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A B S T R A C T   

A dynamic smart home energy management system (SHEMS) is proposed in this study to address the growing 
concerns of energy conservation and environmental preservation. This study contributes a novel one-week dy
namic forecasting model for a hybrid PV/GES system integrated into a smart house energy management system, 
encompassing dynamic electricity pricing, smart appliance control, PV generation forecasting, and gravity en
ergy storage state of charge prediction. The findings of this study demonstrate that the developed dynamic 
SHEMS model significantly reduces household energy use and lowers the cost of power. With this SHEMS model, 
the hybrid PV/GES can supply the house’s energy needs for eight and a half hours each day. In addition, it offers 
the advantage of low electricity price for charging the battery of the electric vehicle. Performance indicators such 
as RMSE and MAPE are employed, yielding forecast error results ranging from 13.45 % to 23.16 % for RMSE and 
4.06 % to 11.27 % for MAPE.   

1. Introduction 

The increasing concerns about the environmental effects of tradi
tional energy sources and fossil fuels finite live, have shifted emphasis to 
renewable energy sources [1,2]. These latter significantly contribute to 
reducing greenhouse gas (GHG) emissions and traditional energy con
sumption based primarily on electric grid supply [3]. Recent statistics 
prove that buildings, and particularly the civic sector, require more than 
40 % of the total energy consumed in comparison with other sectors [4]. 
A significant portion of this consumption could be met by the integration 
of renewable energy systems combined with energy storage technolo
gies [5]. Different sources of renewable energy can be integrated into 
buildings to cover the heating, cooling, and electrical needs of the oc
cupants [6]. Among the most widely used renewable energy resources, 
solar energy draws increasing attention for building applications as a 
way to achieve sustainable buildings [7]. Solar energy is collected by 
photovoltaic (PV) modules or thermal panels in buildings [8]. The 
amount of energy gained is considerably affected by the weather con
ditions, mainly the magnitude of solar radiation, which output inter
mittent energy and therefore requires support from energy storage 
systems [9]. However, the integration of such decentralized and inter
mittent power technologies with variable capacity into the traditional 
electrical power system will create a new challenge for the stability and 

reliability of the electric grid [10]. These crucial challenges have 
prompted academics to consider smart grid as a more comprehensive 
and effective solution. 

The smart grid concept can be defined as the future power system 
which utilizes communication and advanced technologies to optimize 
energy production, distribution, and consumption [11,12]. In recent 
years, rising urbanization has resulted in an influx of new homes and 
buildings as well as increased energy usage. Household energy usage is 
often a visible issue, accounting for significant consumption [13]. As a 
result, domestic energy conservation and efficiency enhancements are 
required, particularly considering the current energy crisis and envi
ronmental emissions. Household consumers will be actively involved in 
energy management through demand response programs, thanks to the 
development of smart grid technologies [12]. These latter technologies 
include smart house energy management systems, which have the goal 
of achieving demand reduction goals while lowering electricity pur
chasing prices [14]. In addition to smart appliances, SHEMS is one of the 
most important infrastructures for managing the energy produced, 
stored, and consumed [13,15]. SHEMS is an essential system that aims to 
achieve a successful demand response. It combines power generation, 
consumption, and energy storage devices into a single management and 
control system [15]. SHEMS can increase the efficiency of residential 
renewable energy and help clients save money on their electricity bills. 
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The conventional power system market lacks customer interaction and 
has a single electricity pricing, resulting in insufficient electricity supply 
during peak hours and wasted electricity during off-peak hours. 
Following that, the off-peak and peak tariff mechanisms are imple
mented, which help customers adjust their energy consumption times. It 
is, however, less adaptable, and unable to reflect the true link between 
power demand and supply. Furthermore, SHEMS can entirely interact 
with the power system in order to obtain accurate real-time prices, 
production, load forecasting, and PV prediction. In addition, it enables 
the user to perform intelligent household energy allocation, optimize 
household load allocation in the time dimension, achieve customer de
mand response, relieve grid pressure during peak hours, and improve 
grid stability. 

Solar PV is extensively employed in smart homes due to its ease of 
installation and inexpensive cost. The installed PV capacity in the resi
dential sector reached 39.4 %, prompting extensive research into the 
best way to integrate PV systems into houses [16]. An accurate PV 
output power forecast is generally an essential input required for 
adequate load and resource scheduling, and specifically for the opera
tion of the energy management system (EMS) in residential applications. 

Several studies in the literature focused on PV forecasting in EMS. El- 
Baz et al. conducted a numerical comparison of the possibilities of uti
lizing a probabilistic PV forecast in a demand-side management (DSM) 
algorithm instead of the traditional deterministic algorithms. The results 
of the comparison demonstrate that the probabilistic PV forecasting 
algorithms may offer greater potential in DSM [16]. Klinger et al. pre
sented a forecast-based modeling strategy for using a battery coupled 
with a PV system connected to the grid. The authors concluded that an 
accurate PV output power forecast is an essential need for a hybrid PV/ 
battery system connected to the grid [17]. El-Baz et al. present a novel 
model of a day-ahead probabilistic PV power output forecast for build
ings. The results show that the developed model is accurate and reliable 
for EMS applications [18]. Hanna et al. showed that inaccurate forecasts 
can significantly affect the behavior of the battery discharging mode 
[19]. 

Optimal self-scheduling of building energy management systems 
with the integration of PV power and batteries has been investigated by 
Javadi et al. [20]. The study considers a dynamic time pricing scheme to 
determine the optimal scheduling for different case studies. Another 
study by Javadi et al. explored the same problem by including the end- 
user’s discomfort, which has been evaluated using a linear penalizing 
mechanism [21]. The Epsilon-Constraint Method has been employed in 
[22] to deal with the self-scheduling of home energy management sys
tems; While a risk-constrained model has been deployed in [23]. Ali 
et al. conducted an overview of smart home energy management sys
tems with smart grid optimizations strategies [24]. The authors dis
cussed the architectures, scheduling techniques, as well as some 
challenges of energy management systems. In addition, the demand-side 
management and demand response programs have been reviewed by the 
authors. The presence of ventilation and air conditioning system 
together with inverter-based heating, has been included in the optimal 
operation of building energy management [25]. The model has the 
capability to significantly decrease electricity expenses while ensuring 
that the consumer’s desired level of comfort is adequately upheld. 

Zafar et al. provided a HEMS overview with emphasis on key prin
ciples, configurations, and enabler technologies. In addition, a descrip
tion of HEMS computing developments and demand response 
communication technologies has been discussed by the authors [26]. 
Qureshi et al. conducted a trust-aware EMS study for smart houses 
(TEMSH), by employing time management and intelligent scheduling 
based on the management of uncontrollable and controllable appli
ances. The obtained results indicate that the proposed system is capable 
of managing and reducing energy costs by roughly 55 % in terms of bills, 
and is best for the environment [27]. Rocha et al. proposed a scheduling 
algorithm based on artificial intelligence for DSM in smart houses. The 
results of the algorithm show that when smart houses without and with 

distributed generation and battery storage are compared, the efficiency 
of the suggested system is demonstrated by a cost savings of 51.4 % [28]. 

The authors in [29] proposed an optimized EMS (OHEMS) with the 
integration of renewable energy and energy storage, as well as the 
incorporation of the residential sector into DSM activities. The opti
mized solution showed that the use of renewable energy and energy 
storage systems reduced the electricity bill by 19.94 % and the peak-to- 
average ratio by 21.55 %. Zheng et al. developed an integrated SHEMS 
model based on a pyramid taxonomy for residential buildings with a 
hybrid PV-battery system. The developed model demonstrates that it is 
more beneficial to model load/PV forecast uncertainties rather than 
averaging or disregarding them. The DA-RT retail power market and the 
two-stage stochastic programming model are useful for leveraging 
imprecise forecasts. Sharing PV and battery investments for revenue or 
trading with local small prosumers for cost savings could benefit each 
household by coordinating many prosumers [30]. 

The growing interest in electric vehicles has been driven by the 
increasing demand for environmentally friendly transportation. By 
integrating electrical vehicles into the utility grid, reduced pollution 
from transportation could be achieved. Therefore, many studies have 
evaluated various optimal strategies for grid-connected electrical vehi
cles. In [31], the authors provide a comprehensive review of the key 
implications associated with grid-connected electric vehicles. The study 
highlighted the exciting potential for energy exchange between vehicles 
and the grid. The same conclusion was drawn by [32]. In this study, the 
authors discussed the impact of intelligent charging stations on the 
distribution sector. An economic investigation of coordinating electric 
vehicle parking lots and home energy management systems has been 
addressed in [33]. The authors use real-life case studies and data to 
prove the effectiveness of the proposed model. 

According to a review of relevant literature, the most used energy 
management system models for a smart house give light to a home with 
renewable energy integration, usually solar PV coupled with batteries as 
an energy storage device with or without forecast. Furthermore, the 
majority of these models provide very short-term forecasting and do not 
investigate the prediction of PV output power for one week. 

Gravity energy storage system (GES) has recently received a lot of 
interest as a new storage system technology that is still under develop
ment. GES concept is similar to that of a pumped hydro energy storage 
system (PHES). This latter is considered as one of the most mature and 
reliable energy storage systems, especially due to its long lifetime 
compared to other energy storage systems. Several studies addressed the 
operation, development, and optimization of GES. Berrada et al. inves
tigated the optimal design of GES equipment [34]. The piston and 
container materials used to build GES were studied in [35]. The dy
namics model of the GES was studied in [36]. In [37], the authors 
developed a model to simulate the performance of two configurations of 
GES system. The study compares the dynamic behavior of the two setups 
and highlights the potential capabilities of GES system. The financial 
assessment of gravity energy storage has been addressed in [38]. The 
study proves the cost effectiveness of renewable power plants inte
grating gravity storage. The same conclusion has been reached in [39]. 
Authors in [34] analyzed the techno-economic performance of GES 
system. The resulting LCOE of GES based on these studies varies between 
0.038 €/kWh and 0.15 €/kWh. A detailed financial model of GES is 
presented in [40]. The study demonstrates that GES has an attractive 
LCOS of 202 $/MWh. The operation of hybrid renewable plant/GES 
system has been studied in [41]. The authors relied on efficiency and 
reliability performance indicators to select the best configuration of PV/ 
Wind/GES. The same study have been established by [42] but with 
different indicators including, mainly the robustness of GES structure. In 
[43], the authors compared the operation of PV/Wind power plants 
while integrating GES or battery storage. However, none of the past 
studies has addressed the energy management system, which includes a 
dynamic electricity price and a forecasting model of a smart house with 
a hybrid PV system and gravity energy storage for a week. The absence 
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of such research studies prompted the current work. 
The specific contributions of this study are as follows:  

• The development of a novel one-week dynamic forecasting model of 
a hybrid PV/GES connected to the grid for a smart house energy 
management system (SHEMS).  

• The integration of dynamic electricity pricing, smart appliance 
control, PV generation forecasting, and prediction of gravity energy 
storage state of charge into a single SHEMS model.  

• The demonstration of the effectiveness of the proposed SHEMS 
model in reducing household energy use and lowering the cost of 
power.  

• Validation of the proposed model by comparing the experimental 
and simulated results. 

The findings of this study have the potential to make a significant 
contribution to the field of smart home energy management. It presents 
a novel approach to integrating existing techniques into a single, holistic 
system. This integration allows the system to make more informed de
cisions about how to conserve energy and reduce power costs. The 
findings of this study can be used to improve the design and imple
mentation of future SHEMS systems. 

This paper is organized as follows. Section 2 presents a description of 
the proposed SHEMS model, including the PV system forecast model, 
GES model, scheduling load model, and dynamic electricity price. 
Gravity energy storage system. The case study investigated in this work 
is presented in Section 3. In Section 4, the discussions of the obtained 
results are described. Finally, conclusions are drawn in Section 5. 

2. Modeling of SHEMS 

The SHEMS infrastructure consists of a SHEMS center, smart meters, 
communication and networking systems, and other smart devices [44] 
(see Fig. 1). Through these smart infrastructures, SHEMS can access, 
monitor, manage, and improve the functioning of various distributed 
generator sources (renewable energy systems, energy storage, as well as 
the electric grid), electric vehicles, and household appliances. In addi
tion, the SHEMS supports two-way communication between smart home 
users and grid utilities. SHEMS should be more flexible in managing and 
controlling smart home appliances, renewable energy resources, and 

energy storage systems in order to participate in electricity conservation 
and demand response. The SHEMS employed in this current study is 
composed of a dynamic PV forecast model, GES state of charge forecast 
model, the electricity price, and the scheduled load on the horizon for 
one week. Fig. 1 illustrates the concept of SHEMS investigated in this 
study. 

The control system within the SHEMS is responsible for balancing the 
distribution of power between various sources and loads. The system 
initially prioritizes powering the loads using the electricity generated by 
the photovoltaic system. PV power is utilized to meet the energy de
mands of the loads within the house. If the PV production exceeds the 
immediate energy requirements of the loads, the excess power is 
diverted to two different purposes: charging the gravity energy storage 
(GES) system and injecting any remaining surplus power back into the 
electrical grid. This ensures that the excess energy is stored for later use 
and potentially contributes to the overall energy grid. When the PV 
power alone is insufficient to meet the total energy demand of the loads 
in the house, the control system activates the GES. The power stored in 
the GES is then utilized to supplement the energy required by the loads. 

In situations where neither the PV power nor the GES power is suf
ficient to cover the entire energy demand of the loads, the system draws 
power from the electrical grid. The grid acts as a backup source of 
electricity to ensure that all the loads in the house receive the required 
power. 

The control system of priority within the SHEMS ensures that the 
power balance is maintained by utilizing PV power as the primary 
source, followed by GES power and grid power when needed. The aim is 
to optimize the use of renewable energy sources while ensuring unin
terrupted power supply to the loads in the house. 

The proposed method is a combination of existing techniques, such 
as dynamic forecasting, smart appliance control, and dynamic electricity 
pricing. However, the novelty of the proposed method lies in its inte
gration of these techniques into a single, holistic system. This integration 
allows the system to make more informed decisions about how to 
conserve energy and reduce power costs. For example, the dynamic 
forecasting model can be used to predict the output power of the PV 
system and the state of charge of the GES. This information can then be 
used by the smart appliance control system to determine which appli
ances should be turned on and off at any given time. The dynamic 
electricity pricing information can also be used to determine when to 

Fig. 1. SHEMS infrastructure.  
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charge the battery of the electric vehicle. The integration of existing 
techniques into a single, holistic system allows the system to make more 
informed decisions about how to manage energy use. This can lead to 
significant energy savings and cost savings for homeowners. 

2.1. Photovoltaic system forecast model 

The forecast of PV output power is a function of solar radiation and 
temperature predictions. The PV output power forecast can be expressed 
in Eq. (1) [45]: 
⎧
⎪⎨

⎪⎩

PPV(t) = Pp
H(t)
GSTC

[1 + k(T(t) − TSTC ) ]

T(t) = Tair(t) + 0.0318 × H(t) × (1 + 0.031Tair(t) ) × (1 − 0.042 × V)
(1)  

where PPV(t),Pp,H(t),GSTC,k,T(t),TSTC,Tair(t),V are the PV output power, 
the maximum output power under standard test conditions (STC), the 
actual solar radiation, the rated solar radiation under STC, the coeffi
cient of temperature, the cell module temperature at the actual moment, 
the ambient temperature, the reference temperature, and the actual 
wind speed, respectively. The prediction of solar radiation is performed 
using Eqs. (2), (3), (4), and (5). The cloud cover temperature forecast 
data is imported from the Dark Sky Application Programming Interface 
(API) [46]. This latter is considered one of the most accurate sources of 
weather forecasts. The dynamic forecast model is performed using Py
thon software. After a forecast request, which includes the longitude and 
latitude, to the Dark Sky API using a link connection. The cloud cover 
and temperature data of the specific site were sent to the model system 
each morning after midnight in a format of a JSON file. These data were 
analyzed and used as input to estimate the solar radiation forecast. 
These latter were employed in addition to the specifications, tilt, and 
orientation of the used PV modules by using mathematical PV equations 
in order to predict the PV output power. 

DNI = G0*0.73

(

1
cos(Zenith angle)

)0.678

(2)  

If = (1 − cloud cover precent)*DNI (3)  

Df = 0.2*If (4)  

Gf = If +Df (5)  

where G0, DNI, If , Df , and Gf stand for solar constant which is equal to 
1366 W/m2, direct irradiance, predicted direct irradiance, predicted 
diffuse irradiance, and predicted global irradiance, respectively. 

2.2. Gravity energy storage forecast model 

Gravity energy storage forecast model is primarily concerned by the 
system state of charge during both the charging and discharging pro
cesses. GES remaining capacity is expressed in Eq. (6) as: 

ISOC(t+ 1) =
Ca

Cn
× 100% =

⎧
⎪⎨

⎪⎩

ISOC(t) + μchCp(t)Δt

ISOC(t) −
Dp(t)Δt
μdis

(6)  

where ISOC(t + 1), ISOC(t),Ca, Cn,Cp(t),Dp(t), μch, μdis,Δt are the next state 
of charge, the actual state of charge, the current charge capacity, the 
nominal capacity of charge, the actual charge power, the actual 
discharge power, the charging efficiency, the discharging efficiency, and 
the charge and discharge time. 

Fig. 2 presents gravity energy system components. GES consists of a 
heavy piston split into several pieces placed inside the cylinder, an 
external water tank, a pipe connecting the cylinder to the tank, and a 
motor pump and turbine-generator which are connected to the pipe. In 
the charging mode, the motor consumes extra energy to run the pump, 
which pumps water from the tank to move the piston upward inside the 
container. In the discharging mode, the downward motion of the piston 
forces water to pass through the pipe under pressure. The kinetic energy 
of the water flow is converted to electrical energy by the turbine- 
generator. 

The cylinder height (hc) and diameter (D) as well as the piston 
density and its height (hp) are the main parameters to determine the 
energy storage capacity of GES system. The relative piston density 
(ρrel) is expressed in Eq. (7) 

ρrel = ρpiston − ρwater (7)  

where ρpiston and ρwater in (Kg/m3) are the density of the piston and the 
density of water, respectively. The energy consumed by the motor in 
order to elevate the piston could be written as Eq. (8). 

Fig. 2. Schematic of GES system used in this study.  

A. Ameur et al.                                                                                                                                                                                                                                  



Journal of Energy Storage 72 (2023) 108525

5

Ppump = ηRPTρrelgzQcharge (8)  

where ηRPT, z, g, and Qcharge are the efficiency of the reversed pump 
turbine, the water height in (m), the gravitational acceleration, and the 
flow rated during the charging mode. 

The energy stored and the power generated by gravity energy storage 
system are presented in Eqs. (9) and (10), respectively. 

EGES = μρrelg
(

1
4
πD2Hp

)
(
Hc − Hp

)
(9)  

Pgen = ηRPTρrelgzQdisch (10)  

2.3. Scheduling load model 

Scheduling loads in the SHEMS can be classified into four categories 
based on their control level. i) Temperature-controlled loads with a 
specific degree of cooling or heat storage capability, such as HVAC and 
refrigerators; ii) Active controlled loads with a predetermined working 
cycle and some flexibility in use time, such as washing machines, dish
washers’ machine, and rice cookers; iii) passive controllable loads that 

can be intelligently regulated but have limited operating hours, such as 
lighting, TV, computer, and fans; iv) non-controllable loads. 

2.4. Dynamic electricity pricing 

There are various electricity price policies, such as those described 
and illustrated in [26,47,48]. The majority of the schemes described in 
those references are studied in this part in order to determine which 
structure best suits the suggested study-case. The first strategy to look 
into is flat tariffs, which keep the price constant regardless of other 
conditions. Because there is no financial incentive for users to transfer 
their consumption load from peak hours to maximum generated energy 
times, this pricing plan does not incentivize individuals to change their 
behavior or habits. Unlike flat tariffs, block rate tariffs rise in price as the 
amount of energy consumed increases, based on a defined set of kWh 
thresholds. As a result, crossing this line places customers in a high tariff 
category, resulting in a higher cost. Seasonal tariffs cause energy prices 
to fluctuate according to the seasons. During high-demand periods, 
prices are high, while during low-demand periods, prices are substan
tially lower. 

Time-of-use (TOU) tariffs are the best dynamic pricing strategy for 

Fig. 3. Flowchart of the developed model.  
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load scheduling since they offer various prices at different periods 
throughout the day. It is the one that will be used in this case study. 
Time-of-use tariffs are a more efficient variant of real-time pricing. This 
policy’s efficiency is enhanced by the fact that prices are updated at 
relatively short intervals. Frequent upgrades, on the other hand, can 
have a negative effect because they can be too expensive to handle. 

2.5. SHEMS flowchart and algorithm 

A flowchart depicting the proposed model is presented in Fig. 3. The 
developed model incorporates an algorithm that accurately predicts the 
performance of a photovoltaic (PV) system. The algorithm begins by 
taking into account the geographic coordinates (longitude, latitude, and 
altitude) to determine location-specific solar irradiation. The user pro
vides information about the PV array configuration, including tilt angle 
and orientation. Electrical characteristics of the PV module and fore
casted weather data, such as cloud cover and temperature, are also 
incorporated. 

Using solar irradiation equations and mathematical modeling equa
tions specific to PV systems, the algorithm forecasts the PV output 
power. Furthermore, it simulates the charging and discharging of the 
energy storage system (GES) to estimate its state of charge. By consid
ering these factors, the algorithm offers valuable insights into opti
mizing the performance of the PV system and comprehending the 
influence of weather conditions on power generation and energy 
storage. 

3. Case study 

The effectiveness of the proposed model is validated by the case 
study presented in this section. The energy management system used is 
based on a forecast model of a hybrid PV/ gravity energy storage system. 
The forecast model considers the prediction of weather conditions, PV 
system production, and gravity energy storage state of charge in order to 
cover the load profiles scheduled over one week. The investigated house 
is located in Madrid, Spain. 

The aim of this model is to optimize the house’s consumption. In 
addition, the charging of the car’s battery is only based on the energy 
price variation. In this case, neither the PV system nor GES are used to 
charge the battery of the electric vehicle. However, for all the used loads, 
PV installations as well as GES will be considered for the supply of en
ergy. Those loads’ scheduling can be described as a linear optimization 
problem that aims to either minimize consumption at the peak pricing 
hours or increase consumption at peak PV and GES generation hours. 

In the presented scenarios, household appliances are supposed to 
account for the majority of electricity consumption. Appliances are 
divided into two categories: shiftable and non-shiftable equipment. The 
model will place emphasis on shiftable equipment because the user’s 
satisfaction must be continually considered. A washing machine and 
dryer, a dishwasher, and an electric vehicle are examples of these ap
pliances. Non-shiftable appliances, on the other hand, will continue to 
consume at the same rate because scheduling may be impossible owing 
to the nature of the appliance or have a negative impact on customer 
satisfaction. This set can include, but is not limited to, a fridge, an HVAC 
system, and a lighting set. The fridge is set to run all hours of the day, 
while the HVAC will only be running during the heat peaks of the day. As 
for lighting, it will be considered during the times of day when lighting is 
needed. 

The characteristics of the two types of PV modules used are presented 
in Table 1. 

The different features and parameters of GES used in this study are 
presented in Table 2. Indeed, a 5 kW/0.5 kWh system with a water tank 
volume of 28.63 m3 is deployed. The required system specifications 
[49], sizing [43], technical design [50], and cost analysis [40] have been 
established in our previous works. 

It is worth mentioning that the principles of the Water-Energy Nexus 

can be applied to address various concerns related to the operation of 
GES system and provide a more comprehensive understanding of its 
potential benefits. This approach can offer additional benefits such as 
optimizing water usage, reducing environmental impacts, and maxi
mizing overall system efficiency. Indeed, the Water-Energy Nexus em
phasizes the interdependence of water and energy resources, 
recognizing that water is required for energy production and energy is 
needed for water supply and treatment. In the case of a gravity energy 
storage system which utilizes the force of water to raise the piston and 
store or generate electricity, the Water-Energy Nexus can be leveraged 
to address its related concerns and optimize its operation. For example, 
by considering the availability and management of water resources, 
such as rainfall patterns and reservoir capacity, the system can be 
designed and operated to ensure optimal utilization of water resources 
while maximizing energy storage and minimizing water usage. 
Furthermore, the integration of renewable energy sources, such as hy
dropower or solar power, can enhance the sustainability and efficiency 
of the system. This holistic approach, considering the water-energy in
terdependencies, can lead to a more resilient and environmentally 
friendly GES system. To delve deeper into this topic, research studies 
and publications focusing on the Water-Energy Nexus, such as the work 
by Shokri et al. [51] and Siddiqi et al. [52], provide valuable insights 
and frameworks for applying these principles to energetic systems such 
as GES. 

Fig. 4 presents the optimal dynamic pricing used in Madrid, Spain. 
Based on this dynamic pricing, solar radiation forecast, and PV output 
power prediction for different times of the day, an energy management 
study of a smart house is performed in this present work. 

4. Results and discussion 

Figs. 5 and 6 present the I-V and P–V characteristics of the two PV 

Table 1 
PV module characteristics.  

PV module characteristics 

Brand Type 1: Solar World 255 Type 2: JINCO 

Cell type Monocrystalline PERC 
(m-Si) 

Polycrystalline half cell 
(p-Si) 

Module dimensions (mm) 1675 × 1001 × 35 1987 × 992 × 27 
Electrical characteristic At STC At STC 
Maximum power (Wp) 255 345 
Open circuit voltage (V) 38.0 47.8 
Short circuit current (A) 8.88 9.29 
Voltage at maximum 

power (V) 
30.9 38.4 

Current at maximum 
power (A) 

8.32 8.98 

Efficiency (%) 20.5 17.5  

Table 2 
Parameters and features of GES systems.  

Component Parameters/features Value 

Cylinder Height 10,000 mm 
Diameter 1910 mm 
Thickness 8 mm 
Water volume 28.63 m3 

Piston Height 3000 mm 
Diameter 1860 mm 
Mass (several full cylinder) 50,000 Kg 

Turbine Type Cross flow 
Runner diameter 300 mm 
Runner length 85 mm 
Turbine speed 405 rpm 

Generator Type Asynchronous generator 
Electric power 5 kW 
Speed 1535 rpm  
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module types used in the present study. The current-voltage (I-V) and 
power-voltage (P–V) curves, are crucial for understanding the effi
ciency and performance of the PV modules. For the first PV module type 
(m-Si), the open voltage is measured at 47 V, while the short circuit 
current is recorded at 8.8 A. In contrast, the second PV module type (p- 
Si) exhibits an open voltage of 36 V and a short circuit current of 8.5 A. 
These values point out the maximum voltage and current that can be 
obtained from the PV modules when there is no external load connected. 

The red point on the green curve indicates the optimal current and 
voltage in the I-V curve as well as the optimal power in the P–V curve 
(Ppm1 = 350 Wp and Ppm2 = 255 Wp). This point indicates the current 
and voltage values that result in the highest power output from the PV 
modules. 

Analyzing the I-V and P–V characteristics of the PV modules is 
essential for understanding their behavior and determining the optimal 
operating conditions. These findings provide valuable insights for sys
tem design, performance optimization, and effective utilization of the 
PV modules in the present study. 

The weather conditions forecast over one week in the studied region 
are shown in Fig. 7. This figure presents several key parameters related 
to weather conditions, including cloud cover, temperature, and solar 
irradiance predictions. 

At the top of the figure, the cloud cover prediction is illustrated. It is 
observed that there is a significant variation in cloud cover during the 
first, second, and third days, with a high percentage of cloud cover ex
pected. This implies that these particular days may experience reduced 
solar radiation due to the obstructive nature of clouds. 

The temperature forecast is shown in the figure’s central portion. PV 
module performance and efficiency are greatly influenced by tempera
ture. The PV system’s conversion efficiency may drop as a result of 
higher temperatures. By examining the temperature prediction, poten
tial thermal impacts on the PV modules could be taken into 

consideration when designing and operating the system. In our case, 
having a temperature range between 290 K and 311 K indicates that the 
PV modules will function in settings that are moderately warm to warm. 
The bottom section of the figure presents the solar irradiance forecast, 
specifically direct (If), diffuse (Df), and global (Gf) solar radiation. The 
obtained results indicate significant variation in solar radiation during 
the first, second, and third days of the predicted week, primarily due the 
high percentage of cloud cover. This can result in lower solar irradiances 
and subsequently affect the performance of the PV system during these 
specific days. In contrast, the remaining days are expected to have 
mostly clear skies, resulting in substantial solar irradiances. 

Based on the obtained results, it is evident that the predicted week 
experiences notable fluctuations in solar radiation, primarily attributed 
to the varying cloud cover. During the first, second, and third days, when 
the cloud cover is high, it is expected that solar irradiance will be 
significantly affected and potentially reduced. However, the subsequent 
days are anticipated to have mostly clear skies, resulting in substantial 
solar irradiance levels. 

Understanding the predicted weather conditions and their impact on 
solar irradiance is crucial for assessing the potential energy generation 
of solar power systems. 

To provide a more detailed examination of solar radiation variations 
within a single day, Fig. 8 presents the weather conditions for the first 
day of the predicted week. The obtained results demonstrate that there is 
a significant variation in solar radiation over the eight hours of the day. 
These fluctuations are primarily influenced by cloud cover, which varies 
according to the prediction model, ranging from nearly 90 % to below 5 
% on the first day. Consequently, there are abrupt decreases in global 
solar irradiance fluctuating between 0 and 800 Wm− 2. These variations 
have a direct impact on the prediction of the PV output power. 

Fig. 9 illustrates the predicted PV power output for the two studied 
PV systems throughout a week. The results demonstrate that PV 

Fig. 4. Dynamic electricity price of grid in Madrid, Spain.  
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production fluctuates during the predicted week due to variations in 
solar radiation. Specifically, on the first and third days, PV production is 
low, resulting in insufficient coverage of household energy needs. As a 
result, users are compelled to either switch off unnecessary loads or shift 
their operation to other days or periods when electricity prices are 
lower. This approach maximizes the use of PV energy during periods of 
increased production by taking advantage of price changes in the power 
market. Users can maximize their self-consumption and perhaps lower 
their electricity costs by scheduling energy-intensive activities for pe
riods of sufficient PV power production. Conversely, on the remaining 
days of the week, PV production is substantial, allowing it to effectively 
meet the load consumption requirements and charge the energy storage 
system (GES). This stored energy can be used when PV generation is 
minimal. GES helps therefore to improve self-sufficiency and optimize 
energy management. 

To facilitate a more detailed analysis of daily PV production, Fig. 10 
provides a focused PV prediction for the first day, offering hour-by-hour 
information on PV output power. This enables users to easily manage 
their loads, either by switching them off or shifting their operation to 
hours when the PV production prediction is adequate. 

Fig. 11 presents the prediction of PV output power versus the 
scheduled loads consumption, including the charge and discharge of 
gravity energy system (GES) over a week. The PV output power of the 
two aforementioned PV systems (PV1 and PV2) is presented as negative 
values, and their sum is represented by the green curve. The combined 
contribution of both PV systems to the overall energy generation dem
onstrates the value of integrating different PV systems to increase energy 
output and lessen reliance on the grid. The house consumption is pre
sented as positive values with different colors to indicate the con
sumption of the different appliances/equipment used. The total 

instantaneous power consumed by all loads is given by the red curve. 
The analysis of the figure reveals that, over the predicted week, a 

significant portion of the load is supplied by both the PV and GES sys
tems, while the remaining portion is sourced from the electric grid. This 
can be attributed to factors such as low PV production resulting from low 
solar radiation and the presence of low energy prices. This proves that 
the integrated system successfully uses energy storage capabilities and 
renewable energy sources to meet a significant amount of the house
hold’s energy demands. 

The HVAC consumption changes during the predicted week as it 
depends on the house’s exterior and interior heat. This latter is esti
mated based on the transfer of heat due to conduction through the 
house’s windows and walls. This emphasizes the requirement for users 
to take into account outside environmental factors and modify their 
energy consumption appropriately by maximizing energy efficiency and 
minimizing energy waste. 

To optimize energy utilization and cost savings, the electric vehicle 
battery is programmed to charge during the period between 1 am and 5 
am. This time window takes advantage of the low energy prices and 
ensures that the vehicle is fully charged by the morning. Other loads are 
scheduled to operate when there is available PV production, except for 
the refrigerator, lighting, TV, computer, and fans. However, a portion of 
the energy consumption for these appliances can be supplied by the 
energy storage system (GES). 

Fig. 11 provides a comprehensive visualization of the interplay be
tween PV output power, scheduled loads consumption, and the utiliza
tion of the gravity energy system (GES) over the course of a week. This 
information enables users to make informed decisions about load 
scheduling, energy storage management, and optimizing energy usage 
patterns based on available PV production and energy prices. 

Fig. 5. I-V and PV characteristics for the first type of PV module used.  
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To enhance the accuracy of the Smart Home Energy Management 
System (SHEMS) during different hours of the day, Fig. 12 provides 
valuable insights. This figure illustrates the predicted PV output power 
and the scheduled loads for the first day. The total production and 
consumption are presented by green and red curves, respectively. The 
thorough understanding of how energy flows throughout the system is 
made possible by the exact breakdown of production and consumption, 
allowing for efficient load control and energy optimization techniques. 

The loads are prioritized in the following order: PV system, energy 
storage system (GES), and then the grid. This prioritization ensures that 
renewable energy sources are utilized first, followed by stored energy 
and, if necessary, energy from the grid. Indeed, when there is an excess 
of PV production, the GES system is fully charged. Conversely, the GES 
system discharges its stored energy to power the loads as a secondary 
source. If both the PV system and GES output powers are insufficient to 
meet the load requirements, the grid acts as a third source to provide 
energy. Prioritizing different energy sources not only encourages self- 
consumption of renewable energy but also gives consumers control 
over their energy usage, reducing their reliance on traditional energy 
sources. 

The green dotted curve on the graph indicates the power portion 
consumed by loads from PV and the grid, as well as the excess PV output 
power portion. The load consumption between the horizontal axis and 
the green dotted line is supplied by the grid (e.g., between 0 am and 
4:30 am). The load portion powered by the PV systems is above the 
green dotted line. The excess PV output power is depicted when the 
green dotted line displays negative values (e.g., between 7:30 am and 3 
pm). The excess PV output power is primarily utilized to charge the GES 

unit until it reaches full capacity. Any remaining excess power is then 
injected back into the grid. 

Fig. 13 displays the predictions for net power, gravity energy storage 
state of charge, and epsilon. The net power describes the proportion of 
excess PV output power in negative values and the load portion supplied 
by the grid and GES in positive values. The dashed red line in the net 
power curve indicates the average of the total excess PV output power 
and the total power of the loads supplied by the grid and GES, allowing 
to quickly evaluate the overall balance between energy generation and 
consumption. A positive value indicates that the portion of load powered 
by the grid and GES is higher than the total excess PV power, and vice 
versa. 

In this case study, the load supplied by the grid and GES is higher 
than the excess PV power output, resulting in a positive mean. This can 
be explained by the low PV production during the predicted week. 

Gravity energy storage system begins charging when there is excess 
PV power output (blue curve) and discharges when the PV production is 
insufficient to meet the entire load consumption. GES is essential in 
maintaining a balance between the supply and demand for energy. This 
enables the system to increase self-consumption and utilize renewable 
energy to its fullest potential. If the aforementioned energy systems 
cannot meet the demand, the grid intervenes unless the loads are shut 
down or rescheduled. The capacity of the proposed system to use the 
grid as a backup energy source highlights its adaptability to varying 
energy demands. The epsilon curve (purple curve) presents the per
centage of load consumption supplied by PV and GES systems. This al
lows the house manager to know the efficiency of the hybrid PV/GES 
system. 

Fig. 6. I-V and PV characteristics for the second type of PV module used.  
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Fig. 7. Weather condition forecast over one week in the investigate region.  

Fig. 8. First day prediction of weather conditions.  
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The proposed scheduling and energy management system demon
strates high efficiency by meeting nearly 100 % of the load demand from 
6:30 am to 4:30 pm, and an average of 40 % between 4:30 pm and 7 pm 
using only solar energy combined with the GES system on the first day. 

Fig. 14 illustrates the net power, GES states of charge, and epsilon for 
the first and second prediction days., providing hour-by-hour details of 
the hybrid system’s operation. This detailed information helps deter
mine when GES charges and discharges and provides insights into the 
hybrid PV/GES system’s contribution to the household’s energy needs. 
This figure helps the user make informed decisions regarding load 
management, such as switching on or off less important loads or shifting 
their operation to a different hour. 

The findings from the analysis of the smart house reveal that on the 
first day, the GES is charged for a half hour (from 7:30 am to 8:00 am), 
while on the second day, it is charged for nearly an hour (from 7:30 am 
to 8:30 am). The system stores energy for approximately 8 h until the PV 
production is insufficient to cover all the loads. Discharging occurs be
tween 4 pm and 5 pm on both days. The epsilon curve presents the 
portion of load consumption power by the PV and GES for the two days. 
Remarkably, the hybrid PV/GES system supplies 100 % of the load for 
eight and a half hours (from 6:30 am to 4:30 pm) on both days. The 
detailed information provided assists users in making informed de
cisions regarding load management strategies, optimizing energy 

utilization, and leveraging the hybrid PV/GES system’s capabilities to 
meet the household’s energy demands. 

5. Model validation 

To assess the accuracy of the developed forecast model, a comparison 
between the PV predicted and measured production was performed. The 
experimental data were obtained from the PV system’s inverter, utilizing 
Amorphous silicon (a-Si) modules with a maximum total rated power of 
1.86 kWp. The findings of this comparison are depicted in Fig. 15. 

The results demonstrate a strong alignment between the predicted 
PV production and the actual measured data. However, a noticeable 
discrepancy arises between the two curves when the PV production 
reaches its peak. Several factors contribute to this discrepancy. Firstly, 
the infrequent cleaning of the PV installation can have an impact on the 
actual PV output. Accumulated dust on the PV modules can reduce their 
efficiency, leading to a suboptimal energy production compared to the 
predicted values. Therefore, it is crucial to ensure regular maintenance 
and cleaning of the PV system to maximize its performance. Addition
ally, there is an inherent prediction error associated with forecasting 
weather conditions, specifically cloud cover. The forecast model relies 
on data obtained from the Dark Sky API to estimate cloud cover, which 
can introduce uncertainties into the accuracy of the predictions. 

Fig. 9. PV output power prediction of two studied PV systems.  
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Variations in actual cloud cover compared to the forecasted values can 
influence the amount of solar radiation reaching the PV modules, 
resulting in deviations between the predicted and measured PV 
production. 

To evaluate the performance of the developed model, two important 
metrics, namely RMSE (Root Mean Square Error) and MAPE (Mean 
Absolute Percentage Error), are employed (Eqs. (11) and (12)). The 
calculated prediction errors range from 13.45 % to 23.16 % for RMSE 

and from 4.06 % to 11.27 % for MAPE. Similar error ranges have been 
observed in other PV forecast models documented in the literature 
[53,54]. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1
(Si − Yi)

2
√

Ym
(11)  

Fig. 10. First day prediction of PV systems studied.  

Fig. 11. SHEMS based on PV output power forecast, GES state of charge prediction, dynamic electricity price, and scheduled loads over a week.  
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MAPE =
1
m

(
∑m

i=1

⃒
⃒
⃒
⃒
Si − Yi

Yt

⃒
⃒
⃒
⃒

)

(12)  

where, Si, Yi, Ym, and Yt are the PV production forecast value at time i, 
the PV output power measured value at time i, the mean PV production 
of each period, and the total rated power of the PV system used which is 
1.86 kWp in this study. 

Table 3 presents the validation of Eqs. (11) and (12), which are used 

to assess the accuracy of a prediction model for PV power production. 
The table includes a set of predicted values (S) and actual values (Y), 
along with the corresponding squared differences and the differences 
divided by the true value. The calculated values demonstrate the per
formance of the prediction model. RMSE values indicate the average 
deviation between the predicted and actual values, normalized by the 
true value. MAPE values represent the average percentage error between 
the predicted and actual values. Overall, the validation results provide 

Fig. 12. SHEMS of the first day according dynamic electricity price, predicted PV production, GES state of charge forecast, and scheduled loads.  

Fig. 13. Prediction of net power (at the top), GES state of charge, and epsilon over a week.  
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insights into the accuracy and precision of the prediction model for PV 
power production. 

To assess the accuracy of the developed model, a comparison with 
other existing models was conducted, focusing on the evaluation metrics 
of RMSE and MAPE. Table 4 presents a comparison of the RMSE and 
MAPE values for the developed model with several other models. Ac
cording to the results, the developed model achieved an RMSE of 13.45 
%–23.16 % and an MAPE of 4.06 %–11.27 %. These results indicate that 
the developed model performed competitively compared to the other 

models in terms of RMSE and MAPE. However, further analysis and 
consideration of other evaluation metrics may be necessary to obtain a 
comprehensive understanding of the model’s performance. 

6. Conclusions 

The integration of a smart home energy management system 
(SHEMS) within the smart grid domain is crucial for achieving efficient 
electricity usage and facilitating demand response. By leveraging digital 

Fig. 14. First and second days of net power (at the top), GES state of charge, and epsilon forecast.  

Fig. 15. Comparison between predicted and measured PV output power.  
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inhabitant services, smart home appliances, wireless communication, 
and smart sensor technologies, SHEMS has the potential to raise living 
standards while preserving social and environmental resources. SHEMS 
has grown in popularity in recent years as a result of enhanced acces
sibility, convenience, and cost via tablet and smart phone connectivity. 
Furthermore, advancements in smart grid infrastructure, encompassing 
two-way communication, monitoring, metering, and devices, have laid a 
robust foundation for SHEMS applications. 

This paper presents a novel forecast model for smart house energy 
management system over the span of one week. The smart home ap
pliances are interconnected through smart communication technologies 
to a hybrid PV/GES system as well as the power utilities. The SHEMS 
algorithm implemented allows users to optimize their energy con
sumption and reduce electricity bills by shifting the house’s demand 
over the course of one week. The scheduling of loads is determined by 
dynamic electricity prices, PV generation predictions, and GES state of 
charge forecasts. 

The forecast model utilized in this SHEMS employs a dynamic 
simulator to forecast PV output power over one week. This is accom
plished by considering the characteristics and mathematical equations 
of PV modules, as well as predictions of solar radiation based on solar 
irradiance equations, cloud cover, and temperature obtained from one of 
the most accurate sources of weather prediction, namely the Dark Sky 
API. The case study examined in this work involves a smart house with 
smart appliances and communication technologies, with a maximum 
instantaneous power consumption of approximately 6 kW. It in
corporates a 5 kWp PV power system and a gravity energy storage sys
tem with a maximum capacity of 0.55 kWh. 

The results indicate that by implementing SHEMS, the hybrid PV/ 
GES system can effectively cover the total load consumption of the house 
for approximately eight and a half hours each day. This leads to signif
icant reductions in the house’s energy costs and its adverse environ
mental footprint. Various performance metrics are employed to evaluate 
the accuracy of the developed forecast model, with prediction errors 
ranging from 13.45 % to 23.16 % for RMSE and from 4.06 % to 11.27 % 
for MAPE. A comparison between the developed model and other 
existing models was performed, evaluating the metrics of RMSE and 
MAPE. The results demonstrate that the proposed model falls within the 
range of performance observed in the other models. This indicates that 
the developed model shows promising accuracy and can be considered 
competitive among existing models for the task of PV power production 

prediction. 
Future studies could explore the enhancement of the proposed model 

by incorporating additional renewable resources such as wind, biomass, 
and geothermal energy, thereby further advancing the capabilities and 
sustainability of SHEMS. 
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