ→ 0, 1 9

Through the function Ptr, a transition probability is
assigned to each group. We use the linear function given
in (10) as a first approximation. In this equation, N xi

corresponds to the location of the group to which Δi x
belongs. The coefficient α allows defining the transition
probability value for all the clusters. This increases propor-
tional to α. For our particular case, N xi = 0 corresponds
to elements belonging to the group that has the lowest Δi

values and therefore smaller transition probabilities will be
assigned to them.

Ptr xi = Ptr N xi = α +N xi α 10

The K-means transition operator begins with the calcula-
tion for each solution of the Δi (Algorithm 3). The solutions
are then grouped using K-means clusterization and the Δi as
magnitude of distance. We obtain the transition probability
with the group assigned to each solution using (10). Subse-
quently, the transition of each solution is performed. The
rule 12 for the cuckoo search is used to perform the transi-
tion, where x̂i is the complement of xi. In the final step, each
solution is composed using the repair operator detailed in
Algorithm 4.

xi t + 1 ≔
x̂i t , if rand < Ptr xi ,

xi t , otherwise
11

6.3. Repair Operator. Using the K-means transition and the
perturbation operators, the repair operator objective is to
repair the solutions generated. The operator to perform
the repairing process has as input parameter the solution
Sin to repair and as output parameter the repaired solution
Sout. We iteratively use the heuristic operator for the exe-
cution of the process, which specify the column that must
be added. Once all the rows are covered, the deletion is
applied to the columns that have all their rows covered
by other columns.

6.4. Heuristic Operator. To repair the solutions that do not
comply with the constraints is used the heuristic operator.
The heuristic operator aims to select a new column for the
cases that a solution needs to be built or repaired. The
operator considers as input parameter the solution Sin

1: Function K-meansTransition(ListX (t))
2: Input List solutions t (ListX (t))
3: Output List solution t + 1 (ListX (t + 1))
4: Δi List ← getΔi (ListX (t), MH)
5: Xi Groups ← K-means (Δi List, K)
6: for X(t) in ListX (t)
7: for Xi (t) in X(t)
8: Xi Groups ← get Xi Groups (i, X(t), Xi Groups)
9: Ptr X

i t ← getTransitionProbability(Xi Group)
10: Xi t + 1 ← applyTransitionRule(Ptr Xi t )
11: end for
12: end for
13: for X t + 1 in ListX t + 1
14: X t + 1 ← Repair(X t + 1 )
15: end for
16: return ListX t + 1

Algorithm 3: K-means transition algorithm.

1: Function Repair(Sin)
2: Input Input solution Sin
3: Output The Repair solution Sout
4: S ← Sin
5: while needRepair(S) == True do
6: S.append (Heuristic(S))
7: end while
8: S ← repeatedItem(S)
9: Sout ← S
10: return Sout

Algorithm 4: Repair algorithm.

1: Function Heuristic(Sin)
2: Input Input solution Sin
3: Output The new column Cout
4: listRows ← getBestRows(Sin, N =10)
5: listcolumsnOut← getBestColumns(ListRows, M =5)
6: columnOut← getColumn(listcolumnsOut)
7: return columnOut

Algorithm 5: Heuristic operator.
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which needs to be completed, and in the case of being a
new solution Sin =∅. With the list of columns belonging
to Sin, you get the set of rows R not covered by the solu-
tion. With the set of rows not covered and using (12), we
obtain in line 4 the best 10 rows to be covered. With this
list of rows (listRows) on line 5, we obtain the list of the
best columns according to the heuristic indicated in (13).

Finally, as a random process, we obtain in line 6 the col-
umn to incorporate.

WeightRow i = 1
Li
,

Where Li is the sumof all ones in row i,
12

WeightColumn j =
cj

R ∩Mj

,

WhereMj is the set of rows covered by Col j
13

7. Binary Cuckoo Search Big Data Algorithm

In this section, we describe the distributed version of the
algorithm developed with Apache Spark. The key in each of
the map transformations and collect actions used corre-
sponds to the solution identifier that will be denoted by idS.
When the identifier is used as a key during the execution, it
allows the calculations associated to a solution to be executed
always in the same partition for the different stages and
therefore to be more efficient regarding the data transfer
between different workers. In Figure 3, the flow diagram for
the distributed algorithm is shown, and in Algorithm 6, the
pseudo-code of an iteration is detailed.

Solution
list

Iterated solution map K-means binarization map Repair map

Solution
list

iteration

Collect

Figure 3: Flow chart of Spark binary cuckoo search algorithm.

1: Function: distribuitedBinaryCuckoo(lSol)
2: Input: List of solution (lSol)
3: Output: Iterated list of solution (lSol)
4: lSol ← lSol.map (lambda Solution: (idS, iteratedSolution(Sol))
5: lSol ← lSol.map (lambda Solution: (idS, K-meansTransition(Sol))
6: lSol ← lSol.map (lambda Solution: (idS, repair(Sol))
7: lSol ← lSol.collect()
8: return lSol

Algorithm 6: Distributed operator.

Table 1: SCP instances from Beasley’s OR-Library.

Instance set n m Cost range Density
Optimal
solution

4 200 1000 [1100] 2 Known

5 200 2000 [1100] 2 Known

6 200 1000 [1100] 5 Known

A 300 3000 [1100] 2 Known

B 200 1000 [1100] 5 Known

C 400 4000 [1100] 2 Known

D 400 4000 [1100] 5 Known

E 500 5000 [1100] 10 Known

F 500 5000 [1100] 20 Unknown

G 1000 10000 [1100] 2 Unknown

H 1000 10000 [1100] 5 Unknown
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LSol contains the solution list to be iterated with the
cuckoo search algorithm. Each of these solutions has the
position and velocity information. The first step is to iterate
the solutions using the cuckoo search algorithm; this is done
at line 4. The key corresponds to the idS particle identifier,
and the returned value corresponds to the iterated solution
Sol, in which the velocity values have been updated. The
next step is to perform an iteration of the positions. For
this, the K-means transition operator described in Section
6.2 and executed at line 5 of Algorithm 6 is used. With
the K-means transition operator, the velocities obtained in
the previous step are used to get the new binary values of
the solution position. Subsequently since there is a

possibility that the iterated solutions do not meet with the
constraints, a repair operator is applied. This operator acts
on the positions and updates them to fulfill with the con-
straints. The detail of the repair algorithm is described in
Section 6.3. Finally, the list of solutions is collected and
stored for further analysis.

8. Results

In this section, we present computational experiments with
the proposed Spark binary cuckoo search algorithm. We
test the algorithm on two classes of well-known problems.

(1) OR-Library benchmarks: this class includes 65
small and medium size randomly generated prob-
lems that were frequently used in the literature.
They are available in the OR-Library and are
described in Table 1.

(2) Railway scheduling problems: this class includes
seven large-scale railway crew scheduling problems
from Italian railways and are available in OR-Library.

Binary cuckoo search big data algorithm was imple-
mented in python using Spark libraries. It was executed in
Azure platform, Spark 1.6.1 and Hadoop 2.4.1 versions. To
perform the statistical analysis in this study, the Wilcoxon
signed-rank nonparametric test was used. For the results,
each problem was executed 30 times.

The first stage corresponds to perform the parameter
configuration used by the algorithm. To develop this activity,

Table 2: Parameter setting for cuckoo search big data algorithm.

Parameters Description Value Range

α Transition probability coefficient 0.1 [0.08, 0.1, 0.12]

K Number of transition groups or clusters 5 [4–6]

γ Step length 0.01 [0.009, 0.01, 0.011]

κ Levy distribution parameter 1.5 [1.4, 1.5, 1.6]

Iteration number Maximum iterations 700 [600, 700, 800]

Table 3: Average result by problem type of dataset OR-Library.

Instance Best known BCSBA (5) BCSBA (10) BCSBA (20) BCSBA (50) BCSBA (100) BCSBA (500)

4 510 514.1 513.3 511.6 510.9 510.9 510.9

5 257.3 259.5 258.8 258.1 257.6 257.6 257.6

6 144.2 145.1 144.9 144.7 144.5 144.5 144.5

A 241.4 243.4 243.2 243.0 242.9 242.8 242.8

B 75.2 75.4 75.2 75.2 75.2 75.2 75.2

C 224.6 227.7 226.3 226.1 225.6 225.6 225.6

D 64.2 65.3 65.1 64.9 64.7 64.7 64.6

E 28.4 28.8 28.6 28.5 28.5 28.5 28.5

F 14 14.5 14.4 14.2 14.2 14.2 14.2

G 166.4 173.2 172.4 171.6 168.1 168.1 168.0

H 59.4 64.9 63.4 63.1 60.7 60.8 60.7

Average 162.28 164.72 163.87 163.73 162.99 162.99 162.96

p value 2.1e-4 1.5e-5 3.5e-7 2.7e-7 3.1e-08

4

3

2

1

0

−1

5 10 20 50 100 500
Solution number

%
−G

ap

Figure 4: Violin chart of the results quality by solution number.
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the methodology described in [3] was used. In this methodol-
ogy, four standard measures are used: the worst case, the best
case, the average case, and the average execution time. With
these four measurements, the area under the radar chart
curve is obtained to define the best configuration. The dataset
used to determine the best configuration corresponds to the
first problem of each group 4 1, 5 1,… , G 1, H 1 . The
results are shown in Table 2. In this table, the range column
corresponds to the evaluated ranges and the value column
to the value that will be used. The value of the parameters

γ, κ, and iteration number corresponds to those frequently
used by the cuckoo search algorithm in the literature. The
parameters α and K are specific to the K-means binarization
method and are referenced to (10).

8.1. Evaluation of Result Quality through the Variation of the
Solution Number. The goal of this section is to evaluate the
number of solutions to be used by the binary cuckoo search
big data algorithm (BCSBA) with respect to the quality of
the results. For the execution of this experiment, the other

Table 4: Average result by problem type for railway scheduling dataset.

Instance Best known BCSBA (5) BCSBA (10) BCSBA (20) BCSBA (50) BCSBA (100) BCSBA (500)

Rail507 174 192.1 190.3 187.2 184.5 182.4 182.3

Rail516 182 189.4 187.2 183.2 183.2 182.4 182.4

Rail582 211 227.4 226.1 224.4 223.3 221.2 221.4

Rail2586 948 1152.3 1142.2 1140.1 1132.2 1130.8 1130.6

Rail2536 691 836.1 832.4 830.9 826.2 822.1 822.3

Average 441.2 519.46 515.64 513.16 509.88 507.58 507.6

Table 5: Average iteration by problem type.

Instance BCSBA (5) BCSBA (10) BCSBA (20) BCSBA (50) BCSBA (100) BCSBA (500)

4 82.2 80.1 80.6 76.3 74.9 76.9

5 81.7 76.4 76.4 77.1 70.6 71.4

6 88.6 87.8 86.4 84.7 82.5 82.3

A 112.5 109.1 108.2 106.3 97.8 98.8

B 105.6 107.5 100.2 101.1 99.2 96.6

C 130.5 128.3 120.1 110.8 108.4 105.4

D 134.7 132.1 130.9 125.4 109.9 107.6

E 138.1 131.6 130.5 124.5 109.5 112.4

F 145.6 136.4 135.2 115.6 108.4 107.6

G 297.3 276.4 271.6 254.1 196.5 194.6

H 267.1 256.6 245.1 221.2 160.7 161.8

Average 143.99 138.39 135.02 127.01 110.76 110.49
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Figure 5: Convergence charts for instances of small and medium size problems.
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parameters used by the algorithm were the values described
in the value column of the Table 2. In Table 3, the results
are shown for cases that consider 5, 10, 20, 50, 100, and 500
solutions using the OR-Library dataset. From the table we
observe that the results for cases 50, 100, and 500 are superior
to the rest, nevertheless between them, they are very similar.
Additionally, to see the significance, the Wilcoxon test was
performed, comparing CSBA(5) with respect to other cases,
obtaining that in all cases there is a significant difference.
To complement the above analysis, violin charts were used
to compare the distributions of the results through their
shapes and interquartile ranges. The results are shown in
Figure 4. The x-axis corresponds to the number of solutions
used to solve the problem and the y-axis to %−Gap defined
in (14). In the distributions, the superiority of the cases 50,
100, and 500 over the rest is appreciated. When we compare
the cases 50, 100, and 500, between them, we see there is a
similarity in the shape of their distributions as well as in the
interquartile ranges.

%−Gap = 100 SolutionValue − BestKnown
BestKnown 14

In Table 4, the results for the railway scheduling prob-
lems are displayed. In this table, a behavior similar to the pre-
vious analysis is observed. The cases in which it uses 100 and
500 solutions obtained better results than the other cases.
When comparing BCSBA-100 with BCSBA-500, similar
results are observed.

8.2. Evaluation of Algorithm Convergence Time through the
Solution Number. In this section, the convergence of the
BCSBA algorithm with respect to the number of solutions
is evaluated. For this analysis, the problems were grouped
into 4 groups: the small group, which considers problems 4,
5, and 6; the median group, which considers problems A, B,
C, D, E, and F; problem group G; and problem group H.
Table 5 and Figures 5 and 6 show the results for different
groups. In the table, it is observed that BCSBA has better
convergence in cases 100 and 500 than in the rest of the
cases, the result being very similar between 100 and 500.
In Figures 5 and 6 the x-axis corresponds to the number
of average iterations and the y-axis is the average of the
%−Gap defined in (14). The data was collected every 10
iterations in the small and medium groups and every 20 iter-
ations in the G and H groups. For the case of the small and
medium groups, although the convergence curves are better
in cases 100 and 500, the difference is quite small, which does
not justify the increase in the number of solutions. For the
case of the groups G and H, this difference becomes much
more notorious.

8.3. Evaluation of Algorithm Scalability through Core
Number. This last experiment aims to evaluate the scalability
of our algorithm when considering more than one core for
calculation. In Section 8.1 and Section 8.2, we see that
increasing the number of solutions improves the results and
decreases the number of iterations. However, the increase
in the number of solutions has a computation cost. In this
section, we evaluate whether the cost of computing can be
diminished by the use of more processing cores.

In this section, we evaluate whether the cost of comput-
ing can be diminished by the use of more processing cores.

For the Spark configuration, three parameters were con-
sidered: num-executors which controls the number of execu-
tor requested, executor-cores property which controls the
number of concurrent tasks an executor can run, and
executor-memory which corresponds to the memory per
executor. For the proper use of an executor, it is recom-
mended to use between 3 and 5 cores. The considered Spark
settings are shown in Table 6.
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Figure 6: Convergence charts for instances of big size problems.

Table 6: Spark configuration.

Num-executors Executor-cores Executor-memory (Gb)

1 3 4

2 3 4

4 3 4

8 3 4

16 3 4
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In Figures 7, 8, and 9 we show the results of speed up
charts for BCSBA using different numbers of solutions and
considering between 1 and 16 executors. From the charts, it
is observed that the best scalability is obtained for the case
of 100 particles and in the problems G and H. For smaller
problems, scalability is significantly reduced. The worst scal-
ability was obtained for the algorithm using 5 particles.
Another interesting fact is observed in the 500-particle chart
where scalability was superior in G and H problems than in
the rest; however, the performance is lower than in the case
of 100 particles.

9. Conclusions

In this work, we have presented a binary cuckoo search big
data algorithm applied to different instances of crew schedul-
ing problem. We used an unsupervised learning method
based on the K-means technique to perform binarization.
Later, to develop the distributed version of the algorithm,
Apache Spark was used as framework. The quality, conver-
gence, and scalability of the results were evaluated in terms
of the number of solutions used by the algorithm. It was
found that quality, convergence, and scalability are affected
by the number of solutions; however, these depend addition-
ally on the problem that is being solved. In particular, it is
observed that for medium size problems, the effects are not
very relevant as opposed the large problems such as G and
H, where the effect of the number of solutions is much more
significant. On the other hand, when evaluating the scalabil-
ity, we observe that it is also dependent on the number of
solutions used by the algorithm and the size of the problems.
The best performances were for problems G and H consider-
ing solutions between 20 and 500.

As a future work, it is interesting to investigate the pro-
posed algorithm with other NP-hard problems with the
intention of observing similar behaviours to observe in the
case of CrSP. Also, we want to investigate how is the perfor-
mance of autonomous search tuning algorithms [74] in big
data environment. Finally, we also want to explore the per-
formance of other metaheuristics in Big data Frameworks.
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