DE. GRUYTER

: .ﬂu ﬁmng Sun Guang hua Gao

 FRACTIONAL "
DIFFERENTIAL
 EQUATIONS |

i FlNlTEDIFFEREN’CEHETHDDE




Zhi-zhong Sun and Guang-hua Gao
Fractional Differential Equations



Also of Interest

Differential Equations. A first course on ODE and a brief introduction to
PDE

Shair Ahmad, Antonio Ambrosetti, 2019

ISBN 978-3-11-065003-7, e-ISBN (PDF) 978-3-11-065286-4,

e-ISBN (EPUB) 978-3-11-065008-2

Self-organization of Matter. A dialectical approach on evolution of
matter in the microcosm and macrocosmos

Christian Jooss, 2020

ISBN 978-3-11-064419-7, e-ISBN (PDF) 978-3-11-064420-3,

e-ISBN (EPUB) 978-3-11-064431-9

Hausdorff Calculus. Applications to Fractal Systems

Yingjie Liang, Wen Chen, Wie Cai, 2019

ISBN 978-3-11-060692-8, e-ISBN (PDF) 978-3-11-060852-6,
e-ISBN (EPUB) 978-3-11-060705-5

Fractional Signals and Systems

Manuel Duarte Ortigueira, Duarte Valério, 2020

ISBN 978-3-11-062129-7, e-ISBN (PDF) 978-3-11-062458-8,
e-ISBN (EPUB) 978-3-11-062132-7

Stochastic Models for Fractional Calculus

Mark M. Meerschaert, Alla Sikorskii, 2019

ISBN 978-3-11-055907-1, e-ISBN (PDF) 978-3-11-056024-4,
e-ISBN (EPUB) 978-3-11-055914-9

Handbook of Fractional Calculus with Applications. Basic Theory
Anatoly Kochubei, Yuri Luchko (Eds.), 2019

ISBN 978-3-11-057081-6, e-ISBN (PDF) 978-3-11-057162-2,
e-ISBN (EPUB) 978-3-11-057063-2



Zhi-zhong Sun and Guang-hua Gao

Fractional
Differential
Equations

Finite Difference Methods

(1]
DE GRUYTER 4 Beijing



Mathematics Subject Classification 2020
65M06, 65M12, 65M15

Authors

Prof. Zhi-zhong Sun

Southeast University

School of Mathematics

No. 2, Dongnandaxue Road, Jiangning District
211189 Nanjing, Jiangsu Province

People’s Republic of China
zzsun@seu.edu.cn

ISBN 978-3-11-061517-3
e-ISBN (PDF) 978-3-11-061606-4
e-ISBN (EPUB) 978-3-11-061530-2

Library of Congress Control Number: 2020938024

Prof. Guang-hua Gao

Nanjing University of Posts and
Telecommunications

College of Science

No. 9, Wenyuan Road, Yadongxincheng Zone
210023 Nanjing, Jiangsu Province

People’s Republic of China
gaogh@njupt.edu.cn

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2020 China Science Publishing & Media Ltd. and Walter de Gruyter GmbH, Berlin/Boston

Cover image: 00one / E+ / gettyimages.de
Typesetting: VTeX UAB, Lithuania
Printing and binding: CPI books GmbH, Leck

www.degruyter.com



Preface

As a generalization of classical calculus, fractional calculus has become an important
branch of mathematics. It is popularly believed that this concept is stemmed from a
letter by G. W. Leibniz (1646-1716) in the year 1695, where the one-half order of deriva-
tive was discussed. During the development of the past more than three centuries,
numerous mathematicians made outstanding contributions on this field.

Now the fractional differential equations (FDEs) have become one of the impor-
tant tools to model complex mechanics and physical behaviors and widespread appli-
cations have been found in anomalous diffusion, viscoelasticity, fluid flow, boundary
layer effect of pipeline, electromagnetism, signal processing and control, quantum
economy, fractal theory, etc., whereas, it is difficult to get the analytical solutions to
the FDEs, even for the linear FDEs. Hence it becomes an important task to find some
effective numerical simulations in current researches.

This book aims to make a systematic introduction to the finite difference method
of FDEs. There are six chapters in this book.

Chapter 1 serves as a mathematical introduction to fractional calculus. It com-
mences with four basic definitions of fractional derivatives. The analytical solutions to
two kinds of fractional ordinary differential equations (FODES) are given, from which,
readers can have a general idea on the behaviors of solutions to FODEs. Several numer-
ical approximation ways to fractional derivatives are introduced together with their
numerical accuracy analysis. The applications of these formulae are also illustrated
by solving the FODEs. This part is the important foundation of the following numerical
solutions to fractional partial differential equations (FPDEs).

In Chapter 2, we study the finite difference methods for solving time-fractional
subdiffusion equations. The time-fractional derivatives are approached by the G-L for-
mula, the L1 approximation, the L2-1; approximation, the fast L1 approximation and
the fast L2-1, approximation, respectively; The spatial derivatives are discretized by
using the second-order central difference quotient or the compact approximation. For
the 2D problem, several ADI difference schemes are derived. The unique solvability,
stability and convergence for each scheme are proved.

Chapter 3 shows the finite difference methods for solving time-fractional wave
equations. The time-fractional derivatives are discretized by the L1 approximation, the
fast L1 approximation, the L2-1; approximation and the fast L2-1, approximation, re-
spectively. For the 1D problem, two kinds of difference schemes are developed, among
which one is of order two in space and the other is of order four in space. For the 2D
problem, the ADI scheme and compact ADI scheme are both mentioned. The unique
solvability, stability and convergence for each scheme are proved.

https://doi.org/10.1515/9783110616064-201



VI —— Preface

In Chapter 4, we introduce the finite difference methods for solving the space-
fractional partial differential equations. For the 1D problem, the first-order method
based on the shifted G-L formula, the second-order method based on the weighted-
shifted G-L (WSGL) formula and the fourth-order method based on the WSGL formula
are developed in turn. For the 2D problem, a fourth-order ADI method based on the
WSGL formula is presented. The unique solvability, stability and convergence for each
scheme are shown.

Chapter 5 considers the finite difference methods for solving a class of the time-
space fractional differential equations. The time Caputo derivative is treated by the
L2-1, approximation and the spatial Riesz derivatives are discretized by the second-
order fractional central difference quotient and the fourth-order weighted fractional
central difference quotient formula, respectively. The second-order and the fourth-
order difference schemes in space are established, respectively. The unique solvability,
stability and convergence for each scheme are proved.

In Chapter 6, the finite difference methods for solving a class of time distributed-
order subdiffusion equations are concerned. The distributed integral is discretized us-
ing the composite trapezoid formula or composite Simpson formula and the Caputo
time-fractional derivatives are approximated using the second-order WSGL formula.
The second-order scheme in both time and distributed order, and another fourth-order
scheme in both time and distributed order are constructed, respectively. In addition,
for the 2D problem, a second-order ADI difference scheme and another fourth-order
ADI difference scheme are developed, respectively. The unique solvability, stability
and convergence for each scheme are analyzed.

There are abundant results on the numerical method for FDEs in recent 20 years.
In the last section of each chapter, we give a brief overview and only a limit part among
them is listed in the references of this book, which are the resource or the referred
materials of this book.

The main part of this book is based on the research results from the authors and
their research group. The authors express their heartfelt thanks to all the collabora-
tors.

The authors are also very grateful to Wanrong Cao, Rui Du, Ruilian Du, Xuping
Wang, Renjun Qi and Xuanru Lu, who have read the manuscript and provided many
valuable suggestions.

The writing of this monograph was supported by the National Natural Science
Foundation of China under Grant No. 11671081 and the Natural Science Foundation of
Jiangsu Province under Grant No. BK20191375.
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Prof. Zhi-zhong Sun
School of Mathematics, Southeast University, Nanjing 211189, People’s Republic of
China. Email box: zzsun@seu.edu.cn

Prof. Guang-hua Gao
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1 Fractional derivatives and numerical
approximations

In this chapter, several common definitions and properties of fractional derivatives
will be introduced. The analytical solution as well its behaviors of two kinds of frac-
tional ordinary differential equations (FODEs) will be analyzed. Several numerical ap-
proximations to the fractional derivatives and their accuracy will be introduced and
applications into solving the FODEs will also be illustrated. These contents will be the
important foundation of the following numerical research on fractional partial differ-
ential equations (FPDEs).

1.1 Definitions and properties of fractional derivatives

1.1.1 Fractional integral

Definition 1.1.1. Suppose a is a positive real number and the function f(¢t) is defined
on the interval [a, b]. The a-th order fractional integral of function f(t) is defined as

t
DO = ﬁ j(t 0 (e,

where t € [a, b] and I['(2) is the Gamma function defined by

I'(z) = J e 't*1dt, Re(z) > 0.
0

A direct calculation gives

Dt —af = TP g g

" Tl+p+a)

1.1.2 Griinwald-Letnikov fractional derivative

Definition 1.1.2. Suppose «a is a positive real number, n—1 < a < nwith n a positive in-
teger and the function f(t) is defined on the interval [a, b]. The a-th order Griinwald-
Letnikov (G-L) fractional derivative of function f(t) is defined as

[(t-a)/h] ra
DO =Tm S (S —jm,

j=0

https://doi.org/10.1515/9783110616064-001



2 — 1 Fractional derivatives and numerical approximations

where t € [a, b], [z] is the maximum integer no more than z and (‘1" ) is the binomial
coefficient defined by

((]x) _ a(a—1)~-j-!(a—j+1).

Suppose the functions f ®(t),k = 0,1,2,...,n are all continuous on [a, b] and n is
the minimum integer satisfying a < n. It can be proved that

P@e-a 1 J‘ (e
ri+j-a Fn-a) ) (t-7)m’

a

n-1
D) =Y
j=0

1.1.3 Riemann-Liouville fractional derivative

Definition 1.1.3. Suppose a is a positive real number, n — 1 < a < n with n a positive
integer and the function f(t) is defined on the interval [a, b]. The a-th order Riemann-
Liouville (R-L) fractional derivative of function f(t) is defined as

t
a _ d_n 1 f(n)ydr
aDef(O = der ( I'n-a) J (t — 7)a-n+l >’

a

where t € [a, b].

a=t dtn a~t

and a direct calculation gives

I[(1+p) —a
Di(t-a)f = c———(t-a)"", -1.
Delt-ar = =59 p>
It can be proved that
dm
W(aD?f(t)) = D{f(t), a>0,m>0, meZ".

Note that there is an equivalence relation between the R-L fractional derivative
and the G-L fractional derivative: For a positive real number a, supposen—-1<a < n.
If the function f(t), defined on [a, b], has continuous derivatives up to the (n — 1)-th
order and f (")(t) is integrable on [a, b], then the a-th order R-L fractional derivative of
function f(t) is equivalent to the a-th order G-L fractional derivative.



1.1 Definitions and properties of fractional derivatives =—— 3

1.1.4 Caputo fractional derivative
Definition 1.1.4. Suppose a is a positive real number, n — 1 < a < n with n a positive

integer and the function f(t) is defined on the interval [a, b]. The a-th order Caputo
fractional derivative of function f(t) is defined as

EDYf(t) =

1 Jt ™ (7)dr
I'n-a) ] (t - )+’

where t € [a, b].

It is easy to know that
D) = DO ()]

and a direct calculation gives

IF'1l+p)

—t—ap_a, n-1=0.
fap-al @ P>

Cpt—a)y =

Suppose the function f(t), defined on [a, b], has continuous derivatives up to the
(n + 1)-th order, then

p i
t

(n) _
= lim [f @t-ag) , __1 j(t—r)”_“f(””)(r)d‘r

a—n-0| T(n-a+1) In-a+1)
a

t

= f™(a) + Jf(”“)(r)dr = Fe).

a

Note that there is also an equivalence relation between the Caputo fractional
derivative and the R-L fractional derivative: For a positive real number a, suppose
0 < n-1< a < n.Ifthe function f(t), defined on [a, b], has continuous derivatives up
to the (n — 1)-th order and f™(¢) is integral on [a, b], then

n-1 £(j) j—a
a _Cpa )t -ay
D f(t) = ath(t)+];) —r(1+j—a) , astshb.
Particularly, when a € (0, 1), it reads
flat-a™

a _Cpa
DO = DO + =

It can be found that if the function f(t) satisfies

fPa=0 j=01,...,n-1,
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the a-th order Caputo fractional derivative and the a-th order R-L fractional derivative
are equivalent.

It can be known from the definitions of fractional derivatives above that the value
of fractional derivatives at one point ¢ is related with all of the function values on the
left-hand side of this point. Hence, they are also called the left G-L fractional deriva-
tive, the left R-L fractional derivative and the left Caputo fractional derivative, respec-
tively.

Similarly, the right G-L fractional derivative, the right R-L fractional derivative and
the right Caputo fractional derivative can be defined respectively as

wom .
Dif© = limh Y 1/ (§ e+,
h—0 j=0 ]

b
app_ ynd" 1 f(r)dr
tDbf(t) =(-1) dm ( I'(n-a) J- (T - t)a—n+l >’

t

b
1 J’ ™ (7)dr

I'(n-a) ) (T — t)a-n+l’

(DYF() = (1"
When a = —oo, the left G-L fractional derivative is defined as
DO = lim kY (1) (§ e~ jh;
— =0 ]
When b = oo, the right G-L fractional derivative is defined as

04 1 —a S _ ] a .
(DSf(O) = lim h ];)< ) (}.)f(tﬂh)-

1.1.5 Riesz fractional derivative

Definition 1.1.5. Suppose a is a positive real number, n — 1 < a < n with n a positive
integer, a # 2k + 1, k = 0,1, ..., and the function f(x) is defined on [a, b]. Then the a-th
order Riesz fractional derivative of function f(x) is defined as

fo 1
olx|*  2cos(%)

[DEF (0 + D 0],

where x € [a, b].

It can be known from the definition above that the Riesz fractional derivative can
be regarded as a weighted sum of the left R-L fractional derivative and the right one.
And the value of a Riesz fractional derivative at one point x is related with values of
function f(x) on the both hand sides of x.
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1.1.6 Behaviors of fractional derivatives at the lower limit of integrals

Here, we will describe some behaviors of the fractional derivative aD;"f (t) at the lower
limit of the integral.

Suppose that for some small and positive constant €, the function f(t) is analytical
atleast on the interval [a, a+€]. By Taylor expansion, the function f (t) can be expressed
as

(k)
ft) = Zf ()(t ok, telaa+el (1.1)

Pr S
Computing the R-L fractional derivative of each term in (1.1), one obtains

o) (k)
DO =Y 1

k-a
P rk——a-}—l)(t — a) . (1.2)

For the function f(t) in the form of (1.1) with f(a) # 0, it follows from (1.2) that

f(a)
ri-a)
If the function f(t) has the integrable singularity at t = a, that is, the function f(t)
can be expressed as

D) ~ (t-a)% t—a+0.

f(t)=(t-a)lg(t), whereg(a)#0, q>-1,

and the function g(t) can be expressed into the form of Taylor series, then one has
(k)
£t = (¢t~ ) Z £ Di-af= Z 8@k

Computing the R-L fractional derivative term by term, it follows

oo (k)
a _ g a) T(g+k+1) __\qtk-a
oD f(O) = z k' T(g+k-a+1) (t-a ’

which implies that

g@r(g+1)

t-a)% ot 0.
F(q—a+1)( ) —at

aD(txf(t) ~

1.2 The Fourier transform of fractional derivatives

Definition 1.2.1. Suppose the function g(t), defined on R = (-00,0), is piecewise
continuous and absolutely integrable. The Fourier transform of function g(t), denoted
by G(w), is defined as

G(w) = Flg(t)sw] = J g(t)eltdr.
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Moreover, the function g(t) can be recovered by the Fourier inverse transform as

g(t) = F[Gw):t] = % J Gw)e ' da.

If the function g(t) is differentiable on R, g'(t) is piecewise continuous; the func-
tions g(t) and g’ (t) are both absolutely integrable; when |t| — co, g(t) — 0, then

Flg' ) 0] = (-iw) Flg(t); w].

If the function g(t) has the continuous derivatives up to order n — 1 and the piece-
wise continuous derivative of order n on R; the functions g(t), g'(t),. .., g(")(t) are all
absolutely integrable; the functions g(t), g'(¢), ..., g("‘D(t) — 0 when |t| — co, then

FlgP(t)s 0] = (-iw)" Flgts ).

Suppose a > 0. Let

then it follows
F[RS(t); w] = (-iw) ™

Now we consider the case of fractional derivatives at lower limit a = —oco when
the function f(t) and its derivatives up to some necessary order approach to zero as
t —» —oo.Suppose n —1 < a < n. It can be easily obtained from the integration by
parts that the G-L fractional derivative, the R-L fractional derivative and the Caputo
fractional derivative are in the same form of

Ooﬁi‘f‘iz _ 1 Jt £ (rydr
_ooc t " Tin-a) ) (t-r1)n
oo DEf(B) oo
t
= d—n 1 f(n)dr e
- dr < I(n-a) _.[ (t — 7)x+in ) = D°f(b).

Assume that:

1. the functions f(t),f'(t),..., f("’l)(t) are existent and continuous, the function
f(t) is piecewise continuous and they are all absolutely integrable;

2. the functions f(¢),f'(t),...,f™V(t) — 0 when |t| — oo,

then it holds

FIDf(t); w] = (-iw)* F[f (t); w].
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1.3 Fractional ordinary differential equations

In this section, two types of fractional ordinary differential equations (FODEs) will be
analytically solved.

1.3.1 Solutions to the FODEs in Riemann-Liouville type

Problem 1.3.1. Suppose 0 < a < 1. Consider the single-term FODEs in R-L type as
follows:

{oDﬁm=fm,t>a (1.3)
y(0) =0, (1.4)

where the function f(t) is supposed to be in the Taylor series form of

oo g(n)
fo=y O,

n=0

with the convergence radius R, R > 0.
Here, for the problem (1.3)—(1.4), we aim to seek the solution in the form of

[ee] o
y(t) =t yut" =) yut™te (1.5)
n=0 n=0
By means of
I'a+v) _
Datv _ —tv a)
ot Tl+v-a)

the substitution of (1.5) into (1.3) gives

S TA+n+a), S FM(0)
n;))’nm—nt =f(t) = Z;')Tt'

Comparing the coefficients of two series above arrives at

£™(0)

——, n=0,12,....
Il+n+a)

Yn=
Hence, it follows

(n)
“th SO

F(l +n+ a)
which can be rearranged as

N%>nm
Z

v = F(l +n+ a)
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SO _T0tD

n TA+n+a)

£™(0)

n!

a 00 (n)O n
(3. £0)
n=0 :

= oD f (D).

n=0

I
Mg

OD;atYl

i
)

If the function f(t) has the following form:

t", g(0)#0,q> -1,

oo _(n)
fO =150, g=Y S0
n=0

the method above is still valid. To seek the solution in the form of
(o)
y(t) =ty y, "
n=0

subjected to the zero initial condition (1.4), similarly, it can be obtained that

Ti+n+q) g™
IM+n+a+gq) n!

, h=0,12,....

=
Suppose g + a > 0 and denote m = [g + a], then y(t) has the continuous derivative
of order m.

Problem 1.3.2. Suppose O < a < 1. Consider the problem

{ oDiy() =f(t), t>0, (1.6)
y(0)=A, A#O0. 1.7)

It can be found that a necessary condition to ensure a solution in the form of

y(t) =) yut" (1.8)
n=0
is that
At
f(t) ~ Ta_a
Suppose
= (n)
_ - g (O
ft) = r(1 ZO , (19)

where the coefficient {g™(0)} is known.
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Substituting (1.8) and (1.9) into (1.6) produces

o ra+ n) e At fl-a g (0)
Z "TA+n-a) a) =1 = ra- a) Z

Comparing the coefficients gives

TA+n-a g" (0

Yo=4, Yp= Tien oo n=12....
Hence,
Ia+n-a g"0) .,
yio =4+ Z I'a+n) (n-1)!
Let

y(t) = z(t) + A,

then the problem (1.6)—(1.7) is converted to the following initial value problem with
respect to z(t):

{ oDiz(t) = f(t), t>0, (1.10)
2(0) = 0, (1.11)

where

AC" a2 870
fo =) - M w " ZO -

Solving (1.10)—(1.11) arrives at

QT +n-a) g" (0,
SORD) fa+m (o1t

n=1
Definition 1.3.1. °* Suppose u € R. Define

C, = {f 1 f(t) is a real-valued function and f(t) = ’g(t)
with g(t) properly smooth, t > 0,g(0) # 0,p > u}.

Denote Ny = N U {0} and suppose m € Ny. We call f € C}/ if £

For a reasonable large y, when f € Cw the existence of the solution to problem
(1.3)-(1.4) is ensured and the bigger u is, the smoother the solution is.
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1.3.2 Solutions to the FODEs in Caputo type

Problem 1.3.3. Consider the single-term FODEs in Caputo type as follows:

{ sDiy(t) =f(t), t>0, (1.12)
y(0) = A, (1.13)

where 0 < a < 1and the function f(t) can be expanded into the following series:
oo (n) 0
fo=ey & g00)=g0)+0, (114)
n=0 :

with the convergence radius R, R > 0O and g + a > 0.
Suppose that the problem (1.12)—(1.13) has the solution in the form of

o0
yt)y=A+t" Y yut", yo#0,p>0. (1.15)
n=0

Substituting (1.15) and (1.14) into (1.12) leads to

i y Il+n+p) e _ i g(n)(o) 1+
e = = .
S 'Tl+n+p-a) = n

Comparing the coefficients gives

Ii+n+q) g"™(0)

, n=0,12,....
(l+n+qg+a) n!

bp=q+a Yp=

Hence,

Tl+n+q) g™ (0) g

. 1.16
IT(M+n+qg+a) n! (1.16)

y(t)=A+t7y
n=0

If we let
y(t) =z(t) + 4,
then the function z(t) satisfies from (1.12)—(1.13) that

{ ED%z(t) = f(t), t>0, 1.17)
z(0) = 0. (1.18)
Comparing (1.12) and (1.17), one can get the same differential equation for y(t) and z(t).

We can conclude from (1.16) that:
1. The initial value A = 0 or A # 0 does not affect the smoothness of solution y(t).
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The solution y(t) is smooth if g + a is a positive integer.
The solution y(t) is continuous att =0+ 0if g+ a > 0.
The solution y € C°[0,R] if g + & € (0, 1).
The solution y € C'[0,R]if g + & € [1,2).
The solution y € C*[0,R] if ¢ + a € [2,3).
The solution y € C3[0,R] ifqg+ae[3,4).
The solution y € C*[0,R] if g + & € [4,5).

© NV WN

For a reasonable large y, when f € C,, the existence of the solution to problem
(1.12)-(1.13) is ensured and the bigger u is, the smoother the solution y(t) is.

1.4 G-L approximations of Riemann-Liouville fractional derivatives

In this section, the G-L approximation of _ . D{f (t) will be considered, where 0 < n-1 <
a<n.
The shifted Griinwald-Letnikov (G-L) formula is defined as

ApfO =Y g@f(t - (k-p)h), (1.19)
k=0

where p is a constant, usually called the displacement,

g = 0 (). (i) _ala- 1)~-I~d(a— ken)

When p = 0, (1.19) is called the standard G-L formula.

In fact, the term {gl((“)} here is the coefficient of power series of function (1 - 2)%,

namely,
PR~ CAWER S (a) k
(1-2) = k;(—l) <k>z = k;)gk Z, “1<z<1.
The following recursive relation is true:

a+1
g(()“) =1, g,((“) = <1 - T)g,(fi)l, k=12.... (1.20)

Several lemmas below will display some properties of the coefficient {g,((“)}.

Lemmal.4.1. The coefficient {g,((“)} in (1.19) satisfies:
(I) Whena=0,

g(()a) =1, gia) = éa) =...=0;
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(II) WhenO < a <1,

(a)

gW=1 g¥-_q g¥< g <0,
[ee) m
Yg¥=0, Yg?>0, m>y
k=0 =
(II) When a = 1,
g((Ja) =1, gl(a) =1, géa) _ gga) —...=0;
(IV) When1< a< 2,
g(()a) = 1> g](a) - > g > gga) > O)
m
Zg;(“):o, Zgl(("‘)<0, ms1;
k=0 k=0
(V) Whena =2,
g(()o() =1, gia) =2 gga) =1, g§ gga)
Lemma 1.4.2 (Inequalities on exponential functions).
D 1-x<e™ 0<x<1;
M 1-x>e™*, 0<x< %

Lemma 1.4.3. 3 When 0 < a < 1, it holds

(x(l a)2

5 ka+1

10((

a 2a+1
S kv et

a

JeSuerea(3). o

| (@)

1.

=

Proof. (1) It follows from (1.20) and Lemma 1.4.2 (I) that

sl

_< a+1>|gk )1

T|ga
a+l

ekllg I

a+l a+l

ke k1...

<e

< -0 <L L2

_atl
7 g

k1
ae’(“*'l) Zn:Z n )

WV

=0
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Noticing that the function 1/x is monotone decreasing when x > 0, we have

n+1

k+1 K
J Tax - J 1dxz1n<j>,
X X 2
n 2

k 1 k
2522

n=2 n=2
thus,
_ kil 2a+l
|g(“>| <qer@dICH - &2 g
(k + 1)a+t
In addition, it is obvious that
a+1
@) _ g M2
Igl l (1 + 1)a+1
Therefore,
a+1
(@) a2
lg; N k>1 (1.21)

(IT) With the help of (1.20) and Lemma 1.4.2 (II), we have

a+1
lgk |‘<1_ X >|g1(£)1

_atl _cat+ly2
> e T g
1 1 1
>e_%_(&)e :Jrl (:+1) |g
_atl _catly\2 _atl _ca+ly2 _L“_ a+1y2
> s e T B  g)

_ A=) @z @ T b s g,

2
In view of
k 0 00 2
1 1 1 1
Z?SZTIZT‘Q+ﬁ‘%—%
n=3 n n=3 n n=1 n
it follows
@)’ s (- o 1
5
Consequently,
|g(a)l 0((1 0() —(zx+1)2 s k>3
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Noticing that the function 1/x is monotone decreasing when x > 0, it holds

:I»—'
S

X

k
dx = j Tax=mk,
n=3 n=3 5 2

k kK
|

n-1
Therefore,

= >

(a)| S {1(1 - a) e—(a+1) lng (X(l - a)za k>3
10 5ka+1

[

In addition,

_ _ x
| éa)l _ a(l-a) S a(l —a)2

2 5. Qa+1 >
(@) _ (1 - (X)Za
82" = a> o T
Hence,
() a(l - a)za k>1 (1 22)
71> — g k>t :

Combining (1.21) with (1.22) arrives at

0((1 a)2 @) a2a+1
T gl | | S W, k=1 (1.23)
(I1I) Summing up for k in (1.23) gives
S} a(l - a)2 o] @ gt
. 1.24
IZ:I ka+1 ;'gk | kZ (k+ l)[x+1 ( )

It follows from the function 1/x**! being monotone decreasing when x > 0 that

S 1 1 S 1
kZ::I (k+1)a+l < ;[ Xa+1dx < IZZI ka+l’
namely,
i 1 1 < 1
y_ 1 Loy 1l
& (k + 1)a+1 1x P ka+1

From (1.24) and the inequality above, it is easy to get

S <Baer<a(i),

The proof ends. O

a
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Lemmal.4.4. Whenl< a < 2,itholds

a+1 a+l
a(a—l)(z—a)e—a)(g) <g<a><a(a—1><i> k2,

180 k k 2 k+1
[ele] a
@ _ (@-1DR2-a)3-a) (4) k>
-], k=2
é&> 45 k

Proof. (I) By (1.20) and Lemma 1.4.2 (I), we have

@ _ a+1\ (@
8k _<1_T>gk—1

a+l

- 0@
<e k gk_l

@ el
<e ke k71gl(<"i)2

< o< @ k@ kl...@ 3g2

atl  _ atl _atl (a)

_ @ e @It k3,

Noticing

M~
S
WV
M~

it follows

a+1

(@) (X((X—l)( 3 ) S
g < 5 e , k=3.

It is noted that when k = 2, it becomes

(a)_a(a—l)( 3 )‘“l
£ 77 2+1 ‘

(IT) By (1.20) and Lemma 1.4.2 (II), we have

@ _ a+1) (@
8k _<1_T)gk—1

_ad_carly?
> e T @

a+l a+1y2 a+l a+142
SGl_ (B (81 (a)
k k k-1 k-1
>e e 8is
+1 +142 +1 +142 +1 +142
> el > e_aT_(aT) e_%_(%) ...e_aT_(aT) gza)

ala - 1)(22; a3 -a) o=@ vk, 1 e—(a+l)2 vh. fz k> 5.

— 15

(1.25)
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Noticing, when k > 5, it holds

~(a+]) Yk 1 ( 4 >
e n ; —
k

a+1

due to
k kN k
1 1 1
Yy Z J Tax = J lix=mX
=n o = J X " X
Similarly, when k > 5, it holds that
e—(a+1)2 v "iz > eg(é—%) S 2

because of
k 00 00 2
1 1 1 < 1 1 1 > T 205
— — = —(1+=++=]=—-—.
Zw<hwtl 6
The substitution of (1.26) and (1.27) into (1.25) gives
1

@ a(a—l)(z—a>(3—a)<3>“+
g > 180 r) o k=5

It is not hard to verify that the inequality above is also true for k = 4, 3, 2.

(IIT) When k > 2, we have

S @ ala - 1)(2 a)(3 a) 4)
8n
Zk >y

n=k n
_al@-D2-a)B-a) a1
- 45 ‘ ,;(<H>
n+1
al@-1DR-a)B-a) 4 1
g 45 4 n;{ J x““dx
Caa-DQ-0)G-a) 4 [ 1
- 45 4 J dex
k
_ <a—1)<2—a)(3—a)<3)“
- 45 k)~
The proof ends.
Define

¢"(R) = {f |f e L'(R), J 1+ )" |F(w)|dw < oo]»

(1.26)

(1.27)
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where F(w) = ffzo f (t)ei“’tdt is the Fourier transform of function f(¢).

Tuan and Gorenflo derived the asymptotic expansion of the standard Griinwald
formula in [89]. As well, Tadjeran et al. established the asymptotic expansion of the
shifted Griinwald formula in [86] (For the result of n = 1, see also [58]).

Theorem 1.4.1. Suppose f € €""%(R), then it holds

n-1
Apof(O) = DO+ ¢ DIF (R + O(h")
=1

uniformly for t € R, where {cl(“’p )} is the coefficient of power series of function W, ,(z) =
(:i)“epz, namely,

(oe)
W, p(2) = z cl(“’p>zl (“p) +ciPz+ C(ap)z + Cé"””)z3 +0(|zI"),

1=0
in particular,
2
a a a(Ga+1
ng,p) =1, Cia,p) -p-Z ngx,p) _pb _ap + (Ba + )’
2 2 2 24
cap) _ P ap L, 2Ga+Dp o(a+1)
3 6 4 24 48
Proof. Let

Flft);w] = J f(He'dt = F(w).

According to
FIf(t - h);w] = e“"F(w),

we have

FlAppf )0
=1y, g FIf(t - (k- ph) o)
k=0

_ h—a Z g](;x)eia)(k—p)hF(w)

- a[ozo:g(a)elkwh] 1pth(w)

h—a(l _ elwh)ae—ipth(w)
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iwh \&
= (—icu)“(—1 ¢ ) e PURE ()
—iwh
= (—-iw)* W,X,p(—ia)h)F(w). (1.28)

Taking into account that the function W p(2) is analytical in a neighborhood of the
origin, there exists a positive constant R such that

cl(“’p )2, forall |z| < R.

D18

Wep(2z) =

N
<

Next, we aim to show that there is a constant ¢; such that

n-1
‘Wa,p(—ix) - P (-ix)!| < o)X (1.29)

=0

uniformly holds for x € R.
When |x| < R,

D18

n-1
. § PN
Wep(-ix) = ¥ P (=) l =
=0

Cl(tx,p) (_i'x)li

n

(o)

n a, I-n n

< " Y [P T < plxl”,
I=n

where ¢, =R Y%, Ic“P|R! < co.
When |x| > R, on the one hand,

a

. 1-elX i
Wi, (—ix0)| = ‘( = > P

20(
< < cslxl",

where ¢3 = Rﬁ—in < 00; On the other hand,

n-1
EREC

=0

n-1
<" Y |4 - T < eI,
=0

where ¢, = Y1 1 |R™ < co.
Let ¢; = max{c,, c; + ¢,}. It is apparent that (1.29) is uniformly true for x € R.
It follows from (1.28) that

1
P (~iw)* W F(w) + ©(w, h)

S
|

]—'[Ag)pf(t); w]

=~
W
Lo

= Y AP FL D) wlh + Dw, h), (1.30)

T
<}
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where

n-1
D, h) = (-iw)” [ W,p(-iwh) = 3 c*P (~iwh)' ]F(w).
=0

Taking the inverse Fourier transform on both hand sides of (1.30) produces

n-1 ® )
A f Oy ¢ DEFOR = o [ o e dw.
=0

-0

Combining with (1.29) and noticing f € €""%(R), we can get

n-1
EIGED) c,(“””_oon‘*’f(t)hl‘
=0

VAN

1 (o0
> J |D(w, h)|dw

—00

N

1 (o]
N J &l whl"|F(@)|dw

—00
(o)
C n+a

<sLw J (1 + wl)™|F(w)|dw
< ch".
The proof ends.

In what follows, some common approximations will be stated in detail.

The first-order approximation ¢/
It is easy to see from Theorem 1.4.1 that

Theorem 1.4.2. Suppose f € ¢*"*(R), then it holds

hof (€)= o DEf(O) + O()
uniformly for t € R.

The second-order approximation (68!

Theorem 1.4.3. Suppose f € €***(R) and p # q, then it holds
MAR () + AL f(0) = o DEf(t) + O(h?)
uniformly for t € R, where

_a-2q 1 = 2p-a
29 P 20-9)

— 19

(1.31)
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Proof. It follows from Theorem 1.4.1 that

MAG F(8) + AAT f(0)
= (A + ) DY) + (4P + 4,6 %D)_ DI ()h + O(K?)

uniformly holds for t € R. Let

A1+/12:1,
%P 4 A = o
164 2¢1 =Y

which implies

A = a-2q 1 = 2p-a
Y 2p-q) P 2Ap-9)
in view of
@p) _, &  (aqp_, @&
o p > (o q >
The proof ends. O

We call the left-hand side of (1.31) the weighted and shifted G-L (WSGL) for-
mula.
Some common applications of Theorem 1.4.3 can be concluded as follows.

Corollary 1.4.1. When a € (0,1), taking (p,q) = (0,-1), then A, = 1+ 5, A, = —5.This
result is often used to solve the time-fractional PDEs 961 At this point,

MAY of () + LAL f (1)

_ @ N @) _ _a AN @) B
_<1+2>h kgogk f(t kh)+< 2>h kgog" f(t - (k +1)h)
=h“ f w\f (¢ - kh)

k=0

= _oDIf(t) + O(h?) (1.32)

uniformly holds for t € R, where

it = (15 ek =145, 1
2 2
NG a\ @ & (@
w <1 + §>gk Egk_l
o a+1 x| (@
- [(HE)(I_T)_E g, k=1 (1.34)
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It is easy to verify that
a 3a + o a(o® +3a-2
g”)=1+—>0, wi“>=——<0, é”‘):—( ),
2 2 4
) §“) < wga) < WZ“) <---<0, wé“) + wé“) >0,

[ele] m
Zw,(("‘)zo, ZWI(<”‘)>O, msz?2.
| k=0 k=0

Corollary 1.4.2. Whena € (1,2), taking (p,q) = (1,0), then A, = 5, A, = 1 3. This result
is often used to solve the space-fractional PDEs *81. At this point,

NAG f(8) + LAy of (t)
o0
h Z gWf(t - (k-Dh) + ( > )h’“ Y g\ Of(t - kh)
k=0
=n* Z WOF(t - (k- Dh)
= ,Oonff(t) +0(h?)
uniformly holds for t € R, where
_ _ a
(a = g(()a)’ W(a = gk (1 - §>g]((tf)l) k =1 (1~35)
It is easy to show that
(@) @ _2-a-a @ _ e’ +a—4)
Wy =->0, W' '=—F7+—<0, W, ' =——7—,
2 4
12w w0 >w0 > 20, WP +wY >0, (1.36)
[ee] m
Ywd=0, YwY<0, mz2

The third-order approximation 1"/

Theorem 1.4.4. Suppose f € €>**(R) and the constants p, q and r are distinct, then it
holds

MAR () + AT F(0) + A5 f(0) = Dif(t) + O(I) (1.37)
uniformly for t € R, where

_ 12gr - (6q + 6r + Da + 3a?
12(qr - pq - pr + p?)
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_ pr-(6p+6r+a+ 30?

© 12(pr-pg-qr+q?)

1 12pa-(6p+6g+Da+ 3a?
3T 1(pg-pr-gqr+rd)

2

Proof. 1t follows from Theorem 1.4.1 that

MARf(6) + LAY f(t) + LA f(t)
= (A + A5+ A3)_oo DY () + (A% + 4,c1%D 4+ Ayc®)_ DX f ()R
+ (/tlcé’x’p ) 4 /tzcé'x’q) + A3c§“")),oon‘+2f (tHh* + O(h?)

uniformly holds for t € R. Let

Al + /\2 +/‘3 = 1,
Alcia’p) + Azcia)q) + A3C§a’r) = 0,

A1C£a’p) + AzCéa)q) + A3C§a’r) = 0,
which implies

1= 12qr — (69 + 67 + 1)a + 3a®

' 12gr-pg-pr+p?)
_ 12pr—(6p + 6r + Da + 30?
© R(pr-pg-qr+q?
_ 12pq - (6p + 6q + Nax + 3a
. 12(pg-pr-qr+rd)

2

The proof ends.

O

We also call the left-hand side of (1.37) the weighted and shifted G-L (WSGL)

formula.
When a € (0,1), taking (p,q,r) = (0,-1,-2), then

24+ Ta+ 3a°
- 24

1a + 3a°
> A = - > A -
2 12 3

A

This result is often used to solve the time-fractional differential equations!*!.

When a € (1,2), taking (p,q,r) = (1,0, -1), then

A_5a+3a2 A_12+a—3a2 _ —Ta+3d’
P! '

This result is often used to solve the space-fractional differential equations

(88]
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The fourth-order approximation >

Theorem 1.4.5. Suppose f € €***(R) and denote

8f(t) = MARf () + AgAp of (8) + A4 A _1f (D),
then it holds

8 (t) = _o DIf(6) + c5_ oo DETF ()M + O(K™)

uniformly for t € R, where

A = o’ +3a+2 A= 4 - o? A= o’ -3a+2
TR D)
and
2

_ -a“+a+4

5 = Al 4 2P 4 (B = = 2T
24
Moreover,

SHF(t) = €5 _ DI (t — h) + (1 - 2¢5)_o DI (t)
+¢5_ooDIf(t + h) + O(h*)

uniformly holds for t € R.

Proof. 1t follows from Theorem 1.4.1 that

Apf(©) = D) + P DFf ()R
+ P DEPF(OR + P DECF(R + O(R').

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)

Taking p = 1,0 and —1in the equality above, respectively, and then taking the weighted

sum of the results arrive at
8 (1) = (A +Ag + A1) _oDEf (D)
+ (DA + D0 + @A) DEF (R + 5o DIF ()R
+ (e + PO + S TVAL)_( DEPFOR + O(h*).
Let

Al +A0 +A71 = 1,

e T I W )
1 0 =)

cga A+ Cé“ o + cé“ A, =0,

which can be solved to give (1.40). Furthermore, (1.41) and (1.39) are followed.
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On the other hand, noticing that the R-L operator _,,D¥*? can be written as

oD = tz . DY), it follows

dZ
8f(t) = <z + K " 2) DY () + O(HY), (1.43)
where 7 is the identity operator.
In view of
d? 2
i —(t) = [v(t +h) = 2v(t) + v(t - h)] + O(h°),
we have
> d
<I+cah " 2) oDif ()
= DO + e8| (D (e~ -2 DO
+_ooDIf(t + h)) + O(hz)]
=) _ooDif(t —h) + (1-2¢5) _ DEf ()
+¢5 _ooDIf(t +h) + O(h"). (1.44)
Then (1.42) is followed from (1.43) and (1.44). The proof ends. O
Substituting (1.40) into (1.38) leads to
2
a +3a+2 3a+2
8f(t) = TAh S + Ah of (B) + I—Ah f(©®
13 .@
= Y W Of(t - (k - Dh),
k=0
where
2 2 B
va") _« +132a + zg(()“), Wia) _«a +132a + zgf“) N 4 6(1 géa),
(1.45)
2 2 2
L@ O H30+2 () A0 ) O =-30+2 (g
Wka - 12 gka + 6 gklil + 12 inZ’ k 22
It is easy to verify when a € [1, 2] that
w® >0, W9<o0, w¥z0 k=3,
OO m
Z =0, Y W >2, (1.46)
k=0

=0
- (a) 2 () S
Wy +w, 20.
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It is worth to mention that all results in this section are the G-L approximation of
left R-L fractional derivative and the corresponding numerical differentiation formu-
lae are called the left G-L formulae; similarly, the results for the right R-L fractional
derivative can be obtained and the corresponding numerical differentiation formulae
are called the right G-L formulae.

1.5 Central difference quotient approximations of Riesz fractional
derivatives

The Riesz fractional derivative

9% (x)
olx|

1
VYV =———
“ 2cos(%)

= -, (LoD () + D f (X)),

is a weighted sum of the left R-L fractional derivative
fractional derivative ,D}_f(x) .

Denote x; = ih,i = 0,+1,+2,.... When a € [1,2], by the left G-L formula and the
right one, it follows from Theorem 1.4.1 that

D7f(x) and the right R-L

-0

°f(x)
d|x|«

\Ij = a = a
= _h_g [kzo gOF O ) + k_zo g\ )f(x,-+k_1)] +O(h). (1.47)

X=X;

Applying the left weighted and shifted G-L formula and the right weighted and shifted
G-L formula, we have

3% (x)
x|

Y| X ®
- _h_g [ > W () + Y WEOF (Xi+k—1)] +o(h),

k=0 k=0

X=X;

where {W,(f‘)} is defined by (1.35).

Ortigueira[62] introduced a fractional central difference operator as follows:
(o]
A= Y 80f(x - kh),
k=—c0
where
@ (-DXT(a + 1)

kK " Ta2-k+)l(@2+k+1) (1.48)

As that pointed out in [62], the coefficient {g}(”} satisfies

AV
. _ ~(a) .ikx
251n<§>‘ = Z g e, XeR.

k=-co
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When a > -1, the following recursive relations are true for {g,‘(“)}:

. INa+1) . < a+1 >A
(a) (@) (a)
= ary =(1- g9 k> 149
0 I2(a/2+1) k aj2 +k )k (1:49)

g9=g" k>1 (1.50)

The following lemma has been proved by Celik and Duman in [4].

Lemma 1.5.1. Suppose f € C°(R) and its all derivatives of order up to 5 belong to
LY(R). Then it holds

AW 9%

2
e Qx| O(r).

It is easy to see from the lemma above that

Hm[_A?,f (X)] _ 90

h—0 h olx|*
Moreover, we have the following conclusion.

Theorem 1.5.1. Suppose f € €**%(R), then it holds

A f0O) _ 0% () 1,2 f 00 (R 2
T T x|« z( ¢ dlx |2l+a (2) +0(h™)

uniformly for x € R, where {¢{'} is the coefficient of power series of function |Slzﬂ |a, that
is,

. a
sinz

=4+ 5,
z

in particular,

360 ° 45360

pa_ Ba=2a (350 — 42a + 16)at

Proof. Making the Fourier transform of function [- Bif (x)] gives

]-'{_M;w}

ha

1 3.
= Y g F{f(x - kh); w}

k=—00

1 S . i
__ Z glia)elwkhF(w)
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:—h—la Zsm( h) F(w)
a}h a
= -lw|*- | —2-| F(), (1.51)

2

where F(w) is the Fourier transform of f(t). By the Fourier transform, we have

]-'{ aaf(x);w} = -¥,[(iw)" + (-iw)"|F(w) = -|w|*F(w),

d|x|*
az”“f(x)' _ 2 2|9 00 141, 21,
7 ol o} = A S} - o eertr)

Thus,

i Boeey
g Fore o s
- @ - T & <g) W w"F(w)
=1

_ h 2l
- —|w|“[1+ caf et ]F(w). (1.53)
; ’< 2 )

It is easy to know that for any z € R, there is a constant ¢ such that

zAa 21

Subtracting (1.53) from (1.51) leads to
A () (%) L Of () (R
e SR LR L (R

o Sil’lw—h a _ a wh A
:_|w|{ %hz _[ng(T) ”F(w)zqn(w,h).

Taking the inverse Fourier transforms on both hand sides of the equality above
gives

SlIl Z

MO0 [ 9% () 2@ 0 ()
‘_ ha _|: x| z(_) l dlx |21+a <2>

j ®(w, h)e “*dw

-0

1
2n
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1 (00
<— J D, h)|dw
T

—00
oo n-1 2
2 ia 2
—00 =
2i

1 T o [ Wh "
<= J lwl| = | -|F(w)|dw
2 2

s wh
Sll’lT
wh

c/h n
- —<-> j || (w)|dw = eh*",
2\ 2

where ¢ = ﬁ j_(:o |w|*""*|F(w)|dw, independent of h and x. The proof ends.

When n = 2, the theorem says that

B0 80 a3 00) <E>2 +0(h")
2

e ool T alx|Pre

) a,, d? (Y0 4
T o *ouh @( olx|* >+ o)

0% () a a“f(x—h)_ of(x) 0% (x+h)
T e +24[ X C ok T onp

_ adf(x-h) _a\df)  adfx+h)
T2 oxfe +<1 ) X 24 o

+0(h*)

o(h*).

Hence the following theorem is true.

Theorem 1.5.2. "¢l Suppose f € €**%(R), then it holds

+0(h*)

N0 a dfxe-h) < L@ >a“f(x) , afx+h
he 24 Qx|* alx|* 24 x|

uniformly for x € R.

Lemma 1.5.2. When a € [1, 2], the coefficient {g<"‘)} satisfies

. r 1
(()a):&/o, g g(“)<0 k=12...,
2(a/2 +1)
0 i
> gr=0 - Y g¥<gl 1<i<M-1
k=—M+i
k#0

Moreover, the next lemma can be proved.

(1.54)
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Lemma 1.5.3. When1 < a < 2, it holds

a) _a_ _T(a+l) a/2+2 \a+1
) |gk I< 2+a Fz(a/2+1)(a/2+k+1) SN L ESS

(1) |gk“)| > e K> 1
c@
(I11) z g € 1>1,

ot (l+1)"‘
where
2 (4-0@-wa @+ (3 g)“”
2T 6+a)b+a)2+a) T2aj2+1) 2)
c(“)zzra.

Proof. (I) From (1.49) and Lemma 1.4.2(I), we have

~ () a+1 > ~(a)
=(1-
|gk ( (1/2 +k |gk—1

<e” AP |g(“) |
S e_zlr(nzza/z%lm g{a)l, k>2.
Noticing
k 1 Kk m+1 1 k+1 1 rik+1
a
> > | ax= | dy = In W2+ KX
mzza/2+m =2 a2 +x ] a2 +x a2 +2
it follows
lg(tx)' < e—(a+1) In “/2/;&;1 |g l
a+1

_a  I(a+1) < a2 +2 ) k> 2
C2+al2a@2+)\a2+k+1) -

(1.55)

Obviously, it is also true for k = 1. Hence combining with (1.50), the conclusion is true

forall k (|k| = 1).
(II) From (1.49) and Lemma 1.4.2(I), we have

a+1 ~(a)
l_< (X/2+k>|gk_1

a+l at+l
—(

> e wxk ame) |g “)|

a+l _( a+l

> e ank a/2+k) e a/2+k 1_(a/2+k 1) |g(a)

>...>e (@) Ty m({ (1) T4 Dr/2+m ) |§§a)|’ k > 4.
Noticing

1
(a/2+m+1/2)(a/2+m-1/2)

18
D18

() <
o\ a/2+m

4

3
1T

(1.56)
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-3 in) "
a/2+m 12 a2+m+1/2) a+7

m=4
it follows

0@ TG 5 @ 2D /(@) 5 o2
The combination with (1.56) gives
k 1
|g(a) > _2|g§“)|e_(“+l) Lo apem | k> 4.

Noticing that the function _>— is monotone decreasing for x > 0, we have

/

m k

k k
1 1 1 k 2
Z aj2+m < Z J a/2+xdx: j a/2+xdx:ln<312;2>'
m=4 m=4, - 4 3
Hence,
|g(“) S 5(0) | o~(@+]) In(5352)
_2| (@) <3 + (1/2 >a+1
k+a/2
_ Ta
(k+ %)aﬂ

r
>—2— k>4

(k + 1)[X+l
It can be verified that the inequality above is also fulfilled for k = 3,2,1. Combining
with (1.50), it follows

T

(IIT) Summing up for k in the inequality above leads to

Zlg(a) /rﬂi T a i %’ [>1
p o (k+ 1) KT K

a+1

Noticing that the function 1/x*"" is monotone decreasing for x > 0, we have

0 k+1 o) 1 1
> dx = ———.
k%l ka+1 k%l l!. Xa+1 I;|; Xa+1 (X(l + 1)a

Hence,

(0()
Zlg a(l+1)“ (21
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and

@)

ry ci
Zlgkl a0 dape 2t

The proof ends. O

1.6 Interpolation approximations of Caputo fractional derivatives

1.6.1 L1approximation

For the Caputo fractional derivative of order a (0 < a < 1),

t
Cna _ 1 f’(s)
PO =7 Oj s

one of the popular ways to discretize it is the so-called L1 approximation, which ap-
proximates the function f(s) on each small interval by a linear interpolation polyno-
mial. We will state it here in detail.

Take a positive integer N. Denote T = %, ty=kr, 0<k<Nand

a¥ =1+ -1 10 (1.57)

Considering the Caputo fractional derivative at ¢ = ¢, gives

tn
J f'(t)
F(l « ) (tn—t)“

SDIFO)ler,

t
1< J f'(t)
= de. (1.58)
ra-a) kzzl (t,— t)%
ty-1
On the small interval [¢,_;, £, ], the linear interpolation polynomial for f(t) is

L) = = ty) + t“f(tk)

and the interpolation remainder is

FO - Lua®) = 3" € - 6D -1, Ee [t (159

where &, = &(t) € (,_;, ty). Approximating the function f(t) in (1.58) using L, ; (t) leads
to

ty

Cna ~ 1 y L;’k(t)
oD f ()=, = Ta-a kzl J (t, - ) at

k-1
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t
1 Zf(tk) fo [ 1y

F(l 0() T J €, — 0"
ml ) Zf(tk) Tf(tk 1 Ea[(tn )Tty — )]
r(;’“a Z [Ft) —fltep)] - [ =k + D' = (n— k)]
r(z Za(“) [F(to) - F(te )]

e a)[ YIOE Z(an 1~ A () —aﬁf‘)lf(to)].

Now we have derived the numerical differentiation formula to calculate (C)D‘t"f (t)|t:tn as
follows:

Dt =t [aé“)f(tn) S, - ar - a;“_’lﬂto)]. (160)
k=1

It is usually called the L1 approximation or L1 formula.

The coefficient {af“) | 1 = 0} has the following properties.

Lemma 1.6.1. Suppose a € (0,1) and {a}“) | 1=0,1,2,...,}is defined by (1.57), then it
holds:

M 1= a(O“) > ag’”) > aé“) > al(“) > 0; a}“) — 0, whenl — oo;

) Q- <ad¥ <@-a)I-17% 1>1.

In [31, 47, 49, 50, 84], different techniques have been used to prove that L1 formula
has the accuracy of order 2 — a. Now we will discuss the approximation error

R(f(tn)) = 6D (O)leet, ~ Dff(ty)
using the technique in [31]. The following theorem is true.

Theorem 1.6.1. Suppose f € C[ty,t,], then it holds

t)l Za

REE < 500 |3 * o

AA-a)l4 QA-a)2-a)

Proof. From the definition of R(f(t,)), we have

t
1 < f'@t)
R{f(tn) = r(- a)z J (t, - D e

k-1



1.6 Interpolation approximations of Caputo fractional derivatives = 33

ty
1 [ fl)—ftey) 1
_F(l—a)zj T '(tn—t)adt

k=1 te s

by
1 n

] 1
= mk;tj [f(t) = Ly (8)] € -0F dt.

Noticing (1.59), the application of integration by parts arrives at

t

1 < 1
R =t kthj [f(H - Ll,k<t>]d< -0 )
n b
c et > [ 1O - Ly(lace, - 07 e
r1-a) =
ot
-t 2 | 3G - e - att -0t
k=1,
Hence,
1 n,
" -a-1
RUF @) < 57— max |f (t)lkz‘:lti (t - tey)( - Dat, — ~Nde. (161)
Some direct calculations produce
n1 %
Y | -t - vate, - o
k:ltk—l
2n-1 b
r J alt, - )™ 'dt
4 k=1y"
2 [n—l
T —a-1
=— | alt,-t)™'de
i)
T2 _ _ 1 2
= Z(T *_ tan) < ZT “ (1-62)

and

tn
J (t -ty )(t, — Da(t, - )™ de
tn1
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t)’l
=a J (t = ty_y)(t, —)dt

T

=a j(r §)¢E ¢

0

2-a

Substituting (1.62) and (1.63) into (1.61), we have

" 2— a
1-a2-a) t(I,Isl?gt( Ul

IR(F(E)] < —— [1 a

Al -a)l 4
The proof ends. O

Now we consider the numerical approximation of the Caputo fractional derivative
of ordery (1 <y <2),

Cry _ 1 f"(s)
S0 = 555 J o
Let
g =f't), a=y-1,
then
1 ! _ "
DO = sy | oy ds= 60! 80 = §Dfs 0
0

that is, the y-th order derivative of function f(¢) is exactly the (y —1)-th order derivative
of function g(t).
By Theorem 1.6.1, we have

n-1
Dig®l=, F(Z )[aéa)g(tn) _kz_:l( a0, ~ a0 )8t
- afﬁﬂg(to)] +R(g(t,),
where
1 1 @ "
IRt < 3 a)[ (1—0()(2—(1)] [nax g Glks

! [1 y-1 ]
S A'Q2-y) Q2-y)3-y) tost<t

Iflll(t |
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Denote
b =a® =1+ )" -1 = 1+ )Y =P, 1=0,1,2,.... (1.64)
Then
Chy L ) 0 ) )
oDtf Ole=e, = by 8(t,) - Z(bn_k_l -b,")gt) - by 8(to)
r(3 - Y) k=1
+R(g(ty). (1.65)

Similarly, we have

1-y
SDUf(Oliey, , = o | B8 (tr) - Z(bf!’k ,- b, gt - bYg(to)
r(3 - Y) k=1
+R(g(tyy)). (1.66)

Adding (1.65) and (1.66) and taking an average arrive at

%[(C)D{f(t)h:t,, + gDi/f(t)h:t,,_l]

™ [ pgt) +8t) S, ) &8t + 8ty
r(3 y)[b 2 z(bnkl bn—k) 2

k=1
-bYg (to)] + %[R(g(tn)) +R(g(t,1)]- (1.67)

Noticing

gt +8ty)  f(t)+f ()
2 B 2
t) —fltie) T
T T T, e (et

and denoting

ft) — f ()

82 = -

it follows immediately from (1.67) that

SEDF Ol + DOy

an 1 1
B G-y b‘()y)6tfn ’ Z(bg)k 17 bff,)k)@fk B b;y_)lf’(to)

k=1

+r(3—y) 012

4 '
b Sf" 1) - z(b;wkl bi:wk)lz
=1

fIII( ]
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[R(g(ty)) + R(g(tr-1))]-

N)IP—l

Let

sn-l Tl—)’ )T ( ) T2
R 1"(3 y)|: y f’"( ) — Zl(bnykl bny—k)ﬁfm(nk)

+ 3 [RE()) + R(g(t,),

then we have

An-1 1 1 l y-1 Ny
IR < {61"(3 -y * r2-vy) [4 * 2-y3- }/)]} |f (Olks (1.68)

Therefore, the following theorem is obtained.

Theorem 1.6.2. Suppose f € C°[ [to, t,], then it holds

5D O, + 8D¥f(t)|t:tn_1]

1-y 1 Ay 1
L Y z(by L -BP)EF DY f ) |+ R (169)
“TG-p) &

where R""> satisfies (1.68).
Remark 1.6.1. Denote

(AR (%]

If we directly use

1

gty =f'(t) = Vf* + 1 J (¢ - 67)(1 - 6)d0
0

in (1.65), we can obtain

1-y
oD Ol = 1“(;—)/) - Z (B bﬁ”k)vtfk—bzwlf’(to)]
+1,+R(g(t,)
-y T
- 6y Zbﬁy_’mf"—vffkl>+b;yzl<vtfl-f'ao»]
Lk=2

+1,+R(g(t,)

- t;
1 i Jk v v
r2-y)| i, T (t, - )1
k-1
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4
VSl -fl(ty)  dt
+J’t T ; '(tn—t)y—l]”n*R(g(tn)),

to

where

1

1—

rn = 1_‘(13- _yy) |:b8/)T Jfll(tn _ 91_)(1 _ Q)de
0

n-

1
Z (B bfqyjk)f J "t - 60)(1 - 6)de]

n-k-1
k=1 o
L » 1 II
"Gy [Zby (J (t, — OT)(1 - 6)d6
0

1
- jf”(tk,l -on)(1- 6>d9> +bY j f(t, - 1)1 - G)de]
0

0

It is easy to know

Ir,| < =y n b()’) T max If”l(t)l +b 1 ma Ifn t)l
n\r(3_y) kzznk 2 ty< 7 ss
1 nt g
T n
= - — ma t
Ir2-y) [kz::ztj (t,—ty1 2 tosts)t(nlf (®)
k-1

5}
dt "
+| ——7 t
J (t, — )1 2t0<t<tllf ( )I]
¢
Noticing
t [ g
) [ S i
-1 1 I 5
k:2tk71 (tn -ty i (tn -ty 2-y 2-y
ifn=1,
( dt v
j(tn—t)Y* C2-y
andifn > 2,
tl
J de < T < T =2Y*1L’
V=TT T S T T g
0

—_— 37

(1.70)
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we have
2 Y
! " T 1 "
i< I~ Y)[ -y 2 tg?} (t )l y t,);_l 2t <t<t1lf (t)l]
; 2 4 m "
L3 -y) Ttirgltagt(lf )] + o 1tmax[f (t)l]
Denote
DYft) = 15— [ POV - Z(b B e b;y_)lf,(to)]_
Noticing
R(g(ty)) = O(t m
we obtain

gD¥f(t)|t:t DYf(t,) = O(1) max |f’"(t)| + O< ) max |f"(t)].

toststy
Iff(0) = 0, we have
SDYf(D)l=, — D}f(ty) = O(T) t?sl?s)t(nlf"”(t)l'
It follows from (1.70) that

SDYF (O, — DUf(2y)

ty
1 . " thk - thk_l ] ) dt
“TQ2-y) {Z J [f - T (t, — )1

k=2,
(o ¥ —f'(to)] e
+ tj [f (t) = G-
Notice the fact that
k k-1

f) - u =0(1), te(tpt)2<ks<n,
1 g

f't) - M =0(1), te(tyty).

If f"'(0) # 0, we can modify D/f(t,) as

]Dyf( n) =

F(3 bm V" - z bizwk 1 bily—)k)vtf ‘
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b f'(to) + BV (V' - £ (t))] -
Then we have

SDYF (D)l — Df(ty)

n b

_ 1 1oy thk - thk_l ] dt
- T2-y) {kzztj [f © T ] (t, -ty
15}
N\ i (D) dt
+Hf’(t)— t - 0 ].(tn_t)Y1}

to

_ m
= 0(1) t(I)Isltas)t("[f ().
This is why we consider the approximation of
1
S[6DIf Oli, +GDIf Ol ]

instead of directly considering the approximation of gD}'f (Ol -

1.6.2 L1-2 approximation

Gao et al. gave an L1-2 interpolation approximation formula for the fractional deriva-
tive of order a (0 < a < 1) in [31]. Make a linear interpolation polynomial Ly4(t) for
f(t) on [ty, ;] by using two points (ty,f(ty)), (¢;,f(t;)); make a quadratic interpolation
polynomial L, (¢) for f(t) on [ty, t;,;] by using three points (t,_1,f(t;_1)), (t.f(t;)) and
(11> f (tr41)). Differentiating Ly ;(¢t) and L, (t) with respect to t once produces

t

1
k+5

T

' 1 ! -t k-1 t=t s ket
L) = 6,f2, Ly () = 6f 2 + TZ 6.2,

where t, 1 = (f; +t_1)/2, (Stfk‘% = (f(t) — f(t,_1)) /7. Using the above two equalities,
2
we can get

[ tl tk+1
Cna _ 1 , aea n-1 , e
oDef Ole=, = Ta-a) -t!f Bt =8 dt+k; J fl(t)t, - t) dt]
1 [ tl n-1 tk+1
T _i CHCCR I J Ly (Ot~ ) dt]
1 [¢
T I1-a J (67)(t, — 1) “dt

Lt
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tis1

S

T
3 1
T T(1-a)

to

5}

k’i

| n-1 el t,1-t
@it -o0aes Y o | X2
k=1

~t_1
+ 2
T

§,F1+2 >(t,, - t)“dt]

ti

(t, - H74dt

tx

k=2 tey

n 1 b t-t,_s
+ Y 8 j - z(tn—t)"“dt]

t t.
1 ! —a ZtB_t —a
:r(l_a){“(tn—t) dt+I t, 1) dt]c?f

to

+§[

by
+[
t

n-1

t-t

&

t-t

k+1t t
J “ (t,—t)%dt + J i Z(t -t “dt]af

by

J T"_f (t, - t)‘“dt]&tf"‘i }

= ﬁ?f”ﬂ)
The integrals in the above equality can be computed by substitution of the integral
variable.
Whenn =1,
4
— 1 - 1
]D?f(tn) = F(l _ (X_) |:I(t1 - t) adt:|5tf2
to
T—a
Tﬁa e
= C,’ - R 1.71
fa- o V) -] a7y
where
e =1,
Whenn > 2,
. _
tf(ty) = r(z Z Vf(tas) = ftarn)]: (1.72)
where
A(na) _ 1 N 1
2-a’

1.73)
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) _ (k+ D)7 = 2% 4 (k- 1)

k= 2
2-a _ H12-a _1)2-a
L (k+1) 2k + (k- 1) C 1<k<n-2 (1.74)
2-a
. n-2" - m-)"*+2n""* (n-1)"%-(n-27>°
n) _ (=2 (2) ( )2_; iy (1.75)

The following results are given in [31].

Theorem 1.6.3. Suppose a € (0,1), f € C?[ty, t,], ﬁff(tn) is defined by (1.71) and (1.72).
Then we have the following error estimates:

SDYF O, - ﬁ?f(f1>| TG o MmO

1
F(l a) { 12 t0<t<t

1 74 1 1 - 30(} y
12 5 >2.
+[12+3<1—a>(2—a><2+3—a>]t§2?‘<’fv @O n

If f"(0) = 0, it is easy to see that

lf”(t)l(t tl)fafl T3

[6DEF Oy, -

SDYf (Ol — Dif(t,) =0(T*™), 1<n<N.
The following lemma provides the properties of the coefficient {C‘,(("’“) | 0 <k <
n-1}.

Lemma 1.6.2. The coefficient {é,(("’“) | 0 < k < n—1} defined by (1.73)-(1.75) satisfies the
following properties:

(I) Whenn=2,
~(2,a) 1 1 ~(2,a) 1-a ( 1 1 >
C =c-+ ,» C =2"—-(=+ ;
0 2 2-a 1 2 2-«
(I) Whenn = 3,
a1 1
V=t —,
0 2 2-«a
E‘g' LN ~§"’“) > (:;"’“) > > 6,(1" f),
~(n,a) —a 22—0( -2 ~(n, tx) ~(n,q)
C1 =2 -1+ ﬂ, CO lCl |

Let a* be the unique root of equation
—a=-a)2"

on the interval [0,1] (2" ~ 0.68029). Then when a € (0,a"), ¢; ¢ 5 0; When a € (a*,1),
(na) <0
¢ .
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1.6.3 L2-1, approximation

Just as what was stated in last two subsections, for the a-th order (0 < a < 1) Ca-
puto derivative, the classical L1 formula can attain the (2 — a)-th order convergence
uniformly. Similarly, based on the piecewise interpolation approximation, the L12
approximation was established in [31]. On this basis, Alikhanov!"! discovered some
superconvergent interpolation points and built L2-1; formula, which can reach the
(3 — a)-th order convergence uniformly. Let us get into it in detail.

Suppose O < a < 1. Denote

1
=3

a 1
0:1—5, tg = (N+0)T, & :E(tn+tn_1),

(N i R O N /A T R T !

Reformulate the fractional derivative as

ty
o 1 (T e
Oth(t)|t=tn,1+,7 - ra-a) |:kz—:1 J [ ‘f)a d§
tn71+17
_fe
N J T d{]. (1.76)

n-1

On the small interval [£,_;, t;], the quadratic interpolation polynomial of function
f(t) using three points (t;_;, f(ti—1)), (& f (&) and (&4, f (64q)) reads

-t
LZ,k(t) z f(tk+]) l_[ k+l k = 1, 2, P (e 1,

j=—1 I=—1,1# tk+] tk+l
the remainder for which is

f(t) =Ly (t) = ! (*(")

(t =Dt = )t = ter)s & € (Gops bg)-

Differentiating L, ; (t) with respect to t once gives

t 1- t t—t, 1
k+ 1 k-5 1
6fk_ . 2 6tfk+2-

Ly () =

On the interval [¢,_;, t,_1,4], the linear interpolation polynomial of function f(¢)
using two points (t,_,,f(t,_1)) and (t,,f(t,)) reads
t-t t-t,_

n +f(tn) n-1

n-1"— tn tn - tn—l'

Ll,n(t) = f(tn—l) t
In addition, we have

Ly, () = 8,2
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Approximating the function f(t) on the right-hand side of (1.76) using Ly () (1 <
k <n-1)and L, ,(t), respectively, leads to

[n—1+a

1k li !
Cpha 1 = Ly, () L; ()
Dif(t)|- = J . dt + J —dt
ot t=ty_11¢ T(1-a) [I(Z:;t (tn—1+a — ) t (tn—1+o —t)®
k-1

n-1

ty

g J [tkﬁ Py P Sf'”%](t ) 7"dt
= Td—a) &, T t T t n-1+o
trl71+0‘
1 _
+ J (6tfn_2)(tn—l+a - t) adt}
tn—l

1 t% -t —a 1
- T _a){“ — (rrso — 0 dt]&tf

0

t -t
+ Z |: J k+7 (tn71+0 - t)_adt

k=2

ti-1

-t
+ J 2 (ty10 — D) “dt]éf
tr2
n-1 tn 1+0
t_t"_i -a -a n-1
+ j T (tygeg - 07"t + J (breg — DL 6,7
tnfz tnfl

I‘(Zl_aa){U<‘—9>(n 1+0-6) ad@]&fz
+Z[J<——9>(n k+o-6)%de

1

+6[<0——>(n k+1+0-0) ade] tfk_

9-- (1+a o) “d9+J(0 6)‘“d9]5f"‘}
0

T1 a ‘ 3 -a 1
:F(l_a){u<§—6>(n—l+a—9) de]étf
n-1

+y [j(% —9>(n—k+o—e)‘“de
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+ j G(a_j:<n —k+ % +0+ £>_a_1d£>d0]5tfk‘;

[Jolef o) ) o
f

0 -0
= A? n 1+0)
Denote
Cél,a) _ 0_1—0(.
If n > 2, denote
% 0 1 -a-1
cé"’“):(l—a)J0<aJ<§+o+f> d{>d6+01_0‘

-6

0
1
e
0

Then we have

Alt)(f(tn—lﬂr)

= Tlia i na)6 fk_,
T2-a) &£ t
1-a
T na) n— k—f
F(; a) z O (bpi) = flta)], 1SN,

We call (1.81) the L2-1,, formula or L2-1, approximation.

(1.77)

(1.78)

(1.79)

(1.80)

(1.81)
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Computing yields, if n > 2,

) _ (1+0)>%—g*« a4+ o) - gl
0 2—a 2 ’
. . . :
¢ = L[+ 140 = 2+ 0 s (k-1+0)]
) _%[(k+1+0)1‘“ =2k +0) ™+ (k =1+ 0)"™7,

1<sk<sn-2,

1
o — E[B(H 1+0) ™ - (n-2+0)"

2%[(“ ~1+0)* - (n-2+0)""].

The computational cost is O(N?) when using L21, formula (1.81) to compute
Af(ty14) A <M< N).

Theorem 1.6.4. " Suppose f € C>[t,, t,], then it holds

(40 -1)0™ " |f”’(t | 3- -

a
Atf(tn—lﬂT) 12I'(2 - a) t0$t<t

6D (D)l

n-1+o

whereazl—%,0<a<1.
Proof. Denote

Rn = gD?‘f(t)h—l’ - Aaf(tn—1+o‘))

n-1+0

n-1 l t t
g 1 Jf() “jm
TA-a) & ) (g —1)
t1
1 TR - s
R} = J dt,
Iril-a) , (tht1ro — *
n-1
then
R"=R} +R}. (1.82)

Now the two terms R} and R} will be estimated, respectively.
It is easy to see that

a1 "Tfm—LMu)“

1 r1-a =1 (th-146 — O t=tyy

t
_ J alf () ~ L (O] (tyres t)‘“‘ldt]

fj1
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n-1 b m
—a jf G (et -t

Ta-w g ) e

k-1

(t- tk+1)(tn—1+0 - t)iaildt’

hence,
"
IRl < 6F(1 & Mmax | )]
n-1 b 1
D) J (t =t )t — O(trer — O(ty1e — O dt
k=1,
ar’ frct
121‘(1 ) e ax "' (6)] j (tp140 — 1)t
to
- O-_a n 3— 9(
< Gra_a S ol (1.83)
Due to that
1
F1O = f' (1) + (= by f (b _2) + 5=t )" (),
t, M € (tn—lstn—lJro);
it follows

1
1 b f(6, 1) = B2 .
= t
2 T1-a) (tporso — £)*

n-1
L1 (=t (6, )
I1l-a) (tp110 — D
n-1

1 n 1+0 l(t _ n_, Zflll(rln
"Ti-w (1o — D%

nfl

Computing the three integrals in the equality above gives

1
1 tn—lwfl(tn_%) _ 6tfn—5 dt
I1-a) (tyo1se — DX
n-1
tn71+a
1 ' nol J 1
< t -6 —dt
ra-alf G0 ) e

n-1
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< 1 - 72 Lf,"(t)l gl
ST-a) 24t 1<t<t ’

g -t o, )

Iri-a) (th-1eg — D%
n-1
i tn 1+0 t _ tn_l
fit ) | ——5gdt
ra- a) " (tnor4g — DF
nfl

" o' a 2-a _
“Ta- a)f (et (1—a>(2—a)["‘<1‘5>]T =0

and
. th}w %(t _ tn—% )me(rln)
Iri-a) . (th_14o — D
n-1
tn—1+a
2
T " 1
S —= t —dt
8I(1-a)t, 1st<t X 7ol .[ (ty—1eo — D"
n-1
2 lfm(t)| 1 o,l—a_l,l—a.
8F(1 Q) t, 1St<t 1-a
Therefore,

1—0(

" 3— D(
| 2| 6F(2 Q) b, 1st<tlf (t)iT

The substitution of (1.83) and (1.85) into (1.82) leads to

(40 -1)o™®

"n 3— a
| |\ 12I'2 — a) t0<t<tlf (t)|T

The proof ends.

— 47

(1.84)

(1.85)

Remark 1.6.2. The parameter ¢ is chosenas 1 - % such that the integral in (1.84)

tn—1+z7 t _ t-n_1

——dt
(tn—1+0 -0

n-1

happens to be 0.If o # 1 - 5, then

SDEF (Ol ., — Dty 1,6) = O(T*).

~n-1+0
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Lemma 1.6.3. ! Suppose a € (0,1),0 =1 - % c,(("’“)(o <k <n-1,n>1)is defined in
(1.77)-(1.80), then it holds

c( LN ci" Q) 5 cé" ) > c("“ > c ”a) >(1-an™ (1.86)
(20 - 1)c(”“ oc™ > 0. (1.87)
Proof. It is easy to know from (1.79)-(1.80) that
ci" ) cé"’“) > cﬁl" g) > c(" D5 (1-an@
Ifn=1,
a\'™ a
I = gt = (1——) >1-->1-a
2 2

hence, (1.86) is true.
If n > 2 and (1.87) is valid, then we have

na) (n a) 1 (n,a) (n,a) (n a)
C = —[(20 - 1)c - oc + — > 0.
0 “ o[( o ] 20

Consequently, we only need to prove (1.87).
(D If n = 2, we have

(20 - 1)c ) chn @)

(1+0)>%-0*" _a +0) —01“]
2-a 2

= (20—1)[

1 1-a 1-a 1 2-a 2-a
—0[5(3(1+0) -0 )—m((1+0') -07%)

= 1(3—20— l)(1 +0)'®
2 o
= i(zo ~-D(1-0)1+0)™
20
>0.
(I) If n > 3, we have

(20 - 1)c(” ) GCY"“)

Y *-0"" (+0

2-a 2

)l—a s

1+o g

=Qo-1)

_0{2} [2+0)7%-201+0)"+ 079

- i[(2 +0) =201+ 0)" %+ al_“]}
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= %(1 +0) - Q+o)

Noticing

1-a
Q+o) =1+ 0)1_“<1 + L)
1+0

<1+ 0)1_“<1 + :—g)
1-a 30

=(1+0)

>

we obtain

(n,a) (n,a)
(20 - ¢y - 0cq

> 41 gya s g4 gy 3T
20 1+0

= M(l + 0')1_“ > 0.
20(1+ 0)

This completes the proof.

1.6.4 L2-1, approximation of multi-term fractional derivatives

In [19], Gao etal. considered L2-1, interpolation approximation of multiterm Caputo

fractional derivatives

D.f(t) = Y AGD{f(E),
r=0

where A,, r = 0,1,...,m are positive constants, 0 < a,, < @p,_; < *--

least one a, € (0,1), CDf‘f(t) is defined by

f@®O)-f(0), a=0,
§DIF() = 4t o 1)t —5)7ds, @€ (0,1),
flt), a=1.

Denote
t,=nt, n=0,12,...,
. a a
a= mm{l——r}, bzmax{l——’}.
osrsm 2 osr<m 2

It is easy to know that

(1.88)

< ag < 1,and at
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Define

Fo)=Y ﬁ 01_“’[0— (1- "‘3)]# 050,

r=0
Two useful lemmas will be stated below.

Lemma 1.6.4. The equation F(o) = O has a unique positive root ¢* € [a, b].

Proof. Whenm = 0, F(0) = FG"_O%) o %o -(1- “—20)]12‘“0. It is easy to know that the

equation F(o) = 0 has a unique root ¢* =1 - “70
Now, we suppose m > 1. When O < 0 < a, F(0) < 0. When ¢ > b, F(o) > 0. When
o€ la,b],

F (0) = i /l, g%
S T2-a)

1 _
o- 5(1 - 0{,)]‘[2 % > 0.

Thus, the equation F(o) = 0 has a unique root ¢* € [a, b]. The proof ends. O

Lemma 1.6.5. Suppose m > 1. The Newton iteration sequence {0} };., generated by

F
{ 0k+1:0k_F/<((2;))> k:0>1)2>--~, (189)

00 = b
is monotone decreasing and convergent to o”*.

Proof. In view of the proof for Lemma 1.6.4, we have F(a) < 0, F(b) > 0, and when
o € [a, b], F'(0) > 0. In addition, when o € [a, b],

"o \ A —a,-1 1 2-a,
F (0‘)—2@0‘ O+§a, T > 0.
r=0 - Y%r

Noticing
F(0y)F" (o) > 0,
the Newton iteration sequence {0}, generated by (1.89) is monotone decreasing and

convergent to o* 82 The proof ends. O

For simplicity, we denote ¢ = ¢* in this subsection, which implies this ¢ € [%, 1]
satisfying F(o) = 0.

In addition, denote ¢,_;., = (n— 1+ 0)1.

Whenn =1,

t(l
Jf’(t)(tg -t)dt.

to

Cna 1
oDefOle=, ., = i-a
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Whenn = 2,
1 n-1 b
Cna ' -
D f( )|t tn 1o I“(l _ a) [}(Z_;tj f (t)(trl—1+0' t) dt
k-1
tana
+ J f'Oty-146 - t)“dt].
tn—l

The following theorem will give a numerical approximation formula of (1.88) at
the point t = ¢,_;,, and reveal its numerical accuracy.

Theorem 1.6.5. Suppose f € C[ty, t,]. Let

te

A n-1 ~
Df (by140) = Z Y [ Ot 1, - 07
s Ta-a) (&
k-1
tYl—l-HT
" j L;,n(t)(tn1+0_t)_a’dt:|.
tn—l

Then we have the following error estimate:
|th(tn l+0) - th(tn—1+0)|

1-a, O\ —a _3-a m 37010
\Z T2 - a) ( P +6>o T max || = 0(r).

Proof. ltis easy to know that

Df(ty_110) — Df (th-110)

fe
m A n-1
= T "o — L (D)t %t
,;) ra- ar) [I‘Z—;tj (f © Z,k( ))( n-1+o )

tn*l#»(l
+ J (f’(t)—L;,n(t))(tn_lm—t)“’dt]
tnfl

m n-1

z F(l ar) Z .[(f 0 - L,k(t))(tn 1+0 -t “dt

[
m n-1+o

A, , . .
" Z(:) r(1-a,) J (F(6) = Ly y(O)(tgo140 — ). (1.90)

n-1

Denote

M = max [f"(t)].

tostst,
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Since
n-1 k&
A, = j (F(0) = Ly (D)t sy — )t
k=1,
z [(f(t Ly () ty 146 — )" |t fes
b
- J (f(t) - L2,k(t))ar(tn—1+a - t)_a'_ldt
b
n-1 1
=Y | (O - L)ty 1.0 - 07t
k=1p
and
max |f(t) - Ly (t)| < —MT3:
teo st<ty
we have
n-1 1
40 < Y [0~ Lop(Olay by 1o - 07 e
l(:ltk7l
1 n-1 k&
< ﬁMT3 kZ:l I Aty 11g — t)_a’_ldt
T
tn1
1 a
- EMTB J a?’(tn—1+0' -1t “ 1dt
to
- EMTB[(tn 1+0 — n—l)_ay - (tn—l+0 - tO)_ar]

lMT3 -(oT)™™

VA

_ _Mo_—a 3-a,

For the second term of (1.90), according to

F1O) =L = f'(6) - 8,2
= [FO 't )] + [ () - 8™ 2]

= [Pty SF @ - b [

te [tn—l)tn]’ Mo fln € (tn—1>tn)>

(1.91)
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we have

tn 1+0

¥

r=0

]"(1_ ) f(t) Lln(t)](tn 1+0 — t)_ rdt

tn71+l7'
z r(l_ ) j [fl!(t —1)(t_t"—%)+%f”,(ﬂn)(l‘—t_%)z

-1

T f”,(rln ](tn 1+0 — rdt

=) Y,

n 1+0

J (t- tn_%)(tn_lw —t)"%dt

r=0 r(l - ) -
m A tn71+n 1
T — g _ L 2
+r§0 Il-a) J [Zf )=ty 1)

1 ) B
- ﬂrzf”'(nn)](tn_lm - t)7%dt.

Noticing F(o) = 0, we know that

Mz
v
o
p—
R
$
D
—

t, 1)ty 1yo — ) "dt
2

.‘
Il
o

Il
Mz
=
—
||
i)
N
| am—|
/
Q
|
|
N————
S
| S
S
a.
I

r=0

_Nv_A 1\ (@' (o7)
‘,;)r(l—a» <" 2>T1-a, 7 a ]
_m A e I 2-a,
_Z(:)F(B_ar)a 7 (1 2>]T
=F(o)

=0.

Therefore,

tn71+[f

zf(l @) J [%f " = )= 5T ) |t 1 - 07

Yl*l

Furthermore, we have

1.« A o™ 5
Bl<-M L. o
1Bl 6 Zol"(l—a,) 1-a,

(1.92)
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Substituting (1.91) and (1.92) into (1.90), we have

|th(tn—1+a) - th(tn—lﬂr)l
1 1 g _
<M = = a,  3— a
Zr(1 @) (12+6 1—a,>0 ’

This completes the proof. O

With application of (1.81), we have

th(tn—1+a) = z r’ Z C(na : f(tn k) f(tn k- 1)]

r=0 F(2— r)
= ZA(na f(tn 1)~ f( nkl)]
k=0
where
(na _ X Y ()
~n,a) _ n,a,
¢ —;Ar-mck , 0<k<n-1, (1.93)

and {c**"} is defined by (1.77)~(1.80).

The following two lemmas give the properties of coefficient {c," Oy,

Lemma 1.6.6. Given any nonnegative integer m, and positive constants Ay, Ay, ..., Ay,
for any a, € [0,1](0 < r < m), where at least one a, € (0,1), it holds the following
inequalities:

m %

o N e Z TaTa) n%. (1.94)

Proof. When m = 0, the conclusion has been obtained in Lemma 1.6.3. Now, we sup-
pose m > 1. For any a, € (0,1), we have (see Lemma 1.6.3)

c("“) > c("“) o> c("g) > c("“) >1-a)n . (1.95)

In particular, if a, = 0, we have

(na,) (n.a,) (nay) _ 4 _ -0
o =C == =1=(1-0)n"";
If a, = 1, we have
) = () — 2 M _ g = (- (1.96)

Combining (1.95) with (1.96) and noticing that at least one «, € (0, 1), the conclu-
sion (1.94) holds. The proof ends. O
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Lemma 1.6.7. Given any nonnegative integer m, positive constants Ay, Ay, . .., Ay, for any
a, € [0,1] (0 < r < m), where at least one e, € (0, 1), then there exists a positive constant
Ty, such that, when t < 1, it holds

20 - e —oe™ > 0, (1.97)
which implies
e 5 glna),

Proof. If m = 0, the conclusion can be found in Lemma 1.6.3. Now we suppose m > 1,
hence o € (%,1).
(I) When n > 3, for every a, € (0, 1), we have (see Lemma 1.6.3)
20 - D - gc™*
(1+0) % -0"% (1+0) % -o"™ ]
2-a, 2

= (20—1)[

- a{ ! [Q+0)7% =201+ 0)* % + 0> ]
2-a,

- %[(2 + o) —2(1+ o) + 01’“’]]»

s, 2+0)-0 - 40° +30 -1)s, — 40% + 0 _
__$2+0)-0 2) (2+0)1a’+( 23; 1+a0)
o-1 _
_ 3 (sr _1)0_1 a,)
wheres,:ﬁ,rzo,l,...,m.
Noticing
1-a
_ _ 1 §
Q2+0)™ % =(1+0) “’<1+—>
1+o0
1-a 1-a,
<(l+o0) "1+ ——
1+0
_a. 0S, + 20
=(1+O')1 aVL)
s (1+0)
we have

(n.a,) (na,)
(20 -1y ™ -0y

1 1 20? -
2—[(302+50+2——>s,+1—502—70+1 1+0)™™
2 o S,
30-1
2

(s, - o', (1.98)
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For o € (1/2,1), consider the function

1 20?
fg(t)=<302+50+2—E>t+%—502—70+1.

Whent > 1,

] 2 1 20°
f(t) = <30 +50+2_(_7>_t_2

1
z (302+50+2——)—202
o
>0” +50 > 0.
Due to sy > 1, we have

fs(s0) > f,(1) = w o

Noticing

m —IX

’ o % (s — _E _
Z T ay® &= 5Fe)

with the help of (1.98), we have

(20 - 1)c(""‘ 065"’“)

= Z . r(z (20 e — o]
>1 i/l, r(zT fy(s)1+ o)

. % by mr%“:xr)ola,(sr -1
-2 ioit r(%ayar)fg(sr)(l vo)
- %o 7 )f (50)(1+ 0)

v ri/t, r(zT Sfolsy)1+0) "

1 T %

>§/‘OF(TaO)(1 + U)_ ° |:fo'(1)

m lXO a, r(z ao)

+Zl}lr AL(2 - fo(s)(1+0)™ ]
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1 T %

= EAOI‘(TaO)(l +0) [ (1) + O(T™™™)]. (1.99)

Since a, — a; > 0, there exists a positive constant 7, such that f (1) + O(t%™™) > 0
when 7 < 7. Therefore, the inequality (1.97) holds.
(II) When n = 2, we have

(2,a,) (2.a,)
(20 -1)cy™ - ocf

(1+0)>% - g% _a+ o) % — g
2-a, 2

= (20—1)[

1 1-a,  _1-a,) _ 1 2-a, _ 2-a,
_0{5[3(1+0) g ] _2—(1,[(1+0) o ]]»

1

2

wsr +1-50|1+0)™ + %(30 ~1(1-s,)0"™.

For 0 € (3,1), consider the function

Bo-1)(1+0)

8(t) = — t+1-50.
It is easy to know that
845(S0) > 8,(1) = W+1—50:3—20—}7>0, g€ (%1)

Similar to the proof of (1.99), there exists a positive constant 7, such that the inequal-
ity (1.97) holds when 7 < 7.
This completes the proof. O

According to Theorem 1.6.5, we know that the accuracy is no less than second or-
der when using D,f (t,,_;,,) to approximate the value of the sum (1.88) of the multi-term
Caputo derivatives at t = t,_;,,. In the aftermentioned chapters, we will develop some
high order accurate difference schemes for solving the multi-term time-fractional dif-
ferential equations based on the approximation formula in Theorem 1.6.5.

1.6.5 H2N2 approximation
In [56] and [61], the authors presented L2 method and L2C method (a variant of L2

method) to approximate the R-L fractional derivative. In [46], the authors applied L2
method and L2C method to treat the approximation of Caputo derivative

t
GDIf(t) = r(zl_ ” If "s)(t-5)"Vds, ye(1,2).
0
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L2 method:
Cny 1 " 1-y
SO, = 7 y)kzl jf (5)(t, ~9)"ds
tx
1 fle) =2 (&) +f(Gyn) ol
L2C method:

SO, = 155 2 5. jf"(s 8 ds
kl

1 Zf(tk _2) — ft—y) = F () + f(ts1)

tic
t,—s)' Vds.
Te-p & 212 J(" ol

e
In this subsection, we introduce the H2N2 interpolation approximation method!.
Consider the numerical evaluation of

t

Cpy = 1 " 1—
Oth(t)h:tn—% = I‘(2_ ) J f (t)(tn_% _t) Ydt’ 1$ n< N,
to
which can be written as
1 t% n-1 tk+%
oD O,y =15 [ [Froe . -order Y [ e, -0 .

v k=1;

to ki%

Using the data (¢, f(ty)), (to.f ! (tp)) and (t,f(t))), the quadratic Hermite interpo-
lation polynomial of f(t) reads

Hyo(t) = ) + (o)t - t0) + 2 (3f* ~F'tp))(t ~ )"
It is easy to know that
Hyo(t) = %(é}f —f(t) (1.100)
and there exists a {; € (t,,t;) satisfying

260 1) = 1" &), (1101)
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Using three points (¢;_1, f (t¢_1)), (t,. f(ty)) and (ti,1, f (t41)), the quadratic Newton
interpolation polynomial of f(t) reads

Ny () = f(t ) + (85 ) t—tiq)+ 5 ( N - bt - 1),
where
B = (35 - 511,

It is easy to know that

Ny (8) = 831 (1.102)
and there exists a {; € (t;_;, t) satisfying

o = "G (1103)
From (1.100) and (1.102), we have

6D Olew,

t1 [k 1
M2 n-1
~ 1_ JHz'fo(t)(tn_; -7+ Yy J Ny ()t — ) 7dt
F2-y); 2 i, 2
o k-1
4
_ 1 25t g _ply
- 55y -J 26 £/ ), 1 - 01t

1

*32

+Z J (82F%) ;—t)l"ydt]

k= 1tk_1

t

i

)

— YAt (8,7 —f'(L))

N\._-

ek
tk+%

n-1 1 1
+y % J (1 -0t (6, - 6tfk‘2)]

k=1t

Let

{%[(k +1)?Y k7], 0<k<n-2

X -1 — (-1, k=n-1
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Computing arrives at

=% %[(t l_tk 1)2y—(t 1—tk 1) )/]
-y
=2T (- 00> = (n -k~ 177]
=B;’f{)_l, 1<k<n-1 (1.104)
and
t
2 2
—j( -
T 2
fo
2 1
=1 gyl 0 = Gy - )]
1-y 2-y
o)
= pY) (1.105)

Thus we get the approximation formula of (C)D{f ()|~ , as follows:

nil

N1

y L | st g (ny) kel o kel
DSt ) = 15 y)[ (8 ' t) + ank1 (85 8t )]

1 n-1 n- (ny) _ (ny) k=1 sy g
" T@- y)[ of kzl(b by )6f" 2 = b, 1f(t0)]. (1.106)

We call (1.106) the H2N2 formula or H2N2 approximation.
The coefficients in formula (1.106) satisfy

Lemma 1.6.8.

pmy) _ pmy) _ pny) P (ny)
by”’ > by > by > > b > 0.

Proof. Using (1.104), we have

1
k+3 1

B = [ -0 ae=1 [m-k-9dg 1<k<n-1,
tk—% 0
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that is,

1
B =7 [(k+1-9"dg, 0<k<n-2
0

It is easy to know that
pmy) o py) | pny) ;1Y)
by’ > by > by > .- > by 7%

Particularly,

1
b = 7Y J(n —1-&)MVde.
0

Using (1.105), we have

pny) _
bn—l -

NN

t1
2 1 l_y
J(tm; -7ae = J(n - “—{> d¢.
2
fo 0
Noticing that when & € (0,1),

n-1-§""> <n— 5>1y,

2
hence,
1 1 1oy
for-orves - 13) s
0 0
which implies that
pmy) _ 3(my)
b > by
The proof is completed.

Now we estimate the error.

Theorem 1.6.6. Suppose f € C3[t0,tn]. Denote
R,=§ D{f(t)h:twl - @ff(tn_%).
2
Then we have

! ! =1 | hax If"" ).

R, <
Bal <\ sty " rG oy T TGy ) B

61
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Proof. Let
gt)y=f'(t), a=y-1.
We have
t
Crverem 1 f"(s) 1 g() .. cra
oDHf(t) = Ta—y) 6[ = s)y_lds “Ti w 6[ sy ds = ;D;g(t). (1.107)

Make the following piecewise linear interpolations for g(t) as follows:

t-t t—t,
Lio(t) = 2 o(ty) + g(t), teltyti],
th—t1 ti =t 2 5
2 2
Ly(t) = s (t_1)+ e (1), telt 1,6 1]
M T Ty gy e T el

1<k<n-1

It is obvious that there exist &, € (¢, 1), & € (f;_1,t,,1), 1<k <n-1, such that
2 2 2

1
8(0) = Lio(t) = 58" Gt ~to)(t = 1), t € [to, 1], (1.108)
1
g(t) = Ly (b) = Eg"(fk)(t “G )t =G, telf ], 1<k<n-1. (1109)
Noticing

oD Ol | = 6DFEOlrer

tl tk-v-%
1 [ _gwo ! J g'(t)
- dt + _ 8 g,
r(1—a)U (b — O kz:lt t 1 -8
0 k-1 2
we can rewrite D)f(t, 1) as
i
PG 1) = — gJ(t - OdE- (6,7 - f(ty))
S PR N R f ’
0
tk+l
o 1y K+ k-1
£y o J(tn_%—t) dt - (8,57 - 6,73
k=1 ',
k=3
f
__ 1 |2 . _
'm—w[rtj(t"—i 0'7dt - (g(t1) - g(to)
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tk+%
n—ll 1y
3 2 [ ey -0 () - 86 0)
k=1 tk,l
f
1 j2 N _
o y){TtJ( - 0Mde (g(t) - 67
tk+%
+n§1 J(t —OMYdt - [(g(t,. 1) - 8,F57)
T n—% “I\8 k+% t.
k=1 ¢t
k=3

1 7g(t%)—g(t0) o
F(l—a)“ N
to
tk+l
nd Zg(thrl) g(tk 1) ~ ]
+ 2 2 (t 1 —t) adt
k=17,
- (ny) _
F(Z—y){b (g(t) tf)
+ Z bin{)l (tk+%) _5tfk+%) - (g(tk_%) —5tfk_;)]}
tl tk+l
1 ‘ ) o n-1 .2 , B
:—r(1—a)“L10(t)(t 1 —t)” dt+l(zltj Ll’k(t)(tnf%—t) dt]

¢

=)

1 ~(n -
_r(z_y)[bg’w(g(tn_;)—ﬁtf 2)
n-1

S B, - B et ) - 6 )]

k=1

Thus,
t t

gty -Liyt) | " g(t) Ly (1)
G0 dt+:§1 j —(tn,é—t)“ dt]

—_

St —_—

1
Ry = ra- a)[

1 ~(n nol
"Ta-y [bg gty ) - 8"7)
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n-1

- Y B Bt ) - 6 )]

k=1
e (1.110)
where
l tk+l
gt - Lo(t) n-l jzg’(w—L;k(t) ]
dt + S—— e 1A
Pn=Ttaz a)H wt =0 kz-ltkl (b1 = 0)°
_ 1 7 (ny) _ 5l
n = F(Z—y)[bo (8(ty_1) = 8"2)

n- 1
S, b8t 1) - 872) ]

k=1

The estimate of p,.  Using the integration by parts and noticing (1.108)—(1.109),
we obtain

- . 7 - - _ a1
Pr= I1-a) U(g(t) Lio(®)( tx)(tn_1 £~ dr
tk+l
n-1 .2
+ Z (g(t) - Ll,k(t))(_a)(tn_% _ t)aldt]
k=1tk71
4
= a 1 " 3 ~ l o
“Ti @ |:J 2g (8o)(t to)(t% (. 1 — ) Nde
b1
| g -a-1
+ J (&t - 1)t = Ot 1 =) dt],
k:ltk_l
When n = 1, we have
4
pl = r(la ) j % ’I(f())(t - to)(t% — t)(t% _ t)—afldt
tO
“
a 1 " —a
“Ta-a) J 58 (§)(t ~ o)t — ) “dt
g
a 1 " —a
ra-a 2° (50)1 —to)(ty —0) " dt
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a 1 T 2-a 1
= U N oa
“Ta-w 28 (fo)<2> Je(l 6)do
2-a
-2 Lo 11
CT(1-a) 2g (‘fo)<2> <1—a _a>
_ a 1 "(é’ )<I)2a f E(t "
= F(3 —a) 2 > 0 0> L1
Therefore,
44 2—a
SAG-w ' ’ 1.111
Pil < 55— 02 %|g (t)|< ) i
Whenn > 2,
t1
a 2
" w
Pn= T(1-a) |:J =8 (§o)(t - to)(t% - t)(tn,% -1 dt
0
tk+l
n-2 1 " N
+ J (G~ ) r = O,y — 7" de
k=17,
2
te 1
1 —0—
o | 38Tt -0, -0t .
b3
Hence,
t1
2
a " i
Pnl < rl-a 2t0st<t 1|g (t)|[J(t—t0)(t§ —t)(tn_% -t dt
fo
tk+%
n
+ Z J (t- tk—%)(tk+% - t)(tn_% _ t)*txfldt
kzltk,l
b1
' J(t_tn—i)(tn;—t)‘“dt]
3
>
a 1 " a
) T(1-a) 2to<t<t ;lg (t)|[ J 10 dt
0
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tk+l tnfl
22 —a-1 ' -a
t g > J (b1 =) dt + J (t =t 3)(t, s — )t
k17, -
2 2
a "
g [——
T(-a) roi??tyg ®)
tn7§
2 .2 2-a
T —a-1 T
- — t 11—t dt + ———
[4 J(n-a ) +(1—a)(2—a)]
to
a 2—-a T2—a
Y iy
21 -a) tost\ 1-aR-a)
1 [4¢ " 2-a
= t 1.112
[sm “w) G- a)] Ry 1|g Ol (1112)

The estimate of g,,. Noticing

N

2
8t 1)-6 8,7 = f'(fk,%)—‘stfk_ =—;—4f”'(’1k)» M € (te—1 t)s

we have
1 b(n ,Y) " = b (ny) B(n,y) 72 "
n = r2-y) f (1) kZ( n-k-1" nfk) _if ) ) |-
=1
Consequently,
2 " (n y) — = (n y) ‘(ny)
X + b > — b
14l < 24 tost t ()Ir(z y)[ k;( n-k-1 n—k)]
2
n “(n,y)
S 2% 24 tost<t x|f (t)iF(Z 12y
7 " s
V) tost<t Lf (¢ )| 2 Y) vy y
T3 Y "
= ———— max [f"'(t)|. (1.113)

123 -y) t0<t<t
Substituting (1.111)—(1.113) into (1.110), we get
|Rn| < |pn| + |qn|

< [ 1 o ] | ”(t)l‘l’ 'lj—_y max |f"'(t)|
Slsra-o FXG-w 5 T RrG-y) ao,

1 1 y-1 m 3y
< [8r(2—y) "Gy frE- y)] X[ Of

The proof ends.
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Remark 1.6.3. The formula (1.106) can also be obtained in the following Way[%]. Let
gt)=f'(t), a=y-1.

Then we have

DOl , = 6D{g8Ole=t ,
2

t t

k+

g' o, L= “dt+z J g, 1—t)“dt]
k=1,

k-

N 1
B T(1-a)|

—u

.-,
(<)
N\H

~
~

1
2

Ly, (0)(t, 1= “de + Z J {,k(t)(tn_% —t)“dt]

!
—_
'—\N\

Tl-a)|

~
=)
T\‘
N
~

1 [ a
el 2@t - 80) - [ty - 0"de
tO
n-1 1 tk+%
+ Z ;(g(l‘kJr%)—g(tk_%))' J (ty1 —f)_adl‘]
k=1 6
1 —A n ! N n,
= Ta oy [P (8t - ) Z by (8t s) - g(rk_1>)]
1 [smp () _ pn) Hy)
= b t b —b -b, t
fa—y)|P0 ¢-1)- ;;( nk-1 = i )8 P >]
1 —‘(n,y) n-1 (ny) _ pny) 2 (y) ol
= by "6 f" 2 - (bn -b, )5f -b,” f(t)],
r(z_y) i 0 t I(Zl k-1 1 0

in which two approximate equalities have been used.

1.7 Fast interpolation approximations of Caputo fractional
derivatives

1.7.1 Fast L1approximation

Jiang et al. gave the approximation formula of sum-of-exponentials (SOE) for the ker-
nel function ¢~% in Caputo derivative.

Lemma 1.7.1. ! For given a € (0,1), € > O t >0and T > 0, where T < T, there

exist a positive integer Nexp, positive points s ) and corresponding positive weights a)(“>
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(1=12,.. exp) satisfying

N@

exp

Zwet

<€ VtelT,T].

In addition, the number of exponentials has the following estimate:
@ 1 1 T 1 1 T
Neyp = <(logg)(loglogg + log?) + (log%)(loglogg + log?) .

It is worth to note that Négp, w®, s not only depend on a but also depend on ¢, 7
and T.

Without confusion, Ng’(‘;, s and w;“) will be briefly written as Neyy,, s; and w.

Table 1.1 lists the numbers of exponentials, N, needed to approximate T (t e
(1, T)) for different a, 7, €, with T = 1. One can find that the number of exponentials is

very limited and no more than 200 in general.

Table 1.1: N, needed to approximate t™% (t € (1, 7)) for different a, T, e with T = 1.

T

a € 1073 1074 107° 10°° 1077
0.1 10°® 31 37 42 48 53
1078 40 47 55 62 69

10710 48 57 66 75 84

10712 57 68 78 89 100

107 66 78 90 102 115

0.5 10°° 32 37 43 48 54
1078 40 48 55 62 70

10710 49 58 66 75 84

10712 58 68 79 90 100

10714 66 78 91 103 115

0.9 10°° 32 38 43 49 55
1078 41 48 56 63 70

10710 49 58 67 76 85

10712 58 69 80 90 101

1071 66 79 91 104 116

In what follows, a fast algorithm for Caputo fractional derivatives will be proposed.
According to Lemma 1.7.1, we have

tn

t
a 1 = ! - ! -
thf(t)|t:t,, = - Lz_l J O, -t dt + J i, -1 dt]

Ttk thg
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ty N, t,

n-1 exp
~ [z J Ly Y we @ 0de + J Ly ()t - t)"“dt] (1.114)
=1

k= tn—l
ty

Nexp n-1
i 1"(1;—0()[ Z wl(Z J L{,k(t)esl(tnt)dt>

k:ltk_1

+ J Ly, (), - t)‘“dt]

tn—l

N,
1 exp . —a
= T(1-a) [ Z wiFy + f__a(f(tn) —f(fn_l))]

=1
= DY (t,), (1.115)

where

n-1

F'= Z j L{,k(t)e_sl(t"_t)dt, 1<I< Ngp 1<n<N.
k=1,

k-1

It is noted that F}' can be evaluated by the following recurrence relation:

n-1
=Y JLLk(t)e"S’(t""t)dt

k=1 tes

n2 U =

=y JLi’k(t)e’s’(t"’t)dt+ JL{,H_l(t)e’sl“"’”dt

k=1 b1 th

n-2 tk tha

—e Ty J' L (e 0de + 5,/ J oS0 4y

kzltk—l tn—z
1
e N
= e FT 181 Je si1+97 49
0

= e 4 B[f(tey) - f(te)], 2<n<N,

where

e 974 1<I<N, (1.116)

S Nexp+

o
1]
o
Z
1]
Ote—
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A fast algorithm for evaluating OD"‘f (8)l¢=¢, can be obtained from (1.115)-(1.116) as
follows:

N,

exp

FDOf(t) = — n, T ey -
th(tn)_r(l_a) ;w,ﬂ +1_a(f(t,,) fite) |, n=1, (117)

F} =0, 1<1< Ny, (1.118)
F'= e‘SITF, T+ By[f(ty-g) —f(tnn)], 1<SISNeyp, n=2. (1.119)

The computational complexity for evaluating OD"‘f (B)l¢=¢, 1 < n < N) by L1 for-
mula (1.60) is O(N?), and it is O(NN¢yy,) by the formula (1.117)- (1 119). When N is large,
O(NNeyp,) << O(N?). Therefore, we call (1.117)—(1.119) a fast algorithm based on L1 in-
terpolation approximation, or, a fast L1 approximation.

A direct calculation for (1.114) yields

- ty N ty
1 n-1 exp ~ _ ~
FDf(t,) = o Y J L Y we @ 0de + J Ly (Ot~ ) “dt]
-a Lk=1¢" =1 6
1 [n-1 b Nexp by
- Y 8,5 J we 0d¢ 4 6,72 J(t —t)_“dt]
( - a) Lk=1 by =1 tr1
1 [n-1 1 lNexp 1 —a
- 76,F% J we G qg 4 76, fm ]
FA-a) |5 o 1= -a
Denote
g - (1.120)
1-a
1Nexp
a® - J we @040, k> 1 (L121)
=1
0

Then we obtain an equivalent form for (1.117)-(1.119) as follows:

"Dif ) = Z A0ty 1)~ Flty i)
1 (a n-1 ) @
“TA-a) ag ft) - Z(a - af{ Nf(tes) - a2 f (k) |-

k=1
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It is easy to know that

by
w1 .
al® = - J(tn - 6)7dt,

tnfl
P,
exp
Afl’i)k— - J Z we S04, 1<k<n-1
1=1

The coefficient {&;{“) | 0 < k < n -1} satisfies the following lemma.

— 71

(1.122)

(1.123)

Lemma 1.7.2. The coefficient {&\® | O < k < n - 1} defined by (1.120)-(1.121) satisfies

~(a) _ ~(@) ~(a)
a’ >a,’ >-->a,’;>0.

Ife< mT‘”‘, it holds

1-a
~(@) o =(@)
ay’ za
In addition,
~ (@) T
a,’ = ,

tl-e<a® <t+e k>1

Proof. According to (1.121), we have

1

=2

Xp

a0 = Yy w[ent0a0, 1<ks<n-1

L

|
—_

0
by which, the truth of (1.124) is apparent. Noticing

t, 1y

exp

~(a) 1 .[ —-a ~(a) 1 j —s,(t,—t)
a == t,—t dt, a = - E wye "t dl’,
0 T ( n ) 1 T = !

th tha

we have

tn [",1

@ _ @ _ 1 age_ L -
a0 o= 1 [ -oae-1 [ -0

tn—l tn—z

tn—l

tn—z

N,
1 B exp B _
+ J [(tn—t) oY we i ’)]dt.
i=1

(1.124)

(1.125)
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Computing yields
tn tn 1 217 a
JXt—OWM——JXt—oﬂm_ ar”.
tn—l tn—Z

In addition, by Lemma 1.7.1, we have

1 b1 Nexp
S G-t = Y we @0 |dt
T J |:( n ) Z 1
tnfz 1:1
tn 1
1 J e =S;(ty t)
t,—-t) wpe
<p)[G-0T-
tnfz
< E.
Hence when € < 2;3:1 T4
R 2=
ag") (“) >—— 1% €>0
1-a
Using (1.123), we have

l tk Nexp

PG —si(tp—t)

an_k—; j Zwle ! dt
I=1

ta
1 t 1 b Negp
= - t—t”ﬁ——[ t -0 Y we St gt
- [ -orae- 2 [( AN
ta ta -
— 1 S exp
T t,—t
= a;“)k—;J[(tn—t) Zwes’( )] t,
b
1<k<n-1
Further, it follows
a® — L ad®|<e, 1<k<n-1,
n-k 1-a k
namely,
T R Y
a,((’x) esaf(“)< a,((”‘)+e, 1<k<n-1
1-a 1-a

Combining with Lemma 1.6.1, (1.125) can be obtained. The proof ends.

(1.126)
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For the common taken €, the inequality € < always holds.
The truncation error of 7~ Df‘f (t,) to approximate gDﬁ‘f (3] t=t, is given in the follow-
ing theorem.

2-2"% ¢
1-a T

Theorem 1.7.1. Suppose f € C?[ [ty t,], then we have
|6D8f (O)le—y, - 7D (t)

1 [ 1 a ]

< —+

AA-a)l4 (Q1-a)2-a) t0<t<t

x|f"(t)] -7 I max |f'(0)].  (1127)

F(l a) t0<t<t

Proof. Some direct calculations yield

SDYf(O)le=e, — 7 DEF(t)

[n—l

exp

Ly (0) Z we S0 de

— fe t,
g [Z jf(t)“ -7t [ O -0 dt]
r(l a[

tﬂ

+ j Ly, (b)(t, —t)_“dt]

tn—l

» j [ () - L (0] (¢, - )°dt

F(l Q) par]
ta
_ Nexp
/ —-a —=s;(t,—t)
r(1 3 ZJ l)k(t)[(tn—t) —l;a),e 1 ]dt
=1, +1I, (1.128)

By Theorem 1.6.1, for the first term in (1.128), we have

1,__« ]
4 (1-aR-a) tost<t

1
Il <
Il T(1-a)

x|[f"®)]-T (1.129)

For the second term in (1.128), we have

Nexp
(-7 - Y we0]de
=1

Il < F(l a) t0<t<t x |f'()] z J

k=1 tes
n-1

1 !
) mmaxv O | ea

=1
k fi1

ax |f'(t). (1.130)

F(l a) tost<t
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Substituting (1.129) and (1.130) into (1.128), we have (1.127) immediately. The proof
ends. O

1.7.2 Fast L2-1, approximation

With the help of Lemma 1.7.1, we can give a fast algorithm of L2-1, interpolation
approximation[m”

Take 0 = 1- 3, 7 = ot. Table 1.2 lists the values of N, needed to approximate ¢t *
with different parameters a, T, €. It shows the number of exponentials needed is very
limited and no more than 200 usually.

Table 1.2: N, needed to approximate t% (t € (%, T)) with different parameters a, 7, €, when T = 1,
T =or.

a € 1073 1074 107° 10°° 1077
0.1 1076 31 37 43 48 54
1078 40 48 55 62 69

10710 48 57 66 75 84

10712 58 68 79 89 100

10714 66 78 90 103 115

0.5 10°° 32 38 43 49 55
1078 41 49 56 63 70

10710 50 59 68 77 85

10712 59 70 80 91 102

10714 68 80 92 105 117

0.9 10°° 33 39 45 50 56
1078 43 50 57 65 72

10710 51 60 69 78 87

10712 61 72 82 93 104

1071 70 82 95 107 119

Reformulating the fractional derivative as the sum of the integrals over the subinter-
vals and approximating f(t) using L, ;(t) (1 < k < n - 1) and L, ,(t), respectively, by
Lemma 1.7.1, we have

t -1+0

n1 % !
. () f(®
th(t)|t th140 F(l a) |:Z J n i = t)“ dt + tJ (tn— — t)a dt]

1+0
n-1

t

1 n-1 exp
:r(l—a)[z j (t)<za)e_sl n-lto t))dt

k=1,
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tn71+a
+ J L p(6) (tytyo — t)“dt] (1.131)
tn—l
1 [Nexp (”Z‘:l % (t )
= w, J L;)k(t)e_sl n-1+0~ dt)
I1-a =1 k=1,
tn71+a
i ,[ L{,n(t)(tn—lﬂr - t)adt]
tn—l
N,
1 exp O.l—aT—a
= — w,F' + t)—f(t
F(l—a)[; 1 1—a (ftw) f(nl)):|
F
= Ag f(tn—1+o))
where
F/ =0, 1<1< Ny
n-1 k&
F'= Z J L;)k(t)efsl(tnflﬂy*t)dt, 1<I< Noyp, n22.
k:lfk 1

It is noted that F}' can be evaluated by the following recursive relation:

n-1
Fl" — z J L;)k(t)efsl(tn—lﬂx’t)dt
k=g

n-2 tk tnfl

Y j L) (t)e 0 4 J L, (B 504y
k=1

ti tha

t
n-2
= ST Z J Lg’k(t)e_sl(tn72ﬂ7_t)dt+ J Lg)n_l(t)e—sz(tnqm—t)dt
kzlle ths
trrl — —
t t t-t, s

_1 3 1
=eF T+ H G 5tf"’5]e’sl(’"*+ft)dt

[n—z

1
= e STE L [f(t, ) — f(ty )] J (% _ 5) T,
0
1
U - fe) [ (-3 )e "o ag, 2<nen,

0
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Denote

1 1
(o, - (e oo
0 0

Obviously, both 4; and B; are positive. Hence we obtain the following algorithm: For
n=1,2,...,N, compute

exp 1 a 7(1
T A f(tyiio) = F(l ) [ Z wF + —— (f (ty) - f(t, 1))] (1132
F/ =0, 1<1< Ny, (1.133)
F'= e‘S’TFI"‘1 +Ay[f(ty1) — ftan)] + Bz [f(t) - f (0],
SIS Ny, nz2 (1.134)

The computational complexity of the algorithm (1.132)—(1.134) is O(NNgy;,). When
N is very large, the computational complexity of the algorithm is much smaller com-
pared with L2-1; algorithm (1.81), of which the computational complexity is O(N 2). For
this reason, we call the algorithm (1.132)—(1.134) a fast algorithm based on L2-1; inter-
polation approximation, or, a fast L2-1, approximation.

Denote
1-a_—a
(1,a) o °'T
- , 1.135
0 r2-a) (1.135)
whenn > 2,
(na) _ Nexp ol
da:** 1.136
0 F(l Q) 21 F(2 a)’ ( )
1 am® = S (e A, + e ¥%B), 1<k<n-2 1.137
k r(1 ) Zl ! ) (L137)
1 Nexp
d"e = we 24, 1.138
n-1 r(l _ (X) ; 1 1 ( )

A direct evaluation for (1.131) yields the following results:

Whenn =1,
N0
F A 1,1
AT f(tn—1+0) = J ; dt
I'l-a t, —t)%
( )to (ts =)
Ul—aT—a

=t g @ )] = 5010 - fito)]
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Whenn = 2,
d A‘g f(tn—1+0)

ty N
1 n-1 exp s/t 5 ,
=1t

=1

tn—1+u

t
_La® g,
(tn—1+a - t)a

S -t
1 n-1 exp st p k_l P
= I\'n-1+0 5 3 2
r(1—a)[kz_1j(zw’e <ff T
Tk

=1

tn—1+o

6.f "

fe+1 t_tk‘l
+6,72 —2>dt+ — Y "~ __dt
tf T (tn—1+a -t ]

n-1

exp ts -t
= sl(tn 1+0 2 %
Hl@{“zwe _T“FJ

n-1 k Nexp st 9 tk+l —t
O\ -1+ 2
+ Z[ J Y we — de
k=2 te. =1
-1 Noyp t —t 5
j Z wye 1o 2 dt]&tf
tk—z
t, 1Nexp _ tn_§
J Z w e Sl(tn 140~ dt
T
tn 2
tn—1+a
1
+ J (th-110 — t)_adt:|6tfn_2 }
t’l*l
exp _St
s mee”%ﬂm)ﬂw]
—1 Nexp
s,tn ke 1A —Sitn_, kB £) — F(t
n1 ) Z;E; + e 4B [£(ty) ~ f(ty )]

la—a

Nexp
<r(1 o) Z r(zT )U(t) flta-)]
=1

=Z¢”Wm ~fltey)-
k=1



78 —— 1 Fractional derivatives and numerical approximations

The following result is given in [101].

Theorem 1.7.2. Suppose f € C3[t,, t,], then it holds

C
OD? (t) | t=ty 110

(40 - 1)0™* P, t, ,
< Tara-a mE O gt ma o)

F
A‘or[ f(tn—1+0)‘

whereo =1- 35,0 <a < 1.

Proof. Denote

R = D{fOliey, .~ A% f(ty1o).

With the help of (1.131), we have

-1+0

tk tn
n LS J40) £(6)
R = dt —dt
I[1-a) [Icz_;tj (th-140 — D" ’ tj -t :|

(tn—1+o

n-1

ty oxp
S [Z J ( Y wpe e )L;,kmdt

IYI71+0'

L (t
+ _La® dt
¢ (tn—1+o - t)a

n-1

t t -1+0
1 fIt) - Ly, (t) ") - Ly ()
T Tl-a) L 1, j (tyotsg — D de+ j (tyot14g — D dt]

n-1

exp

1'*(1 0() Z J [(tnl+a Z wle_SI e :|L£,k(t)dt

= 1, +1I,.

According to Theorem 1.6.4, we have

(40 - 1)o@

[|<$——"—m
Lol 12I'(2 - a) tost<t

|f”’(l’)|‘l'3 a

Using Lemma 1.7.1, we have

1 n1 %

L] < |
Iri-a i,

k-1

t;

N,

exp

(tn—1+o - t)_a - Z wle_SI(tn71+a_t) : iLé,k(t)ldt
=1

n-1 X

€ !
‘T ® k; J |Ly i ()]dt

ti1

(1.139)

(1.140)

(1.141)
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n-1 b

€
STa-w kz_ltj

k-1

n1 t,,1—t t—t, 1

k+5 k-3

<& 2 2
e )L [ (F = e

k=14

t,1-t t-t
_1 Tk+s3 1
6tfk 3 +fr + 6tfk+2

_1
2

dt

€
=T a)4(n 1)Tmax|6f |

5¢et,,

< —"1_ "(t)|. 1.142
i ol (1.142)

Substituting (1.141) and (1.142) into (1.140), we have (1.139). This completes the
proof. O

Lemma 1.7.3. %Y The coefficient {d*® | 0 < k < n - 1} defined by (1.135)-(1.138)
satisfies the following relations:

Whenn =1,
dg’"") >0
Whenn = 2,
M
d;"’“) > dg"’“) > dg"’“) > > d;’f‘f); (1.143)

(I) Ife < %T*D‘, then we have

(20 - )dJ™ - 0d™ > 0, (1.144)
d > a5 o, (1.145)
L P —— (1.146)

n1 7 2T(1 - )

Proof. When n = 1, it is obvious that dg”“) > 0.

When n > 2, (1.143) is true by using (1.137)-(1.138). In addition, (1.145) is true pro-
vided that (1.144) holds. Now we prove (1. 144)

As the beginning, a relation between d "% and
2,3,..., we have

() s
2 a)Ck

is illustrated. For n =

may _ _ T (n.a)
k FrQ-a)

3l

1 tnfl |l*["77
2 th 2dt, k=0,

€ t, It 1-tl 6. lt=t,_3l
< . 1 (% k+3 dt 1 (k-1 k-3 d
< 1 +1 g, 1<k<n-2,
I'i-a Ty T T, T ST
1 t t3—t|

—2—dt, k=n-1,

thy 7T
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, k=
-_ € 1
T T1-a) ’

k

Nl D=
N

0,
k<
n-

-

When n = 2, because of

(20-1)(1-0)

a) Q2a) o
20 -1)cy™ —oc >
( ) 1 201+ 0)*!

and (1.147), we have

(20 - 1)d£,2""> - odiz’“)

T @n) _ _ (2a) [ e _ T o

= 2 1 20-D|dS" — ———c

r(2_0()[(0 )eg ¥ —oc”] + (20 - 1)| dg NP

ol g0 - _T° (z,zx)]
1 rR-a)!
o T .(20—1)(1—0)_(0 0 €
“TQ-a) 20(1+0)%! 4r(1 —a) r(1 -a)
1 %1 -0) B 60—16]
T TA-a)l20(1 + 0)*1 4
= 0.
When n > 3, in view of
20 -1)(1-0)
20 -1 (na) _ _ (na) > (
(20 - 1)y % 20(1 + 0)*
and (1.147), we have

Qo - 1d* - 0d™
__Tr [(20 - 1)cg (n.0) _ ena ]+ Qo - 1)[d<"’“) - —T_a (n.)
T T2-a) 1 0 re-a) ©

_olamw _ ¢ c("’“)]

1 r2-a)!

N T _(20—1)(1—0)_(20_1) —0 5¢
"TQ2-a) 20(1+0) 4TA-a)  4T(1-a)
1 %1 -0) B 70—1€]
T T1-a)l20(1+0)* 4
= 0.

In addition,

(na) o T e €
=1 T T2-a) "1 TA-a)
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-

T —a €
*Toce U it
1,4 e
g ra-a) (t"-€)> A1-a)
The proof ends. O

1.7.3 Fast H2N2 approximation

In what follows, we will give a fast algorithm for the H2N2 interpolation approximation
of Caputo fractional derivative of order y € (1,2)7!.
In this subsection, the superscript (y — 1) in Ng;), squ) , w%yfl) will be omitted for
brevity.
Applying Lemma 1.7.1 and the quadratic interpolation polynomials H,,(t) and
N, ,(t), we have
6DIf (le=q

n—

[N

~
[N

2

n-1
J J G —t)l_ydt+z J f”(t)(tnf% -tat

k=17,

tk 1
1
r2-y)

1
[ 2 Nexp

1 t -t
N JHz"o(t) Z we ey 0q,
=1

+ NI (t) Z we "1 o dt
+ J N (O, 1 —t)l‘ydt] (1.148)
> 2

1 Nexp "2
_[ Y wF} + 8! j (t, 1 —t)l_ydt]
2
3

r2-y
t 3
2
=7Df(t,_1), 2<n<N, (1.149)
2
where
F t gt n-2 e t
R = [ Hipe ™ s Y [ e,
to

k=1,
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1<I<Ngy, 2<n<N.

The evaluation of F}' can be carried out using the following recursive algorithm:

! bl
i —s(t 1-t) n2 o —s(t 1-b)
F| = JHi’O(t)e Hn-3 dt+z J N (e 3 dt
0 k=1,
2
t1 tk+l
i —s(t 3-) n3 —s(t
:e‘SlT[JHZ’fO(t)e 43044 Y J N2 (e 3 at
0 k=t
2
tn—§
’ )
t -t
+ | N0 e (1.150)
t s
2
tn—é
2
_ t -t
STERL 4 S2fT e 179
tn 5
2
3 5
SR L B8, - 6,/"2), 3<n<N, (1.151)
where
t1
‘ (t t) 2 3 1
Fr= | Hye ™3 dt = e R (YR V)] (1.152)
to !
t 3
1 ’ —s)(t 1) 1
B ==~ j e "midt= — (e - e B, (1.153)
T ST
tn7§
2

From (1.149)-(1.153), the following algorithm is obtained to evaluate gDi’f (Ole=¢ ,:
n-3

Nexp 2-y
Fay _ n T 2 rn—1
D'ft, 1) = =———= wF + —6 , 2<n<N, (1.154)
nt) = r(2—y>[; ooyt

~
[T

2 - - 1
F=-|e G462 F (), 1<1< Nogps (1.155)

to

F'= e T L B8, — 6"7), 1<1<Nyy 3<n<N. (1156)

exp>

In what follows, we try to analyze the truncation error by using F Dyf (t,_1)toap
2

proximate §D!f Ole=c_, -
2
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Theorem 1.7.3. Let f ¢ C[t,,t,]. Denote

R =G0l Ol , =7 D'f )

Then, whenn > 2,

; ! 1 y-1 "m 3
R"| < y
a 8I'(2 - y) TGy T AG-y) e ax [f"()|r

et,_

TQ2- y) Jnax | (). (1.157)

Proof. Notice the fact that

t,1

f"(t)(tn H7rdt + Z j fre, —t)lydt]

t

R 1
R'= ——
F(Z—Y)[

—
»
,_.
~

<)

t

ty
‘ Newp (¢, t)
II 51 1
t) dt
HZVJJ 2000 Z
0

t

2 k+% N,
(S 7 S —si(t,_1-t)
+ Z Ny, (0) Z we 2 dt
k=1, 1=1
!

t

"3

+ j Ny (O, —t)l_ydt]
> 2

t

W3
2
4
"ty - H!' ()¢, 1 —)Vde
0
tk+l
n-1
+ZJXﬂm—Mummﬁ—wﬂm]
k=1,
1 } Nexp st 1t
+—NH Ol @t - =Y we "3 |dt
F(Z—y)U 2000\ P ; :
0
tk+l
n2ot 1y e ~Silt, -0
+y INZk(t) (ty1 =0 > we dt
k=107, =1

=1 +1L. (1.158)
n n
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On the one hand, using Theorem 1.6.6, we have

||<[ 1 1 Y-

1 " 3- y
8I'2-vy) * 123 -vy) 2F(4 y)] t0<t<t lf (t)|T (1.159)

On the other hand, combining (1.100)-(1.101) with (1.102)—(1.103), we have

1 tk+%
€ "
L, | < -y {[l o()]dt + kzltj |N2,k(t)|dt]
t% tk+;
€ /[ "
= Te 7 ; If (0)|dt+kzltj If ((k)ldt]
et
|f”(t)| (1.160)

S T@R- y) tost<t

where {; € (to, t,), § € (tr_1> trr1)> 1 < k < n-2.Using (1.158)—(1.160), we can get (1.157).

The proof ends. O
Denote
tn,l
2 1y
pny) _ 1 1- T
I = . J (6 -0 de = o—, (1.161)
) tk+% o ( ) 1 Neyp
Fny) _ st 1-0 ., -s(n-k-&)T
1 b= ;JZwle dt—J we™ dé¢
(7, =
2
1<k<sn-2, (1.162)
l 1 Nexp
pr = J e i 0gs - J we DT (1163)
i o 1=
Then it follows from (1.148) that
FDf(t, 1)
1 C e+ 1 k-1
0.f? - f(ty) + (672 = 6f

1 = ! - 1.
e y)[b 6" Z(bi,"{’l bf{ﬁ,?)fstfk z—bifiﬁ’f’ao)]. (1.164)

k=1
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From the definitions of B,(("’y) and B;("’Y), we have
pmy) 3y _ A, p(ny)  3(ny)
by’ =by" =05 |b*" -b"|<e, 1<ks<n-1.
The coefficients in the formula (1.164) satisfy the following lemma.
Lemma 1.7.4.
pmy) _ py) _ g(ny) i (ny)
by™" > by > by > o> by
When € < Z";i‘rl‘y,
y
pny)  gny)
by’ > b

Proof. We rewrite (1.162) as

1 " k= % Nexp
- J wle dt
T =1
n k— %
1 Nexp
J we T4 1<k<n-2
I=1

Then the following inequalites
pny)  g(ny) 7(ny)
b > by > ... > by
are followed immediately by (1.165) and (1.163). In addition,
pny) _ gmy) _ pmy) _ gmy)
by —=by"" = by - by

_ ([,(n,y) "Y )+ ( B y))
(b(n ) (" Y)) €

1-y 1-y
- (@) e
-y 2-y
(2-2°7) -€>0

This completes the proof.

1.8 Finite difference methods for FODEs

1.8.1 Method based on G-L approximation

Problem 1.8.1. Solve the following initial value problem:

{ oDiy(t) =f(t), 0<t<T,
y(0) =

— 85

(1.165)

(1.166)
(1.167)
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where a € (0,1).

Define the function

0, t<o,

. y(), 0<t<T,
v(t), T<t<?2T,
0, t > 2T,

where v(t) is a smooth function satisfying v(k)(T) = y(k)(T) and v(k)(ZT) =0,k=0,1,2.
Suppose &t € Z(R). It should be pointed out that the aim of the introduction of
function v(t) is only to provide a sufficient condition for using Theorem 1.4.2 without
any practical calculation.

Take a positive integer N and denote 7 = %, ty=kt,k=0,1,2,...,N.
Considering equation (1.166) at t = t,,, we have

oDV, = f(ty), 1<n<N.

It follows from the G-L formula (1.19) that
n
TN 8 Y(ter) = f(t) + ()", 1<n<N, (1.168)
k=0

where, by Theorem 1.4.2, there is a positive constant c; such that
)" <1, 1<n<N. (1.169)
Noticing
y(to) =0, (1.170)

omitting the small term (r;)" in (1.168) and replacing the exact solution y(t,) with the
numerical one y" produce the difference scheme for solving (1.166)—(1.167) as follows:

n
TN gy = f(t,), 1<n<N, (L.171)
k=0
¥’ =o. (1.172)

The stability of the difference scheme

Theorem 1.8.1. Suppose {y" | n = 0,1,2,..., N} is the solution of the difference scheme
(1.171)-(1.172), then it holds

Al k7" max|f(t,)|, 1<k<N. (1.173)

< [ —
|y (1-a)2% 1<msk
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Proof. Noticing that whenO < a <1, g(()”‘) =1, gl((“) < 0, k =1, rewrite (1.171) as follows:

n-1
y'= Y (-8 + (L), 1<n<N. (1.174)
k=1

Next, the induction method will be used to prove (1.173).
When n = 1, it follows from (1.174) that

174 5 114
Iyll =T lf(tl)l < ml— V(tl)l

Thus, (1.173) is true for k = 1. Now assume that (1.173) is true for k = 1,2,...,n -1, then
it follows from (1.174) that

n-1
< 3 (=€) + Yty
k=1
5 @ a )
s’;( —8x )[(1 a)za(” k)t 332,5‘_#(%”]” It
n-1 @ 5
S[kzl(‘gk ST +1]T max )
= Z( g,(gx))— Z( gl(;l)) ana+1 “ maXLf(tm)|
k=1 k=n (1 )2 n
1—a /2\“ .
s{[l—T(H) ](1—a)2“n +1}T magltf(tm”
5 a_a

where Lemma 1.4.3 is used in the penultimate step above. Hence, (1.173) is also true
fork =n.
By the principle of induction, the theorem is true. The proof ends. O

The convergence of the difference scheme

Theorem 1.8.2. Suppose {y(t,) | n = 0,1,2,...,N}and {y" | n = 0,1,2,...,N} are so-
lutions of the problem (1.166)—(1.167) and the difference scheme (1.171)-(1.172), respec-
tively. Let

e"=y(t)-y", n=0,12...,N,

then it holds
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Proof. Subtracting (1.171)-(1.172) from (1.168) and (1.170), respectively, yields the sys-
tem of error equations as follows:

n
T—a z gl((a)en—k _ (rl)n’ 1<n<N,
k=0

e’ =o0.

Noticing (1.169), the application of Theorem 1.8.1 produces

5¢
"] < mn“r“ lglrgsxn|(rl)m| < WT“T, 1<n<N.

The proof ends. O

Problem 1.8.2. Solve the initial value problem

{ oDiy(t) =f(), 0<t<T, (1.175)
y(0)=0, y'(0)=0, (1.176)
wherey € (1,2).
Define the function
0, t<O,

y(t), 0<t<T,

v(t), T<t<?2T,
0, t>2T,

where v(t) is a smooth function satisfying v(k)(T) = y(k)(T), v(k)(ZT) =0,k=0,1,23.
Suppose it € €Y(R) and y € C3[0, T].
Let

2zt =y'(t), a=y-1,
then from (1.175)-(1.176), the differential equation for z(t) is obtained as follows:

{ oDiz(t) =f(t), 0<t<T, (1.177)
z(0) = 0. (1.178)

Denote
Y'=y(t,), Z"=zt,), 0<n<N,
I R P n-1 S S n-1
Y Z:E(Y +Y"), 8,Y 2:;(Y -Y"7), 1<n<N.

Considering equation (1.177) at t = t,,, we have

oD z(O)leey, = f(ty), 1<n<N.
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It follows from the G-L formula (1.19) that

n
% Z gl(:x)zn—k =f(t,) + (rz)n) 1<n<N,
k=0

Z°=o,
where, by Theorem 1.4.2, there is a positive constant ¢, such that
|r)"| <cr, 1<n<N.

It follows from (1.179) and (1.180) that

n-1 n-k n-k-1
- 27+ Z B | 4
Tﬂzgl({a) > ':fn 2+5[(r2)n+(r2)n ]’ 1<n<N,

k=0

where (r,)° = O,f"_%

L[f(ty) + f(t,y)). Substituting

8" = 22K 1 2K v o)

into the equality above gives

n-1 1 1 1
T > g]((y_l)StY"_k_i =f"2+ ("2, 1<n<N,
k=0

and there is a positive constant c; such that
n-l
|(r3)""2| <31, 1<n<N.
Noticing

y(ty) =0,

— 89

(1.179)

(1.180)

(1.181)

(1.182)

(1.183)

(1.184)

omitting the small term (r3)"‘% in (1.182) and replacing the exact solution y(t,) with its
numerical one y" arrive at the difference scheme for solving the problem (1.175)-(1.176)

as follows:
n-1 1 . 1
Ty g,((yf 'y k2 = "2 1<n<N,
k=0

yO=O.

The stability of the difference scheme

(1.185)

(1.186)

Theorem 1.8.3. Suppose {y" | n = 0,1,2,...,N} is the solution of the difference scheme

(1.185)-(1.186), then it holds

_1 5 _ 1
60/ < Gt maxl™l 1<k<N

(1.187)
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and

k y m-1
< ———t max 2|, 1<k<N. 1.188
| Q2-y)r1k Kmskv | ( )

ly
Proof. The inequality (1.187) can be obtained similarly to Theorem 1.8.1. Noticing

1

k k )
YVe=ylrr Y sy =1y 8y",
m=1
the application of the inequality (1.187) will produce (1.188). The proof ends. O

The convergence of the difference scheme

Theorem 1.8.4. Suppose {y(t,) | n = 0,1,2,...,N}and {y" | n = 0,1,2,...,N} are so-
lutions of the problem (1.175)—(1.176) and the difference scheme (1.185)—(1.186), respec-
tively. Let

e =y(t,)-y", n=0,1,2...,N,
then it holds

5
"< —3__T'r, 1<n<N.
@-y2

Proof. Subtracting (1.185)-(1.186) from (1.182) and (1.184), respectively, yields the sys-
tem of error equations as follows:

n-1
_ -l _1
Tl—y Zg](()’ 1)5[6’” k=5 _ (rg)n 5, 1<n<N,
k=0
e =0.

Noticing (1.183), the application of Theorem 1.8.3 arrives at

n 5 y m_l 5C3 y
"] < oy fy max [(ry)"™2| < Gy T'r, 1<n<N.
The proof ends. O
Problem 1.8.3. Solve the boundary value problem
{ oDly(t)=f(t), 0<t<T, (1.189)
y(0)=0, y(T)=B, (1.190)

wherey € (1,2).
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Define the function

0, t<O,
t), 0<t<T,
ao - 1 YO
v(t), T<t<?2T,
0, t>2T,

where v(t) is a smooth function satisfying v(k)(T) = y(k)(T), v(k)(ZT) =0,k=0,1,23
and suppose it € €1 (R).
Considering equation (1.189) at t = ¢,, we have

ODiIY(t)lt:tn =f(t,), 1<n<N-1

It follows from the shifted G-L formula (1.19) that

n+1
TN gyt ) = f(t) + ()", 1<n<N-1, (1.191)
k=0
where, by Theorem 1.4.2, there is a positive constant ¢, such that
|r)"| <cuT, 1<n<N-1L (1.192)
Noticing the boundary conditions
y(ty) =0, y(ty) =B, (1.193)

omitting the small term (r,)" in (1.191) and replacing the exact solution y(t,) with its
numerical one y" arrive at the difference scheme for solving (1.189)-(1.190) as follows:

n+1

7 Z g,((")y"_k“ =f(t,), 1<n<N-1, (1.194)
k=0

=0 y¥=B (1.195)

The stability of the difference scheme
Theorem 1.8.5. Suppose {y" | n=0,1,2,...,N} is the solution of the difference scheme

n+1
7Y gy = f(t), 1<sn<N-1, (1.196)
k=0
=0 Y=o, (1.197)
then it holds
45 T\
Yl < (—) Flleon (1198)
Vo S D@ p-p\a)
where

n
= max = max t,)|.
IWleo = max ", Wflleo = max If(t,)]
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Proof. Noticing that g(()") =1, gi - gé)') > gy >+ >0whenl <y <2 rewrite
(1.196) as follows:

n
(- = y gy _Tf(t), 1<n<N-1 (1.199)
k=0
k#1

Suppose |yl = Iy™|, where ny € {1,2,...,N -1}

Letting n = n, in (1.199) and taking the absolute values of the both hand sides, an
application of the triangle inequality yields

(&)Yl ng”nyu + 7 1floo

k#l

N-1
< Y g Wleo + T If oo

k#1

that is,
N-1 ”
(— Y gV >||y||oo <7 f -
k=0
In view of
L)
> 8 =0,
k=0
it follows
o R.w
-2 8" = 28" >0
k=0 k=N
Thus,

oo € =557 flleo

[ee]

k=g

The application of Lemma 1.4.4 gives

v
Wheo < e iy V!

45
S et )'V"‘”‘
The proof ends.
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The convergence of the difference scheme

Theorem 1.8.6. Suppose {y(t,) | n =0,1,...,N}and {y" | n = 0,1,..., N} are solutions
of the problem (1.189)-(1.190) and the difference scheme (1.194)—(1.195), respectively.
Let

e"=y(t,)-y", n=0,1,...,N,

then it holds

y
lelleo < a2 (-) €.
y-D2-yB-y\4

Proof. Subtracting (1.194)-(1.195) from (1.191) and (1.193), respectively, yields the sys-
tem of error equations as follows:
n+l

Y gV M = (r)", 1<n<N-1,
k=0

e0=0, eV =o.

Noticing (1.192), the application of Theorem 1.8.5 gives

y
lells < e <Z> max |(r4)"|
T (y-DR-y)B-y)\ 4/ 1snN

< 45 <_)
S y-D2-yG-n\a)

The proof ends. O

1.8.2 Method based on L1 approximation

Problem 1.8.4. Solve the initial value problem
{SWﬂn=ﬂ& 0<t<T, (1.200)
y(0) =4, (1.201)
where a € (0,1).

Suppose y € C2[0, T]. Considering equation (1.200) at t = t,, we have
Cnha
ODty(t)|t:tn =f(t), 1<n<N.

It follows from Theorem 1.6.1 that

-a n-1

aly(ty) - Y (@@, - a® )yt - ayto)
k=1

T
I'2-a)
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=f(t) + ()", 1<n<N, (1.202)
and there is a positive constant c¢; such that
|(rs)"| < C5T 1<n<N. (1.203)
Noticing
y(ty) = A4, (1.204)

omitting the small term (r5)" in (1.202) and replacing the exact solution y(t,) with the
numerical one y" arrive at the difference scheme for solving (1.200)—(1.201) as follows:

aé“)y" - Z(an 1~ “) n')‘)ly0 =f(t,), 1<n<N, (1.205)

T
r2-a)
yO - A (1.206)

The stability of the difference scheme

Theorem 1.8.7. Suppose {y" | n = 0,1,2,...,N} is the solution of the difference scheme
(1.205)—(1.206), then it holds

V[ < V0 + T - ) max|tf(t), 1<k<N. (1.207)

Proof. Reformulate (1.205) as follows:

ag")y" Z o k .- (“) Y +an“)1y0 +7°T(2 - @)f (t,)

k=1
S @) (@
a
anl nky+an1y+( 20()f(t)

k=1 nl

Taking the absolute value on both hand sides of the equality above, the application of
Lemma 1.6.1, the triangle inequality and

7@ T"‘n"‘

@ —TQ-a)< r2-a)=t;T1-a)
@ -a

nl

lead to

ally"| < Z (@@, - aIV |
k=1

+a @ [0 + 4T - )|f(t,)]], 1<n<N. (1.208)

Next the induction method will be applied to prove the truth of (1.207).
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When n = 1, it follows from (1.208) that
ag") |y1| < ag“)(|yo| +7°T(1 - a)|f(t,)]).

Obviously, (1.207) is true for k = 1. Now suppose (1.207) is true for k = 1,2,...,n -1,
then it follows from (1.208) that

n-1
aé‘”]y”l < Z(a:’?kf - a [|y |+T(1-a) max|tlf(t1)|]
k=1

@]+ Gra - ]

n-1
< {Z(ail“_)k_l —a®) + afq“’l} [|y°| +T(1-a) {rgllzi)ﬁtff(tl)”

k=

1
ao [|y |+T(1- a)max|tlf(tl)|]

Therefore,

ly"| < |y°| +T(1 - a) max|t]f
1<i<n

hence, (1.207) is also true for k = n.
By the principle of induction, the theorem is proved. The proof ends. O

The convergence of the difference scheme

Theorem 1.8.8. Suppose {y(t,) | n=0,1,2,...,N}and {y" | n = 0,1,2,...,N} are solu-
tions of the problem (1.200)-(1.201) and the difference scheme (1.205)—(1.206), respec-
tively. Let

e =y(ty)-y", n=012...,N,
then it holds
le"| < csT°T(1 - a)T*% 1<n<N.

Proof. Subtracting (1.205)-(1.206) from (1.202) and (1.204), respectively, yields the sys-
tem of error equations as follows:
o N @ @
a) n a a
F(z_a) aO e _Z( rlkl )e

k=1
e’ =0.

nle (r5) 1<n<N,

Noticing (1.203), the application of Theorem 1.8.7 gives
le"| < |€°| + T°T(1 - @) mlax|(r5)l| <eTTU-ar™®, 1<n<N.
1<lsn

The proof ends. O
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Problem 1.8.5. Solve the initial value problem

{ SDly(t) =f(t), 0<t<T, (1.209)
y(0)=4, y'(0)=B, (1.210)

wherey € (1,2).
Suppose y € C>[0, T]. Considering equation (1.209) at t = t,,, we have
SDIY(Olizy, = f(t,), O<n<N,

hence,
[ Y(t)|t t, +o )/(t)|t £, 1] = [f(tn)+f(tn_1)], 1<n<N.

Denote Y" = y(t,). It follows from Theorem 1.6.2 that

LS [P P R S W \g vk-1 . ®
rc-y bO Styn ?- kzl(bn—k—l - bn—k)ﬁfY i bn—lB

= ) +f 6]+ 0, 1<nsN, (1211

and there is a positive constant ¢4 such that
|(r6)"’%| <cr !, 1<n<N. (1.212)
Noticing the initial value condition
Y° = 4, (1.213)

omitting the small term (ré)”” in (1.211) and replacing the exact solution Y™ with its

numerical one y" arrive at the difference scheme for solving (1.209)-(1.210) as follows:

T

(2] (y) n-1
el Z<bnk1 B8y 2 - BIAB | =2,

1<n<N, (1.214)
V=4, (1.215)

where f" = () + f(typ))-

The stability of the difference scheme

Theorem 1.8.9. Suppose {y" | n =0,1,2,...,N} is the solution of the difference scheme
(1.214)—-(1.215), then it holds

y"| <141+ T[1Bl + T - y)max]e/ 3], 1<n<N.
1<lsn



1.8 Finite difference methods for FODEs

Proof. Rewrite (1.214) as follows:

bE)Y)(styn—% _ Z(b(y

_1 _ _1
e =BV )8y T+ bY B+ T ITG - y)f"
k=1

Zbi.ykl ) )67 + Y, B+ TrG -y

b()’)

n-1

97

Taking the absolute value on both hand sides of the equality above and noticing

1 /1 V-1
Lo TO-N € 5T -y = 47Ty,

n-1

the application of the triangle inequality yields

1 n-1 3
bY16y" < Y (b - Y )I60 77|
k=1

+b? 1B+ £7'T@ - y)|f 1<n<N.

Next, the method of induction will be used to show the truth of

|6tyk_%| <|Bl+T(2-y) max|tly_1fl_%|, 1<k <N.
1<I<k

(1.216)

(1.217)

The result of (1.216) with n = 1 reveals that (1.217) is true for k = 1. Now suppose

(1.217)istrue fork = 1,2,...,n -1, it follows from (1.216) that
b(y)|6 yn—%l
n-—

) ) y-1,-1
kZ:l(bn ket~ D) 1B+ T2 - y) max|gy 72

+ b [1Bl + €' T@ - y)|f" 2]
n-1
M pn 0 | ) i
) [k:l(b “hu) b"_l] [IBl +12-y) ?gll‘?é'tl f2 |]
= by’ [IBI +T@~) max|t}”'f ).
Therefore,
|6ty"—% | <IBl+T(2-y) maxltly—lfl_% |,
1<lsn

which is precisely the result of (1.217) with k = n.
Noticing

C 1
y' =y +T Y 8y,
k=1
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it follows from (1.217) that

n 1
V' < 0+ Y187
k=1

n
y-1p0-1
<|A|+T]{Z=;[|B|+F(2—y)111slgylf|tl 73]
s|A|+T[|B|+1"(2—y)max|tly_lfl’%|], 1<n<N.
1<l<n

The proof ends. O

The convergence of the difference scheme

Theorem 1.8.10. Suppose {y(t,) In=0,1,2,...,N}and {y" | n=0,1,2,...,N} are solu-
tions of the problem (1.209)-(1.210) and the difference scheme (1.214)—(1.215), respec-
tively. Let

e"=y(t,)-y", n=0,12..,N,
then it holds

le"| < ceT'T2 -y, 1<n<N.

Proof. Subtracting (1.214)—(1.215) from (1.211) and (1.213), respectively, produces the
system of error equations as follows:

Y
INCESY)

e’ =0.

1

ol 1
_1 I— _1
b8 =Y (b, -8 | = (1) 2, 1<n<N,
k=1

n—k-1

Noticing (1.212), the application of Theorem 1.8.9 yields
[€"] < T'T@-y) max|(rg) 2| < e 'T@-y)T*”, 1<n<N.
1<l<n

The proof ends. O

1.8.3 Method based on L2-1, approximation

Consider another numerical method for solving the Problem 1.8.4, i. e.,

{ EDY(t) =f(t), O<t<T, (1.218)
y(0) = 4, (1.219)
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where a € (0,1).
Suppose y € C3[0, T]. Considering equation (1.218) at t = tq-1+0> DY Theorem 1.6.4,
we have

—a

- (2 @2 Z O [Ytat) = Yitai1)] = flt1so) + ()", 1<n<N (1.220)

and there is a positive constant ¢; such that
)" < ;7% 1<n<N. (1.221)
Noticing the initial value condition (1.219) and omitting the small term (r,)" in
(1.220), a difference scheme for solving (1.218)—(1.219) can be derived as follows:

-

T (na) ., n-k _ n k-1\ _
a2 Z 0% ) =f(ty16)» 1<n<N, (1.222)

Y =A (1.223)

The stability of the difference scheme
Theorem 1.8.11. Suppose {y" | n = 0,1,..., N} is the solution of the difference scheme

-a n-1

T (n Q) n—-k-1 n
-g", 1<n<N, 1.224
o d kz G-y =g n (1.224)

Y =4 (1.225)

then it holds

k 0 a m
|y|<|y|+l"(1—a)1ré1”?§(|tmg |, 1<k<N.

Proof. Denote s = T°T(2 - a). It follows from Lemma 1.6.3 that

a
> I Tar(z-a) = £°T(1 - o).

Reformulate (1.224) as

§ k-1
Cgla)yn _ zc(na n— Zc(na n—

chn;r)yn k zc(na) n- k

n-1
¥ (e — MOy (M0y0 4 sg", 1<n<N.

k=1
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Taking the absolute values on both hand sides of the equality above and noticing
Lemma 1.6.3, the application of the triangle inequality yields

n-1

SO < Y e = e ] + PO + sl

k=1
- - S

= Y -+ (] + e
k=1 Cn—l
n-1

< Y (e = PO+ O] + T - a)td]g]), 1<n<N. (1.226)
k=1

The following result
k 0 a_m
| <y’ |+T( a)lrsnn?g(]tmg , 1<k<N
can be obtained from (1.226) by the method of induction. The proof ends. O

The convergence of the difference scheme

Theorem 1.8.12. Suppose {y(t,) |n=0,1,...,N}and {y" | n=0,1,..., N} are solutions
of the problem (1.218)—(1.219) and the difference scheme (1.222)—(1.223), respectively. Let

e =yty)-y", 0<n<N,
then it holds
le"| < ;T T1- )% 1<n<N.

Proof. The system of error equations is

—a n-

T (na) n-k n—k—l n
[ =(r;), 1<n<N,
oo a)z ( ) = (r7)

e® =o0.

Noticing (1.221) and applying Theorem 1.8.11 will easily produce the desired result.
The proof ends. O

Next, we try to solve Problem 1.8.5, i. e.,

{ SDly(t) =f(t), O0<t<T, (1.227)
y(0)=A4, y'(0)=B (1.228)

using the L2-1, method, wherey € (1,2).
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Letz(t) = y'(t), « = y -1, then the problem (1.227)—(1.228) for y(t) can be converted
to the initial value problem for z(t) as follows:

{ SDfz(t) =f(t), O0<t<T, (1.229)
2(0) = B. (1.230)

It can be found that (1.229)-(1.230) is in the same form with Problem 1.8.4, which
can be solved using the L2-1, method. Once the approximate values z" of z(t,), n =
0,1,2,...,N are obtained, with the help of the composite trapezoid formula or com-
posite Simpson formula in the numerical integral, the approximate values y" of y(t,),
n=0,1,2,...,N are available in view of

t t
y(t,) = Y(to) + jy’m)dn “A+ jz(n)dn-
fo A

1.9 Asimple classification of the fractional partial differential
equations

Li et al. made a simple classification for the FPDEs in their review articlel®.

First, consider the time FPDE:
CD"‘u(x t) =Uu (X t)
ot > XX\ &)

where the time-fractional derivative is often defined in Caputo sense. According to the
value of a, a categorization can be given in Table 1.3.

Table 1.3: The classification ongf‘u(x, t) = Uy (x, t) with a € (0,2].

o Math. type Phys. sense
(0,1) Time-fractional parabolic equation Temporal subdiffusion
1 Parabolic equation Diffusion

(1,2) Time-fractional hyperbolic equation ~ Temporal superdiffusion or
temporal fractional wave

2 Hyperbolic equation Wave

Second, consider the space FPDE:

aﬁu(x, t)

u(x, t) = L
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where the space-fractional derivative aﬁalfi’l‘l;t) is often in Riemann-Liouville sense or

Riesz sense. According to the value of f, a categorization can be described as that in
Table 1.4.

Table 1.4: The classification of u;(x, t) = al;“')f";” with B € (1,2].

B Math. type Phys. sense

(0, 1) Space-fractional hyperbolic equation  Fractional advection
1 Hyperbolic equation Advection
(1,2) Space-fractional parabolic equation Fractional diffusion

2 Parabolic equation Diffusion

Finally, consider the time-space FPDE:

aﬁu(x, t)

Cna
Diulx,t)y= ——=
0+t ( ) a|X|B

>

where the time derivative is in Caputo sense, and the space derivative is in Riesz sense,
or in other distinct senses, such as R-L sense, fractional Laplacian sense, etc. A clas-
sification can be formed as that in Table 1.5.

5
Table 1.5: The classification of gD?’u(x, t) = T \ith g € (0,2),B €(0,2).

FI
a B Math. type Phys. sense
(0,1) (0,1) Time-space-fractional hyperbolic Temporal subdiffusion and fractional
equation advection
(1,2) Time-space-fractional parabolic Temporal subdiffusion and fractional
equation diffusion
(1,2) (0,1) Space-time-fractional parabolic Temporal superdiffusion and
equation fractional advection
(1,2) Time-space-fractional hyperbolic Temporal superdiffusion and
equation fractional diffusion

In this book, we mainly present the finite difference methods for three types of
FPDEs, namely time-fractional, space-fractional and time-space-fractional PDEs.

In Chapter 2, we study the finite difference methods for the initial-boundary value
problem of the time-fractional subdiffusion equation

EDMu(x, t) = Uy (6, £) + f(x, 1),
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where a € (0, 1); Chapter 3 shows the finite difference methods for the initial-boundary
value problem of the time-fractional wave equation

(C)‘D{u(x’ ) = U (x, 8) + f(x, 1),

where y € (1,2); In chapter 4, we introduce the finite difference methods for the initial-
boundary value problem of the space-fractional partial differential equation

u 06 0) = K; oDPuix, t) + Ky Dhuix, 6) + fx, 1),

where f € (1,2); Chapter 5 considers the finite difference methods for the initial-
boundary value problem of the time-space-fractional differential equation

aﬁu(x, t)

Cnha
D u(x,t) =
0t ( ) a|X|ﬁ

+f(x 1),

where a € (0,1), B € (1,2); In chapter 6, the finite difference methods are concerned
for solving a class of initial-boundary value problem of time distributed-order subdif-
fusion equation

D ux, t) = U (x, t) + f(x, ),

where D} u(x, t) = j; w(@) SDfu(x, t)da.
The two dimensional problems are also considered in each chapter.

1.10 Supplementary remarks and discussions

1. In this chapter, four kinds of definitions of fractional derivatives were introduced.
The analytical solutions to the linear FODEs with two types of fractional derivatives
were described, which provides readers a general idea on the characteristics of solu-
tions to fractional differential equations (FDEs). Regarding the definitions and prop-
erties of fractional derivatives, readers can refer to [63]. Fractional Laplace operators
were not covered in this book. Interested readers may refer to [44].

2. Several numerical ways to approximate the fractional derivatives were intro-
duced in this chapter, together with their numerical accuracy and applications into
solving FODEs.

3. The G-L fractional derivative is in a limit form, which is equivalent to the R-L
fractional derivative. Hence it is natural to approximate the R-L fractional deriva-
tive using the G-L formula with an appropriate step size. The standard G-L formula
has the accuracy of order onel®® and when it is directly used to solve the space-
fractional differential equations, the resultant difference scheme is unstable®®, Then
the shifted G-L formula was proposed by Meerschaert and Tadjeran, the asymptotic
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expansion for which was derived by Tadjeran etal. in [86]. Two research teams, con-
ducted by Deng and Sun, respectively, discussed a series of high-order numerical
differentiation formulae with the aid of different weighted combinations of shifted
G-L formulae® 88 It should be noted that for these high-order formulae, the
appropriate smoothness of functions is required. Generally speaking, the possible
highest order accuracy that an approximation can reach depends on the regularity of
the function. For the Riesz fractional derivative, the asymptotic expansion of the cen-
tral difference quotient formulal™ 1> ¢l can be similarly obtained using the method
in [35, 88, 117]. The asymptotic expansion of numerical differentiation formulae is the
powerful tool to derive various high-order formulae.

4. The G-L approximation of Riemann-Liouville fractional derivatives is consid-
ered on the whole domain R. When the G-L formula was used to solve the FDEs on
bounded domains, the solutions to FDEs have to be extended to be defined on the
whole domain R and the extended solution is supposed to have the certain smooth-
ness. If the condition is not satisfied, the consistency and convergence of the corre-
sponding difference schemes cannot be ensured.

Suppose p > 0. Define the function

xXr, x=0,
f(x)—{ 0, x<O.
Denote x; = ih. Noticing
Tp+1)
D% _ D a’
DS = o

a direct calculation gives

1
oD ) ~ Y g F x4 = [ P +1) l]h”‘“,
k=0

Tp+l-a)

o -a 2 (@) _ I'p+1) —a
oDif(x) —h I;ng X g) = [m (2 - a)]hp .
If p =1, a = 0.5, then when x > 0, f(x) = x, both the G-L formula and the shifted
G-L formula have only the accuracy of order O(h'/?). If p = 0, & = 0.5, these two formu-
lae only have the accuracy of order O(h™"?). Therefore, both the G-L formula and the
shifted G-L formula are not uniformly convergent in order one. For some problems, the
approximation errors may be large and a completely inconsistent difference scheme
may be produced using these two formulae; hence, the solution of difference schemes
may not be convergent to the solution of the differential equations.
For the L1 formula, when O < a < 1, the second-order derivative of function f is
required to be continuous. Otherwise, the expecting result cannot be obtained.
5. The Caputo fractional derivative is actually an integral with a weak singular ker-
nel. It is a quite natural ideal®! to use the piecewise linear interpolation polynomial
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to establish a weighted numerical integral and the resultant formula is called the L1
formula or L1 approximation. A rough estimation on the numerical accuracy of this
formula is only the first order® 1> In [99], Wu and Sun proved that the L1 formula
for the half-order fractional derivative has the accuracy of order 3/2. Later, in [84], they
proved that for the a-th (a« € (0, 1)) order Caputo fractional derivative, the numerical
accuracy of the L1 formula is order of 2—a, where the rigorous expression of errors was
derived. Combining with the method of order reduction, the numerical differentiation
formula for the y-th (y € (1,2)) order Caputo fractional derivative is also established,
which has the numerical accuracy of order 3 - y. Lin and xul? also proved that the
numerical accuracy of the L1 formula to approximate the a-th (a € (0,1)) order Ca-
puto fractional derivative is order of 2 — a using the series method. In addition, some
improved methods were investigated in [1, 31, 113].

6. About the estimation on the coefficient {g,i"‘)},‘(’io in the G-L formula, where a ¢
(0,1), the inequality ¥, |g'¥| > “T“ (%)“ has been provided in Lemma 1.4.3. In fact,
the similar result Y%, |g'®| > m can also be obtained and used to make the anal-
ysis on the related difference schemes. More details can be found in [9].

7. Alikhanov!"! developed an L2-1, method for the fractional derivative of order
a (a € (0,1)), which improved L1-2 methodY. The authors of [19] provided the L2-1,
method for the multi-term fractional derivatives. The authors of [81, 83] used the
method of order reduction to give an L2-1, method for the fractional derivative of
order y (y € (1,2)). In [16], the authors presented the L2-1, approximation for the
variable order fractional derivatives. The advantage of the L2-1, method is that a tem-
poral second-order convergent difference scheme can be obtained when applied to
numerically solve the time-fractional differential equations.

8. H2N2 approximation for the fractional derivative of order y (y € (1,2)) was ob-
tained directly by the quadratic interpolation polynomialm, which avoids using lin-
ear interpolation polynomial as an intermediate transition. The application of H2N2
formula to solve the fractional wave equation is similar to that of L1 formula to solve
the fractional subdiffusion equation.

9. Fractional derivatives are historically memorized. The value of the current mo-
ment depends on the value of all moments since the initial time. It is necessary to find
a fast calculation method. Many fast approximations can be obtained by applying the
sum of exponential functions to approach the kernel of fractional derivatives. In
[41] and [101], the authors presented the fast L1 approximation and fast L2-1, approx-
imation for the Caputo derivative of order a (@ € (0,1)), respectively. In [71], a fast
algorithm based on H2N2 approximation for the fractional Caputo derivative of order
y (v € (1,2)) was investigated. Gao and Yanng], Sun and Sun'™ discussed the fast
L2-1, approximations for the multi-term time Caputo derivatives of orders belonging
to (0,1) and (1, 2), respectively. For the fast algorithm of Riemann-Liouville derivative,
please refer to [78].
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10. The numerical approximation of fractional derivatives with the initial singu-

larity has been paid some attention in recent years. Stynes et al. [74] gave a numerical
formula on the graded mesh. Shen et al. 2] further provided a fast approximation for
this kind of fractional derivatives.

Exercises 1

1.1

1.2

1.3

14

1.5

Compute
(1) DEt-a
2) Dt -a)'?;
(3) aD‘tx(t - a)z;
(4) §Die;

C a2
o i

*(t—t

(6) altI“ .
Suppose the function f(t) can be expanded into the following Taylor series:

oo g(n)
o=y O,

= n
with the convergence radius R, R > 0,f(0) # 0. Solve the following problem:

{ oDAY() + £ (6) = f(t), t>0, ae(0,1),
y(0) = 0.

Suppose the function f(t) can be expanded into
SUAN()
n=er IO
) ZO r

with the convergence radius R, R > 0,f(0) # 0. Solve the following problem:

{SD{ya):f(t), t>0, ye(2),
y(0)=4, y'(0)=B.

Suppose f € €**%(R). Try to prove
AR () = P DEF(t+ )+ (1- ™) DYF(E) + O(H).

Suppose f € C3[t0,tn], y € 1,2, a = y—1,g1t) = f'(t). Try to estimate
P,,0;,Q,,...,Q,, R, in the following equalities:

ODIfOleee,_, = 6DF8Olemy,

~
NI

t 1
k+3

2 n-1
“ g'(t)(tn_% -7t + )y J g'(t)(tn_% - t)"“dt]

k=1
t t 1
0 k-1

1
T I1-a)
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t1
1 —a
=T a)[ (g(tl) g(ty)) - j( -7t
to
tk+%
=0 .
z ; g(t]ﬁ%)_g(tk_%))' .[ (tn—% —t) dt] +Pn
k=1 W
T —i)("’y).(g(t1)—f'(t0))+nzlb("y (gt 1) gt 1))]+P
s —y) i n-1 5 & n-k-1 k3 k=3
v —B(ny)( ) nz_:l(bny) Bn )( ) B(ny)f'( )] p
’gtn_l_ nek— t—l_n—’ t, + P,
G-y ° 2 ke k-3 1/ (o
1-y —*n ot
r(;—y) by (0" + Q)
n-1
=S (B~ BN + Q) - BV (to)]+P
k=1
7! .

(ny)5fn—f Z(b;n{)l bgf{))@fk_? _ Bﬁﬂl)f/(to) +R,.
“IG-y) et






2 Difference methods for the time-fractional
subdiffusion equations

It has been found that there are no Gauss statistics for diffusion processes in many
complex systems and the second Fick’s law is no longer true. Specially, the linearity
between the mean square displacement of particles in Brown motion and the time
variable in classical diffusion processes is not satisfied. This kind of diffusion is often
called the anomalous diffusion, whose striking feature lies in the power law depen-
dence of the mean square displacement of particles on the time variable. The time-
fractional diffusion-wave equation is a typical tool to depict the phenomenon, which
is derived by replacing the first-order time derivative with the a-th order fractional
derivative. It has been widely used in various fields such as physics, control, signal and
image processing, mechanics and dynamic systems, biology, environmental science,
materials, economic and multidisciplinary in engineering fields. When 0 < a < 1,
the corresponding equation is called the time-fractional subdiffusion equation; When
1 < a < 2, it is called the time-fractional wave equation; For @ = 1, the classical dif-
fusion equation is recovered. In this book, Chapter 2 and Chapter 3 will introduce the
difference methods for these two kinds of time-fractional differential equations, re-
spectively, and the unique solvability, stability together with the convergence of the
presented difference schemes will be shown. In this chapter, for the 1D time-fractional
subdiffusion equation, three distinct ways, G-L formula, L1 formula and L2-1; formula,
will be used to approximate the time-fractional derivative, respectively, and the spatial
derivative will be handled with the second-order or compact approximation. The fast
L1 approximation method and fast L2-1, approximation method are presented. The L1
formula and L2-1, formula are also mentioned for a class of multiterm time-fractional
subdiffusion problems. Finally, for the 2D problem, the alternating direction implicit
(ADI) difference method will be described. The whole chapter is divided into 12 sec-
tions.

2.1 The second-order method in space based on G-L
approximation for 1D problem

Consider the following initial-boundary value problem of the time-fractional subdif-
fusion equations:

EDMu(x, t) = g (6, 8) + f(x, 1), x € (0,L), t € (0,T], .1)
u(x,0) =0, x e (0,L), 2.2
u(0,t) = u(t), u(L,t)=v(t), te[0,T], (2.3)

where a € (0, 1), the functions f, y, v are all given and u(0) = v(0) = 0.
The mesh partition is firstly done. Take two positive integers M and N.Leth = L/M,
T =T/N.Denotex; =ith (0 <i<M),ty =kt O<k<N),Q,=1{x|0<i< M},

https://doi.org/10.1515/9783110616064-002
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Q. = {t; | 0 < k < N}. Define the following mesh function spaces:
Uy ={ulu=(ugup....up)l, Uy = {u| u €Uy, ug = uy = 0}

For any mesh function u € ¢, denote

1 ) 1
Bty 1 = 3 = Uiq)s Oy = 35 (Ui — 2y + Uyyg),
112(111-,1 +10u; + u;q), 1<isM-1,
(Au); =
u;, i= O,M
It is easy to know that (Au); = (Z + I 5 x)u for1 <i < M -1, with 7 an identity operator.

For brevity, henceforth denote (Au); by Au;.
For any mesh functions u, v € U, define the following inner products and norms:

M-1
wv)=h) uv, lul=Vuuw),

i=1

(6, u,8,v) = hZ(& )i, 18l = \(8,u, 6,u),

i=1

(62u.62) hz(62 (8w, 18] = \(82u,82)

ull,, = max |yl
llull o Osile il

Lemma 2.1.1. ™ For any mesh function u € L?h, it holds

VL

L
lllco < S N8l lull < —=118,ull,

V6
2 1
I8, < 2l §||u||2 < JlAul® < flul.

Suppose u, v € Uj,. Let
M-1
I(w,v) = (Au, —5)2(v) =-h Z (Aui)S,z(vi.
i1
Then

M-1

I(u,v) =-h z <ul + —6 u1>52v1

h2 M-1 5 5
=h ;(5;(111-7%)(5;%7%) - Eh lzzl (6,u;)(6,v;)
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h2
= (6,u,6,v) - E((‘Sﬁu, 82v).
It is easy to verify
2
S8 < T w) < 18l (2.4)
Hence I(u,v) is an inner product defined on L?h. Denote

W, V)10 =1, V), 16xullg = /WU U 4 - (2.5)

The following lemma is easily deduced from (2.4).

Lemma 2.1.2. For any mesh functionu € Z:Ih, we have
2
S84 < N8 uly < I8l

Another lemma that follows is prepared for the spatial approximation.

Lemma 2.1.3.
() Iffunctiong € C*[x;_;,X;,,], then

8(x;1) —28(x;) + 8(X;41)
h2

g”(Xi) =
e

s J[g(‘”(xi +Ah) + g™ (x; - A)] (1 - A)>dA.
0

(II) Denote {(A) = (1 —-A)*[5—3(1—A)?]. If function g € ct [X;_1, X;41), then

8" (x;,1) +108" (x;) + 8" (x;_1) _ 8(Xi41) —280x) + 8(X;_1)
12 h?
4

" 360

(g9 (x; - Ah) + g© (x; + AR) ¢ (A)dA.

Ote——

Define mesh functions

U' =ux; ty), fi' =f(x;t,), 0<i<M,0<n<N.

2.1.1 Derivation of the difference scheme

For any fixed x € [0, L], define a function

0, t<O0,
u(x,t), 0<t<T,

vix,t), T <t<?2T,
0, t>2T,

u(x, t) =
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Fvixt) Fux,t) Fvixt)

where v(x, t) is a smooth function satisfying ==z~ l..r = =7~ le=r» 57 lt=2r = 0,
k = 0,1,2. Suppose u(x,-) € €"*(R) and u(-, t) € C*[0,L].
Considering equation (2.1) at the point (x;, t,), one has
EDMu(x; ty) = U (X t) +f1, 1<i<M-1,1<n<N. (2.6)

Noticing the relationship between the Caputo derivative and the R-L derivative under
the zero initial condition (2.2) and applying Theorem 1.4.2, one can obtain

n
SDEU(x, t,) = o DUl t,) = T Y g Ul + 0(1). 2.7)
k=0

By Lemma 2.1.3, it is clear that
U (X ty) = 62U + O(K). (2.8)

Substituting (2.7) and (2.8) into (2.6) gives
n
TN gOUM =8 U + £ + ()], 1<i<M-1,1<n<N, 2.9)
k=0

where there is a positive constant ¢; such that
|Df| < ci(t+h%), 1<i<M-1,1<n<N. (2.10)
Noticing the initial-boundary value conditions (2.2)-(2.3), one has

{ Ul=0, 1<isM-1, (2.11)
Ul =u(ty), Up=v(t), Os<sn<N. (2.12)

Omitting the small term (r;)!" in (2.9) and replacing the exact solution U}' with its nu-
merical one u?, a difference scheme for solving (2.1)—(2.3) can be produced as

n
Y g Ut = Suf +ff, 1<i<M-1,1<n<N, (213)
k=0
u?=0, 1<i<M-1, (2.14)
up = u(ty), Uy =V(t,), 0<n<N. (2.15)

Next, the unique solvability, unconditional stability and convergence of this dif-
ference scheme will be analyzed.

2.1.2 Solvability of the difference scheme

Theorem 2.1.1. The difference scheme (2.13)—(2.15) is uniquely solvable.
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Proof. Let

U = (ug, Uy, ..., Uy).

The value of u° is obviously determined by (2.14)-(2.15). Assume that the values of
u®,ul,...,u™ have been uniquely determined, then the linear system in u" can be
obtained from (2.13) and (2.15). To show its unique solvability, it suffices to verify that
the corresponding homogeneous one

Xl’

{ T =8, 1<isM-1, (2.16)
Uy =upy =0 (2.17)

has only the trivial solution.
Suppose [u"llo, = [u} |, where i, € {1,2,..., M - 1}. Rewrite (2.16) as

(1 Tﬂ
<1 +2P>u? = p(”?q +u,), l<isM-1

Letting i = i, in the equality above and taking the absolute value of both hand sides,
an application of the triangle inequality yields

™,
1+ 2— [l < 255 W
hence |[u"|, = 0, which implies u" = 0.
By the principle of induction, the theorem is true. The proof ends. O

2.1.3 Stability of the difference scheme

Theorem 2.1.2. Suppose {v{' | 0 < i < M,0 < n < N} is the solution of the difference
scheme

n
TN gV K=V 4 f], 1<i<M-1,1<n<N, (2.18)
k=0
V=), 1<isM-1, (2.19)
vo=0,vy =0, 0<n<N. (2.20)
Then it holds
k 5 10
< — , 1<k<gN, 2.21
ko < 22l + ke maxlf "l 1<K (.21

where [f™ ||, = maX;cicpr_1 I
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Proof. Reformulate (2.18) as follows:

™
<1+2P>v;l_kz:( gl(<a)) Vi +F( 1+V1+1)+Ta in>
=1

1<i<M-1,1<n<N. (2.22)

Suppose [V"llo, = [vj.|, where i, € {1,2,...,M - 1}. Letting i = i, in (2.22) and taking
the absolute value of both hand sides, noticing —g,((“) > 0 (1 € k < n) and using the
triangle inequality, one can get

(125 )l
Z oo + ;—Z(llvnlloo Vo) + TN oo

which simplifies to give

n
e < 2SO Mg+ #Y 10N )
k=1

Next, the mathematical induction method will be used to show the truth of (2.21).
Let

5
|| oot Tz ™ max e LN,

When n = 1, it follows from (2.23) that
Voo < (&1l + T W oo = @V loo + T o < A

that is, (2.21) is obvious for k = 1. Suppose (2.21) is true fork = 1,2,...,n—1(n > 2) and
consider the case of k = n. By (2.23), one has

V" lloo kZl SN oo+ CEMV oo + 71"

(a) 2 ot 0 afen
g MAnxral == ) Voo + 1

k:l
n-1

<3 o 2) WL
B - S ool 2) s 17

[1_1?(;) ]An+a( ) V0l + 71

—_
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- 02 4, - S o - 5 (Y e ]
4= (2) |- e (5) Ve

L)aﬂ < (g)a+l

] 2)**1 < (2)* when n > 2 have been

where Lemma 1.4.1, Lemma 1.4.3 and (
used. So (2.21) is also true for k = n.
By the principle of induction, (2.21) is true for k = 1,2,...,N. The proof ends. [

Theorem 2.1.2 says that the difference scheme (2.13)-(2.15) is unconditionally sta-
ble with respect to both the initial value and the source term.

2.1.4 Convergence of the difference scheme

We are now ready to show the convergence of the difference scheme (2.13)-(2.15).

Theorem 2.1.3. Suppose {U' | 0 < i < M,0 < n < Nland {uf | 0 < i < M,0 <
n < N} are solutions of the problem (2.1)-(2.3) and the difference scheme (2.13)-(2.15),
respectively. Let

Then it holds

5
le"]l oo < mTaQ(T +h?), 1<n<N.

Proof. Subtracting (2.13)-(2.15) from (2.9), (2.11)-(2.12), respectively, the system of er-
ror equations is produced as

n
Y gWel M =8l + (), 1<i<M-1,1<n<N,
k=0

i =0, 1I<i<M-1,

0

1

n n

ep=0, ¢€,=0, 0<n<N.

Noticing (2.10), by Theorem 2.1.2, it is easy to see that

n 5 a_a m
le"loo < =gz ™ max )",

5 a 2
< ——T%(t+h?), 1<n<N.
(1-a)2® (T +10)

The proof is completed. O
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2.2 The fourth-order method in space based on G-L approximation

for 1D problem

This section will explore a new fourth-order method in space for solving the problem

(2.1)-(2.3).

For any x € [0, L], define a function ii(x, t) like that in Section 2.1 and suppose

a(x,) € #4%R) and u(- t) € C[0,L].

2.2.1 Derivation of the difference scheme

Considering equation (2.1) at the point (x;, t,,), one has
EDMu(x;, ty) = Uy (X ty) +f, O<i<M,1<n<N.
Performing the operator A to both hand sides of the equality above yields
ASDMu(x; t,) = Ay (Xio t) + Af", 1<i<M-1,1<n<N.

By Theorem 1.4.2 and Lemma 2.1.3, noticing (2.2), one can obtain

A(r“ i g U{”‘) = 82U + A + (],
k=0
1<i<M-1,1<n<N,
where there exists a positive constant ¢, such that
|| <c(t+h*), 1<i<M-1,1<n<N.
Noticing the initial-boundary value conditions (2.2)-(2.3), one has

{U?:o, 1<isM-1,
Uy = u(ty), Uy =v(t,), 0<n<N.

(2.24)

(2.25)

(2.26)
(2.27)

Neglecting the small term (r,)} in (2.24) and replacing the exact solution U} with its
numerical one u;’, another difference scheme for solving (2.1)-(2.3) is obtained as

n

A<T‘“ z g,((“)u?‘k> = 82 + Af],
k=0
1<i<M-1,1<n<N,

=0, 1<is<M-1,

=u(ty), uy=v(t,), 0<n<N.

0
U;

n
Uy

Next, we will analyze the difference scheme (2.28)-(2.30).

(2.28)
(2.29)

(2.30)
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2.2.2 Solvability of the difference scheme
Theorem 2.2.1. The difference scheme (2.28)—(2.30) is uniquely solvable.
Proof. Denote

u" = (ug, Uy, ..., Uy).

The initial value u° is uniquely determined by (2.29)-(2.30). Suppose the values of
u®,ul,...,u™ have been uniquely determined, then the linear system in u" can be
obtained from (2.28) and (2.30). To prove its unique solvability, it suffices to show that
the corresponding homogeneous one

Xl’

{r AU = 82, 1<i<M-1, (2.31)
u0 =uy =0 (2.32)

has only the trivial solution.
To this end, taking the inner product on both hand sides of (2.31) with —G)Z(u” ar
rives at

(A", -5 = (8", 5ou"),
that is
— 2 2 2
T 5|, = |5 < 0.
Thus ||6,u"||; = 0 and moreover |§,u"| = 0 by Lemma 2.1.2. Noticing (2.32), it follows

u" =0.
By the principle of induction, the theorem is true. The proof ends. O

2.2.3 Stability of the difference scheme

Theorem 2.2.2. Suppose {v!' | 0 < i< M, 0 < n < N} is the solution of difference scheme

< zg(a) n— k) - 5)2(Vl-n +gin)

k=0
<i<M-1,1<n<N, (2.33)
v = (xl) 1<i<M-1, (2.34)
v0=0, vM=0, 0<n<N. (2.35)
Then it holds
I8 < 552 (180°F + ot maxg™['). 1<
21-a) 20“'1 " 1<msn ’
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where
M-1
2 2
le™I"=h Y (&™)
i=1

Proof. Making the inner product on both hand sides of (2.33) with —5)2(v" and noticing
(2.5) lead to
M-1

Zg(a) Y. 1,A _ |62vn“ _h Z 52 n n |gn||2’

i=1

which can be rewritten to produce

(-g)v"v "*k>1,A+§r“ng"||2

M:

g(()a)(v v )l,A

k=1

1 i (a) ) + (vn—k Vn—k) ]
2 & 1L,A > 1A
+ZT“||g"|| , l<n<N.

Noticing Y}, (-g\) < g{” = 1, it follows

n

(V') < Y (8N = 1<n<N,
k=1
that is,
2 L a2 1
l6.v" s < D (=8N [y + 57° l<n<N

k=1

By induction, similar to the proof of Theorem 2.1.2, one can get

2 5 2 5 1 2
6071 < 724160l + = a5 maxlg"l 1<n<N.

The application of Lemma 2.1.2 into the inequality above reaches the desired result.
The proof is completed. O

Theorem 2.2.2 shows that the difference scheme (2.28)—(2.30) is unconditionally
stable with respect to both the initial value and the source term.

2.2.4 Convergence of the difference scheme

Theorem 2.2.3. Suppose {U' | 0 < i < M,0 < n < Nyand{ul | 0 <i< M0 <
n < N} are solutions of the problem (2.1) (2.3) and the difference scheme (2.28)—(2.30),
respectively. Let

ef =U'-ui, 0<i<M,0<n<N.
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Then it holds

n L | 15T% 4
< =y h™), 1<n<N.
[l < £\ g ol ), 1<
Proof. The subtraction of (2.28)-(2.30) from (2.24), (2.26)—(2.27), respectively, gives
the system of error equations in the form of

n
A(T‘“ D g,‘(“)e?‘k> =82l +(r)!, 1<i<M-1,1<n<N,
k=0
=0, 1<i<M-1,
ep=0, €;=0 0<n<N.

Utilizing Theorem 2.2.2 and noticing (2.25) lead to

2 15
"5)(6 " < 2(1_a)

15 ay 2 42
< ———TLes(t+h"), 1<n<N.
aa-an Lt i)

1 2
Ja+1 tg llé‘ln?s);n(rz)m" )

2
(I8 +

Moreover, if follows from Lemma 2.1.1 that

VL

L [ 157¢
"l < - 118x€"] <

Z ch(T-’_hq)’ 1<n<N

The proof ends. O

2.3 The second-order method in space based on L1 approximation
for 1D problem

Consider
EDu(x, t) = uy (6 6) +f(x, 1),  x € (0,L), t € (0,T), (2.36)
u(x,0) = p(x), x¢€(0,L), (2.37)
u(0,t) = u(t), u(l,t)=v(t), tel0,T], (2.38)

where a € (0, 1), the functions f, @, u, v are all given and ¢(0) = u(0), (L) = v(0).
Take the same mesh partition and notations as those in Section 2.1. Suppose u ¢
c“2((0,L] x [0, T)).

2.3.1 Derivation of the difference scheme

Considering equation (2.36) at the point (x;, ¢,), one has

EDMu(x;, ty) = Uy (X ty) + £, 1<i<M-1,1<n<N.
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Using the L1 formula (1.60) to approximate the time-fractional derivative and the
second-order central difference quotient to treat the spatial derivative, by Theo-
rem 1.6.1 and Lemma 2.1.3, one gets

—-a n-1
T (@) (@) @ \rik (@) 770
o @ a,’U;' kZ(anfkf1 -a,° Ui - a,’\U;
=1
=8UN+f + (), 1<i<M-1,1<n<N, (2.39)

where there is a positive constant c; such that
|| < s(P %+ 1), 1<i<M-1,1<n<N. (2.40)
Noticing the initial-boundary value conditions (2.37)—(2.38), one has

{ U =0, 1<isM-1, .41)
Uy = ulty), Uy =v(t,), O<n<N. 42)

Omitting the small term (r3)! in (2.39) and replacing the exact solution U}' with its
numerical one u}, a difference scheme for solving (2.36)-(2.38) is produced as

T | @ @ g@ k@

1"(2 |: Z(an k-1~ l n 1u

=8u'+f", 1<i<M-1,1<n<N, (2.43)

u =), 1<isM-1, (2.44)
| ug =u(ty), uy=v(t), 0<n<N. (2.45)

Denote
o S
s=17TQ2-a), A:ﬁ'

In what follows, the unique solvability, unconditional stability and convergence will
be considered.

2.3.2 Solvability of the difference scheme

Theorem 2.3.1. The difference scheme (2.43)—(2.45) is uniquely solvable.

Proof. Denote

u" = (ug,uy,. .., upy).

The value of u° is apparently determined by (2.44)-(2.45). Suppose the values of
u®,ul,...,u™?! have been uniquely determined, then the linear system in u" can be
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obtained from (2.43) and (2.45). To show its unique solvability, it suffices to prove the
corresponding homogeneous one

1 Xl’

{ éu"—Sz" 1<i<M-1, (2.46)
Uy =uy =0 (2.47)

has only the trivial solution.
Suppose [u" |l = luil, where i, € {1,2,..., M - 1}. Rewrite (2.46) as

(T+20u] = Au, +ul,), 1<i<M-1

Letting i = i, in the above equality and taking the absolute value of both hand sides,
an application of the triangle inequality yields

1+ 20" < 22"
so that [[u"|, = 0, which implies u" = 0.
By the principle of induction, the theorem is true. The proof ends. O
2.3.3 Stability of the difference scheme

Theorem 2.3.2. Suppose {vi' | 0 < i < M,0 < n < N} is the solution of the difference
scheme

n-1
(a)V," _ Z (a;vi)k = (a) )v ;a)lv
k=1

1 =8V +f", 1<i<M-11<n<N, (2.48)
V)=o), 1<i<M-1, (2.49)
vg=0, V=0, 0<n<N. (2.50)
Then it holds
V'l < IV + 10 - @) max {eaf™], }, 1<n<N,
where

Il =  max |f"].

1<isM-1

Proof. Reformulate (2.48) as

n-1

() n _ (@) a® (@) |0

aov_z(nkl n)v+anlv
k=1
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+ AV =2+ Vi) +sf, 1<i<M-1,1<n<N,

which can be rearranged as

n-1

(a® + 24V = Y (a a® . -a® Wi+ ad®y?
k=1
+ AV + V) +sf, 1<i<M-1,1<n<N.

Suppose V"'l = |VZI|, where i, € {1,2,...,M - 1}. Letting i = i, in the equality
above and taking the absolute value of both hand sides, an application of the triangle
inequality arrives at

n-1

@@+ 20" < Y@@, = aDDIV¥ o + a0
k=1
+ 2V + Sl 1SN

Therefore,

V"l Z (@21 = @)V oo

k=1

S
(1ot eIl ). 1n <N,
n-1

It follows from Lemma 1.6.1 that

a
s T r2-a

_ @ _
a(_ci)l < W = tnl"(l a), (2.51)
and then
C k
ag’ V', < Y (@2~ aPI Ve
k=1
+ a;"?l(nvoﬂm +tyTA-)|f"|,), 1<n<N. (2.52)

An induction on n in (2.52) will yield
IVleo < IV°lo + 71 - @) max {£ "]} 1<n<N.

The proof is completed. O

2.3.4 Convergence of the difference scheme

The next theorem is to describe the convergence of difference scheme (2.43)—(2.45).
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Theorem 2.3.3. Suppose {Ul' | 0 < i< M,0<n<N}and{ul | 0<i<MOc<
N} are solutions of the problem (2.36) (2.38) and the difference scheme (2.43)—(2.45),
respectively. Let

Then it holds
le"lo < s T*T(1 - (> *+h?), 1<n<N.

Proof. Subtracting (2.43)—-(2.45) from (2.39), (2.41)-(2.42), respectively, the system of
error equations can be obtained as

i
k=1

; —62e"+(r3) 1<i<M-1,1<n<N,
=0, <isM-

0
l
n n
| =0, e;=0, 0<n<N.

1| @, T @ @ ok _ 4@ g0
s|% € Z(an—k—l_an—k)ei an 18

By Theorem 2.3.2 and the inequality (2.40), it follows

1€ < 1€l + 4701 - @) max )",

<SET(1 - )5 (17 + 1)
<GTTA-a)(T**+h?), 1<n<N.

The proof ends. O

2.4 The fast difference method based on L1 approximation for 1D
problem

The aim of this section is to develop a difference scheme for the problem (2.36)—(2.38)
by using the fast L1 approximation.

2.4.1 Derivation of the difference scheme

Considering (2.36) at the point (x;, t,,), we get

EDMu(x;, ty) = Uy (X ty) +f, 1<i<M-1,1<n<N.
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Using the fast L1 approximation (1.117)—(1.119) to discretize the time fractional deriva-
tive and second-order central difference quotient to approximate the spatial second-
order derivative, by Theorem 1.7.1, we can obtain

N,
l exp A( ) _1
Ta-a Z wlFlr,li +a, (U - U
1=1
1 =60+ + (), 1<i<M-1,1<n<N, (2.53)
F;=0, Fi=e F +B(U™" - U"?), 1<1< Ny,
1<i<M-12<n<N, (2.54)
and there exists a positive constant c, such that
|| < cu(*+h* +€), 1<i<M-1,1<n<N. (2.55)

Noticing the initial-boundary conditions (2.37)-(2.38), we have

{ U2 =p(g), 1<isM-1, (2.56)
Ul =u(ty), Uy =v(t), 0<n<N. (2.57)

Omitting the small term (m)? in (2.53) and using numerical solution u? to replace the
exact solution U}, we construct the difference scheme for the problem (2.36)—(2.38) as
follows:

Nex
e DR
=6 +f, 1<i<M-1,1<n<N, (2.58)
1 Fi=0, Fi=e™E7 + B -ul™), 1<1< Ny,
1<i<M-1,2<ng<N, (2.59)
=), 1<i<sM-1, (2.60)
| ug = u(ty), uy=v(t), O0<n<N. (2.61)

When {ug‘ | 0 <i< M,0 <k <n-1} has been known, we can get {F{'i [1<1<
Neyps 1 <1< M ~1} from (2.59). Substituting it into the left-hand side of (2.58), we can
geta system of linear equations in {u' | 0 < i < M}, whose calculation cost is O(MN¢yy,).
While the calculation of the system of linear equations in {u} | 0 < i < M} from
(2.43)-(2.45) is O(MN). Thus, the total operations of (2.58)-(2.61) are O(MNN,y,), and
those of (2.43)—(2.45) are O(MN?). When N >> Neyp, We have O(MN?) >> O(MNN¢yy,).
We call (2.58)—(2.61) a fast difference scheme based on L1 approximation, or a fast L1
difference scheme.
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Eliminating the intermediate variable {F l’fi} in (2.58)—(2.61), we can get an equiva-
lent form

1 T @ @k s
— | auf - Z(a,({"‘f1 —a O - a @)
k=1

I'l-a
1 =8l +f", 1<i<M-1,1<n<N, (2.62)
u? =), 1<i<M-1, (2.63)
[ ug = pu(ty), uy =v(t,), 0<n<N. (2.64)

2.4.2 Solvability of the difference scheme

Theorem 2.4.1. The difference scheme (2.58)—(2.61) is uniquely solvable.

Proof. Denote

u" = (ug, Uy, ..., Uy).
From (2.60)—-(2.61), we can know u°. Suppose u°,u,...,u""! have been uniquely de-
termined, then we can get a system of linear equations in u" from (2.58) and (2.61). It
suffices to show that the corresponding homogeneous system

1"(1 a) 0 Ui >

{ L sy gl 1<i<M-1, (2.65)
uy =uy =0 (2.66)

has only the trivial solution.
Suppose "], = |u?"|, wherei, € {1,2,...,M —1}. Denote A = r((ﬁ) “2) Rewrite (2.65)

as
(T+20u] = A, +uly), 1<i<sM-1

Leti = i, in the equality above. Taking absolute value of both hand sides and
using the triangle inequality, we can obtain

1+ 20" < 24"

Thus we have [[u"], = 0, which implies u" = 0.
By induction principle, the conclusion holds. This completes the proof. O
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2.4.3 Stability of the difference scheme

Theorem 2.4.2. Suppose {v{' | 0 <i < M,0 < n < N} is the solution of

exp
F(l ) Z a)lFll+a0 o =i
=6§v?+gi, 1<i<sM-1,1<n<N, (2.67)
1 Fli=0, F,”l- = e FT + BV - v,
SIS Ny, 1<i<M-1,2<n<N, (2.68)
v =0(g), 1<isM-1, (2.69)
vo=0, vjy=0, 0<n<N (2.70)
and e < 2 %, then we have
0
V'l < Wy + 200 - max [i3g", .}, 1<n<N, @
where

m —
"o =  max [f"].

Proof. From Lemma 1.7.2, we know

@) _ ~(@)  5) ~ (@)
ay’ >a; >ay” > >a,.

Eliminating the intermediate variable {F fi} in (2.67) using (2.68), we have

n-1
~(@Q). n ~ () ~(@y, n-k (@ .0
[ao v = (@ - &l _an—lvi]

I - a) P

=8v'+gl, 1<i<M-11<n<N,

or
~(a)

( G, i)v?’ B nz_:l(&(“) -a W+ a®@w?
T(l-a) k)7 Tl-a)| & "kt "k

1 .
+ﬁ(v{'71+v{'+l)+gi", 1<i<M-1,1<n<N.

Suppose V' = IV{;I, where i, € {1,2,...,M - 1}. Letting i = i, in the above
equation, taking absolute value of both hand sides and using the triangle inequality,

we can obtain
(@)
(s * 2 W1
ra-a) o
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1 n-1

~ »(a) (a)
pirir] PACKSELN Uy N R I

2
¢ 2+ 8" 1SRN

Thus we have

-1
a5 V" Z (@51 = 2201 s

k=1

n
A(zx <||v loo +1"(1—a)”ilt°°>, 1<n<N.
an—l

An application of the induction method will yield

n 0 g™ I
Voo < 1y + T -0 max B0 1 <ne
m-1
Noticing
&(11) SEY e o
m-17 "m Z 59'm>
we can get (2.71). This completes the proof. O

2.4.4 Convergence of the difference scheme

Theorem 2.4.3. Suppose {U]' |0 <i<M,0<n<N}and{u} | 0<i<M,0<n<N}
are the solutions of (2.36)—(2.38) and (2.58)—(2.61), respectively. Denote

then we have
le"l., <26, T°T( - a) (7> “ +h* +€), 1<n<N.

Proof. Eliminating the intermediate variable {F; fi} in (2.53) using (2.54), we have

1 a) n a@ (a) nk (@ 170
U; E a U™ -a U
r(l a) Pe] ( k-1~ ) i n-1-1i

=SU+f'+ (), 1<i<M-1,1<n<N. .72
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Subtracting (2.62)—(2.64) from (2.72), (2.56)—(2.57) respectively, we get the system
of error equations

a)n k ~(@) 0
Ta-a) Z(ankl_a 8~ n€
1 =8l +(r)!, 1<i<M-1,1<n<N,
=0, 1I<is<M-1,

0]

, ey=0 0<n<N.

Applying Theorem 2.4.2 and noticing (2.55), we have
1€, < I, + 26870 - @) mas "],

< 25T - @), (T + h2 +€)
<20, T°TA-a) (" + K> +€), 1<n<N.

This completes the proof. O

2.5 The fourth-order method in space based on L1 approximation
for 1D problem

In this section, another higher-order difference scheme for solving (2.36)—(2.38) will
be developed. Suppose the exact solution u € C‘®?([0,L] x [0, T]).

2.5.1 Derivation of the difference scheme

Considering equation (2.36) at the point (x;, t,), one has
EDMulxp ty) = Uy (X t) +f, O<i<M,1<n<N.
Performing the operator A to both hand sides of the equality above gives
ASDMu(x;, ty) = Ay (Xi, t) + A", 1<i<M-1,1<n<N.

It follows from Theorem 1.6.1 and Lemma 2.1.3 that

‘1) k (tx) 0
U BIARNEN
r(z_a) Z n— kl
=8U" + Af" + (r5)!, 1<i<M-1,1<n<N, 73)

where there exists a positive constant ¢; such that

)] < es( A, 1<i<M-11<n<N. (2.74)
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Noticing the initial-boundary value conditions (2.37)-(2.38), one has
{ U =p(x), 1<i<M-1, 2.75)
Uy = u(ty), Uy=v(t,), 0<n<N. (2.76)
Neglecting the small term (r5) in (2.73) and replacing the exact solution Ul-” with its

numerical one ulf’ lead to another difference scheme for solving (2.36)-(2.38) as fol-
lows:

T @yn a@) @
1"(2 0() [ Z(“n k-1~ an 1u
=8 + Af', 1<i<M-1,1<n<N, .77)
w =), 1<is<M-1, (2.78)
ug = u(t,), uy =v(t,), 0<n<N. (2.79)

2.5.2 Solvability of the difference scheme

Let
s=1TQ2-a).
Theorem 2.5.1. The difference scheme (2.77)-(2.79) is uniquely solvable.
Proof. Denote
u' = (ug,ug,... uy).

Obviously, the value of u° is uniquely determined by (2.78) and (2.79). Suppose the
values of u®,u, ..., u""! have been uniquely determined, then the linear system in u"
can be obtained from (2.77) and (2.79). To prove its unique solvability, it suffices to
show that its corresponding homogeneous one

{ iAu =5, 1<isM-1, (2.80)
Uy =upy =0 (2.81)
has only the trivial solution.

Making the inner product on both hand sides of (2.80) with —5)2(u" and noticing
(2.5) give

1 2. n
L)y, = -6 <

so that ||6,u"[, = 0. By Lemma 2.1.2, it follows ||§,u"| = 0, which implies u" = 0 from
(2.81).
By the principle of induction, the theorem is true. The proof ends. O
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2.5.3 Stability of the difference scheme

Theorem 2.5.2. Suppose {v{' | 0 < i < M,0 < n < N} is the solution of the difference

scheme
agx)v" - Z(a;“)k .- (“) Vi a;“)lv
1 =5§vf+gi", 1<i<M-1,1<n<N,
VP =), 1<i<M-1,

[ v5=0, vy =0, 0<n<N.

Then it holds
2 3 o2 3 2
[ < 2180°F + 2T - @) max (e[}, 1<n<N,

where

1
i=1

(2.82)
(2.83)
(2.84)

(2.85)

Proof. Taking the inner product on both hand sides of (2.82) with —6§v” and noticing

(2.5) produce

n-1

1
s ag"‘)(v V)4 Z(agi)k—l - a;a)k)(" v )IA - aiﬁ)l(vo’vn)m
k=1

M-1
=8 +h Y gh(-83T), 1<n<N.
i1
Using the Cauchy—-Schwarz inequality, one has

n-1

k
(Oa)(vn)vn)lA = Z(a;a,)k,l - a:':x,)k)(v v )LA + a(a) (V v ) 1L,A
k=1

M-1
vs| Ve S g(-5 r>]

i=1

|
—_

n

k _k
(ﬂfi)k,l - afi)k)[(v v )l,A + (Vn’vn)l,A]
1

N | —

k

2

+ ;) [(vo,vo)m + (VL V")14] +s[—||6)2(v"||

I\JI'—‘

L6 T+ 18] 1<n<n,
from which it follows that

() () k .k

a(()a)(vn,v")l)A < Z(anfkf1 —a,” )V V),
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a® [(VO vo)lA + Za?“) ||g"||2 , l<n<N.

Moreover, it follows from (2.51) that

n-1
Kk
agj‘)(v",v”)m < Z(a;"‘_)k_l - a;“_)k)(v V)ia
k=1
+ aﬁ,“_)l[(vo V)t %F(l ~at’|g"*|, 1<n<N. (2.86)

An induction on n in (2.86) will lead to

0.0
VSV a < (V)0 + S F(l a) rgn%lt g™ || 1<n<N.
Combining with Lemma 2.1.2, it is easy to get (2.85). The proof ends. O

2.5.4 Convergence of the difference scheme

Therest of this section focuses on the convergence of the difference scheme (2.77)-(2.79).
At this point, the following theorem will be obtained.

Theorem 2.5.3. Suppose {U' |0<i<M,0<n<N} and {u' |0<i<M,0<n<N}
are solutions of the problem (2.36)—(2.38) and the difference scheme (2.77)-(2.79), re-
spectively. Let

ef=U-ui, 0<i<M,0<n<N.
Then it holds

le" o VBT“r(l a) cs(t7%+hY), 1<n<AN.

Proof. The subtraction of (2.77)-(2.79) from (2.73), (2.75)-(2.76), respectively, produces
the system of error equations

(a)n k (a) 0
z(ankl € nle
:6Xei+(r5)i; 1<1<M—1; SHSN,
=0 1<i<M-1,
ep=0, ey=0 0<n<N.

By Theorem 2.5.2 and the inequality (2.74), one has

2 3 2 3 2
Io.€" [ < 3[e° + 271 - ) max {er)" [}
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< %T“I‘(l —LA(?* + B, 1<n<N.

Moreover, it follows from Lemma 2.1.1 that

le™|l., < g"éxe”" < %\/BT“F(I —a) cs(T"“+h*), 1<n<N.

This ends the proof. O

2.6 The difference method based on L2-1, approximation for 1D
problem

This section will still discuss the difference method for the problem (2.36)-(2.38).
A new difference scheme will be built based on L2-1, approximation for the time
fractional derivatives. Suppose the exact solution u ¢ C(4’3)([0, L]l x[0,T)).

2.6.1 Derivation of the difference scheme
Denote
a _
o=1- > titso=M-1+0)T, s=1TQ-a), f'" =ty 1s0)-

Considering (2.36) at the point (x;, t,_;,,), we have

Cna n— 1+0
D u(thn 1+0) - uxx(xvtn 1+U) +f

1<i<sM-1,1<n<N. (2.87)

Using L2-1, approximation (1.81) to discretize the time fractional derivative, we have

ED*U(X;y by_14q) = Z (U Ut 1 o). (2.88)

F(2 a)

Using the linear interpolation and the second order central difference quotient to ap-
proximate the spatial second-order derivative, we have

uxx(xi’ tn—1+o) = ouxx(xi) tn) + (1 - o)uxx(xb tn—l) + O(Tz)
= 06U + (1- 0)52UM" + O(H?) + O(7%). (2.89)

Inserting (2.88) and (2.89) into (2.87), we can obtain

- n-1

T (n,a) /yyn—k n-k-1
E c U " -U
r2-a) far) k ( i i )
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= 082U + (1 - )8 U 4 fH0 4 (rg)],

1<isM-1,1<n<N (2.90)
and there exists a positive constant ¢4 such that
[re)| < cg(T® + 1), 1<i<M-1,1<n<N. (2.91)
Noticing the initial-boundary value conditions (2.37)—(2.38), we have

{ U =(x), 1<i<M-1, 2.92)
Ul = uty), Up=vt,), O<n<N. 2.93)
Omitting the small term (r,)} in (2.90) and using numerical solution u' to replace

the exact solution Ul-", we construct the following difference scheme for the problem
(2.36)-(2.38):

-a n-1

o o ) - os

+(1-0)8u " +f9, 1<i<M-1,1<n<N, (2.94)
w =), 1<isM-1, (2.95)
uy = u(ty), uy =v(t,), 0<n<N. (2.96)

2.6.2 Solvability of the difference scheme

Theorem 2.6.1. The difference scheme (2.94)-(2.96) is uniquely solvable.

Proof. Denote u" = (ug, uy,. .., uy).

From (2.95)-(2.96) we can know u°. Suppose u°,u',...,u"! have been uniquely
determined, then we can get a system of linear equations in u" from (2.94) and (2.96).
It suffices to show that the corresponding homogeneous system

1
{ gcg"“)u;’ = o6, 1<i<M-1, (297)
uy =uy =0 (2.98)

has only the trivial solution.
Taking the inner product on both hand sides of (2.97) with u" yields

Lo — o ) - a5,
It is easy to know that
u'=0, 0<is<M.

By induction principle, the conclusion holds. This completes the proof. O
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2.6.3 Animportant lemma

Lemma 2.6.1. [ Suppose V is an inner space, (-,-) is an inner product in V and | - || is
the induced norm. In addition, assume that O < a < 1, and {cl(("’“) |0<sk<n-1,n2>1}
satisfies

{ cg"“) > ci"’“) > cé" ) > cil" g) > cﬁ," @ 5 (1-a)n @ (2.99)
20 - 1) - oci"’“) > 0. (2.100)

Then, for any u°, u', ..., u" € V, we have

Z MOk _ kT gty (1 - o™
k=0
n-1
> % Z (na) U k " n—k—l"z)’ n=12,....

Proof. The proof will be carried out in three steps.
(I) Prove

n-1
z C}((n,a) (un—k _ un—k—l, un)

Z C(nzx Ut k ” n—k—luz)
2
, n=12,.... (2.101)

z C]((n,zx) (un—k _ un—k—l)

When n = 1, we have

B i DR T

(un _ un—l) un) _ %("un"

It is easy to know that (2.101) holds.
Next, we consider n > 2.

A= Z Cna) z C(nzx ”u ”un—k—luz)
_ nz_: C}({n,a)<un—k un—k—l’un _ n-k +u" k_1>
k=0 2
n-1 u" k _ u" k-1 k
_ C}({n,a)<un—k Lln—k—l, : i Z(un m+1 un—m)>
k=0 m=1
1 (). n-k k-1
na) |, n— n
- 15 oo u
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n-1 k
(n,a) n-k _ n k-1 n -m+l n m
+ycC u )
kZ::l « ( mzzl )
n-1
- % z C}({n,a) ”un—k _ un—k—l ”2

+ nz_:l<unm+1 n m Z C(na unkl)>.
m=1

Let

PO R -0, n-1,

then we have

_ (na)s, n-m n-m-1 _
Wy = Wi = G (U = U ), m=0,1,...,n-1

Thus we get
1 n-1 1 n-1 1
A=5) i 1Wm = Wi 24 Y i Wit = Wi W)
m= m=1 Cm 1
11 , 1%/ 1 1 )
= - ——|wol” + 3 —— = ——— |[wpll
11 )
2z - ——|w,
3 g ol
11 |Y e, nk k-1 ’
na n— n—K—
== oW —u )
2.0 I;O k
(ID) Prove
Z Cna) —u —k—l)un—l)
—k—11n2
233 P et

2

Z(C(n Q) in Q)

Z C(n a) un—k—l)

In fact, we have

Z C (n a) un—k—l’ un—l)

, n=12,....

— 135

(2.102)
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Uk NZ

1 n-1 ()
n,a
T3 Z -l
k=0

. 1
2(cg"“) - ci

n-1

n,a))

— z cna (un—k _ un—k—l, un)

1 (= n,a) /1. .n—k 2
L ey
k=0

n-1

. 1
2(cg"“) - ci

n-1
_ (un _ un—l’ Z C’((n,a)(un—k
k=0

n,a))

Z C]((n,tx)(un—k —u
k=0

Z C]((n,a()(un—k —u
k=0

unkl)j

—k=112
=)

2
n—k—l)

—k=112
o 'y

2
n—k-1 )

1= ( 1 > 2 1
== Wi ll” + Iwoll®
2 mzz“ Cn:l "? "ol
5 1
+ "W0" = _(Wo - Wy, Wo)
2(c(()"’a) _ Cin,a)) Cgl,a)

2
)uwmn
m-1

1 ”i( 1 1
2m:2 C(n,a) (n,tx)

Cina) . +C(()ntx inaw 2
P (n,a)( (n,a) (n,a)) 0 (n,a) 1
Co G TG G

= 0.

(III) Multiplying (2.101) with o, (2.102) with (1 -

using (2.100), we have

Z Cna) n-k-1

0), summing up the results and

,ou" + (1- o)

z MO (kP - P, m=1,2,
This completes the proof. O
2.6.4 Stability of the difference scheme
Theorem 2.6.2. Suppose {V!' | 0 < i < M,0 < n < N} is the solution of the difference

scheme
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e —k k-1 2 2 n-1
- z c,(("’”(vi" v ) =08V + (1-0)8 v+,

1<i<M-1,1<n<N, (2.103)
V=), 1<isM-1, (2.104)
vo=0, vy =0, 0<n<N, (2.105)
then we have

2 2 I? 2

V< V0l + Sld-a 121£§1(t;||gm|| ), 1<n<N, (2.106)
2 2 1 2

"@WHSHQWH+EHLng2%%MﬂU,lsnsN, (2.107)

where
M-1
2 2
lg™I"=h ) lgf"|
i=1

Proof. (I) Taking the inner product on both hand sides of (2.103) with ov" + (1 - oV,
we have

1 nil C(n,a)(vn—k _ vn—k—l O'Vn n (1 _ O_)Vn—l)

s " ’

= (82(ov" + (1 -0V ), 0v" + 1 -0 ) + (g" 0" + (1 - 0" )

= —[6,(ov" + (1 - U)v"_l)"2 +(g oV + (1-o™)
6 192 6 12 I’ 2
< —ﬁ"ov" +1-oV" |+ ﬁ”ov" +(1-oV" |+ iug""
2
_ %||g”||2, 1<n<N. (2.108)

For the left-hand side of the inequality above, applying Lemma 2.6.1 and Lemma 1.6.3,
we have

Z(:) VR s (- oy
1 1% na) n—k 2 s k-12
B ) 2109

From (2.108) and (2.109), we have

I, 1<n<N. (2.110)

1'¢ ) (1. n—k 12 nkl 12 n
L5 o - < S

NI»—\
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In view of Lemma 1.6.3, we have

s < T2 - a)
c”“) 1-an”

<tiT(1-a).

Rewrite (2.110) as

S
—_

(na) . n)2 (n,a) na) k)2 na) I? n|2
O < Y (e - OV + PO+ S||g [

k=1
T o NV 4 )
= oy "“ v +c” <v )
k=1( P IV o) + 12c"“) ls"|
(= (n,a) na) k)2 (n,a) 012 a ny2
& S - (1] + tera - '),
k=1

1<n<N.

By mathematical induction, we can obtain (2.106).

(2.111)

(IT) Taking an inner product on both hand sides of (2.103) with —5)2( (V' +(1-a)v™ ),

we have

" 5 e H 2oV 4 (1 ™)
k=0
=820V + 1 - W' V) - (&" 82 (0V" + (1 - o))

< —||6)2((m/” +(1- a)v""l)n + ||5)2((0v" +(1- o)v"_l)" .

Ll renen,

For the left-hand side of the inequality above, applying Lemma 2.6.1, we have

Z (ntx n 1)_6)2<(0_vn+(1_0_)vn—1))
k=0
-1

= é ol N (A Vi NN (- A 6 B i)
k=0

§z D ([0 - o)

NIP—‘

From (2.112) and (2.113), we have

n-1
; i > P67 - 8" < %Hg"llz, 1<n<N.
k=0

2
v 71g"]

(2.112)

(2.113)

(2.114)
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Noticing (2.111), rewrite (2.114) as

") < Z(cm 0o M + 050 + slg|

2 1 s 2
_ Z(Cna) na) “6 v k" +C(rux <||6XVO|| i Ec(n,a) ngn” >
n-1

N

D N R (L R e )

1<n<N.

By mathematical induction, we can obtain (2.107).
This completes the proof. O

2.6.5 Convergence of the difference scheme

Theorem 2.6.3. Suppose {U'|0<i<M,0<n<N} and {u}' |0<i<M,0<n<N}
are solutions of the problem (2.36)—(2.38) and the difference scheme (2.94)-(2.96), re-
spectively. Denote

then we have

16.€" < VAT - a)tiLeg(t> +h?), 1<n<N, (2.115)
le"lo < 7 V2T - @)t&Leg(t? + 1), 1<n<N. (2.116)
2.

Proof. Subtracting (2.94)—(2.96) from (2.90), (2.92)-(2.93) respectively, we get the sys-
tem of error equations

—a n-1

T -k n-k-1 2 2 n-1
r2-a) £ z (na)(en e ) =0bel +(1-0)5e " + ()i,

1<i<M-1,1<n<N,
e)=0, 1<i<M-1,
ep=0, ey=0 0<n<N.

Applying Theorem 2.6.2 and noticing (2.91), we have
2 2 1 2
[6¢"| < [8,¢°[F + 5T - max (e )"
< %F(l — Ot L[ce(T* + W), 1<n<N.

Taking the square root on both hand sides of the inequality above, we can get (2.115).

Noticing Lemma 2.1.1, from (2.115), we can obtain (2.116) easily. This completes the
proof. O
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2.7 The fast difference method based on L2-1, approximation for

1D problem

In this section, a fast difference method based on L2-1, approximation will be given
for the problem (2.36)—(2.38). Suppose the exact solution u € C**¥([0,L] x [0, T]).

2.7.1 Derivation of the difference scheme
Denote
[24 n-1+o
o=1- > thoiso = (M=1+0)T, f; = f (X ty_140)-

Considering (2.36) at the point (x;, t,_;,,), we have

n-1+o

c .
oDIUG, ty14g) = U X by 14) + , 1<i<M-1,1<n<N.

(2.117)

Using the theory in Subsection 1.7.2 to discretize the time fractional derivative, we get

N,

exp

Y wF+d O - Ut
=1

c
oD UG ty140) = Ta-a 2

+0(T7%+¢€), 1<i<M-1,1<n<N,
Fj;=0, 1<I< Ny, 1<i<M-1,
Fi= e F 7 + AU - U + B(U - U,
TSI Ny, 1<i<M-1,2<n<N.

exp>

(2.118)
(2.119)

(2.120)

Using the linear interpolation and the second-order central difference quotient to

approximate the spatial second-order derivative, we get

uxx(xi’ tn—1+o) = ouxx(xi) tn) + (1 - o)uxx(xb tn—l) + O(Tz)

= 062U + (1- 0)82U" ' + O(h?) + O(7?).

Substituting (2.118)—(2.121) into (2.117), we get

N,

exp

1

Il-a 7

+fT e (), 1<i<M-1,1<n<N,
. .
F;=0, 1<I< Ny 1<isM-1,

Fly=e ™ F 7 + AU - U + By(U! - U,
1<I<N, 1<i<M-1,2<n<N

exp’

Y wF+dO U - U = 06,07 + (1- 0)8.U7

(2.121)

(2122)
(2.123)

(2.124)



2.7 The fast difference method based on L2-1, approximation for 1D problem =— 141

and there exists a positive constant c; such that
) < c; (7> +h*+€), 1<i<M-1,1<n<N. (2.125)
Substituting (2.123)—(2.124) into (2.122) and eliminating the intermediate variable
{F};}, we have
n-1

> drO(ut - upt) = o8] + (- )80
k=0

+T L)l 1<i<M-1,1<n<N.
Noticing the initial-boundary value conditions (2.37)—(2.38), we have

{ U =p(), 1<isM-1, (2.126)
Uy = u(t,), Uy=v(t), 0<n<N. (2.127)
Omitting the small term (r7);~1 in (2.122) and using numerical solution u? to replace

the exact solution U}', we construct for the problem (2.36)-(2.38) the fast difference
scheme as follows:

Nex
1"(11— pr,Fll +dPOW - u = o8l + (1- 08U
+fTH 1<i<M-1,1<n<N, (2.128)
Fl;=0, 1<1SNeg 1<i<M- (2.129)
F; = e"S’TF“_ + Al(uTI o)+ Bl(ui —u
SIS Ngyp, 1<i<M-1,2<n<N, (2.130)
u =), 1<isM-1, (.131)
up = u(ty), Uy =v(t,), O0<n<N. (2132)

Substituting (2.129)—(2.130) into (2.128), we can get the following equivalent form

n-1
Z d}({n,tx)(u?—k _ u?—k—l) — 05)2(11 : (1 0)52 n-1 +fin—1+o,

1<i<M-1,1<n<N, (2.133)
w =), 1<i<M-1, (2.134)
ug = u(t,), uy =v(t,), 0<n<N. (2.135)

2.7.2 Solvability of the difference scheme

Theorem 2.7.1. The difference scheme (2.133)—(2.135) is uniquely solvable.
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Proof. Denote

u" = (ug, uy, ..., uy).

From (2.134)—(2.135), we can know u°. Suppose u°, u', ..., u" ! have been uniquely de-
termined, we can get the system of linear equations in u" from (2.133) and (2.135). It
suffices to show that the homogeneous system

{ d(()ﬂ,lx)u;'l — 0.6)2(11:1’ 1 < l' < M — 1’ (2.136)

Uy =uy =0 (2.137)

has only the trivial solution.
Taking an inner product on both hand sides of (2.136) with u", we have

agO) = o, 82) = ~ofl6ar,
from which it is easy to know that
u=0, 0<i<M.

By induction principle, the conclusion holds. This completes the proof. O

2.7.3 Stability of the difference scheme

Theorem 2.7.2. Suppose {V{' | 0 < i < M,0 < n < N} is the solution of the difference
scheme

N,
1 exp . B
— z w Fj; + df)l’“)(vi" V'Y = 06 + (1-0)6V ! + gl
Ii-o) 5
1<i<M-1,1<n<N, (2.138)
| Fli=0 1SS N, 1<i<M-1, (2139)
Fli= e+ A v + B! - v,
1<I<Ngyp, 1<i<M~-1,2<n<N, (2.140)
VY =0(g), 1<isM-1, (2.141)
[ v5=0, vy =0, 0<n<N. (2.142)
Then we have
n 2 02 L2 a my2
VI < VO + T - o) max (g™ ), 1<n<N, (2.143)
180 < [6°|° + T - @) max (£%|g™|*), 1<n<N, (2.144)

1smsn

where

2 M1 2
lg™"=n Y lg""-
i=1
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Proof. Substituting (2.139)-(2.140) into (2.138) and eliminating the intermediate vari-
able {F};}, we have

n-1
z d,(("’“)(v?’k ViKY Z 062 + (1- )82V + g,
k=0
1<i<M-1,1<n<N. (2.145)

(I) Taking an inner product on both hand sides of (2.145) with ov" + (1- o)V}, we
have

n-1
Z d;{n,a) (vn—k _ Vn_k_l,O'Vn + (1 _ O_)vn—l)

= (8(ov" + (1 -0 ), 0v" + (1 -0 ) + (g" 0" + (1 - oW )
= —[6,(ov" + (1 - a)v"_l)"2 +(g" v+ (1-o™)

6 192 6 12 L2 2
< I lov" + 1 - 0" 1|| + ]7||0v" +(Q-oW" 1|| + ﬂ"g""

I? 2
14 RELE .146)
For the left-hand side of the inequality above, applying Lemma 2.6.1 and Lemma 1.7.3,

we can get

n-1
Z d]({n,xx)(vn—k _ vn—k—l)m/n +(- 0)vn_1)
k=0
1 ' (na) /1. n—k |2 n—k—112
P (A I A b (2.147)
k=0

From (2.146) and (2.147), we get

n-1
2 Y A - ) < 2 1<n<N. (2.148)
k=0
Noticing (1.146), rewrite (2.148) as
— 2
4 Y i T AP e o

k=1
n-1

12
z (na B (na) ) k" +d("“) v° || + = F(l—a>tﬁllg"||2 )

1<n<N.

By induction principle, we can get (2.143).
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(IT) Taking an inner product on both hand sides of (2.145) with —5)2((0v”+(1—a)v"’1),
we have

n-1
Z dl((n,a)(vn—k _ Vn—k—l’ —6)2((O'Vn +(1- O_)Vn—l))

M-1
hz [62(ov! +(1- o)vnl] —hZ[GZm/ +(1-on' g’
i=1 i=1
< Z|g 1<n<N. (2.149)

For the left-hand side of the inequality above, applying Lemma 2.6.1 and Lemma 1.7.3,
we can get

n—

1
d(n a)( n-k _ Vn—k—l’ —5)2((O‘Vn +(1- O‘)Vn_l))

k
k=0
n-1
= Y P V) B (v (- o)
k=0
15 ( -k |2 k-1
n,a) Vi N
Z5 (60" = 87", (2150)
=0

Substituting (2.150) into (2.149) gives

= k12 ke1y2y 1 2
3 Y PO o) < gl 1<meN. @asy
Noticing (1.146), rewrite (2.151) as
N 2
dg 6, Z D dr e + a8 + || g
k=1
n-1 2
< Y (AP - dP M + AP (1800 + T - @t g" ),
k=1
1<n<N.
By induction principle, we can get (2.144). This completes the proof. O

2.7.4 Convergence of the difference scheme

Theorem 2.7.3. Suppose {Ui” |0<i<M,0<n<N} and {u |0<i<M,0<n<N}
are solutions of the problem (2.36)—(2.38) and the difference scheme (2.128)—(2.132),
respectively. Denote

ef =U'-uf, 0<i<M,0<n<N,
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then we have

8. < T -a)tsLc, (> + W2 +€), 1<n<N, (2.152)
n~*7
le"lo, < 5T - a)tde;(7* + B> +€), 1<n<N. (2.153)

Proof. Subtracting (2.128)-(2.132) from (2.122)-(2.124), (2.126)—(2.127), respectively, we
get the system of error equations

N,

1 exp ) .
) Y wF+d Vel - ef ) = o6l + (1- 0)5rel ! + ()],
A=
1<i<M-1,1<n<N,
1 .
Fj;=0, 1<I< Ny 1<is<M-1,
Fli=e ™ + el - el ) + By(ef e[,

1<1< Ny I<i<M-1,2<n<N,

Applying Theorem 2.7.2 and noticing (2.125), we have
2 2 2
Io€" " < 18,°) + 11 a0 ma. (e )" )
<T( - a)t’L[c,(* + h* + e)]z, 1<n<N.

Taking the square root on both hand sides of the inequality above, we can get (2.152).
From (2.152) and Lemma 2.1.1, it is easy to obtain (2.153). This completes the proof.
O

2.8 The difference method based on L1 approximation for the
MTTFSD equations

This section will be devoted to the investigation of difference methods for solving a

class of multiterm time-fractional subdiffusion (MTTFSD) equations. To simplify the

statement, take a two-term case with the constant coefficients as an example.
Consider the following two-term problem:

SDMu( ) + SDIUCGE) = Uy (X, £) + F(x, 0),

x € (0,L), t € (0, T], (2.154)
u(x,0) = p(x), x¢€(0,L), (2.155)
u(0,t) = u(t), u(L,t)=v(t), te[0,T], (2.156)

where 0 < a; < a < 1, the functions f, ¢, u, v are all given and ¢(0) = u(0), (L) = v(0).
Take the same mesh partition and notations as those in Section 2.1. In addition,
suppose u € C*?([0,L] x [0, T]).
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2.8.1 Derivation of the difference scheme

Considering equation (2.154) at the point (x;, t,,), one has

c c
oDFu(x;, ty) + o DF U, ty) = Uy (x5, ) + 71,

1<i<M-1,1<n<N.

Applying the L1 formula (1.60) to approximate the time-fractional derivatives and the
second-order central difference quotient to approximate the spatial derivative in the
equation above yields

¢ @ n-1 @ @ . @ o
r(2 a) (a U Z(an—k—l - an—k)Ui - an—l Ui

k=1
T @) S (@) @)k (@)70
a n [2¢ - [2¢
T2-a )< ! U kZ:(an—lk—l _an_lk)Ui _an—llUi )
1
=8U+f +(rg)l, 1<i<M-1,1<n<N, (2.157)

where there is a positive constant cg such that
)| < cg(™*+h?), 1<i<M-1,1<n<N. (2.158)
Noticing the initial-boundary value conditions (2.155)—(2.156), one has

{ U =o(x), 1<i<M-1, (2.159)
Uy = u(t,), Uy=v(t), O0<n<N. (2.160)

Neglecting the small term (rg) in (2.157) and replacing the exact solution U] with
its numerical one u}' produce a difference scheme for solving (2.154)—(2.156) as follows:

T @), n @) @
T2-a) (ao U — z(an k-1~ Uy —a,” 1u

T_a (a) n (aq) (a) (ay),,0
) +F(2—a)< 1 Z(anlk—l o = @

=8 +f', 1<i<M-1,1<n<N, (2.161)
w =), 1<i<M-1, (2.162)
ug = u(t,), uy =v(t,), 0<n<N. (2.163)

Denote
s=1TR-a), s =17"TQR-a).

In what follows, the difference scheme (2.161)-(2.163) will be analyzed.
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2.8.2 Solvability of the difference scheme

Theorem 2.8.1. The difference scheme (2.161)—(2.163) is uniquely solvable.

Proof. Denote

u" = (ug, Uy, ..., Uy).

The value of 1 is obviously determined by (2.162)—(2.163). Suppose that the values of
u®,ul, ..., u™ ! have been uniquely determined. From (2.161) and (2.163), we can obtain
the linear system in the unknown u". To prove its unique solvability, it suffices to show
the corresponding homogeneous one
(a) (ay)
a a
< 0 +0—>u =8, 1<i<M-1, (2.164)
S 5
Uy =upy =0 (2.165)
has only the trivial solution.
Suppose [u" |l = Iuﬁ |, where i,, € {1,2,...,M — 1}. Rewrite (2.164) as

a® (ay)
a 2 1 .
< 0 +0_+_>u?:ﬁ(ul+u”1) 1<isM-1

Letting i = i, in the equality above and taking the absolute value of both hand sides,

by the triangle inequality, we have
() (1)
a a
(480 ), < 2

s S

Thus [[u"||,, = 0, which implies u" = 0.
By the principle of induction, the difference scheme (2.161)-(2.163) is uniquely
solvable. The proof ends. O

2.8.3 Stability of the difference scheme

Theorem 2.8.2. Suppose {v]' | 0 < i < M,0 < n < N} is the solution of the difference
scheme

(a) n k (a) 0
< Z(an k-1~ Vi n Vi >
(et -t -t

=8V +f', 1<i<M-1,1<n<N, (2.166)

V=), 1<isM-1, (2.167)
vo=0, Vi =0, 0<n<N. (2.168)
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Then it holds

k 0
[ lleo < IVl + 7 max ™|, 1<k <N, (2.169)
where

K =5 max{T*T(1 - a), T"T(1 - ay)},

m
[l = max |77
Proof. Rewrite equation (2.166) as

hZ

n-1
(@) (@) (@)
E(Z(ank —a® v +ad v >
k=1
n-1

1 (@) @)y k |, (@) 0
+ ;( Z(an—lk—l - an—lk)vi +a, llv
k=1

1 .
+ﬁ(ll_'_vzﬂ) fn’ 1<isM-1,1

() (@)
a a

( o, % 2> )
s s,

n<N.
Suppose V"o =

n .
|vl-"|, where i, € {1,2

M - 1}. Letting i = i, in the equality above
and taking the absolute value of both hand sides, by the triangle inequality, we have

S - a® )AL + @)
\Sk:1nk1 71 ()

= 2
+;[Z(aﬁ“_‘i_1 a0 + @ 1Vl ]+pIIV"IIOO+Ilf”IIOO
11lk=1

1. (@ ch)
g\ k-1 - n—k) t - S ( nlk 1 nlk "V "
k=1 1
1@ @ @
+Lnfgllnwu Al S bl
+ Sla(“l) o 1<n<N. (2.170)
1
By virtue of Lemma 1.6.1, we conclude that
T2 - t'r1-a
s TI Ui G .171)
2,15101)1 21-a)n 2
s T TR-a) _ ty' T(1 - ay)
2a “_ 2(1-—a))n™™ 2 '

(2.172)
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Inserting (2.171)-(2.172) into (2.170) yields

() (ay)
(% 2 L,
S
< n_l[l(a(a) a@ )+ (a(a1) a® ) ||V "
= g\ n-k-1 n—k n-k-1" n k
k=1
+<; f;*l+ a®) ) IVl + k"), 1<n<A. 2.173)

Next, we proceed by the mathematical induction to prove the truth of (2.169).
In view of (2.173), whenn = 1,

() (ay) () (ay)
a a a a,
(% 2 ko < (2 + 2 ) ko + L)
thus

1V oo < 1V leo + X1l o

Obviously, (2.169) is true for k = 1.
Suppose that (2.169) is true for k = 1,2,...,n - 1. From (2.173), we can obtain

() ()
a a,
(%o )nv I
1
<3 [N -y La - (bl

1 1
e max ) + | Sals+ ol |l + )

1<sm<k

n-1

1 (@ @ 1. (@) (@)

< 1; [g(an—k—l a,_ k) ) (an 1k 1~ an—lk)
=1

1
o (La L) (10 +m sl
(ay)

(@)
(%, % )
- (5 B ) (0 0 max L)

1smsn

Hence (2.169) is also true for k = n.
The desired result can be obtained by the principle of induction. The proof is com-
pleted. O

2.8.4 Convergence of the difference scheme

Theorem 2.8.3. Suppose that {U' |0 <i<M,0<n<N}land{ul |0<i<M,0<n<
N} are solutions of the problem (2.154)—(2.156) and the difference scheme (2.161)—(2.163),
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respectively. Let

Then it holds
"]l < csra(t 7241w, 1<n<N.

Proof. The subtraction of (2.161)-(2.163) from (2.157), (2.159)—(2.160), respectively,
gives the system of error equations as follows:

e S - aoet et

(Dl)n ek (@) O
p |: 1 z(an k-1~ n i an—llei:|
=8+ (rg)!, 1<i<M-1,1<n<N,
=0, 1<is<M-1,

0
l

n n

ep=0, ¢e;,=0, 0<n<N.

Noticing (2.158), Theorem 2.8.2 immediately implies

le"co < 1€Moo + 20 max l(rg)"™ |, < gt (7 + ), 1< <N,

The proof ends. O

2.9 The difference method based on L2-1, approximation for the
MTTFSD equations

Consider the following problem of the multiterm time-fractional subdiffusion (MT-
TFSD) equations:

Y A 6D UG ) = Uy (6, 0) + £, ), X € (0,L), t € (0,T], (2.174)
ux,0) = o), x¢€(0,L), (2.175)
u(0,t) = u(t), u(L,t)=v(t), tel0,T], (2.176)

where Ay, Ay, ..., A, are positive constants, 0 < a, < @,,_; < --- < &y < 1, at least one
a, € (0,1), functions f, ¢, u, v are all given, and ¢(0) = u(0), ¢(L) = v(0). Suppose the
exact solution u € C“?([0,L] x [0, T]).
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2.9.1 Derivation of the difference scheme

Applying the theory in Subsection 1.6.4, let o be the unique root of equation F(o) = 0,
th1e0 = (N=1+0)1, fin_1+0 = f (X tp-140)-
Considering (2.174) at the point (x;, ,,_1.4), We have
< C
al
Z Ar ODt u(Xi’ tn—l+a)
r=0
n-1+o .
= Uy (X tp_14g) + 1 ,1<i<M-1,1<n<N. (2.177)
Using the theory in Subsection 1.6.4 to discretize the time fractional derivative, we have
v C (S k k-1 3
Y AGDE UG by 146) = Y. EPOUFT - UM + O(7 ). (2.178)
r=0 k=0
Using the linear interpolation and the second-order central difference quotient to ap-
proximate the spatial second-order derivative, we have
uxx(Xi’ tn—1+0) = Guxx(xi> tn) + (1 - G)uxx(xb tn—l) + O(TZ)
= 06Ul + (1- 0)82U1" + O(h*) + O(7°). 2.179)
Inserting (2.178) and (2.179) into (2.177), we have
n-1
Z &I((n,a)(Uin—k _ Uin—k—l)
k=0
_ 211 2 -1 n-1+o n
=06 U; +(1-0)6.U;  +f; +(r9);»
1<isM-1,1<n<N (2.180)
and there exists a positive constant cq such that
|ro)f| < co(T” + %), 1<i<M-1,1<n<N. (2.181)
Noticing the initial-boundary value conditions (2.175)-(2.176), we have
{ U =), 1<i<M-1, (2.182)
Uy = u(t,), Uy=v(t), 0<n<N. (2.183)

Omitting the small term (r,)!" in (2.180) and using numerical solution u}' to replace the
exact solution U]', we construct for the problem (2.174)-(2.176) the following difference
scheme:

1
~(na) ., n-k n-k-1 2 n 2. n-1 n-1+o
Z c](( )(ui -y ) =06 +(1-0)6u;  +f; ,

1<i<M-1,1<n<N, (2.184)
u =), 1<isM-1, (2.185)
ug = u(t,), uy =v(t,), 0<n<N. (2.186)
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2.9.2 Solvability of the difference scheme

Theorem 2.9.1. The difference scheme (2.184)—(2.186) is uniquely solvable.

Proof. Denote

u" = (ug, uy,. .., uy).

From (2.185)-(2.186) we get u®. Suppose u°,u',...,u"! have been uniquely deter-
mined, we can get the system of linear equations in u" from (2.184) and (2.186). It
suffices to show that the homogeneous system

i x4

{ et = 062, 1<i<M-1, (2.187)
Wl =1l =0 (2.188)

has only the trivial solution.
Taking an inner product on both hand sides of (2.187) with u", we have

) = o(u”, 82" = ~of§u”|.
It is easy to know that
ui =0, 0<i<M.

By induction principle, the theorem holds. This completes the proof. O

2.9.3 Stability of the difference scheme

Theorem 2.9.2. Suppose {vi' | 0 < i < M,0 < n < N} is the solution of the difference
scheme

n-1

~(n,a) ., n-k n-k-1 2. n 2 n-1 n
z C]({ WK v = 082+ (1- )82V + gl
k=0

1<i<M-1,1<n<N, (2.189)
VW =0pk), 1<isM-1, (2.190)
vo=0, vy=0, 0<n<N. (2191)

Then we have
1

2 2 2
167 < [8°) + 22’"—A , 1<n<N, (2192)
r=0 T%T(1-aq,)

max| gll

1<lsn

where

g =n Y lelf
e
i=1
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Proof. Taking an inner product on both hand sides of (2.189) with —5)2((0v" +(1-oW" Y,

we have

Z eI (v K _82(ov" + (1- o))
= —||8§ (" +(1- (f)v""l)"2 —(8(av" +(1-0oW" ), g"
s%mw{ 1<n<N. (2.193)

For the left-hand side of the inequality above, applying Lemmas 2.6.1, 1.6.6 and 1.6.7,

we have
Z e (y nk _§2(0v + (1- o™ Y))
k=0
n-1
= Y &M, v, 8 (v + (1 - o))
k=0
1Zm”wwk|@wHﬁ (2.194)

From (2.194) and (2.193), we have

~Jem ) < SlgtE 1<n<N,

Z na) ||6 nk

NI>—‘

that is,

&8,

n-1

< ¥ (@ _gnays KR4 et D5 O + 2 || ", 1<n<AN.
k=1

From Lemma 1.6.6, we know

m
A
A(n D() 4
>Z&H1a) >éwau%y

It follows that

o

e
< z C]((nil) A(na) 5™ k" Lo )(”5 VO” + 2c"“ ||g I )
-1

7 TT

SN

< 3@ -

=~
11
—_
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TR — —I¢'T], 1<n<N.

r=0 T&T(I-a,)
By mathematical induction, we can get (2.192). This completes the proof. O

From Theorem 2.9.2, we can know that the difference scheme (2.184)-(2.186) is
stable with respect to the initial value and right-hand function.

2.9.4 Convergence of the difference scheme

Theorem 2.9.3. Suppose that {U' |0 <i<M,0<n<N}and{uf |0<i<M,0<n<
N} are solutions of the problem (2.174)—(2.176) and the difference scheme (2.184)—(2.186),
respectively. Denote

el =Uj'-uf, 0<i<M,0<n<N,
then we have

L

I6.€"]| < co(t? +h°), 1<n<N, (2.195)

m A,
2¥r-0 ToT(a)

le"leo < 3 m;}l Leg(T +R%), 1<n<N. (2.196)
2 Zr:O T%T(1-q,)

Proof. Subtracting (2.184)—(2.186) from (2.180), (2.182)—(2.183), we have the system of
error equations

—_

n-1

~(n,a -k —k-1 2 2 _n-1
Y el — e = o€} + (1- 0)82ef " + (o),
k=0

1<i<M-1,1<n<N,
=0, 1<i<M-1,
ep=0, €y=0 0<n<N.

Applying Theorem 2.9.2 and noticing (2.181), we have

2 2 1 2
loe" < 15.€%) + ———— max|(ro)"]
2Y 0 Ty
< ;AL[Cg(TZ + hz)]z, 1<n<N.

m
2 Zr:O T%T(1-a,)

Taking the square root on both hand sides of the inequality above, we get (2.195). From
(2.195) and Lemma 2.1.1, it is easy to obtain (2.196). This completes the proof. O
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2.10 The ADI method based on G-L approximation for 2D problem

In this section, the finite difference method for solving two-dimensional time-fractional
subdiffusion equations will be investigated. For this, consider the following problem:

6DFUCGY, 1) = Uy (Y, 1) + Uy (6., ) + F (6, 1),

(x,y)eQ, te(0,T), (2.197)
ux,y,0) =0, (xy) eQ, (2.198)
ux,y,t) = u(x,y,t), (xy) €oQ, te[0,T], (2.199)

where Q = (0,L;)%(0, L,), a€(0,1), the functions f, u are given and u(x, y, 0)l(x,y)ea0 =0-

For the numerical approximation, the mesh partition is made firstly. Assume that
h, = Ly/M;, h, = L,/M, and T = T/N for some positive integers M;, M, and N. Let
x; = ih; (0 <i<M,),y; =jh, (0 <j <M,)andt, = kr (0 < k < N).Define Qy, = {(x;,;) |
0 <i< M, 0<j< M,}asaset of mesh points on Q, Q, = Q, N Q and 0Q;, = Q, N 0Q
as sets of interior mesh points and boundary mesh points, respectively. Let w = {(i,}) |
(X)) € Qpt, 0w = {(1,)) | (x;,y5) € 0}, w =wUow, Q. ={t; | 0 <k <N}

Define two mesh function spaces as follows:

Vi = {ulu={u; | (i,j) € @} is a mesh function defined on Q,},

Vi = {ulu € Vysuy = 0if (i,j) € dw}.

For any mesh function v € V,, introduce some notations:

1 , 1
OcVig) = W =Vierh Oy = OVt = Ovic ),
1 , 1
OyVij-1 = h_z(vij —Vija) BV = h_2(6yvi,j+% =6y 1),
5,6 -1 5
KOyVilj1 = h_1( yWij-1 yVifl,j%)’

202 1.9 2 2
8.6y vij = p(5yVH,j = 26,Vii + 6,Vis ),
1

2 2 ..
6X6yvi7%,]., 6),5Xvi,}.7% and others can be defined similarly.

For any mesh functions u,v € V,, define

M;~1M,-1

Wv)=hhy 3 > vy lul = Vww,
i=1 j=1
M, My-1
G, 6,v) =iy Y Yy (Bt YOv;_1 ), I18,ull = \(Bu, 8,u),
i=1 j=1

M-1 M,

Gy, 8,v) =yhy Y Y By 1)Eyviy 1), 18,ull = (B, 8,u),

i=1 j=1
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Ml MZ
(88,1 8,8,v) = ity } 3 (8.8, 15 1)(B,6,v;_1;.1),
i=1j=1
16,8,ull = /(8,6,u, 6,8,u),  [IVpull = 6, ull® + 16, ull’,
lullo = max [ul.

1<i<M;-1,1<j<M, -1

It is easy to check that for any mesh functions u,v € V, it holds

M-1M,-1

(-62u,v) = hyh, Z z (_5)2(uij)vij = (6,u,6,v),
=1 j=1
M—1M,—1
(—6,2,u,v) = hyh, z Z (—5§u,~]~)v,~j = (6,u,6,v),
=1 j=1
M1 M1
(6285w, v) = hihy Y Y (8:85u;)v;i = (8,8,1,6,6,v).
i=1 j=1

In addition, we denote 7 as the unit operator, or, the identity operator.

The next lemma states a relationship between two different norms.

Lemma 2.10.1. ! For any mesh function u € V,, we have

1
6, 6

+
L5

2
llull”™ <

2
IVpull™.

2.10.1 Derivation of the difference scheme

Define mesh functions

Uj =u(,ypt)), fii =f0Gypty), (Gj)ed, O<n<N.

For any fixed (x,y) € Q, define a function

0, t<o,
. u(x,y,t), 0<t<T,
Gy, t) =
vix,y,t), T<t<2T,
0, t=2T,
k Kk
with v(x, y, t) a smooth function satisfying Vé’t‘,;y’” |1 = 9 ”a(’t‘k’y’f) |,y and

0, k = 0,1,2. Assume that i(x,y,-) € €"*(R) and u(, -, t) € C*¥(Q).

Considering equation (2.197) at the point (x;, y;, t,), one has

ng‘u(xi,yj, tn) = U (Xi Vs ) + Uy (X3, Yo ) +ff, (,j)€ew, 1<n<N.

ok v(x,y,t)

(2.200)

(2.201)

(2.202)

|t:2T =
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Noticing the close relationship between the Caputo derivative and the R-L derivative
under the zero initial value condition (2.198), by Theorem 1.4.2 and Lemma 2.1.3, one
can obtain

- (@pn-k _ g2 2
« Z gl U™ = .U + 8,Uf + fif + (1),

(i,j) ew, 1<n<N, (2.203)
where there is a positive constant ¢, such that

[(ro)f| < cio(t + b +13), (i) ew, 1<n<N.

Adding a small perturbation term 12“5262(1 k-0 g(“ Uj; =Ky into (2.203) arrives at

_a zg(a)U;z k+T2a6262< -a zg(a U;‘l k)
= 62U +8 UL +fi + (), (b)) ew, 1<n<N, (2.204)

x~ij

where

() = (ro)jj + 724 ( Z g(a)5252 n- k)
and there is a positive constant c;; such that
|(rin)ji] < e (™2 2 L h2), (i,j) ew, 1<n<N. (2.205)
Noticing the initial-boundary value conditions (2.198)—(2.199), one has

Uj =0, (ij)ew (2.206)
Uu UG Yj ty),  (i,j) € 0w, 0<n<N. (2.207)

Neglecting the small term ("11) in (2.204) and replacing the exact solution U" with its

numerical one uU, we get a dlfference scheme for solving (2.197)-(2.199) in the form of

Zg(a) r} —k +T2a5262( Zg(a) n] k)

J 52u" +8uG+ff, (L)) ew, 1<n<N, (2.208)
x“ij 1]

ul-j =0, (ij)€cw, (2.209)

| ug- = u(x;,yj,ty), (i) € 0w, 0 << N. (2.210)

Equation (2.208) can be rewritten as

uf - T 63U - TS + TN
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n
= Z(—g,‘(“))(ug"k + 12“6)2(5)2,ug_k) +7°f,

k=1
namely,
(T -1862)(T - T“&f,)ug
n
= Z(_gl((”‘))(2+ 12“6,2(6)2,)ug_k +7°ff, () ew, 1<n<N,
=1
Let

u; = (7~ T“Gf,)ug,

then the difference scheme (2.208)-(2.210) can be reformulated as the following ADI
form:

On each time level t = ¢, (1 < n < N), firstly, for any fixed j from 1 to M, — 1, solve a
series of linear systems in the unknown {ul-*]. | 0 < i< M,;}in x direction

n
(T -85 = Y (-8 + TS + 1], 1<i<M, -1,
k=1
* 2 * 2
ug = (T -18)uy, Uy ;= (T - 18ty ;

to obtain the value of

on an intermediate time level.
Then, for any fixed i from 1 to M; — 1, carry out some calculations for the unknown
{uj 1 0 <j < My} inyy direction

y

{ @ -0 =, 1<j<M,-1,
Uip = H(Xi Yoo t)s  Uir, = KOG Yag,» o)

to get the desired value of

2.10.2 Solvability of the difference scheme

Theorem 2.10.1. The difference scheme (2.208)—(2.210) is uniquely solvable.

Proof. Denote

u' = {ulr]’ | (i,j) € @}.
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We proceed by the mathematical induction. The values of u° is obviously determined
by (2.209)-(2.210).

Now assume that the values of u®,u',...,u" ! have been uniquely determined,
then we can obtain the linear system in the unknown u" from (2.208) and (2.210). To
show its unique solvability, it is sufficient to verify that the corresponding homoge-
neous one

xUij ij>

T_“g(()“)ug + T“gé“)diﬁ)zl 3 =62l + 6§u" (i,j) € w, (2.211)
wi=0, (ij)€ow (2.212)

has only the trivial solution.
To this end, making the inner product on both hand sides of (2.211) with u", re-
spectively, and noticing (2.212), it follows from (2.200)—(2.202) that

W u") + (8, 8,u", 6,6,u") = —[(6,u", ,u") + (S,u", 6,u")].
Thus
|+ 788, = vl < 0,

which implies |u"| = 0. Then noticing (2.212), u™ = 0 can be concluded.
By the principle of induction, the difference scheme (2.208)—(2.210) is uniquely
solvable. The proof ends. O

In what follows, the stability and convergence of the difference scheme (2.208)-
(2.210) will be discussed.
2.10.3 Stability of the difference scheme

Theorem 2.10.2. Suppose {vlf} | (i,j) € @,0 < n < N} is the solution of the difference
scheme

( n n
-a (a). n—k a (a) Q2 o2 n—k
T ng Vi +T ng 6,6y vij
k=0

k=0
1= 5§V§ + 5§V§ +fi, (@j)ew, 1<n<N, (2.213)
vl = 90y, (i) € w, (2.214)
| vi=0, (ij)edw, 0<n<N. (2.215)
Then it holds
V" + 8,01
5 2 2
< (V1" + 7 16:8,V°")

1-a
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1’12 5
12(L2+L2) (1-a)2* n1<m<n"f "

1<n<N, (2.216)

where
M,

-1M,-1
P =y Y Y (Y
1 j=1

i=

Proof. Taking an inner product on both hand sides of (2.213) with v", respectively, and
noticing (2.215), it follows from (2.200)—(2.202) that

n
T—azgl((a)(vn +T Zg“)58vnk66v)

—(8,V", 80" - (6,V", 6,v" )+ (f"v")
= |V + (F" V"), 1<n<N. .217)

By means of the Cauchy-Schwarz inequality and Lemma 2.10.1, we get

wnwn<%—+—wvu Y

1 1
L_% _%

<V’ + ——— ||f I, 1<n<N. (2.218)

24(L2 + L_§
The substitution of (2.218) into (2.217) arrives at
—(X z g(a) (6 6 Vn k,6x6yvn)]
L2L2
24(L2+L2 IF" || 1<n<N.

Rearranging the above result and again using the Cauchy-Schwarz inequality lead to
IV + 7168,
12

(a) -k 2 —k
(_gka )[(Vn ’Vn) +T a(axsyvn ’5x6yvn)] 24(L2 +L2) “f ”

M=

<

T
n

n
1=

1 ) 2 1 2 2
<*f”bW”kH+WW> (18,8, + [5.5, )
k

I
—_

12

1<n<N.
24(L2 L2)

It follows by noticing Y _;(— g(“)) < g(“) 1 that

v + 2 6.8,v" |

n

< Y () + 8,8, )
k=1
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113
B+ I 1<nsn. (2.219)

Starting from (2.219), an induction method will yield the desired result (2.216). The
process is quite similar to that in Theorem 2.1.2 and the details are omitted here. The
proof is completed. O

2.10.4 Convergence of the difference scheme

Theorem 2.10.3. Suppose {Ui;-’ | (i,j) € ,0 < n < N}and {u" | (i,j) € @,0 < n < N}
are solutions of the problem (2.197)—(2.199) and the dlﬁerence scheme (2.208)—(2.210),
respectively. Let

ej=Uj-uy, (ij)ew, 0<n<N.
Then it holds

le"] < ko(r™ M + B} +K2), 1<n<N,

with

LL, | 15 T * L,
Ky = —= ch
6 \1-a L2+12

Proof. Subtracting (2.208)—(2.210) from (2.204), (2.206)—(2.207), respectively, the sys-
tem of error equations is obtained as

7azg ] +T zg(a5262nk

2
i = éxeg +8° eU + (rn),], (i,j) ew, 1<n<N,

eij = O: (1:]) € w,
e;=0, (i,j) €dw, 0<n<N.

Noticing (2.205), Theorem 2.10.2 immediately implies

212
nn2 LiL 5
"I < RI2+12) (- a)zat" max ()" I

LZLZ a
< 1Ly 5T Lle[Cll( min{1.2a) h2+h2)] l1<n<AN.
12012 +13) (1-a)2¢

The theorem follows by taking the square root on both hand sides of the above in-
equality. The proof ends. O
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2.11 The ADI method based on L1 approximation for 2D problem

The aim of this section is to provide an ADI method based on L1 approximation for the
2D time-fractional subdiffusion problem

DIUCG Y, 1) = U (6, ¥, £) + 1, (6, Y, 8) + F (%, 1),

x,y)€Q, te(0,T], (2.220)
u(x,y,0) = pxy), xy)eQ, (2.221)
u(x,y,t) = u(x,y,t), (xy)€oQ, tel0,T], (2.222)

where Q = (0,L;) x (0,L,), « € (0,1), the functions f, ¢, u are all given and

HOGY, 0)l(yyean = POGY).
Take the same mesh partition and notations as those in Section 2.10. Suppose u ¢
C**2(Q x [0, T]). In addition, denote s = T*T(2 - ).

2.11.1 Derivation of the difference scheme

Considering equation (2.220) at the point (x;, yj, t,), one has
SDFUCG Vi t) = U O, Vi b) + Uy (G Vi t) + i, (1)) €@, 1< n<N.

Using the L1 formula (1.160) to handle the Caputo derivative and the central difference
approximation to discretize the spatial derivative, by Theorem 1.6.1 and Lemma 2.1.3,
we get

| o @ @ yyrk @ 110
T2-a) ay Uy - kz(an—k—l -, ) U5 - 4,54 Uy
=1
= 8U5 + 5,Uf +fff + (), (b)) €w, 1<n<N, (2.223)

where there exists a positive constant c;, such that
[r)f| < cp(® +h +1B5),  (i,j) €w, 1<n<N.

Adding a small perturbation term

20202 T @ S @ 249 VUK _ g@ O
6X6Y[r(2 )(aO UU z(an—k 17 @, k)U —lUii >

into both hand sides of (2.223) gives

—Qa

T n-1 ]
P (Z+ 526)2(6)2,)<ag“) Ui;' - Z(a;”‘_)k - )U - a U0
k=1

=8US + B,UF + £ + (r)f, (b)) €w, 1<n<N, (2.224)

xij
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where

n-1
2 2 o2 k 0
(r)f = (r)jj +5 [1’(2 )6X6y< ga) U - Z(a(mk - floi)k)Uii - aﬁf“_)lUij )}

k=1

and there exists a positive constant c3 such that
()| < cp(T™ W 4 hY + B),  (ij) ew, 1<n<N. (2.225)
Noticing the initial-boundary value conditions (2.221)-(2.222), one has

Uf = p(xy), (i) € w, (2.226)
U = u(,yjty), (b)) € 0w, 0<n<N. .227)

Omitting the small term (rB)Z. in (2.224) and replacing the exact solution Ul.'}? with
its numerical one u};, we can obtain the following difference scheme for solving
(2.220)-(2.222):

I]’

-

T
(T +5%636)) (ag')u" - Z(a(“) a® )u (“)1143)

r2-a) n-k-1"— -
] 6§uf,' +6ul+ff, (L) ew, 1<n<N, (2.228)
i = ey, (L)) € w, (2.229)
| u;}’- = u(x, Y ty), (i) € 0w, 0 <m<N. (2.230)

Rewrite equation (2.228) as

(Z+ 326262)1.1 - 55)2(113 - 562 5

1
- e T -+ g )+ .

namely,
(T -s62)(T - 55}2,)u3-
- 28 T el af o) o
- (i,j)ew,1<n<N.
Let

=(T- 562) Uy

then the difference scheme (2.228)-(2.230) can be reformulated as the following ADI
form:
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On each time level t = ¢, (1 < n < N), firstly, for any fixed j from 1to M, — 1, solve a
series of linear systems in the unknown {ui*l- | 0 i< M;}in x direction

@58 - (1 + szaia;)(f(a;@k_l i+ a;wlug> LS
k=1
1<isM; -1,
Uy = (- sé’i)ug]-, Uy j = (T~ 56}2,)11;',[1,]-
to obtain the value of
{uj l1<i<M; -1}
on an intermediate time level.

Then, for any fixed i from 1 to M; — 1, carry out some calculations about the un-
known {uj; | 0 < j < My} iny direction

{ (T -6 =uj, 1<j<M,-1,
Ujp = K(Xp, Yoo tn)s  Uilyg, = M(Xis Vg, )
to get the desired value of

{wj 11<j <My -1}

2.11.2 Solvability of the difference scheme

Theorem 2.11.1. The difference scheme (2.228)—(2.230) is uniquely solvable.
Proof. Denote
u" = {uj | (i,)) € @}

The value of u° is uniquely determined by (2.229)-(2.230).

Suppose the values of u°,u!,...,u""! have been uniquely determined, then the
system in u" can be obtained from (2.228) and (2.230). To show its unique solvability,
it is sufficient to prove that the corresponding homogeneous one

{ %(Z+ 525)2(55)113- = Sf(ug- + 65115’-, (i,j) € w, (2.231)
wi=0, (i) €dw (2.232)

has only the trivial solution.
Taking the inner product on both hand sides of (2.231) with ™ and noticing (2.232),
it follows from (2.200)—(2.202) that

%(u",u") +5s(6,6,u",8,8,u") = —(8,u",8,u") - (8,u",8,u")

= -[va"l* <o,
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which implies ||[u"| = 0. It follows u™ = 0.
By the principle of induction, the difference scheme (2.228)-(2.230) is uniquely
solvable. The proof ends. O

2.11.3 Stability of the difference scheme

For any mesh functions u,v € f/h, define
w,v)s = W,v) + sz(5x5yu, 8,6,v).

Theorem 2.11.2. Suppose {v | (i,j) € @,0 < n < N} is the solution of difference scheme

1 25262 k 0
ST +576,6)) a§vy Z(ankl—a Vs - a® vy

i = 5§v; +&Vi+ff, (Lj) ew, 1<n<N, (2.233)
vi = 00y, (@) € w, (2.234)
vj=0, (ij)€dw, 0<n<N. (2.235)

Then it holds

n.n 0.0 L%L% aem)2
(V vV )S < (V sV )S + mr(l - Cl’) 1r<nrr?<xn{tm“f " }, 1<n<N, (2236)
1 2 S
where
M,-1M,-1

U EDNGOR

i=1 j=1

Proof. Making the inner product on both hand sides of (2.233) with v", respectively, it
produces

1 25252)
S (T +5°6,6, ( Z(ank1 "i) ;“)lv )v")
= (80" + By V") + (f”,v"), 1<n<N. (2.237)
Because of (2.200)-(2.202), we have by noticing (2.235) that

(Z + 525,2(5}2,)vk,v") = (V") +5%(8,8,/%,6,8,v")
Vv, Osks<m (2.238)
(82v" V") + (SJZ,V",V") = —(8v", 8V") - (6", 6,V") = —||th"||2. (2.239)
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By the Cauchy—-Schwarz inequality and Lemma 2.10.1, it follows
www\&ﬂTWM+lllww
L (— + L—%)

<V’ + ——— e |[f I, 1<n<N. (2.240)
2

1

Inserting (2.238)—(2.240) into (2.237) and rearranging the result, again by the Cauchy—
Schwarz inequality yield

n-1
k
agx)(v V'), < Z(a;’f)kfl —afﬁ)k)(v V) + (“) O (O v ")s
k=1
L’12
24(L2 +12) sl “
1% @ @ [k K
a a n n
< E Z( n-k-1 an—k)[(v vV )s+(v vV )s]
k=1
1 (a) 0.0 n _n Lsz
RO 0 ¢ sl
which simplifies to give
@ 4@ @\ ) b g®
a a a a
ay " v) kZ(an_k_l nk)( V) +a, (v v)
=1
12
1<n<N.
12(L2+L2) ”f ”
Noticing (2.51), we have

< T D)0, a7,

112

mf L=l ] 1<n<AN. (2.241)

Then the claimed result (2.236) can be achieved by the induction method from (2.241).
The proof ends. O
2.11.4 Convergence of the difference scheme

We now consider the convergence of the difference scheme (2.228)-(2.230). At this
point, the following theorem is true.
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Theorem 2.11.3. Suppose {Ui;-’ | (i,j) € @,0 < n < N}and {u{]'- | (i,j) € @,0 < n < N}
are solutions of the problem (2.220)-(2.222) and the difference scheme (2.228)—(2.230),
respectively. Let

egz U{}—ug, (i,j) e, 0<n<N.
Then it holds

le"]| < r;(r™™2*% % L p2 L K2), 1<n<N,

K3 = =2 | 2T (1 - ) 5.
3% ¢ 212 ( ) C13

Proof. The substraction of (2.228)—(2.230) from (2.224), (2.226)—(2.227), respectively,
produces the system of error equations as follows:

with

[ 1 2022 k 0
E(I+S 8,6, (“) " Z(an e~ a(“) \€ij

1 5)2(e;’ + 82 Leli+ (r3)j,  (Lj) €w, 1<n<N,
eij =0, (i,j) € w,
[ €j=0, (i,j)€dw, 0O<n<N.

Noticing (2.225), Theorem 2.11.2 immediately implies

le"” < (e"
LiL;
12(L3 + L3)
272
L1L2
12(L3 + L3)

2
I(1 - @ max {t,|(r)"|'}
. 2
[(1 - T LLy[cp (@™ + 1+ B)], 1<n<N.

The desired result will be obvious from the above estimate. The proof is completed.
O

2.12 Supplementary remarks and discussions

1. The time-fractional subdiffusion equation mainly consists of two types, one is the
Caputo type and the other is the R-L type, which are expressed in the form of

SDRUCX, b) = Uy (6, 6) + F(, 8),
and

U6, 6) = oD} U (6, £) + (X, 1),



168 —— 2 Difference methods for the time-fractional subdiffusion equations

respectively. Under certain conditions, it is possible to convert between them. In this
chapter, only for the Caputo type, the finite difference method was considered. In a
similar way, the finite difference method for the R-L type can be discussed. On this
topic, readers can refer to literatures, such as by Yuste et al.[108, 1091, Langlands and
Henry"?; Liu et al.!®® 2%; cuil"® "W and Zhang et al.'"> 1™,

2. The Caputo derivative can be discretized using either the G-L approxima-
tion or the interpolation approximation. Sections 2.1, 2.2 and 2.10 reported the first
kind of methods based on the G-L formula and the first-order convergent difference
schemes in time have been obtained. Indeed, there are also related superconvergent
results based on the G-L formula. From Theorem 1.4.1, we know that if the function
f e €7 R),

Ay f () = _oDEf(6) + <p - g),mnfﬂf(r)h +0(h?).

a : a
Letp = 5. b=ty , with tn_% =(n- E)h’ then we have

_a
2

Apof (ty) = A of (ty_¢) = o Dif(t,«) + O(R?),

which means that the second-order accuracy can be achieved using Aj ,f(t,) to ap-
proximate _, Df (¢ -8 ). By the linear interpolation, further it holds that

Aiof () = (15 ) D (6 + 5 o DEF 0 + O(HY,

which says that the second-order accuracy can be achieved using Azof (t,) to approxi-
mate a linear combination of _  Dff(t,) and _ Dff(t,_;). Dimitrov!"® and Gao et al.?®!
have reported the related research results on the problem of Caputo type and R-L
type, respectively. In addition, using the shifted and weighted G-L formula (1.32) to
approximate the R-L fractional derivative, Wang and Vong[%] developed the finite dif-
ference method for two-term time-fractional subdiffusion equations of R-L type, where
the second-order accuracy in time can be achieved. Ji et al.l0! applied the shifted
and weighted G-L formula (1.37) in Theorem 1.4.4 to approximate the time-fractional
derivative and presented a third-order convergent method in time.

3. For the Caputo time-fractional subdiffusion equations, Sections 2.3, 2.5, 2.8
and 2.11 reported the finite difference methods based on the L1 formula to approx-
imate Caputo fractional derivatives. Indeed, there are also some superconvergent
works based on the interpolation approximation. Alikhanov!! proposed a supercon-
vergent interpolation approximation, also called the L2-1, approximation, for the
Caputo fractional derivative based on the work in [31] and the second-order numer-
ical method for solving the time-fractional subdiffusion equation was investigated
using this approximation. The authors in [19] developed this method and applied it to
solve the multiterm fractional subdiffusion equation and obtained a temporal second
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order difference scheme. Du et al. investigated the L2-1, method for the variable-order
fractional subdiffusion equation in [16].

4. This chapter mainly discussed the finite difference method for solving the time-
fractional subdiffusion equations with the Dirichlet boundary value conditions. For
the problem with the Neumann boundary value condition, the readers can refer to the
works by Langlands and Henry!“?, Zhao and Sun™and Ren et al.!”). In addition, Gao
etal.?>3% studied the 1D time-fractional subdiffusion equations on space unbounded
domains. The results on the 2D problem can be found in [33].

5. The operator A defined in Section 2.1 is called an average operator. It is often
used to construct the compact difference scheme, so that it is also called a compact
operator. For the time-fractional subdiffusion equation, Gao and Suni?! proposed a
higher-order difference scheme by using the L1 approximation for the time-fractional
derivative of order a(0 < a < 1) and the compact approximation for the spatial deriva-
tive, which achieved the convergence of order 2 — a in time and four in space in the
maximum norm.

7. The second-order method in space was discussed for 1D multiterm time-frac-
tional subdiffusion equations in Section 2.8 and Section 2.9. Regarding the fourth-
order methods in space for the same problem and the corresponding 2D problem, read-
ers can refer to [67].

8. Based on the SOE approximation for the kernel function in the fractional deriva-
tive, this chapter illustrated two kinds of fast methods to solve the time-fractional sub-
diffusion equations[[‘l’ 101, By taking into account of the special structure of resultant
difference schemes for the time-fractional diffusion equations, Lu et al.l>?! developed
a different fast method.

9. Lv and Xu® considered a numerical method for the time-fractional subdiffu-
sion equation based on the L1-2 method®!. The (3—a)-order convergence of the scheme
has been proved. Zhu and Xu further studied the fast L1-2 difference method for the
fractional subdiffusion equations®.

10. Sections 2.10 and 2.11 introduced two kinds of ADI difference methods for solv-
ing 2D time-fractional subdiffusion equations based on the G-L formula and L1 ap-
proximation, respectively. The discrete energy method was used to analyze the unique
solvability, stability and convergence of the resultant schemes in the L? norm. Using
the similar techniques, interested readers can try to give the estimates in the H' norm,
or refer to the work in [111]. Besides, Cui™®? reported the compact ADI difference
methods for 2D problems and the Fourier method was used for the theoretical analy-
sis. The compact ADI difference method for 2D problem in the R-L type was also stud-
ied in [112] and the discrete energy method was applied for the theoretical analysis.
Moreover, another different ADI difference scheme was obtained in [111] by adding a
different perturbation term into equation (2.223).

11. Stynes et al.” studied the numerical solution to the fractional subdiffusion
equation with the initial singularity on the graded mesh. Shen et al." further pro-
vided a fast difference scheme for this kind of fractional subdiffusion equations.
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Exercises 2

21

2.2

2.3

24

25

Using the discrete energy method in Section 2.2, show that the difference scheme
in Section 2.1 is uniquely solvable, convergent and unconditionally stable with
respect to the initial value and the source function on the right-hand side.

Using the discrete energy method in Section 2.5, show that the difference scheme
in Section 2.3 is uniquely solvable, convergent and unconditionally stable with
respect to the initial value and the source function on the right-hand side.

For the problem (2.154)—(2.156), when ¢(x) = O, construct the difference scheme

n n
—-a (a), n—k —a. (a7), n—k 2. n n
T ng U +T Inglui =6u; +f;,
k=0 k=0

1<i<M-1,1<n<N,

w=0 1<i<M-1,

up = u(ty), Uy =v(t,), 0<n<N.

Define the function i1(x, t) like that in Section 2.1 and suppose ii(x,-) € € 4(R).
For this difference scheme, try to

(1) show the unique solvability;

(2) show the stability with respect to the initial value and function f;

(3) show the convergence.

Consider the following problem of fourth-order fractional subdiffusion equation:

EDMU E) + Uy (6 1) = f(X, 1), X € (O,L), t € (0,T], (2.242)
u(x,0) = p(x), x¢€(0,L), (2.243)
u(0,t) = po(6),  u(L,t) =vy(t), tel0,T), (2.244)
U (0,8) = Uy (),  u (L, t) =vy(t), tel0,T], (2.245)

where a € (0, 1), the functions f, ¢, Kg, Vo, Uy, v; are all given and ¢(0) = uy(0),
O(L) =vp(0), Py (0) = 11(0), Py (L) = v4(0).
Let v(x,t) = uy(x,t), then the fourth-order equation (2.242) can be rewritten
as a system of two second-order equations. Construct a difference scheme for
(2.242)—(2.245) by using L2-1, approximation or fast L2-1, approximation.
For this difference scheme, try to
(1) show the unique solvability;
(2) show the stability with respect to the initial value and function f;
(3) show the convergence.
For the problem (2.197)-(2.199), construct the difference scheme
n
TN g = Sl + U +ff, (hj) €ew, 1<n<N,
k=0
ug =0, (i,j) ew,

ug- = u(x;,yj ty), (i) € 0w, 0 <n<N.
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Define the function @(x,y,t) like that in Section 2.10 and suppose i(x,y,) €
¢"%(R). For this difference scheme, try to

(1) show the unique solvability;

(2) show the stability with respect to the initial value and function f;

(3) show the convergence.

For the problem (2.220)—-(2.222), construct the difference scheme:

T (a) n k (@)
T2-a) - z(an k-1~ Wy —ay,” 1u]

2 2
4 6xulr]’+6u”+u, (i,j) ew, 1<n<N,
uj = 0.y, (i) € w,

| ug- = u(x;,yj,ty),  (i,j) €dw, O<n<N.

For this difference scheme, try to

(1) show the unique solvability;

(2) show the stability with respect to the initial value and function f;
(3) show the convergence.






3 Difference methods for the time-fractional wave
equations

This chapter will develop the difference methods for solving the time-fractional
wave equations. The discussion on 1D problem is given in the former 8 sections.
The time-fractional derivative is discretized by L1 approximation or L2-1, approxi-
mation. The spatial derivative is discretized by the second-order central difference
quotient approximation or the compact approximation. The fast L1 approximation
and fast L21; approximation are concerned. The difference methods for the multi-
term time-fractional wave equation and the time-fractional mixed diffusion and wave
equation are also investigated. The ADI and compact ADI methods for 2D problem are
established. The chapter consists of 11 sections.

3.1 The second-order method in space based on L1 approximation
for 1D problem

Consider the following problem of the time-fractional wave equations:

SDVu(x t) = ug (6, t) + f(6,£), x € (0,L), t € (0,T], (3.1)
ux,0) = px), u(x,0)=1x), xe(0,L), (3.2
u(0,t) = u(t), u(L,t)=v(t), tel0,T], (3.3)

where y € (1,2), the functions f, ¢, P, y, v are given and ¢(0) = u(0), ¢(L) = v(0),
P(0) = ' (0), (L) = v'(0). Suppose u € C*>([0,L] x [0, T]).

Take the same mesh partition and notations as those in Section 2.1. For the mesh
functionv = {v;‘ |0 <i<M,O0 <k <N} defined on Q; x Q,, denote

1k k1 k=3 1.k k1
v 2=§(Vi+Vi ) b 2:;("1'—"1' )-

Define the same mesh function spaces U4, and U, as those in Section 2.1.
Denote

Uln = u(Xi, tn), f;-n :f(Xi’ tn), l/)l' = l/)(Xi), O < l < M, O sns< N

3.1.1 Derivation of the difference scheme
Considering equation (3.1) at the point (x;, t,), we have

SDVux;, ty) = U (6 ) +f, 1<i<M-1,0<n<N.

https://doi.org/10.1515/9783110616064-003
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Taking an average on two adjacent time levels gives

1
5 (6D, t) + G DY uCx; ty )]

1 1 .
= 5 [t 06 ) + iy (3, )] +f 7, 1<i<M-1,1<n<N,

where fi"% =3+

For the approximation of the time-fractional derivative and spatial derivative in
the equality above, the L1 formula (1.69) and the second-order central difference quo-
tient are applied, respectively, and it follows from Theorem 1.6.2 and Lemma 2.1.3 that

1-y 1
T ) » » k=3 _ 3w
bYs.u’ Z(b - b8 U 2 - b
I‘(B y) ] n- n 1 n
2. n-1  n-1 n-1 .
=68U; *+f *+(r); . 1<i<M-1,1<n<N, (3.4)

and there is a positive constant c¢; such that
_1
lr); Y| < (@Y +h), 1<isM-1,1<n<N, (3.5)

where {bg")} is defined in (1.64).
Noticing the initial-boundary value conditions (3.2)—(3.3), we have
{ U =o(x), 1<i<M-1, (3.6)
Uy = u(t,), Uy=v(t), 0<n<N. 3.7

_1
Omitting the small term (rl)? 2 in (3.4) and replacing the exact solution U with
its numerical one u? arrives at a difference scheme for solving (3.1)-(3.3) as follows:

.
F(; yy)[ (Y)6u Z(bn k1" Seu :( : b(yll/’l

) :6§?2+f , 1<isM-11<n<N, (38)
= pk), 1<isM-1, (3.9

L ug = u(ty), uy =v(t,), 0<n<N. (3.10)

Denote

n=1"T@-y).

3.1.2 Solvability of the difference scheme

Theorem 3.1.1. The difference scheme (3.8)-(3.10) is uniquely solvable.
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Proof. Let

u' = (ug,uf,...,uy).

The value of u° is determined by (3.9)-(3.10). Now assume that the values of ol
u"! have been uniquely determined, then the linear system in 4" can be obtained from
(3.8) and (3.10). To show its unique solvability, it suffices to verify that the correspond-
ing homogeneous one

1
{ Ll 26§ W, 1<i<M-1, (3.11)
Uy =upy =0 (.12

has only the trivial solution.
Taking the inner product on both hand sides of (3.11) with u" and noticing (3.12),
we have

né(u'tu") S = S5 <o,

thus |[u"|| = 0. It follows u™ = 0 from (3.12).
By the principle of induction, the theorem is true. The proof ends. O

3.1.3 Stability of the difference scheme

The stability of the difference scheme (3.8)-(3.10) will be analyzed in this subsection.
The following theorem is true.

Theorem 3.1.2. Suppose {v}' | 0 < i < M,0 < n < N} is the solution of the difference
scheme

P R W 5./~ p»
n by 6ev; _kz(bnfkfl_bn—k)(sfvi L
=1

_1 _1
1 =6 7+f % 1<i<M-1,1<n<N, €3E)
v?=<p(xl-), 1<i<M-1, (3.14)
vo=0, vy =0, 0<n<N. (3.15)

Then it holds

167" < 16.7°) + I

F(3 Y)

+T-pe Z|Lf"‘% I, 1<n<N, (3.16)
k=1
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where

k_,

2 -hzub,, Ll —hZ(f

Proof. Making the inner product on both hand sides of (3.13) with nétvn’% produces

1 = 1 1
bY (6" 7,60"7) = Y (Y, - b )(6:" 7, 6077)
k=1
Y, (9, 6,V"77) + (8" 2,8,
+b, (P, vV2) +( tV )
(260 ), 1<n<N. (3.17)

Noticing (3.15), the application of the summation by parts arrives at

(8", 80"2) = ~(6" %, 8,67 )
1 2 -1)2
=5 (187" =6 ). G18)

Substituting (3.18) into (3.17), it follows from the Cauchy-Schwarz inequality that

_1.2 2 _12
b6+ SL (6" = 180 )

IICE NS P T

N)IP—l

- _1.2 _1.2
Z (b =B8] + 602
1 _1
+ SOV + |80 2 )+ (™2, 6,"2),

which can be simplified to

—112
o D] ||5V|l [8"7)

n-1 _1 )
< Z (b, - b6 2 | + B Il

nol nol
+2n(f"2,6p"72), 1<n<N.
The result can further be reformulated as

2 _1
671+ i WA LT

k=1
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_1.2
<o+ = an 8|+ b<y>1||¢||
+2r(f" _5,5,v _5), 1<n<N.

Let
2 2 T 12
ol B LA I L T PR
k=1
then
F'<F b(yluzpu £ 2r(f"2,602), 1<n<N.

The recursive process will lead to

F"<F Zb‘y’nzpn +2r Z(f 3,60/°7)

k 0
n (2]
< n S e S e ),
’7 k=0 P
1<n<N
Thus,
|80 < [180°I + Z b1l +TZ o IF2 ), 1<n<N.

k= 1
By the definition of bf{y) and Lemma 1.6.1, it is easy to know that
@-yk+D"Y <bY < 2-pk'?,
from which, we can get
P s -pm-k+DV 2 @-pn'”?, 1<k<n
Therefore,

S @2-y)nr =TQR-y)nt) " =TQ2-yt;, ",

from which it follows

n
N k=12 k-1
) el <re-ng, TZILf |
k=1 bn—k

— 177

(3.19)

(3.20)

(3.21)
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In addition, it follows from the definition of {bl((y)} that

n-1 n-1

T ” _ T 2-y _ 32y
N A — k+1D)"" -k
n k;) kT3 -y) k;)[ ]
2-y 2-y
LA S (3.22)

IG-y" TTG-y)

The substitution of (3.21) and (3.22) into (3.19) will get the assertion (3.16). The proof
ends. O

3.1.4 Convergence of the difference scheme

Theorem 3.1.3. Suppose{U]' |0 <i<M,0<n<N}and{u! |0<i<M,0<n<N}are
solutions of the problem (3.1)—(3.3) and the difference scheme (3.8)-(3.10), respectively.
Let

n n n .
e =U -y, 0<i<M, O<n<N,

then it holds

I, < SE\DT@ ) 1), 1<n<N,

Proof. Subtracting (3.8)-(3.10) from (3.4), (3.6)-(3.7), respectively, produces the sys-
tem of error equations as follows:

[ 1 P 2 S B s _p0 Lo
nl%o e * =Y B -bl)8e * -~ by
k=1
_1 _1
1 =6 *+(r); *, 1<i<M-11<n<N, (3.23)
e)=0, 1<isM-1, (3.24)
( €5=0, e};=0, 0<n<N. (3.25)

Noticing (3.5), an immediate consequence of Theorem 3.1.2 into (3.23)—(3.25) ar-
rives at

LG 1
16.€"1" < &7'r@ -y Y o) 2
k=1

<TTQ-yLAT Y + K, 1<n<N.

Taking the square root on both hand sides of the inequality above and noticing
Lemma 2.1.1, we have

le"l., < glltsxe"ll < %\/Tyr(z - +R), 1<n<N.

The proof ends. O
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3.2 The fast difference method based on L1 approximation for 1D
problem

In this section, we will propose a fast difference scheme for (3.1)-(3.3) based on the
fast L1 approximation.

3.2.1 Derivation of the difference scheme

Denote
vix,t) =ui(x,t), a=y-1

Thus, the problem (3.1)-(3.3) is equivalent to the following one:

ngv(x, t) =u,(x,t)+f(x.t), xe(0,L),te(0,T], (3.26)
u(x, t) =v(x,t), xe[0,L], te(0,T] (3.27)
u(x,0) = px), v(x,0)=1px), xe(0,L), (3.28)
u(0,t) = u(t), u(L,t)=v(t), tel[0,T]. (3.29)

Denote

U'=ulx.t,), Vi'=vixt), fi'=fxut), 0<i<M,0<n<N,
(pi = (p(Xi), lzbi = ll)(Xi), 0 < 1 S M

Considering equation (3.26) at the point (x;, t,), we have
EDMV(Xp ty) = Uy (X t) + 7, 1<i<M-1,0<n<N.

Applying the fast L1 approximation and second-order central difference quotient
to approximate Caputo and spatial derivatives in the equality above respectively, it
follows from Theorem 1.7.1 that

Nex
) g wFl+aP v - v
1 =8U"+f'+ (), 1<i<M-1,1<n<N, (3.30)
Fj;=0, Fi=e F +B(V - v,
1<I<Ngyp, 1<i<M-1,2<n<N, (3.31)

and there exists a positive constant ¢, such that

|| < (T + R +€), 1<i<M-1,1<n<N. (3:32)
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Substituting (3.31) into (3.30), we obtain

-1
1 S@in Cra@  a@ypnek @ 10
F(l _ a) aO Vi - kz::l(ak_l - ak )Vl - anflvi

UM+ +(rp)f, 1<isM-1,1<n<N.

Considering equation (3.27) at the point (x;, t,_1), we have
2

1 _1
§U 2=V 2+, 0<i<M 1<ng<N

1

and there exists a positive constant c; such that

Noticing the initial-boundary value conditions (3.28)—(3.29), we have

|r3)| < cs7>, 0<i<M,1<n<N.

{UiO:‘Pia VP =1, O<i<M,
Uy = ult,), Uy=v(ty), 1<n<N

(3.33)

(3.34)

(3.35)

(3.36)
(3.37)

Omitting the small terms (r,)! and (r3)} in (3.30) and (3.34), and replacing the exact
solution {U}', V{'} with its numerical one {uf,v{'} arrive at the difference scheme for
solving (3.26)—(3.29) as follows:

N,

1 o n o a@pon _n-1
—_— EwF~+a Vi —V;
ru—m[u tFij g (i =it )

=6l +f, 1<i<M-1, 1<n<N,

1 _ n _ _—STpn-1 n-1 n-2

F;=0, F;=eF; +Bvy -v; "),
1<ISNgp, 1<i<M-1,2<n<N,

el ol
6tui ZZV. 2, 0$1$M,

1 <n<N,

1
0 0 .
u =@, Vv =y, 0<isM,

uy = u(ty), uy =v(t,), l<n<N.

Substituting (3.39) into (3.38) yields

k 1

1<i<M-1,1<n<N.

3.2.2 Solvability of the difference scheme

Theorem 3.2.1. The difference scheme (3.38)—(3.42) is uniquely solvable.

~(a), n ~(q) ~(@y, n-k ~@ . 0| _ g2 .n n
ay Vi — z(akq —al Wi —av | =6+ f

(3.38)

(3.39)

(3.40)
(3.41)
(3.42)

(3.43)
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Proof. Let

u' = (ug,uy,..uy), V= (ve, vl V)

The value of {u°,v°} is determined by (3.41). Now assume that the value of O vO ut v,

.., u™ 1 v"1} has been uniquely determined. From (3.40), we have

n n-; n-1 n-; n-1
vi =2v; P -vp =26 P -v; o, O

1 1

N

i<M,1<n<N. (3.44)

Substituting (3.44) into (3.38) and noticing (3.42) give a linear system in u" as follows:

exp 1
~(a) n-; n-1
I‘(l D Z W Fj; + ag? (26,u; 2 - 2v{™)
=Sl +f, 1<isM-1,
ug = plt,), Uy =vity).
To show its unique solvability, it suffices to verify that the corresponding homoge-
neous one

- (a)

2

O n 2. n .

. =0u;, 1<is<M-1, 3.45
ra-a) 'r’ i (3.45)
uy=0, uy=0 (3.46)

has only the trivial solution.
Taking the inner product on both hand sides of (3.45) with u" and noticing (3.46),
we have

~(a)
a4y

ra- a) T

2P + ot =o,
thus [|u"|| = 0. It follows u" = 0.
When u" is determined, v"* will be obtained from (3.44).
By the principle of induction, the theorem is true. The proof ends. O

3.2.3 Stability of the difference scheme

Theorem 3.2.2. Suppose {u}',vj' | 0 < i< M,0 < n < N} is the solution of the difference
scheme
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N,

exp

1 n ~(@) . n n-1 2. n n
Z wiFjs+ag’ (o -vih | = 6l + pf,
=1

I'a-a)

1<i<M-1, 1<n<N,
1 n —ST pn—1 n-1 n-2
Fl,l = O, Fl,l =e ! Fl,l +Bl(vl - Vl ),
11 Ngyp 1<is<M-1, 2<n<N,

1 1
n—-s n—-s n
2 _ 2
Su; 2 =v, P +gq;,

0<is<M, 1<n<N,
0 0 .
ui=(P,', Vi:lpi) 0<1<M:
<

uy=0, uy=0 1<n<N.
Then it holds
2 2 el t 2
18| < |60 + [Fé_a) - (lia)e]uv"u

~(a) 2

_1
max{ ') max|p' x|} + 2t max|a] |

+20(1 - )ty

where

w2 M-1 2 ~
”W " =h (Wl) » W=V,p.q,
1

1=
and

11
p; =§(p?+p§"1), 1<i<M-1,1<n<N.

Proof. Denote

~(a)
1, 28,

1 .
=p: + o 1<isM-1,
G =Pit gt
n_ n-} 1 [wn 5@ @y ok
Q =p; *+ T -a) ay 4; _kz(ak—l_ak )a; |
=1

1<i<M-1,2<n<N.

Substituting (3.48) into (3.47), we have

n-1
~(a) n ~ (@) ~(@)y,n-k ~(a) .0 2. n n
aghvi = Y (@2 —a Wi -a vy | = s +pf
I -a) &

1<i<sM-1,1<n<N,

(3.47)

(3.48)

(3.49)
(3.50)
(3.51)
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which is equivalent to

1
ml_ )ao v} -20) =6 +p;, 1<i<M-1, (3.52)
1 4@y, K2 _ q@ 0
ra- a)[ - Z(a — a7, : n-1Yi
-1 n-1
=5§u?2+p,- 2 1<i<M-1,2<n<N. (3.53)

Substituting (3.49) into (3.52)—(3.53) yields

1
ra- a)

1 @s 1t O @ a@ya kel 4@ 0
. ! @ - L
) ay oy —kz;(ak_l—ak )6y a,”,v;

_1
=8u *+Q), 1<i<M-12<n<N. (3.55)

1
aPsu -2v) =S +Q}, 1<i<M-1, (3.54)

(I) Making the inner product on both hand sides of (3.54) with 6tu% produces

2 a®@sul | - (82, 6u1)

Il-a) ©
B ﬁ&g‘)(voﬁtu%) +(Q6u%)
< i (11 + Jlear ) 1) load)
Noticing (3.51), we have

1 1 1 2 2 T 1.2
(st 6ur) = (Sad', 6,8,u%) = (6| - [6.4°[") + S6. 87",

hence it follows that

2 a5t + - s 0
T _a% |8’ 3 ||5 [ Jo’]”)
L@ (2000 + 2o ) < 1o
s ri-a %o Iv " 2”5fu ")+ Q] - 62

Multiplying both hand sides of the inequality above by 27 arrives at

T A (@) 1,2 12
F(l a)aO ||6tu2|| +||5xu ||

P8 + 5 - g s IOT 4 261Q') - o (3:56)

(IT) Making the inner product on both hand sides of (3.55) with 26tu"*% produces

2 A(a) n—f _ nl
et DU (LU e LU
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2
T T1-a)

+2(Q", 5tu"")

[n-1
¥ (@@, - a®) (6, s 2) + @, (00, 6 2)
L k=1

1 A(a) n-k— n——
< T(1-a) |/ Z(a )([|8u " + [ 8pu "

a1 + 62 ) | +21Q" -6 2] 2<n<N,

that is,

1
I(1-a) 2%

< EmW—WWuﬁHW+ A
T1-a) &kt Tk A (- a)

+2|Q7 - |6 7|, 2<n<N.

o]+ - ||5 |~ 6 [)

The above inequality can be rewritten as

T 'S @ye ko2 2
N k;)ak ||6tu ? " + ”(qu N
< T S?ww6"k P+ ot
T1-a) & et
T A(a) n——
* g T s 20 e
_ T (S ~ (@) n-1-k-12 n-12
B F(1—a)kzoak loeu™ 72" + 8
T N _1
* rem el - 2| s i, 2<n<.

Replacing the superscript n with m and summing up for m from 2 to n on both hand
sides of the above inequality lead to

T - (@) n—k-12 n|2
i & loar T o

T N 1,2 2
“ g 0wt + 0

,.(a %
" a)z W +2TZ||Q I-I8™ 3], 2<n<N.  (357)

Combining (3.56) with (3.57) produces

T (= (a) n—k-
LT
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4w S w0 Y- m-1
b.u —a,’+ »y a v +2t Q" - ||6u" 2
< 6| + F(l D|3% * 2 ‘|| I mzzlll I-l6u™ 2|
2 T —4A i ] 02 o n-k n-k-1
= 6’| + zag)+ Y an (VO + 20 Y Q| - o2
x T1-a)|3°° mzzl m g t
o2 T —ﬂ~(a) T @ |pop T 1~(a n-k-1
< lléxu ” + r(l _ a) I 3a0 + = Ay ] "V " + F(l _ a,) kz u&t ”

n-1 1 9
+TA-a) ) — " “I" 1<n<N,
k=0 a;
that is,
2 2 T 4.0 <
Il <Pl i | 4067+ 3 a9 |

|2, 1<n<N.

g _
+T(1-a) Y =l k
k=0 4}

It follows from (1.126) that

T -4"(0() n-1 - (@)
—ao + a
F(l—a)_3 = m
T 4 T« nlya @ >
3 + a,’ +¢€
r(l—a)_3 1-a mz_1<1_a m
T 4 T_a T—a .
“Ta-wl3 1oatioa® DO 1)e]
étl—lX ¢

T2-a) T-a°

and it follows from Lemma 1.7.2 that
n-1
1 _
Ti-a) Y =]
k=0 Ay
o2 o 1
<711 - @) max Q'] Z @

<1 - Y 26

< 70(1 - ) max | Q| kZO i

<201 - )t max | Q|
1<k<n

In addition, it follows from the definition of Q" that
~ (lX)

1
e e

(3.58)

(3.59)

(3.60)

(3.61)
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_1 ~
lQ" <™= + ag’q"| + Z(a a)a"|
F(l a)
_1 1
<"+ pm g sl + @ - ) max 4]
I 2 axl, 2<nen (362
I'l-a) 1<k< D )

The substitution of (3.59)-(3.62) into (3.58) yields
4 1-a

_tn
I < I8 + | 5™ + T

il

x|q ||] 1<n<A.

+20(1 - @)t [max{

2a%"
r'a-a 1<k<n

The proof ends. O

3.2.4 Convergence of the difference scheme

Theorem 3.2.3. Suppose {U]', V' |0 <i<M,0<n<N}and {u,v]' | 0 <i< M,0 <
n < N} are solutions of the problem (3.26)—(3.29) and the difference scheme (3.38)—(3.42),
respectively. Let

e =U-ui, z'=V'-v], 0<i<M, 0<n<N,

then it holds

|6,€"|| < V2LET(2 - y) <02 + r(%_y)@)(lj_y +h +€), 1<n<N.

Proof. Subtracting (3.43), (3.40)—(3.42) from (3.33), (3.34), (3.36)—(3.37), respectively,
produces the system of error equations as follows:

1 [ n-1 e o
T(1-a) [a(a)z Y@ - a®)z ™ - a7
k=1
:5)%9?*'("2)?, 1<i<M-1,1<n<N,

n-1 n-1 .
b, 2=z, 2+(r;)f, O0<i<M, 1<n<N,
=0, z=0, 0<is<M,

0
1
n n
L e, =0, ¢e,=0, 1<n<N.
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Noticing (3.32) and (3.35), an immediate consequence of Theorem 3.2.2 reads

41-a

_tYl
||5x€n||2 < ||6X90"2 + [ r(32 _ a) F(l a) ] “ ”

+20(1 - )ty ™ [max{”(rz)l”, max ry)2 ||}

~(a) 12

x[r5)"] |

a,
+
ra- a)1kn

el

= M1 - o)t [ma)(<{||(r2)l ,

2 1
> max )]

" TA - a) 1o

<M - at,™ \/fcz(rz_“ +h+e)+

=M -t VEep(T* " + h* +€) + ———

<21 - o)t <c2+ﬁc3>\/f(rz_“+h2+e)] , l<n<N.

Taking the square root on both hand sides of the inequality above arrives at

2
16, < \2Leter(1 - a) (cz bt (2 = 3>( 24,1 4 e)
= \2LOT(2 - ( —— > >V +h*+e€), 1<n<N.
T2-y) C2+1“(3—y)c3 ("7 +h" +e€) n

The proof ends. O

3.3 The fourth-order method in space based on L1 approximation
for 1D problem

In this section, we continue to consider the problem (3.1)-(3.3), but another high or-
der difference scheme in space will be developed. Suppose the exact solution u €
c®d([0,L] x [0, T).

3.3.1 Derivation of the difference scheme

Considering equation (3.1) at the point (x;, t,), we have

SDVU(X;, ty) = U O ) +f, O<i<M,0<n<N,
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Performing the operator A to both hand sides of the equality above and taking an
average on two adjacent time levels arrive at

1
A{ > [$DYu(x;, t,) + $Du(x;, t,,,l)]}
_1
B A{%[uxx(xi’ tn) + uxx(xi’ tn—l)]} * Afin Y 1<isM-1,1<n<N.

Applying the L1 formula (1.69) to approximate the time-fractional derivative in the
equality above, it follows from Theorem 1.6.2 and Lemma 2.1.3 that

v 1 nl k-1
A b(()Y)‘StUin - Z(bffkf1 - bf’l}:)k)atUi - bgi)llzbi
l—‘(3 - Y) k=1

_1 -1 -1
=820 T+ Af T4 (r); % 1<i<M-1,1<n<N, (3.63)

and there is a positive constant c, such that
1
|r); 2| <cy( +h*), 1<i<M-1,1<n<N, (3.64)

where {b;w} is defined in (1.64).
Noticing the initial-boundary value conditions (3.2)—(3.3), we have
{ U =o(x), 1<isM-1, (3.65)
UZ = u(t,), UL =v(t), 0<n<N. (3.66)

Omitting the small term (rz‘)?_E in (3.63) and replacing the exact solution U;" with its
numerical one u}' produce a difference scheme for (3.1)-(3.3) as follows:

L TR W) \8 ks )
Aqbg by _Z(bn—k—l_bn—k)stui -b

TG-y) & not7
SSl A, 1<isM-11<n<N, (3.67)
u =), 1<isM-1, (3.68)
up = p(ty), Uy =v(t), 0<n<N. (3.69)
Denote
n=1"T@-y).

3.3.2 Solvability of the difference scheme

We now proceed to discuss the unique solvability of the difference scheme (3.67)—
(3.69). The following theorem is true.
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Theorem 3.3.1. The difference scheme (3.67)—(3.69) is uniquely solvable.
Proof. Let

u" = (ug, Uy, ..., Uy)

The value of u° is determined by (3.68)-(3.69). Suppose the values of u°, u!, ...

n-1
,u

have been uniquely determined, then the linear system in u" can be obtained from
(3.67) and (3.69). To show its unique solvability, it suffices to prove the corresponding

homogeneous one
—Au —52uf', 1<isM-1,
{ YIT 2 X1

Uy =upy =0
has only the trivial solution.
Taking the inner product on both hand sides of (3.70) with u" yields

1 1
%(_Au",u") = E(Gﬁu",u").
Noticing (3.71), it follows from the summation by parts and Lemma 2.1.1 that

2
(A", u") = ((I + %@%)u",u“)
2> K 22 2
=W - S8 = Sl
Substituting this result into (3 72) arrives at
1 2
L) < <=8 <0,

thus [u"|*> = 0. It follows u" = 0 from (3.71).
By the principle of induction, the theorem is true. The proof ends.

3111

3.3.3 Stability of the difference scheme

(3.70)

(3.71)

(3.72)

The stability analysis on the difference scheme (3.67)-(3.69) will be carried out in this

subsection.

Theorem 3.3.2. Suppose {v}' | 0 < i< M,0 < n < N} is the solution of the difference

scheme

1 : k-1
n { Y)5t, Z(bn k-1~ y_)k)5tvi 2 b;Y)1 z}

(3.73)
(3.74)
(3.75)
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Then it holds

2,

y-1
r(3 ||A¢|| +T2 -y, rkzlllg

1<n<N,

2 2
180" s < 18v°l5 +

where
M-1

M-1 .
A2 =h Y (g [ =k
i=1

i=1

(3.76)

Proof. Making the inner product on both hand sides of (3.73) with nA6tv”’% , it follows

from the Cauchy-Schwarz inequality that

b A8V 2|

Z (b~ B )(ABK 2, AV 2)

+ b£zY)1(A¢ Abyv _5) + U(‘S)Z(Vn_% ] A(‘)‘tv"_%) + ’T(gn_% ] A‘stvn_%)

—l

=S

12 _1,2
—b;y_)k)(”A‘Sth 2"+ A8 2)

NI>—‘

k—l
1 _1 _1
b<y D (LAPIE + A8 2 |P) + (822, ABV"2)
* n(g L,A8VT), 1<n<N,
which can be simplified to

1,2
bf)w 482

= _1.2
) kz (b, = b )IASV 2" + B, LAY

+ 2n(6§v"’%,A6tv"’%) + Zn(g”’%,AcStv"*%), 1<ngN.

Applying the summation by parts and noticing (3.75), we have
(B3, ABT) = (0 3,VE),
1 _ _
— Z[(Vn)vn)l’A _ (Vn 1,Vn 1)1’A]
1 2 12
= 52 (18" s = 18" I)-
The substitution of (3.78) into (3.77) yields

n
Y b A8+ Lol - 180 )
=1

n-1
< Y bY 48R3+ b IAPIR + 20(8" 2, A8 E), 1<n<N,

(3.77)

(3.78)
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which can be rearranged as

k_,
R WAV
1

k=142
< 6,0 1||A Zb(y)k A8z

+ b 1||.Al/)|| +21(g" -3 A6tv""), 1<n<N.

S

Let

=605 G = |8 h+ Zb AR 1<n<N.

It follows from (3.79) that

G'< G+ nb(y)lllAlP” +21(g" 1, A8V 1), 1<n<N.
The recursive process will lead to
T n-1 n 1 1
G'< G+ = Y bYNAI + 20 Y (8572, 48 2)
i k=1
T n-1
04 = Z b A
+‘rz< y) g+ O k||,45t i) ) 1<n<N,
that is,

1<n<N.

n—l n
n _12
8717 < 18v°l + Zb(k”nAwu%rZ—(y) g
M=o k=1 b

By (3.20) and (3.22), it follows (3.76) from (3.80). The proof ends.

3.3.4 Convergence of the difference scheme

We now present the error analysis of the difference scheme (3.67)-(3.69).

Theorem 3.3.3. Suppose {U]' | 0 < i < M,0 < n < Nyand {u}' | 0 <

(3.79)

(3.80)

< M,0 <

n < N} are solutions of the problem (3.1)-(3.3) and the difference scheme (3.67)—(3.69),

respectively. Let

ef =U'-uf, 0<i<M,0<n<N,
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then it holds

e" 6T'T2-y) c,(T*Y +h*), 1<n<N.
4

Proof. The subtraction of (3.67)-(3.69) from (3.63), (3.65)—(3.66), respectively, pro-
duces the system of error equations as follows:

n-k-1 n
k=1

[ 1 i k-1
EA{bgw@,ei S0 sl z_b<v_>1.o}
1
1 6)2(e1n2+(r4) 1<i<M-1,1<n<N,
e, =0, 1<is<M-1,

0
1
n n

L e5=0, ¢e;=0, 0<n<N.

Noticing (3.64), the application of Theorem 3.3.2 yields

J8e"2 < T yrr Y Jr)*

k=1
<TTQ-y)La(T + h‘*)z, 1<n<N.

Taking the square root on both hand sides of the inequality above, it follows from
Lemma 2.1.1 and Lemma 2.1.2 that

\/_
le'l.y < Lpoe] < 3L\ Zjs,er
< \/6TV1"(2 -y c4(r3*Y + h‘*), 1<n<N.

The proof ends. O

3.4 The difference method based on L2-1, approximation for 1D
problem

Consider the following problem of the time-fractional wave equation:

ngu(x, t) = U, (6 6) +f(x, 1), x € (0,L), t €(0,T], (3.81)
u(x,0) = p(x), u(x,0)=yx), xel0L], (3.82)
u(0,t) =0, u(L,t)=0, te(0,T], (3.83)

where y € (1,2), the functions f, ¢, Y are all given and ¢(0) = 0, ¢(L) = 0, (0) = 0
(L) = 0. Suppose the exact solution u € C**([0,L] x [0, T]).

In this section, we will use the L2-1; approximation to establish a temporal second-
order difference scheme.
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3.4.1 Derivation of the difference scheme

At first, a useful lemma is listed.

Lemma 3.4.1. (81
() Supposef € C[ty, ti,1], then it holds

60 + £t

T

, 1

1 1

:f(t,ﬁ%) + n Hftt<tk+§ - 513) +ftt<tk+% + ETS)}(I - s)ds. (3.84)
0

(II) Supposef € Cz[tk, tes1] and o € (0,1), thus we have

(1-0)f(ty) + of (ty41)
1

= f(tk+a) + TZ J[O'(l - U)zftt(tkﬂ] +(1- O')TS)
0
+ (1= 0)0°f(ty,y — 0T5)](1 - s)ds. (3.85)

(II) Suppose f € C3[ty, ty.,,], then one has

2t - F6] = £ (6, )
2 1 1
LTS ”fm<tk+1 + 2TS> +fm<tk+ TS>](1 - s)’ds. (3.86)

(IV) Suppose f € C3[ty, ty,,] and o € (0,1), then one has

%[(zo + Df () - 40 () + 20 — D (t_y)]

2
= (tire) + TZ [(20 +1)(1 -0 | fur(teso + (1 — 0)TS)(1 - 5)%ds

© e,

1

+ 4o me(tkw —o01s)(1 - s)zds
0

1
-0 -11+0) me(tkm - (1+0)Ts)(1- s)zds]. (3.87)
0

Proof. (I) Expanding f(t,) and f(fy,,) att = £, 1 to the second-order derivative term
with the help of Taylor expansion with the 1ntegra1 remainder, and averaging the re-
sults yield (3.84).
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(I1) By the same process as (I), but expanding is performed at the point t = t;, to
the second-order derivative term. Multiplying the results by 1 — ¢ and o, respectively,
and then adding the results together will give (3.85).

(IT) Expand f(t;) and f(t;,) at t = ¢, ! with the help of Taylor expansion with
the integral remainder to the third-order derivative term. The equality (3.86) can be
obtained.

(IV) Expand f(t;,1), f(t,) and f(t,_;) at t = f,, to the third-order derivative term
with the help of Taylor expansion with the integral remainder. Then multiplying the
obtained results by 20 + 1, —40 and 20 - 1, respectively, and summing up the results
will lead to (3.87). O

For any {uj' | 0 < i < M,0 < n < N} defined on Q;, x Q,, introduce the following
notation:

1 _ _
D = ;[(20 + ! - 40U + 20 - DUl Y], nz2

1

Let
v t) =u(xt), a=y-1, 0:1—2, s=1TQ2-a).
Thus, the problem (3.81)-(3.83) is equivalent to
th“v(x, t) = u, (x, t)+f(x,t), x€(0,L), te(0,T], (3.88)
u,(x, t) =v(x,t), xe[0,L], te(0,T], (3.89)
u(x,0) = p(x), v(x,0)=1yx), xel0L] (3.90)
u(0,t) =0, u(Ll,t)=0, te(0,T]. (3.91)

Denote
U'=u(x;t,), Vi'=v(xpt,), 0<i<M,0<n<N,
{ Pi=00), Yi=90g), O0<i<M.
Considering (3.88) at the point (x;, t,,_1,,), We have

Cna n- 1+0
D V(thn 1+o) - uxx(xvtn 1+0) +f

1<i<M-1,1<n<N, (3.92)
where "7 = f(x;, ty_1,4)-
Applying the L2-1, formula (1.81) to approximate the Caputo derivative gives

1! _ e _
SDIV (X by 110) = S Y O - v 1 o(r ). (3.93)
k=0

Combining the linear interpolation (3.85) with the second-order central difference
quotient (Lemma 2.1.3) for the spatial second-order derivative, we have

Uy (X3 by 140) = Ol (X £) + (1 = OV (X3, b 4) + O(17)
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= 062U + (1 - 0)82U" ! + O(h?) + O(7?). (3.94)

Substituting (3.93) and (3.94) into (3.92) arrives at
Z POV V) = 082U + (1 - )20 + £+ ()T

1<i<M-1,1<n<N, (3.95)
and there exists a positive constant c5 such that
)| < c5(T* +h?), 1<i<M-1,1<n<N. (3.96)
Considering (3.89) at the points (x;, t%) and (x;, t,_1.4), respectively, we have
u(x;, 1) =vixp, t1), 0<i<M,
{ ug (X f;_m) = V(jci, th1eo)» O<i<M, 2<n<N.
It follows from Lemma 3.4.1 that
{ U =V +(r)l, O<i<M, (3.97)
DU =0V + (1-0)V" '+ (rg)!, O0<i<M, 2<n<N, (3.98)
and there exists a positive constant ¢, such that
|62(re)Y| < cgt’, 1<i<M-1,1<n<N. (3.99)
In addition, from (3.89) and (3.91), we have

(re)o =0, (rg)yy=0, 1<n<N. (3.100)

Noticing the initial-boundary value conditions (3.90)-(3.91), we have
{ UW=p, V2=, 0<i<M, (3.101)
Uy=0, Uy=0 1<n<N. (3.102)

Omitting the small term (r5) and (ry)! in (3.95), (3.97) and (3.98) and replacing the
exact solution {U]", V{"} with its numerical one {u, v{'} produce the difference scheme
for (3.88)—(3.91) as follows:

%i (na)( ok _ ikl _ st (1 - SRl 4 I,
1<i<M-1,1<n<N, (3.103)
1 6tu% —v% 0<igsM, (3.104)
Dl =0V +(1-oV', 0<i<M, 2<n<N, (3.105)
u? = @; v? =1y;, O0<isM, (3.106)
l ug=0, uy =0, 1<n<N. (3.107)

On each time level, only one tridiagonal system of linear algebraic equations need
be solved. See the process of the proof for Theorem 3.4.1.
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Remark 3.4.1. By Lemma 3.4.1, it is easy to write (r¢)! in the integral expression, and
then obtain (3.99).

Remark 3.4.2. For the nonhomogeneous boundary value problem:

gDi'u(x, t) =u,xt)+f(x,t), xe(0,L),te(0,T]
u(x,0) = p(x), u(x,0)=yx), xel0L]
u(0,t) = u(), u(L,t)=v(), te(0,T],

the equality (3.100) is in general not valid. In this case, let v(x,t) = u,(x, t), then the
problem above can be written as the following equivalent one:

EDMV0GE) = Uy () + F(X,8), X € (0,L), t € (0, T],
Upo (X, 1) = v (X, 8),  x € (0,L), te(0,T]

u(x,0) = px), v(x,0)=1x), xcel[0,L],

u(o,t) = u(t), u(L,t)=v(t), te(0,T],

v(0,t) =u'(t), v(Lt)=v'(t), te(0,T],

for which we construct the following difference scheme:

n,a) Y n—k-1 2.n 2 n-1 n-1+o
- Z c( v T —v; ) =06u; +(1-0)6u;  +f; ,

1<i<M-1,1<n<N,
8267 =627, 1<i<M-1,
8Dl = 8+ (1-oW'™), 1<i<M-1, 2<n<N,
D=gn V=t O0<isM,
Uy = u(ty), Uy =v(t,), 1<n<N,
n

=u'(t,), szv(tn), 1<n<N.

The interested readers can refer to [81].
Another way is firstly to make the boundary value conditions homogeneous and
then construct the corresponding difference scheme.

3.4.2 Solvability of the difference scheme

Theorem 3.4.1. The difference scheme (3.103)—(3.107) is uniquely solvable.
Proof. Let

u' = (ug, uy,. .o uy), V= (vg, vl Vi)

(I) The value of {u°,v°} is determined by (3.106).
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(II) It follows from (3.104) that
1
vi =267 v, O<i<M. (3.108)

Substituting (3.108) into (3.103), and noticing (3.107), we obtain the linear system in u!
as follows:

{ "0 28,u? u ) =082u; + (1-0)62u +f7, 1<i<M-1, (3109)
up =0, uy =0. (3.110)

Considering its homogeneous one, we have

2
{ Zcl ) = osul, 1<i<M-1 (3.111)
up =0, uy =0. (3.112)

Making the inner product on both hand sides of (3.111) with u' and noticing (3.112)
produce

b 8 =0,
28O + oo,
which implies u! = 0, hence the system (3.109)—(3.110) has a unique solution. Once u'
is obtained, v! is followed from (3. 108)
(III) Suppose the value of WO, vO,ul vl .. w1, v} has been uniquely deter-
mined, then it follows from (3.105) that

V= Lol -0, o<i<h Gi13)
o

Substituting (3.113) into (3.103), noticing (3.107), one can obtain the linear system in
u" as follows:

1

_{Cna) (Du _(1 G) nl) V{l 1] ZC(na V] nkl)}

s

= o6 + 1- )& + 77, 1<i<M -1, (3.114)
uy =0, uy=0. (3.115)

To show its unique solvability, it suffices to prove the corresponding homogeneous
one

1 (n,a) 1 20 +1 2 .
{ e o, 1<i<M -1, (3.116)
uy=0, uy=0 (3.117)

has only the trivial solution.
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Taking the inner product on both hand sides of (3.116) with u" yields

20+1
—c

2 2
rarg S0 I+ o8 = 0,

which implies u" = 0, and the system (3.114)-(3.115) has a unique solution u". Once u"
is obtained, v" is followed from (3.113).
By the principle of induction, the theorem is true. The proof ends. O

3.4.3 Stability of the difference scheme

Before analyzing the stability of the difference scheme, we give two lemmas.

Lemma 3.4.2. Suppose u®,u',...,u" €Uy, (-,-) is an inner product ontf, and | - || is the
induced norm. Denote

E"= Qo+ Du"|* - Qo - D + 207 + o - D" -, n>1.
Then we have

_ 1 _
(D, ou" + (1 - o)) > E(E" ~E""), nx2

and

1

E"> —||u"||2, n:1

o

Proof. The operator D;u" can be rewritten as
n_ n-1 n_ ,.n-2
D" = wht % (20 - 1)u,
2T

or

1 n_ ,n-1 1 n-1_ , n-2
D" = <0+ _>u - (0_ _>i.
2 T 2 T

Noticing the identities (a — b)a = 1[a* - b + (a - b)*], (a - b)b = 3[a’ - b* - (a - b)’],
we have

(D", ou" + (1 - o)™ ™)

n_ ,n-1 n_ ,n-2
2a<u,u"> — (0 - 1)(l,u">]
T 2T

(o3 (o ()]
2 T 2 T

=0

+(1-0)
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(4 2 —112 —112
=0 Z( =+ )

20 -1 2 —2,2 —2)12
e i Y T

1
0+§

2 —1112 —1112
2 - )

+(1—0)[

1
_ 9T 2 n-1_ n-22 ]
(- - )

\Y

o 2 -12 -12
of —(WI" = )+ " =)

- L - e 2 - 2 -

4T
1
O+
+ (1= T2 - P - - )
0_% n-1)2 n-212 n-1 n-212
R )
20+1 2 12y 20-1 ) 22
= = = " | )= = (" 7= 11
20 +0 -1 n n-1;2 n-1 n-2)2
Ll (U el Ut S
1

= - (E" ~E""), nx2

Further, by the Cauchy-Schwarz inequality, we get

E" = (207 + 30)|[u"|* + (20% - o) | - 220 - 1)(0 + D" uY)
> (20% + 30)|u"| + (20% - o) |u" | - [(20 ~ Do

2
. (20 - 137(0 +1) ||u"||2]

g

1 2
"

The proof ends.

Lemma 3.4.3. The following two inequalities are valid:
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Proof. (I) Denote

i (m la)
).

m=2
When n = 2:

1 _ _ 1 _ _
Ay =PV -l = —2_0‘[(1+0)2 R, o 5[(1+0)1 740,

Whenn > 3:

[ L ((m ~1+0“-2m-2+0)""+ (m—3+0)2_”‘)

NIP—‘ NM:

((m—1+0) 2(m—2+0)1_“+(m—3+0)1_“)

2}(X((m—ho)z’”‘—(m—3+0)2"")

+

_ %(3(m 2+ - m-3+ 0)1_"‘)]

= i [%((m—1+0)2’“—(m—2+0)2’“)
=)

_ %((m —1+0)™%+ (m—2+0)1_“> .

It is easy to see that the equality above is also true for n = 2.
Let

fO) = (x+0)"™%,

then we have

m-1

{ J f(x)dx —%[f(m—1)+f(m—2)]}

m-2

D= iM=

(-éf”({m)>, £ € (m-2m-1).

2

3
1l

A direct calculation yields
00 = (1 - Watx + o)™

Then it follows that

" &)+ Y (~f"&w)

m=3



3.4 The difference method based on L2-1, approximation for 1D problem =— 201

= 5 -a _(52 +0) mZ=3<€m + o)‘“‘l]

1 [ —a-1 c -a-1
< =0-a)alo + m-2+a0
- _ mz; )
1 r n m-2
<—(1-wa|o ™+ Z J (x + 0)"‘1dx]
12 i =)
- n-2
_ 1 —a-1 —a-1
_ﬁ(l—a)aa + | (x+0)" dx
- 0
1 [ e *_(n-2 -
=—(1—cx)a0‘“+0 (n-2+0) ]
12 L a
r -a
< l(1—(1)0( o %y 0—]
12 L a

(1) Denote

Then

B, = i [%(B(m— 1+0)™ - (m —2+0)1_“)

m=

N

_ ﬁ((m ~1+0)7%- (m—2+0)2’“)]

)1—01 -0

[(n-1+0 -

NI =

(m-1+0)"%+

1l
M=

2

1 _ _
_To([(n—lﬂr)2 g
m

x+0) % dx+ (n-1+0)™

m-1

N
= 3
Lo i

=2

3

1 1-a 1-a 1 2-a 2-a
+2[(n 1+0) o] 2_a[(rz 1+0) o]
_ 2-a _ 2-a
_n 1+0)2—a(1+0) +%[3(n—1+0)1_“—al_“]
1

- m [(n -1+ 0_)2—0( - 0_2—0(]

Bn-1+0)"-0"

NI =
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3 1-a
<=(n-1
2(n +0)

The proof ends. O

Theorem 3.4.2. Suppose {u",v" | 0 < n < N} satisfies

- Z POy = 082U + (1- 0)82u T + b
1<isM-1,1<n<N, (3.118)
1 Stu% = vl.% + q%, 0<igsM, (3.119)
Dl =V +(1-0oW ' +q, 0<i<M, 2<n<N, (3.120)
wW=gp, W=1, 0<i<M, (3.121)
up=0, uy=0, 1<n<N, (3122

where gy = qy = 0(1 < n < N)and ¢y = @y = Yo = Py = 0. Then there exists a
constant C such that

L 2 2
LY 1 TR
k=1
1"‘"v || +||5u|| +TZ||p || +TZ” q || 1<n<N, (3.123)

where

M-1 M-1 M-1

2 2 2 2 2 2
=Y 0% T =r Y@ 184" =h ) (5:47)"
. part .

1= 1=

—_
—_

Proof. The combination of (3.119)-(3.122) with qj = gj; =0(1<n< N)and @, = @y =
Yo =Py = 0leads to

V=0, vy=0, 0<n<N.

Consequently, we have

1

1 1
{ Vé = 0, Vil = O) (3.124)
ovi+(1-oVit=0, ovy+(1-0oWy'=0, 2<n<N. (3.125)

() When n = 1, (3.118) reads

1

%cgl D(vi —v?) = 062U} + (1-0)62u) +p;, 1<i<M-1 (3.126)
Making the inner product on both hand sides of (3.126) with v% and noticing (3.124),
we obtain

L8P - ) = (ot + (- on®) 6D s Gd). Gazn
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It follows from (3.119) that
8:65u’ = 8ov? +62q;, 1<i<M-1. (3.128)

Making the inner product on both hand sides of (3.128) with —(au1 +(1- U)uo) and
noticing

ouy + (1-0)ud =0, ouy + (1- o)l =0,
we get
%(6,(111 - (‘quo, 5X(0u1 +(1- a)uo))
= (6Xv%, 8 (ou' + (1- o)) - (824", ou' + (1 - o°). (3.129)
Adding (3.127) and (3.129) yields

LSO - OP) ¢ L - 6,8 (0w + - o)
= (pl,v%) — (8¢, 0u' + (1- o)u ).
Noticing the fact that
(8u' - 6.u° 8, (ou' + (1- o))
= o(8u',6,u") - 20 - 1) (8, 6,u°) - (1 - 0)(6,u° 5u)

= 2ol + o - 1)” \/ 1510
o’ 0
-—|bu
mAs
and
Cél Q) _ O.l—a’
we arrive at
1- 2
o 0 g 132 0 —-0+1 012
Tt I =)+ (Sl - S5 o)
<(p' ,vi) - (82", ou' + (1 - o),
which can be rewritten as
gl el 2 0%-0+1 2
s VI = ) + Zhead - T2 ]
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< T(pl,v%) - 1(82¢", ou' + (1 - o)u°)
1
<tlp'|- vz ] + 7|63 - lou' + (1 - 0|

1 12 &y 12
o WP+ 21

P O 2
<tz W+ 1)+ 21|

1 1
o|Shout + (- onf + 5||5§ql||2]

1 2 2, 1 2
el SO + 1) + S5t
Letting £, = I'2 - @)0®'7%, there exists a positive constant C; such that

- 2 2
T “Ilvlll 8]

<G PO+ 18l + ol ol

2 2
o'+ lsza' - (3130)
(II) Making the inner product on both hand sides of (3.118) with ov" + (1 - o)V
and noticing (3.125), we have
n-1

% Z C}((n,tx)(vn—k _ Vn_k_l,O'Vn i (1 _ O_)vn—l)

k=0
= (8 (ou" + - o), 0v" + (1 -0 ) + (", 0v" + (1 - 0" )
= (8 (ou" + 1 - "), 8, (V" + (1 - V"))
+(p"ov"+(1-on™), 2<n<N. (3.131)

For the left-hand side of (3.131), by Lemma 2.6.1, we can obtain

Z C(na ok _ynokel gon g —opm
Z&”wv .
Therefore,
33 zc“”|"k - )

< —(5X(ou + A=), 8, (V" + (1 -0 ™))
+("ov" +(1- o)vnfl), 2<ng<N. (3.132)

It follows from (3.120) that
DUl = 5o(ovi + (1- oW ") + 82q), 1<i<M-1, 2<n<N.

Making the inner product on both hand sides of the equation above with —(ou™ + (1 -
o)u"!) and noticing

ouy+(1-ouy =0, ouy+(1-ouy' =0, 2<n<N,
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we obtain
(DS ", 6, (ou" + (1 - o™ ™))
= (8, (V" + (1 - oW ™), 6, (ou" + (1 - o)™ ™))
~(8q" ou" + 1-ou™"), 2<n<N. (3.133)
Denote
= Qo + D|jg"| - 2o - D|jgu" |
+ (20" + 0 - 1)), (" - u" ) |2, nxl.
With the help of Lemma 3.4.2, we have
n_ 1 ny2
F'> E||z>‘,(u [ n=1 (3.134)
and
(D848, (ou" + (1 - ™)) %(F" _FY), ns2. (3.135)

Combining (3.133) with (3.135), we get
%(F" -F") < (6, (ov" + 1 - o™ ™), 6, (0" + (1 - o)™ ™1))
- (Sf(q",ou" +(1- o)u"_l), 2<n<N. (3.136)
Adding (3.132) and (3.136) arrives at

1 1'¢ (n,a) (), n—k 12 n-k-1)2 1, n n-1
Z.- - —(F"-F
)L g - )+ - P
<" o+ (1-oW" ) - (82q" ou" + (1- o)

"I, 2<n<N.

<" II IIGV + (1= oW + 634" - Jou" + (1 - o

Noticing the fact that

—k2 —k=112
ZC("“ (U4 Ve

n-2
_ Z C(na "V z C}({n—l,tx)"Vn—l—k"Z
k=0 k=0
N (o) _ et NP -
= (A = OV - O
k=0

— Z C(ntx "Vn—k” Z C(n 1tx)||vn 1- k
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() — N - OO
we have

(n,a) . n—ky2 (n-La)y, n-1-k i n _ pn-1
(S o= F o)« Loy

1
G e 14 el 1

n-—
+" - ov" + = oW + 82" - lou™ + A - oY, 2<n<N.

VA

Replacing the superscript n with m and summing up for m from 2 to n on both hand
sides of the inequality above yields

(mayy, n-ky2 (L), 12 i n_ il

ZS<ZC (I e | >+ 2= F)
- m -ty (ma)
m-1,a m,a

x| B -cmmnr 3 o

m=2

&’lH

+

"] - fov™ + (- o™

M= I

1624™] - Jou™ + A - o)™, 2<n<N.

+

2

3
I

Using Lemma 3.4.3, we have

L5, comp - o)« L)
2\ 4k 4t
L[S (&)l s B oo
251 12 \o 2
n
e Sl o+ 1oy

m=2

n
+ Y [62g™| - Jou™ + - ™|, 2<n<N. (3.137)

Using Lemma 1.6.3, we have

(La) _ 1-a
Co =0

and

(n,a) (n,a) (n, a) (n a
Co > > G

e >0-an, nz2
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It follows from (3.137) that
1-a —an_l nky2 . 1 n
- —(F"-F
D) U BPUE

< 550 W 5[5 (5 1) W 10 e
2s 2s| 12 \o 2
n
# Y- fov" o
m=2
n
+ Y 624" - Jou™ + 1 - o™, 2<n<N.
m=2

Noticing
1—an_a_1—a n* S 1
2s 2 TR-ar*” 2TT(1-a)’
it yields that
1 o n-k2 1, n 1
_ v —(F -F
2T (1 - ) kzzo“ I+ 7@ -F)
T—(X

1-a
S’ IV
Y l-afa —an 1n2 3 T—ay. Op2
+2F(2—a)[ 5 <0+1>0 Il +2(n—1+0) V'l
n n
+ z " Jov™ + 1 - o)vm’lu + z ||6)2<qm|| o™ + (1 - O)umflu, 2<n<N.
m=2 m=2

Multiplying both hand sides of the inequality above by 41, we get

2 . "fuv"*knz L
TT(1-a) A

1-a
1. 21 1-a
o

2T1a l1-afa —ap. 12 3 1-ay. 0112
—r(z_a)[_lz <E+1>0 I+ 20014 0]

+ 41 z " - lov™ + 1 - oy I

m=2

+4TZI| g - Jou™ + (1 - o)™ ||

211 a 4 l-afa _ 2 3 _ 2
P [al L1 <5 +1>a “]||v1|| t o T
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+21 z [ ov™ + (1 - o™ ||2 +& ||p’"||2]
+21 Z [low™ + @ - o™ + 824" ]
m=2
o4 1-a a(g + 1)0‘“
12 \o

1+ 2_[.1—0( 3
2t my2 m-12 C my2
e Z VI V) + 27 . 107
m=2 m=2

112 1-a
M+ 5 T

F(2 a)

n
w20 Y (" + ) + 8267, 2<n<N.
m=2

Taking &, = 4T°T(1 - a) in the inequality above, noticing (3.130), (3.134) and

= o+ )|su'|* - Qo - D8] + (207 + 0 - )6, (! — )|’
< Qo+ D)8 | - 2o - 1|50

+2(20% + o = 1)(|6 | + [6.°])
= (40% + 4o - )| + (407 - 1)|6°,

it follows that
n-1 2 5
n— n
e SR ]
k=0
_ 2 2 2
< c( PO+ 5.+ o]
+rz||u § +rznp § +rz||52qm )
- 2 2 2
< c( PO+ 15+ o]
n LZ 2 n 2 n 5 2
vo 3 Llourf o 3 ve S8 ) 1<n<n,
m=1 m=1 m=1

with C, a constant. An application of the Gronwall inequality yields (3.123). The proof
ends. O

3.4.4 Convergence of the difference scheme

Theorem 3.4.3. Suppose {U]', V' |0 <i<M,0<n<N}and {ul,v]' | 0 <i< M,0 <

1271

n < N} are solutions of the problem (3.88)—(3.91) and the difference scheme (3.103)—
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(3.107), respectively. Let
el =U'-ul, Z'=V'-vl, 0<i<M, 0<ngN,
then it holds

TZ”Z || +||5e|| C(c2 + c)LT(7? +1, 1<n<N,

where C is defined in Theorem 3.4.2.

Proof. The subtraction of (3.103)-(3.107) from (3.95), (3.97)-(3.98), (3.101)—(3.102), re-
spectively, produces the system of error equations as follows:

( 1 = (n,a) ,_n-k n-k-1 2 n 2 n-1 n
S Z C Nz -z ) =0be; + (1-0)6e;  + (15);,

1<i<sM-1,1<n<N,
8te%—zi%+(r6)}, 0<i<M,
Diel =0zl + (1- )z + (re)], 0<i<M,2<n<N,
=0, z0=0, 0<is<M,

ep=0, €y =0 1<n<N.

Noticing (3.96), (3.99)-(3.100), the application of Theorem 3.4.2 yields
& k2 a2
Y I+ 16|
k=1

c[rl-“nz(’nz 18T+t Y Jos)" T Y, ||6§<r6>’"u2]
m=1 m=1

The proof ends. O

3.5 The fast difference method based on L2-1, approximation for
1D problem

In this section, we continue to consider the problem (3.81)-(3.83) and develop a fast
temporal second-order difference scheme.
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3.5.1 Derivation of the difference scheme

For the mesh function {u}' | 0 <i < M,0 < n < N} defined on Q;, x Q,, as what we did
in last section, introduce the following notation:

1 - —
Daij = [0 + Dy — 4ouj”™ + 20 - Dy ).
Let
voot) = u(xt), a=y-1, o=1- g’ = 1T - a).

Thus, the considered problem (3.81)-(3.83) is equivalent to the following one:

(C)va(x, ) = Uy (6, 6) + f(x, 1), x €(0,L), t € (0, T], (3.138)
u(x, t) =v(x,t), xel[0,L], te(0,T], (3.139)
u(x,0) = p(x), v(x,0) =), xcel[0,L], (3.140)
u(0,t)=0, u(L,t)=0, te(0,T]. (3.141)

Denote

{U{’ =u(x,ty), VI=v(x,t), 0<i<M,0<n<N,
@i =90q), Yi=p(g), O0<i<M.
Considering (3.138) at the point (x;, t,_;,,), We have
(C)‘D(txv(xb tn—l+o) = uxx(xi’ tn—1+0) +fin_1+0’
1<i<M-1,1<n<N. (3.142)

Applying the theory in Subsection 1.7.2 to approximate Caputo derivative gives

Ne
SDEV(X by ) = i-w ;p w F; + dél’“)(Vi" -V
‘ +0(T*%+€), 1<i<M-1,1<n<N, (3.143)
Fj;=0, 1<I<Ng, 1<i<M-1, (3.144)
Fli= e F + AV - V) + BV - v,
1<I< Neypp, 1<iSM-1,2<n<N. (3.145)

For the spatial second-order derivative, by (3.85) and Lemma 2.1.3, we have

uxx(xi’ tn—1+0) = qux(xi’ tn) + (1 - 0)uxx(xi> tn—l) + O(Tz)

= 062U + (1-0)82U" " + O(h* + ). (3.146)
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Substituting (3.143) and (3.146) into (3.142) arrives at

N,

1 S n (1,&) (N n-1
—— N wFL+dPOWV -V
Td-a) ; i 0 ( i i )

=082U" + (1- 0)82U™M ! + 719 4 ()T,
x i x i i 771

1<i<M-1,1<n<N (3.147)
and there exists a positive constant c; such that
)l < c;(T* +h*+€), 1<i<M-1,1<n<N. (3.148)

Substituting (3.144)—(3.145) into (3.147) and eliminating the intermediate variable {F l’,‘i}
yield

n-1
Z d]((n,a)(Vin—k _ Vin—k—l) _ 05)2(Uin +(1- 0‘)5)2(Uin_1 +fin—1+a + (r7);1’
k=0

1<is<sM-1,1<n<N.

Considering (3.139) at the points (x;, t1) and (x;, t,_1.,4), respectively, we have
2

1 1
{ 8,U2 =V + (rg)}, 0<i <M, (3.149)
DU =0V +(1-0)V" 4+ (rg)!, O0<i<M,2<n<N, (3.150)

and there exists a positive constant cg such that
|62(rg)!| < csT?, 1<i<M-1,2<n<N. (3.151)
In addition, from homogeneous boundary value conditions (3.141), we can obtain
(rg)p =0, (rg)y =0, 1<n<N. (3.152)
Noticing the initial-boundary value conditions (3.140)—(3.141), we have

{ V=9, V2=t 0<i<M, (3.153)
Up=0, Uy=0 1<n<N. (3.154)

Omitting the small term (r;)} and (rg)} in (3.147), (3.149)-(3.150) and replacing the ex-
act solution {U}", V]'} with its numerical one {u}', v{'} produce the difference scheme for
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(3.138)—(3.141) as follows:

N,
1 exp B -~ _
——— Y wF+dyOW -V = o] + (- o)+ 1,
Ii-o 5 ’
1<i<M-1,1<n<N, (3.155)
Fj;=0, 1<I<Ngp 1<i<M-1, (3.156)

n -5 T on—1 n-1 n-2 n n-1
Fi=e "F; + Ay -v; )+ Bv; —v; ),

1<I<N,,,1<i<M-1,2<n<N, (3.157)

exp>
Stui% = vl.%, 0<ig<M, (3.158)
Dl =0V +(1-o", 0<is<M, 2<n<N, (3.159)
w=g9, V=i, 0<is<M, (3.160)
[ ug=0, uy =0, l<n<N. (3.161)

Substituting (3.156)—(3.157) into (3.155) and eliminating the intermediate variable {F, fi}
yield

n-1

Y dl(:”“)(v{’_k V) 2 082Ul + (1- )82l 4 f1,

k=0

1<i<M-1,1<n<N. (3.162)

3.5.2 Solvability of the difference scheme

Theorem 3.5.1. The difference scheme (3.155)—(3.161) is uniquely solvable.

Proof. Let

u' = (ug, u,.. o uy), V= (ve, v Vi)

(I) The value of {u°,v°} is determined by (3.160).
(II) It follows from (3.158) that

1
vi =26’ -v{, O<i<M. (3.163)

Substituting (3.163) into (3.162), and noticing (3.161), we obtain the linear system

inu';

1
d®26.u? —2v)) = o6oul + (1- 0)82u; +f7,
1<isM-1, (3.164)
up =0, uy =0. (3.165)
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Considering its homogeneous one, we have

{ df)l’“)%u} =06y, 1<i<M-1, (3.166)
up =0, uy =0. (3.167)

Making the inner product on both hand sides of (3.166) with u! produces

2 2 2
2092 s s, o,
which implies u! = 0, hence the system (3.164)—(3.165) has a unique solution. Once u'
is obtained, v! is followed from (3.163).

(III) Suppose the value of {uo,vo,ul,vl, LU
mined, then it follows from (3.159) that

"1 y"1 has been uniquely deter-

v = %(Dzu? —(1-on'"), 0<i<M. (3.168)

Substituting (3.168) into (3.162), noticing (3.161), one can obtain the linear system in
u" as follows:

n-1

1 . . K onke
de — (D} - (1~ o)} H—vr 1] + Y dPO W -y
k=1
= o6 + (1- )82+ 71, 1<i<M -1, (3.169)
up=0, uy=0. (3.170)

To show its unique solvability, it suffices to prove the corresponding homogeneous

one
1 20+1 .
{ dr. S = obul, 1<i<M-1, G17)
uy=0, uy=0 (172

has only the trivial solution.
Taking the inner product on both hand sides of (3.171) with u" yields

d(n’a) 1 20+1

2 2
p0 . 12 o <o

which implies u"* = 0, and the system (3.169)—(3.170) has a unique solution u". Once
u" is obtained, v" is followed from (3.168).
By the principle of induction, the theorem is true. The proof ends. O
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3.5.3 Stability of the difference scheme

Theorem 3.5.2. Suppose {u",v" | 0 < n < N} is the solution of the difference scheme

N,
1 i n (La),, n n-1
— ) wiF;;+dy (v -y
F(l—a); i 0 (1 i )
= o6 + (1-0)82ul " +pl, 1<i<M-1,1<n<N, (3.173)
Fj;=0, 1<1<Ngp, 1<i<M -1, (3.174)
Fli=e ™ F 7 + AV V) + B - vih,
1<I< Nggp, 1<i<M-1,2<n<N, (3.175)
1 1
Sui =vi+q;, O<i<M, (3.176)
Dafl =ov'+(1-oW!' ' +q, 0<i<M, 2<n<N, (3.177)
W=, V=1, 0<i<M, (3.178)
uy=0, uy=0, 1<n<N, (3.179)

where gy = qyy =0 (1 <n<N)and @y = @y = P = Yy = 0. Then there exists a
positive constant C such that

L 2 2
LY 1 R
k=1

n n
<C| T POL + e ol T Y I 7 Y 824" | 1<n<N,  (3180)
m=1 m=1
in which
M-1 M-1 M-1

2 2 2 2 2 2
W= Y 08 W =n Y @0 166 =k Y (654"
i=1

i=

i=

—_
—_

Proof. 1t follows from (3.176)(3.179), q5 = qyy = 0(1 < n < N)and @, = @y = P =
ll)M = 0 that

V=0, vy=0, 0<n<N.

It is easy to obtain

1 1

{ v =0, v}=0, (3.181)
ovh+(1-oWy ' =0, ovj+(1-oNy =0, 2<n<N. (3.182)

Substituting (3.174)—(3.175) into (3.173) and getting rid of the intermediate variable
{F;}, we have
1

n-1

@/ on-k  n-k-1 2 2 n-1
Z d;(" a) Vi =V ) = o6l + (1-0)8u +pl,
k=0

1

N

isM-1,1<n<N. (3.183)
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(I) When n = 1, equation (3.183) reads
dPO v —v)) = o82u} + 1 - 0)6ou) +p;, 1<i<M-1. (3.184)

It is easy to know from (3.176) that

1

1
8:62u? = 63v2 +65q;, 1<i<M-1 (3.185)

Making the inner product on both hand sides of (3.184) with v% and noticing (3.181)
yield that

(3.186)

NS
~—
+
)
=
<
NI
~—

1 2 2
SAPWT = V) = ~(6clond + (1 - ). b,y

Making the inner product on both hand sides of (3.185) with —(ou' + 1- o)u®) and
noticing

au}, +(1- a)ug =0, oullw +(1- a)uj?,, =0,

arrive at
%(é}ul - 6,u° 8, (ou' + 1- o))

= (6Xv% L8 (ou' + (1- o)) - (82", 0u' + (1 - o). (3.187)
Adding (3.186) and (3.187) gives

LA ) + L - 508, (on + 1~ )
= (pl,v%) - (6,2(111,0111 +(1- a)uo).

Noticing the fact that

(8" - 6.u° 6, (ou' +(1- o)uo))

20 -1
215 + 20 - 1)” sl sl
o?-0+1
ST |’
and
o) O.l—tx,l_—a
O " re-a’
we have
ot Ope 12 0*—0+1,. op2
e R CA TR (REa R PR

<(p' ,v2) - (824", 0u' + (1 - o),
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which can be reduced to

O.lala

r2-a)

2 0?-0+1 2
(V1= 1) —|l5xu1|| -8’
30

<t(p'vi) - (82", ou' + (1- o))
<tp'|- vz ] + 7|63 - lou' + (1 - o)

1,12 € 2
<t/ WP 21

el Yot s - o Lisay]

<o W+ P+ 2

er| SO 1) + S1s2a' |
Taking g, = T2 - @)0* 1 174, there exists a positive constant C, such that
Mwﬁwﬂﬁ
<G PP + 82 + 7 + ol |+ PR + 78 ). (3.188)

(II) Making the inner product on both hand sides of (3.183) with ov" + (1 - cr)v”_1
and noticing (3.182) yield

n-1
z d}((n,a)(vn—k _ vn—k—l’ O'Vn + (1 _ U)Vn—l)

= (82 (ou" + - o), 0v" + (1 - oW ) + (", 0v" + (1 - 0" )
= (8, (ou" + 1= "), 8, (V" + (1 - oV ™))
+("ov"+(1-o"), 2<n<N. (3.189)

For the term on the left-hand side of (3.189), by Lemma 1.7.3 and Lemma 2.6.1, we have

n-1
Z dl((n,a)(vn—k _ vn—k—l, m/n i (1 _ U)Vn—l)
k=0

5 S -

Therefore,
1 n-1

X —k 12 —k—112
S Wl (T i Vi

k=0
~(8,(ou" + (1 - "), 8,(0v" + (1 - o™ 1))
+(p" o+ (1-oV""), 2<n<N. (3.190)

It follows from (3.177) that

D82 = 820V + (1— oW ) + 682, 1<i<M-1,2<n<N. (3.191)
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Taking the inner product on both hand sides of (3.191) with —(ou" + (1 — o)u"!) and
noticing

oup + (1-oup ' =0, oufy+(1-ou'=0, 2<n<N

lead to
(D8, ", 8, (ou" + (1 - o)™ ™))
= (6,(ov" + (1 — o™ ), 8, (ou" + (1 - "))
~ (82" ou" + 1-o™"), 2<n<N. (3.192)
Denote

= Qo+ D8 - 20 - D5

+ 2+ o - DS, - u" Y|P, n>1.
Using Lemma 3.4.2, we have
n_ 1 n2
F'> E||5Xu [ n>1 (3.193)
and
(D8 ", 8, (ou" + (1- o)™ ™)) > %(F" -F""), nz2 (3.194)
Combining (3.192) with (3.194), we obtain
%(F“ CFY) < (B,(0V + (1- o), 6, (ou" + (1 - o)™ L))
- (8" ou" + 1-ou™"), 2<n<N. (3.195)

Adding (3.190) and (3.195) yields

1'¢ n—k—1;2 1 n nai
LS e BT

<" o +(1-oW" ) - (8¢ ou" + 1- ")

>¢

<[P - Jlov" + 1 - o™ 1||+|| q"||-||0u”+(1—a)u""1|, 2<n<N.

Noticing the fact that

n-1

—ky2 —k=12
> d OV = )
k=0

n-1 n-2
= Y PO - Y O
k=0 k=0
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n-2
= Y (@ —d O - a )

k=0
n-1
_ d(na n— k” z d(n la)” n-1- k”
k=0
- (dS) = AT O - a0

we have
(nz—:l d(n,a) "vn—k”2 _ nz—:2 d(n—l,a) |lvn1k|l2> + L(Fn _ Fn—l)
P P 4t

<

(@D — dm )W + a0 )]

+ NI= NI

"] - oV + @ = o Y| + 624" - Jou" + 1 - ™|, 2<n<N.  (3196)

Replacing the superscript n with m, and summing up for m from 2 to n on both hand
sides of (3.196), we obtain

2 1
(Z W - dg | )+E(F"—Fl>

k=0

<

(@2 - T+ 3 ane) ]

M=

1
2 2

3
I

"] - fov™ + 1 - o™

+

M= F0=

+ Y 1824™| - lou™ + A ou™ |, 2<n<N.

2

3
il

Applying Lemma 3.4.3 and (1.147), it follows that

n
, -1,
Z (dy) - 5 )

< L —1 a<5+l>o_“+ n
“T2-a) 12 \o TQ-a)4

and

—a

n ( n ma €
,,,Zzzd’"—l w2, *,nz:z Ma—a)

2

€
Fl-a)

m=.
-
T ;(n 1+0) %+ (n-1

S ——
r2-a
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Hence, we arrive at

n-1
(Z d O - d nvlnz) b (=)

k=0

1 % l1-afa « 1 9

SE[(F(Z—O{)'T<3+1>0 A ma™ 1)€>||V||
T 1-a

+<F(2 Q) E(n 1+0) "+ (n- 1)1‘(1 a))" "]

¥ Z "] - Jov™ + - o™

NI =

m=2
n
+ > |62q™| - ou™ + A - o™ |, 2<n<N. (3.197)
m=2
By Lemma 1.7.3, we get
d(l a) —aT—a
" T2-a)
and
(n,a) (n,a) (n,a) (n,a) (n,a) 1
dy™ >d"" > dy" > dy" > - > dpn) >

20T(1-a)’

Thus, the inequality (3.197) can be reduced to

1 1 © n-k 2 ol 112 1 n 1
5(thl'l"(l—oz) Z"V ” _I‘(Z—a)”V " >+E(F -F)
1 % l1-afa —a 1 2
< 5[(—1_(2 0 12 <0 +1>0 + o )Z(n 1)e>||v l
T 1-a
+<F(2— Q) E(n 1+0) "+ (n- 1)F(1 a))" [ ]

+ Z ["[ - lov™ + = o™

m=2

n
+ Y |62g™| - lou™ + A - o™, 2<n<N. (3.198)
m=2

Multiplying both hand sides of (3.198) by 47 yields

L "fuv"*k”z L F
TT(1-a) A~

20.1—011.1—0( Tl—a 1-a/la ~ 1 9 ,
<F! a Neeyr L 97 >] 1
+[F(2—a) +<F(2—a) 6 <a+ )" traswate) VI
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+< 37 2T )II "
re- a) Iri-a)

+4T Z " - Jov™ + @ - a)vm’lu

m=2

n
+ 4T Z 162¢™ - ou™ + (1 — o™
201“1“ ™ 1-afa a 1 9 12
Z 41 —T
T2-a) +<F(2—a) 6 (a i )0 "Ti-a2 e)]"" |
+< 374 . 2T )“‘/0"2
I2-a) T'-a)

Lor z[ lov™ + (1 - o™ ||2+£0||pm||2]

1
<F +

+21 z [Jou™ + @ - o™ Y| + |624™ ]

m=2

201071 ™% 1-afa a 1 9 112

T -a) +<F(1—a) 6 (E”)U +r(1—a)§T€>]"V |
37 2T 0

+(r(Z—a)+ I(- a))" I

o & . n 5
o S+ V) + 2250 Y 7
0 m=2

m=2

<F'+

n
220 Y (") + " 4 183, 2<nsN.

m=2

Taking g, = 8T*T(1 - a), noticing (3.188), (3.193) and
= Qo+ D5 - o - V|60 + (207 + 0 - 1)]6, (! - u°)[
< Qo+ D5 | - o - 1[50 +2(20% + 0 - 1) + [6.°])
= (40% + 40 - )| + (407 - 1)|6°,

there exists a positive constant C, such that
n-1
—k12 2
T Y VI 8
k=0
- 2 - 2 2
N R
. myj2 . m2 c 2 _m)2
+T ) T Y "+ Y 18597
m=1 m=1 m=1

< cz(r”nwuz e et ol + ol
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+TZ—||8u || +TZ”p || +TZ|| " q ||> 1<n<N.

The inequality (3.180) can be obtained with the help of the Gronwall inequality. The
proof ends. O

Remark 3.5.1. In general, € is taken such that er® ! < 1.

3.5.4 Convergence of the difference scheme

Theorem 3.5.3. Suppose {U, V' | 0 < i < M,0 < n < Nyand {u',v}' | 0 < i <
M,0 < n < N} are solutions of the problem (3.138)—(3.141) and the difference scheme
(3.155)-(3.161), respectively. Let

ef =U' -y, z'=V{-v], 0<i<M,0<n<N,
then it holds that

TZ"Z || +6,€" || C(c? + )LT(7? +h+e), 1<n<N,

where C is defined in Theorem 3.5.2.

Proof. The subtraction of (3.155)-(3.161) from (3.147), (3.144)—(3.145), (3.149)—(3.150)
and (3.153)—(3.154), respectively, produces the system of error equations as follows:

Nex
r(11_ a) g O R AR A
= 05)2(6? + (l—o)c‘izefl‘1 +(rp)f, 1<i<M-1,1<n<N,
Fj;=0, 1<I<Ngp 1<i<M-1,
Fli=e™F"+ Al(zf’ L2 4+ B2l -2

<1< Ngp, 1<i<M-1,2<n<N,
1 1
1_ ;
6tei—zl.+(r8)i, ogigsM,
Diel' =0zl + (1-0)z/ "+ (rg)}, 0<i<M,2<n<N,
=0, z2=0, 0<is<M,

[ef =0, ey=0, 1<n<N.

Noticing (3.148) and (3.151)—(3.152), the application of Theorem 3.5.2 will lead to
n
P 2
Ty |2+ [8.€7)
k=1

_ 2 _ 2 z 2 L 2
T+ er 8T T Y ) T Y 630" |

m=1 m=1
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(9]

{T Z Lo (@ +h+e) +1 Z L(cgrz)z}

m=1 m=1

< C(C + G)LT(T* + H* + €), 1<n<N.

The proof ends. O

3.6 The difference method based on L1 approximation for the
MTTFW equations

In this section, the finite difference method for solving a class of multiterm time-
fractional wave (MTTFW) equations will be introduced. For simplicity, take the two-
term case with the constant coefficients as an example.

Consider the following problem of the two-term time-fractional wave equations:

gDY1u(X t) + oDyu(X t) = o (6, 1) + f(x, 1),

x € (0,L),t € (0,T], (3.199)
u(x,0) = p(x), u(x,0) =), xe(0,L), (3.200)
u(0,t) = u(t), u(L,t)=v(t), te[0,T], (3.201)

where1 < y; <y < 2, the functionsf, ¢, ¥, u, v are given, and ¢(0) = u(0), (L) = v(0),
P(0) = ' (0), Y(L) = v'(0). Suppose u € C*3([0,L] x [0, T]).
Take the same mesh partition and notations as those in Section 3.1.
3.6.1 Derivation of the difference scheme
Considering equation (3.199) at the point (x;, t,), we have
SDVU(x; ty) + SDIUG ) = U (X t) + £, 1<i<M-1,0<n<N.

Taking an average on two adjacent time levels arrives at

1 1
5[CD)'1u(x,, W)+ 5DV, by ) | + 2[ SDYu(x;, t) + DY ulx, tyy)]
1

—5[ (xl,t)+ (xl,tnl)]+f 1<isM-1,1<n<N,

-1
where f;' ? = 2(f" + f™!). It follows from Theorem 1.6.2 and Lemma 2.1.3 that

LA RN ) )
Gy |0 5.U;" Z(bnykl AL

k=1
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- 1
i b(}’)5 U- -3 nz(b(y) _ b()’) )6 U b (2]
1"(3 y) i Pt n-k n-17i
_1 1 _1
SRUN 0y, 1<i<M-1,1<n<N, (3.202)

and there is a positive constant cy such that
|(r9)?_%| <co(PV+h’), 1<i<M-11<n<N. (3.203)
Noticing the initial-boundary value conditions (3.200)—(3.201), we have
{ U =), 1<isM-1, (3.204)

Uy = u(t,), Uy=v(t), 0<n<N. (3.205)

Omitting the small term (rg)?_E in (3.202) and replacing the exact solution U;' with its
numerical one u}' produce a difference scheme for solving (3.199)-(3.201) as follows:

1-1*)’1
G-y

k-1
[b("l)(Stu Z(b " - b;y_l,)()&ui Z—b;y_lillii]

1-y 1
) ) k=3 ,»
: ’ G-y |: by 5tu Z(bn k-1~ bny—k)atui - bnyll/)i:|

_1 _1

:5§u§’2+fi" 2, 1<i<M-1,1<n<N, (3.206)
ui =), 1<i<M-1, (3.207)
uy = u(t,), uy =v(t,), 0<n<N. (3.208)

Hereinafter, denote

n=7"TG-y), m=1""TG-y).

3.6.2 Solvability of the difference scheme

Theorem 3.6.1. The difference scheme (3.206)—(3.208) is uniquely solvable.
Proof. Let

u' = (ug,ug,...,uy).
The value of u° is determined by (3.207)-(3.208). Suppose that the values of u®, u}, .. .,
1! have been uniquely determined. From (3.206) and (3.208), we can obtain the lin-

ear system in u". To prove its unique solvability, it suffices to show the corresponding
homogeneous one

[mbm) %by] 1- 56)2( ul, 1<i<M-1, (3.209)

Uy = Uy =0 (3.210)
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has only the trivial solution.
Making an inner product on both hand sides of (3.209) with u" and noticing
(3.210), we have

ll()ﬁ) l(y)] n2_l2n n__l n|2
b0 2B I = @) = Ssar <o,

thus |u"]| = 0. The combination with (3.210) will arrive at u™ = 0.
By the principle of induction, the difference scheme (3.206)—(3.208) is uniquely
solvable. The proof ends. O

3.6.3 Stability of difference scheme

Theorem 3.6.2. Suppose {v]' | 0 < i < M,0 < n < N} is the solution of the difference
scheme

1 - k-1
n1|: Y1)6tl z . b()’1))6t 3 b;yq”bl]
1 g 13 S pv) B Ve p)
) +E o OtV; ‘Z( k-1~ D)0y = b
=1
5 -l pel
=6y, *+f, 7, 1<i<M-11<n<N, (3.211)
D=p0g), 1<i<M- (3.212)
[ v5=0, v =0, 0<n<N. (3.213)
Then it holds
oo €I+ [ s+ s W+ e
x TG-y) TG-y) 4l n

1<n<N, (3.214)

n
27T -p] T Y I
k=1

where the definitions of ||| and ILfk‘% | are the same as those in Theorem 3.1.2.

Proof. Taking an inner product on both hand sides of (3.211) with Stv"_%, it follows
from the Cauchy—Schwarz inequality that

1w y)] n-1 2 n-1 -1
by bsv ("2, 802
P DU SO )

1 6 SR | : -1
) m [Z(b;ylk 1 bﬁzy—l;)((stvk 2,60"72) + b;y—i(‘/” A )
k=1
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1< _1 _1 _1
’ n [;(b;y—)k—l - b;y—)k)(‘st"k L 8VT2) + b (.60 72)
-1

1
+(f2, 600"

1

?)

11 _10 _12
<1 3T 0~ dent I+ o)

1 _1
+ DI + 8" 2||2>]

S e N R
+ B IE + [ IIZ)]
+(f"2,60"1), 1<n<N,
which can be rearranged as
[+ 200 [l + oo - 3w

T [ 10
< n—l[zwiﬁi-l =B Is |+ B
k=1

T n-1 1
o [ 2 (5 = B bf!’lnwnz]

k=1
+2r(f3,6V2), 1<n<N (3.215)
by noticing that
_1 _1 1 2 —12
(82,80 2) = (I8 - 18" I1).
Let
Q= 5°"
, n b(Y1) ¥) 1
Q"= |5 + 7 2<L’< + ﬂ>||6tvk_5 ’ 1<n<N.
k=1 rll rl
Then (3.215) reads

(1) (%)

Q' <Q" "+ r();—*l + "Tfl>||¢||2 L 2r(f, 6 2), 1<n<N.
1
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The application of the recursive process produces

(Y1) (Y)

<Q’ +TZ< o Y +2TZ(fk’3 5
(Y1) )

n-1 b
<|62°) +1 <—£—+-i—>nn2
16,v" Z: T P

b(yl)

k-1 n k-1 112
er 3 [Pk ]
k=1

(
M 4b)

p¥ -
T N RS AV ] N S Tl ], 1<n<N.
2] e

Therefore,
(Yl) )

n
1.2
2wy (y) o

I <o 3 (%
W

] 4b(}’)

1<n<N.

I,

(3.216)

By (3.20) and (3.22), the desired result (3.214) is attained from (3.216). The proof

ends.

3.6.4 Convergence of the difference scheme

Theorem 3.6.3. Suppose {U' |0 <i<M,0<n<N}and{ul |0<i<M,0<n

O

< N}

are solutions of the problem (3.199)—(3.201) and the difference scheme (3.206)—(3.208),

respectively. Let

then it holds
Il < k(7 +hY), 1<n<N,

where

L
k=7 \/Tylr(z -y + T'T2-y) co.
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Proof. The subtraction of (3.206)—(3.208) from (3.202), (3.204)—(3.205), respectively,
produces the system of error equations as follows:

(1 not k-
n [bg’l)é‘tei - Z(bﬁy—li—l - bi(qy—ll)<)5tei P bgzyfli ) O]
M k=1
1 et 5,0 W gt
’ n by 8ie; * = Y (b = by )b * =Bl -0
h k=1

1 1

n-3 n-3 .
=6re; 2 +(rg); >, 1<i<M-1,1<n<N,
e)=0, 1<is<M-1,

[ ef =0, €};=0, 0O<n<N.

Noticing (3.203) and applying Theorem 3.6.2 immediately arrive at

1,y _ 2 _1
[6.€"[° < 7187 @ =y + &7 T@= Yl Y ) [
k=1

< %[T“F(Z —y) + TTQ-YLE(Y + 1), 1<n<N.

Taking the square root on both hand sides of the inequality above and combining with
Lemma 2.1.1 will get the desired conclusion. The proof ends. O

3.7 The difference method based on L2-1, approximation for the
MTTFW equations

Consider the following problem of the MTTFW equations:

Z A, gDﬁ'u(x, t) =u, (X, ) +f(x,t), x € (0,L), t € (0,T], (3.217)
r=0

u(x,0) = p(x), u(x,0) =), xel0L] (3.218)
u©0,6)=0, u(L,t)=0, te(0,T], (3.219)

where Ay, Ay, ..., A, are some positive constants, 1 < y,;; < Y1 < -+ < Yo < 2and at
least one y, belongs to (1,2), and ¢(0) = 0, ¢(L) = 0, Y(0) = 0, Y(L) = 0. Suppose the
exact solution u € C(4’4)([0,L] x [0, T]).

3.7.1 Derivation of the difference scheme

For any grid function {uf | 0 < i < M,0 < n < N} defined on Q;, x Q,, introduce the
following notation:

1 - -
Dauf = Z[(20+1)u?—40u;’ "+@Qo-1ul?), 0<i<M,2<n<N.
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Let
vix,t) = u(x,t), a =y, -1

Thus, the problem (3.217)-(3.219) is equivalent to the following one:

Y A §DEVt) = ug (66 +f(x6, 1), x € (0,L1), t € (0,T], (3.220)
r=0

u(x, t) =v(x,t), xel[0,L], te(0,T], (3.221)
u(x,0) = p(x), v(x,0)=1x), xel0,L], (3.222)
u(0,t)=0, u(L,t)=0, te(0,T]. (3.223)

Denote

U =u(x,ty), Vi =vixpt,), O0<i<M,0<n<N,
P; = (p(Xi), ll)i = ll)(Xi), o<igM.

As that in Subsection 1.6.4, let t,_1,, = (n — 1+ 0)1, 77 = f(x;,t,_1,0) and 0 is the
root of F(o) = 0.
Considering (3.220) at the point (x;, t,_1,,), we have
< C 1
a, —
Z ArODt V(Xl-, tn—l+a) = uxx(xi) tn—1+0) +fin +G’
r=0

1<i<M-1,1<n<N. (3.224)

Using the theory of Subsection 1.6.4 to approximate the Caputo time-fractional deriva-
tive, it follows that

i ASDI V(X ty110) = nil eIy o(r %), (3.225)
r=0 k=0
where
S Y0 WS L7 R PP
k 27 TQ-a) k7
is defined by (1.93).

For the spatial second-order derivative on the right-hand side of (3.224), using
(3.85) and Lemma 2.1.3, we have

uxx(xi> tn—1+0) = auxx(xi’ tn) + (1 - O)uxx(xi’ tn—l) + O(Tz)

= 062U + (1- 0)52U"" + O(h?) + O(7?). (3.226)
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Substituting (3.225) and (3.226) into (3.224), we obtain

n-1

S e vt <080 - B ol

k=0
1<i<M-1,1<n<N, (3.227)
and there exists a positive constant ¢,y such that
[ro)| < cio(T” +h°), 1<i<M-1,1<n<N. (3.228)
Considering (3.221) at the points (x;, t%) and (x;, t,,_1,,), respectively, we get
{ 6th = Vf +(rp)l, 0<i<M, (3.229)
DU = oV + (1- o)V + (), O0<i<M,2<n<N, (3.230)
and there exists a positive constant c;; such that
[62(r)F| < cyt’, 1<i<M-1,1<n<N. (3.231)
In addition, it is known from homogeneous boundary value condition (3.223) that
(rm)o=0, (r)y =0, 1<n<N. (3.232)
Noticing the initial-boundary value conditions (3.222)-(3.223), we have

{ U =g, V)=t O<i<M, (3.233)
Ul=0, UL=0, 1<ns<N. (3.234)

Omitting the small term (ryo)! and (ry;)! in (3.227), (3.229)-(3.230) and replacing the
exact solution {U}", V{'} with its numerical one {u, v{'} produce the difference scheme

for (3.220)-(3.223) as follows:

n-1
> eI VI = 082! + (1- o)UY
k=0

1<i<M-1,1<n<N, (3.235)

1 1

S =vi, O0<isM, (3.236)
Daf =ov! + (-0, 0<i<M, 2<n<N, (3.237)
u =@, vi=1, 0<i<M, (3.238)
uy=0, uy=0, 1<n<N. (3.239)

Remark 3.7.1. By Lemma 3.4.1, it is easy to get an integral expression of (r;;)}, from
which one can obtain (3.231).
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Remark 3.7.2. For the nonhomogeneous boundary value problem

i/{, EDu(x, t) = w6, t) + fO6, ), x €(0,L), t € (0,T],
r=0
u(x,0) = o), u(x,0)=yx), xel0,L]

u(0,t) = u(t), u(L,t)y=v(t), te(0,T]
let
v(x, t) = u(x, t),

then one has an equivalent problem

m
3 A 6DV £) = ug (6 6) +f(x, ), x € (0,L), t € (0,T],
r=0

Uyt (X, 8) = v, (X, 8), x€(0,L), t e(0,T],
u(x,0) =), v(x,0)=1x), xe[0,L]
u(0,t) = u(t), u(L,t)=v(t), te(0,T],
v(0,6) =’ (t), Vv(L,t)=V'(t), te(0,T].

The following difference scheme can be obtained:

n-1
D &,(("’“)(vi"_k VR = 082U + (1 - 0)8%uT T + 11O,
k=0
1<i<M-1,1<n<N,

1 1
6282 =6v2, 1<i<M-1,
8Dl = 8oV + (1-oW' ™), 1<i<M-1,2<n<N,
u9=<p,-, v?=ll)1-, 0<igsM,
ug = u(t,), uy =v(t,), 1<n<N,

vo =M (ty), vy=VI(t), 1<n<N.

Interested readers are recommended to refer to [83].
Another way is firstly to make the boundary conditions homogeneous and then
consider the problem along the line in this subsection.

3.7.2 Solvability of the difference scheme

Theorem 3.7.1. The difference scheme (3.235)—(3.239) is uniquely solvable.

Proof. Let
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(I) The value of {u°,v°} is determined by (3.238).
(II) It follows from (3.236) that

ENTES

1
=2v —v) =26u7 -V, O<i<M. (3.240)

Substituting (3.240) into (3.235), and noticing (3.239), we can obtain the linear system
inu!

1 e (26tu —20) = 06Ul + (1-0)620 +f°, 1<i<M-1, (3.241)

ul =0, u)=o0. (3.242)

Consider its homogeneous system:

Xl’

{ i (1), 1 —o62ul, 1<i<M-1, (3.243)

up =0, uy =0. (3.244)

Making the inner product on both hand sides of (3.243) with u! and using (3.244), we
have

‘“’Ilu I+ olsad| = 0,

which implies u' = 0. Then the system (3.241)-(3.242) has a unique solution u'. Once
u! is obtained, v! can be got from (3.240).

(III) Now assume that the value of {u®,v°,u',v!,...,u"",v" 1} has been uniquely
determined, then it follows from (3.237) that

- %(D;u? -0V, 0<i<M. (3.245)

Substituting (3.245) into (3.235), and noticing (3.239), the linear system in u" can be
obtained as

. 1 -k n-k-
Cén,a) E(D (1 O')Vn 1 n 1] z (n a)(vn n 1)
=082 + - )& + 0, 1<i<M -1,

uy=0, uy=0.

To show its unique solvability, it suffices to verify that the corresponding homoge-
neous one

R 1 20+1 .
{ e . 02—:u? =08, 1<i<M-1, (3.246)
uy=0, uy=0 (3.247)

has only the trivial solution.
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Taking the inner product on both hand sides of (3.246) with u" and noticing
(3.247), we have

20 +1

N 2 2
2L+ ofsal| = o,

thus u" = 0. The system has a unique solution. Once u" is obtained, v" is followed

from (3.245).
By the principle of induction, the theorem is true. The proof ends. O

3.7.3 Stability of the difference scheme

Theorem 3.7.2. Suppose {u",v" | 0 < n < N} is the solution of the difference scheme

z ik Ry — 68201 + (1- 0)8u! ! +
1<i<M-1,1<n<N, (3.248)
1ot
1 6w’ =v)+q;, O0<i<M, (3.249)
Dall =V +(1-oW ' +q, 0<i<M, 2<n<N, (3.250)
w=9, V=1, 0<i<M, (3.251)
[ ug=0, uy =0 1<n<N, (3.252)
where gy = qy = 0(1 < n < N)and ¢, = @y = Py = Py = 0. Then there exists a
constant C such that
& k2 2
n
T ZIIV I+ 8.")
. 2
c| el |v° IP + 620 +TZ”p & +TZ|| 247, 1<n<N, (3.253)
where
M-1 M-1 M-1

2 2 2 2 2 2
|Mn:hzwb,uﬁu=hz@b,nx¢n=hzw@b,
1= = 1=
»(1 Q) 1-a,

Z A F(2 a ) '

Proof. 1t follows from (3.249)-(3.252) and g5 = ¢y = O(1 < n < N) together with
®o = Pu = Yo = Yy = O that

—_
—_
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Consequently,

1 1
{ V2 =0, v =0, (3.254)
ol +1-oVi =0 oV +(1-0oWtt=0, 2<n<N. (3.255)
0 0 M M

In addition, it follows from (3.251)—(3.252) with @, = ¢, = O that

{ ougy + (1-0)u) = 0, ouy, + (1 - 0)uy =0, (3.256)

oup+(1-ouy ' =0, oujy +1-0oujy;' =0, 2<n<N. (3.257)
(I) When n = 1, equation (3.248) reads
O -v)) = 082l + (1- )82 +p}, 1<i<M-1. (3.258)

Making the inner product on both hand sides of (3.258) with v: and noticing (3.254),
we arrive at

1 (1“ ||v || ||v0||2) =—(6,(ou" +(1- o)uo),SXv%) + (pl,v%). (3.259)
It follows from (3.249) that
23 23 01 .
6;6ul =6v: +6,q;, 1<i<M-1 (3.260)

Making the inner product on both hand sides of (3.260) with —(au1 +(1- 0)u0) and
noticing (3.256), we get

(8u' - 6,u°, 8, (ou' + 1 - o))

N

[N

,6,((0111 +(1- o)uo)) - (6)2(q1, oul +(1- o)uo). (3.261)

—~

o
Adding (3.259) and (3.261) yields that
LA~ O + L 60,6 (u' + (1 - o))
—(p %) (82¢", ou' + (1 - o)°).
Noticing the fact

(8" - 6,u° 6, (ou' +(1- o)uo))

= Zad + o - 1)” 27 b

o’ -0+1 2
— —6°]
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we obtain

R 2 1/0 2 0’-0+1
SO -0+ 1 (Slsart - S5 s )
<@ ,vi) - (6qu, ou' + 1- o),
which can be reduced to
T, 2, O 2 0?-0+1 2
2OV - O + Tl - TS sl

<T(p v2) (62", ou' + (1- o))

<1l v+ 718" - fou' + - o)

<t| S+ o P+

1 1
Slou' + a-on + S152a' |

& 12 012 1 112 1 112 0 1
<o ST+ 1)+ 5ol | o SO + 1) + Sha' |
Noticing
&(1,&) — i/l . ic(la) — iA . io‘lial’ — O(Tfao)
o AT T2-a)° &7 TR-a,)

~(1,@)

and then taking € = ¢;**, there exists a constant C; such that

weg L+ o)
< Ceg L+ 8l + ol

Ip'I + 763" ). (3.262)

+ T||u || + it

(II) Making the inner product on both hand sides of (3.248) with ov" + (1 — o)y
and noticing (3.255), we have

n-1
Z &I((n,a)(vn—k _ Vn—k—l’o_vn " (1 _ O_)vn—l)
k=0

= (8 (ou" + - o), 0v" + (1 -0 ) + (", 0v" + (1 - 0" )
= (8 (ou" + 1 - "), 8, (V" + (1 - oV ™))
+("ov"+(1-ov"), 1<n<N. (3.263)
By Lemma 2.6.1, the term on the left-hand side of (3.263) can be estimated as
n-1

Z &I((n,tx)(vn—k _ Vn—k—l’o_vn : (l _ o_)vn—l)
k=0
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>—zﬂmw - )
Thus,
1% na) n-k-1)12
52 W - )
k=0
< (8 (ou" + 1 - "), 8, (V" + (1 - oV ™))
+("ov"+(1-ov""), 2<n<N. (3.264)

It follows from (3.250) that
D;Sou! = 82(ovi + (1- oW ) +82q], 1<i<M-1,2<n<N.

Making the inner product on both hand sides of the equality above with —(ou" + (1 -
o)u"!) and noticing (3.257) lead to

(DS, ", 8, (ou" + (1 - o™ ™))
= (8 (V" + (1 - oWV ™), 6, (ou" + (1 - o)™ ™))
- (6)2(q", ou"+(1-ou"?"), 2<n<N. (3.265)

Denote

= Qo+ |8 - 2o - D5

+ (20" + 0 - )|, (" - u" ) |2, nzl
It follows from Lemma 3.4.2 that
no 1 nn2
F'> E||5Xu [> n=1 (3.266)
and
_ 1 _
(D8 ", 8, (ou" + (1- o)™ ™)) > E(F" -F"Y, nx2 (3.267)

Combining (3.265) with (3.267) gets

%(F" S < (B (0V" + (- o™, 8 (ou” + (1 - ™))

—(82¢", ou" + (1-o)™™), 2<n<N. (3.268)

Adding (3.264) and (3.268) yields

1e A(ntx n—k 2 n-k-1y2 1, n-1
S P )+ )
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<o +1-oW" ) - (5§q",au"+(1—0)u"_1)

<P - ov" + @ - oW | + 624" - ou" + A - o™ |, 2<n<N.

Noticing the fact that

Z*“Wf*f%w*ﬂﬁ

n-2
_ Z ~(n, a)"vn k)12 Z (A:I((n—l,oz)nvn—l—k”2
k=0 k=0
5] (na) _ an-1,0) n-1-k 2 ~(n o)
] el I §
k=0
-1

_ »(na)"Vn k)2 Z ~(n— la)”vrz 1- k”
k=0

- (@9 - eV -

we have

N =

o A La) |, n-1-k2 1 -1
(Zaron s F e ) -

—_

< S — e W + e O + "] - Jov + (- o™

N

+ 824" - Jou" + A - o™ "|, 2<n<N. (3.269)

Replacing the superscript n with I, and summing up for [ from 2 to n on both hand
sides of (3.269), we obtain

. 2 1
(S et -cowr ) e
n
sz(z@%> AP + z<mnn)

1=2 1=

=

—_

n

+ Y P Jov' + - o + Z||6,2(ql|| Joul + 1- o), 2<n<N. (3270)
1= =
Multiplying both hand sides of (3.270) by 41 and arranging the inequality, we have

n-1
2y G
k=0
) 2 - R 2 S
<F1+2TC(()1’0()“V1" +2TZ(CI(£, _Cl(lzltx ”vl“ 127 Z ID()"
1=2
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n n
+41 Z||pl|| . ||m/l +(1—-on! | + 4t zu(ﬁqln . ||aul +(1- a)uH", 2<n<N.

1=2 =2
(3.271)
It follows from Lemma 1.6.6 that
~(n,a) A(na) ~(n,a) A(nzx
¢ > C “>Cp2y >, 3.272
1 2 -2 rzo T r(l a,) ( )
By Lemma 3.4.3, we get
n(l (11) L o) _ (1)
~(1 - a a, a,
TS e ) =Ty Y A F(Z a) 2 " )
1=2 1=2r=0
{ ta) _ (-1a)
a a,
TZ T’ Q- a)z(clz ) )
i . a r1_-a (& l>(7_a'
T
= re-a,)01 12 o
m 1-a,
Ao oTTH (ar > —a
=y = L+1)o (3.273)
=1 Irl-a)\ o
and
i 1) ii T 1)
~(L,a Q,
TY G =T r
-1 r -1
=2 S C-a)
i LT ()
- T -
r=0 I'2-a) =2 '
m Tl—tx, -
:ZA, Zn-1+0)"™
= re-a,)2
3 m Tl—a,
S R — 3.274
2 ;O " TQ2-a,) ( )

The application of (3.272)—(3.274) in (3.271) leads to

m

232 e .Tnfuv"-kuz L
"T(1-a,)

r=0

+2‘r‘(1“ |v || +ZZ12 - a)<a—+1>

+3ZA’ r(z o=yl +4TZIIP |- Jov' + - o'

+47 Z||5)2(ql|| Jou! + (- o7
=2
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m 1-a,
1 saa 2 A T (e
< Fl 4 20091 + R a)( +1>

2
+3ZAr F(2 a) N

_ 1
+2r Z[eo Jov' + @ - oW+ — Ilp’||2]
=2 €o

n
+21 Z["aul +(1- a)uH"2 + ||5)2(q1||2]
1=

A T (a,
(La) r “r
<F! +21¢, ||v || + : s a)< +1>

+3ZAr F(2 ||V I +2T€oz W+ )
2r _
=Y +2rz<nu’||2 18, 2<n <N,
01=2 1=2
Taking &, = 7 Y110 A, F(l o hoticing (3.262), (3.266) and

= Qo+ |5 - Qo - 16,0
+(207 + 0= D8, (' - )|
< Qo+ 1|82 | - 2o - 1520
+2(20° + o = 1)(J6 ' + [6.°]")
= (40 + 4o - V|8 + (40% - 1)[5.°|,

it is easy to know that there exists a positive constant C, such that
n-1 K2 5
T Y WV 8
k=0
<G| 7e0® 02 602 i 2 12 "5212
<G e VI + 18l + T Y I+ Y P+ T Y N6 |
I=1 I=1 I=1
. 2 2 &I 2 2
< Cz(TCél“ IOl + 18281+ 7 3 18|+ 7 Y|P
I=1 I=1
L 2
+ TZ||5)2(C]I" > 1<n<N.
I=1

The application of the Gronwall inequality will lead to (3.253). The proof ends.
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3.7.4 Convergence of the difference scheme

Theorem 3.7.3. Suppose {U,V]' | 0 < i < M,0 < n < N}and {ul,v! | 0 < i <
M, 0 < n < N} are solutions of the problem (3.220)—(3.223) and the difference scheme
(3.235)-(3.239), respectively. Let

et =U'-uy, z'=V{'-v{, 0<i<M,0<n<N,
then it holds

T Z”Z || +|6,e || C(2 + A)LT(P +Y)’, 1<n<N,

where the constant C is defined in Theorem 3.7.2.

Proof. Subtracting (3.235)-(3.239) from (3.227), (3.229)-(3.230), and (3.233)-(3.234) re-
spectively, produces the system of error equations as follows:

Z O h 2T = g8kl + (1- 0)8%e) " + (ry)l,

1<isM-1,1<n<N,

1

1

1 . )
h 5[ e? —Zl-2 +(I’11)i, OglgMy
D;el :Uzl-"+(1—0)zi’"1+(r11);’, 0<i<M,2<n<N,
e =0 2z=0 0<isM,

1
ep=0, €y=0, 1<n<N.

Noticing (3.228) and (3.231)—(3.232), an immediate consequence of Theorem 3.7.2 into
the system above is

n
2 2
T[] + b€
k=1
R 2 2 L 2 1 2
C[rcéﬂ’”llz"ll + 16,€°] +TZ||(’10)1|| w1y 82| ]
=1 =1

n
< C[TZL Cio(T? + )] +TZL cut )2]

=1 =1
<C(y + A)LT( + K2, 1<n<N.

The proof ends. O
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3.8 The difference method for the time-fractional mixed diffusion
and wave equations

Consider the difference method by using L1 approximation for the following initial-
boundary value problem of the time-fractional mixed diffusion and wave equation

8D¥u(x, t) + ng‘u(X, ) = Uy, (%, ) + f(x, 1),

x € (0,L), t € (0,T], (3.275)
u(x,0) = (x), u(x,0)=yx), xe(0,L), (3.276)
u(0,t) = u(t), u(L,t)y=v(t), tel0,T], (3.277)

where the functions f, ¢, ¥, u and v are given, ¢(0) = u(0), @(L) = v(0), P(0) = i’ (0),
W(L) = v'(0), (C)D{u(x, t) and gD‘t"u(x, t) denote the time Caputo derivatives of u given
by, respectively,

t

C rma 1 odu(x,s) ds
Du(x, t) = .0 1,
oDrut ) m-m! s (-5 = %°
and
1 [ duks) d
Cry B ux,s s
D - | S g 1< <2

0

Suppose the exact solution u € C(4’3)([O,L] x [0, T]).

3.8.1 Derivation of the difference scheme
Denote
n )‘l—% 1
Uy =ulxpty), f; *= E[f(Xi, tn) + f (X, b))

Considering equation (3.275) at the points (x;,¢,) and (x;, t,_;), respectively, and
averaging the corresponding results yield

1 1
5 SDVu(x;, t) + SDVu(x;, ty )] + 5[gD;‘u(x,-, ta) + SDMU(x;, tyy)]
_1
- %[uxx(x,-, ) + U O by )] + 15, 1<i<M-1,1<n<N. (3.278)
With the help of Theorem 1.6.1 and Theorem 1.6.2, we have

(L;D?u(xi’ tn)



3.8 The difference method for the time-fractional mixed diffusion and wave equations = 241

-a n-1

T (@) (@) (@) yrrk _ (@) 170 2-
= Torw ag' U{'—I(Z(an”ik_l—an”ik)Ui -a?\UP | +0(r%)
=1
1-a n @ Kl a
= a?8,U ?+0(r7%), 1<i<M-1,0<n<N 3.279
1"(2—0(),;_1 nieUy 7+ 0(r) (3.279)

and

1.¢ C
SL6D}ux, ta) + §DjuCe, ty )]

LA P N <P W \s ks W)
=55 by 8.0 2 =Y (b)Y, - bV )8 U; 2 = b u(x;. to)
k=1
+0(°7), 1<i<M-1,1<n<N. (3.280)

Applying (3.279) and (3.280) into (3.278), we obtain

™Y et S W skt )
TG-y) by 6:U; _kz(bn—k—l_bn—k)atUi P =bl
=

- (@) -1 (@ (@)
+ —Tl - % 5y nz RERES a"_k_16 T
re-a«| 2 0 & !
2, -1 n-1 n-1 .
=6U; *+f; 2+(rpp); °, 1<i<M-1,1<n<N (3.281)
and there exists a positive constant c;, such that

_1 .
|(r); 2] < cpp(@™™ 3 4 R?), 1<i<M-1,1<n<N. (3.282)

For simplicity, denote s, = I3 -y)ands, = ™ 'T2- ).
Noticing the initial-boundary value conditions (3.276)—(3.277), we have
{ - o), 1<isM-1, (3.283)
uy = u(t,), uy =v(t,), 0<n<N. (3.284)

Dropping (Vlz)?_i in (3.281) and replacing U} by u!', we construct a finite difference
scheme for solving the problem (3.275)-(3.277) as follows:

1pe nt 5w W ys K3 )

s, [bO 6tui P Z(bn—k—l - bn—k)stui = by

Y k=1

() n-1 (@) (a)
1 a 1 a ", +da _ k-1

+_|:L5tu:’z+ n-k n1k5tuiz:|

4 Sa 2 k=1 2
_1 _1

—6 P +f?, 1<i<M-11<n<N, (3.285)

w=pk), 1<i<M-1, (3.286)
L ufy = u(t,), uy=v(t,), 0<n<N. (3.287)
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3.8.2 Solvability of the difference scheme

Theorem 3.8.1. The difference scheme (3.285)—(3.287) is uniquely solvable.
Proof. Let

u' = (ug,uy,...,uy).

The value of u° is determined by (3.286)—(3.287). Now assume that the values of

w0 ul, ..., 1" have been uniquely determined, then the linear system in u" can be

obtained from (3.285) and (3.287). To show its unique solvability, it suffices to verify
that the corresponding homogeneous one

b(y) 1
<L+ > u"——&iu]”—o 1<i<M-1,
S, 25, 2

Uy =upy =0

has only the trivial solution. By the maximum principle, the conclusion is obvious.
The proof ends. O

3.8.3 Stability of the difference scheme
Before analyzing the stability of the difference scheme, the following three lemmas
are provided at first.
Lemma 3.8.1. 1% Let {80-81>--->8n - - -} be a sequence of real numbers with the prop-
erties

8n 20, Ehn—8n1 s <0, 8n+1 — 2gn +8n1 20

Then for any positive integer m and for any mesh functions V;, V5, ..., V,,, € Uy, it holds
that

m /n-1
Z( Y & Vup Vn> > 0.

n=1\p=0

Lemma 3.8.2. Let {bl(y)} be defined in (1.64). For any mesh functions Y, V,V5,...,V,, €
Uy, it holds that

m
S (s - S -o0ovt -

=1 k=

%(i b(y)an ” Z b(y>1l|7,b|| >

k=1 n=1

S
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Proof.

M=

n-1
v () W yy/k »
. bO V- Z(bn—k—l - bn—k)V - bn—lll)’ Vn)
k=1

=
]

1]
M=

1

=
1|

[b<”||v I”- z ®Y, - b;”kxv’%v")—b;”l(w,v")]
k=1

by |V’ - zww DIAVE+ V"))

n-k-1" “n-k

WV
Mz

1

- Bl + | ]
i(zb AV "ib‘y’k 1||V"||2—b;”1n¢u2>
=§<Z LVH - Zb ||¢||>

k=1

=
I

k—l

l\)l’—l

3

O

Lemma 3.8.3. ") Let {a\*'} be defined in (1.57). For any mesh functions Vy, Vs,..., Vy, €
Uy, it holds that

)

n=1

( d®  nlg@ @

m
0 V Z nk nlkV V>>_a(0a)2||vn"2
n=1

Proof. Notice the fact that

() (@) (@)
ﬁ( 0 A nz‘? an k + an—l—k Vk, Vn)
2

k=1

(a)

§:<3 @y +”zlan kT Ang- 1k V") Za(“)llV"llze

By some plain calculations, the coefficients of the first term on the right-hand side
of the equality above satisfy the conditions of Lemma 3.8.1, hence it is nonnegative,
which implies

a(a) n-1 a(a) (a) 5
Z( 0 Vn+z nk n 1- kV V">> agx)z"Vn“ )
n=1 n=1

The proof ends. O
Remark 3.8.1. In Lemma 3.8.3, a minor error in [77] has been corrected.

We have the following result on the stability of the difference scheme.
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Theorem 3.8.2. Let {ul' | 0 < i< M, O < n < N} be the solution of the difference scheme
(3.285)—(3.287), in which u(t) = 0, v(t) = 0. Denote

B < T'TQ - a) )” -
7\ 4r2-y) ’

then, if T < 1, it holds that

2 2
ol < 16+ st

+2IR-y)T 'r Z |[fk’i |
k=1

1<n<N.

Proof. Taking the inner product on both hand sides of (3.285) with (Stu"‘% and sum-
ming up for n from 1 to m, yield that

13| m 50 Wy k-l g
S—Z by |6.u™ 2 —Z(bn_k_l—bn_k)(étu 2,6u"7)
=1 k=1
1

= b\ (. 6" z)]

() n-1 (a)

a a 1
+Siz< 2 Su ""+Z "klﬁu 2,6tu"_2>

a n=1

1
+ 5180 - J8.0°[)
= ZU 6tu % , 1$m<N.

By Lemma 3.8.2 and Lemma 3.8.3, we can obtain

(Z A e ﬁbf{’luwnz)

-5 leé}u"“ll 5 ||5 u"| - 8a°")

a n=1

Further we obtain

m

LB 6l b

Y k=1

1 & ) k=112 1 & k-1 12
(Ezb ||5t“ [ ‘gk;"‘stu I

Y k=

4s

—_
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(LRI R LR

Ly i Z(f”‘E 6u'2), 1<m<N. (3.288)

Ynl

For the second term on the left-hand side of (3.288), we have

k—— k——
is, Z N ] kzlnatu i
k—— _ k——
4F(2 Y) £ Z” tU " Sy klelfStu ”
T 1 2
B <4F(2—y) r2- a)) le&u |, 1<m<N, (3.289)
in which the inequality

bY = 2-y)+6)" >2-yN, 6¢€(0,1),0<I<N-1

was used. A careful observation of (3.289) shows that when 7 < 7, the right-hand side
of (3.289) is nonnegative. Thus it follows from (3.288) that

TV =12 1 mi2 o2
4r(2—y) Z||6tu 2" +2_T("5xu “ _||6xu " )

<o LS 50 iy +Z(f" ;,6u"7)

Y n=1

_ _1 _1
= gmz VIl + Z(f" 2, 6" 2)

1,

14
m* Y’ + Z( ooyl e Te-y T ), 1<men.

Consequently, we have

m 1
6™ < o) + “uwuz+2r(2—y>ryflrz||f"fa||2

F(3 y)

< |60 + ||¢|| + Q- ' Z|Lf 1<m<N.

F(3

This completes the proof. O

3.8.4 Convergence of the difference scheme

With the help of Theorem 3.8.2, we can directly derive the following convergence the-
orem.
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Theorem 3.8.3. Suppose that {U]' | 0 < i < M,0 < n < N} is the solution of the prob-
lem (3.275)-(3.277) and {u! | 0 < i < M, O < n < N} is the solution the difference scheme
(3.285)—(3.287), respectively. Denote

ef =U'-ui, 0<i<M,0<n<N.
Then, if T < 74, we have

168" < V2T@ - )TV Loy (T %3 4 1?), 1<n<N,

where cy, is defined in (3.282) and 1, is defined in Theorem 3.8.2.

Proof. Subtracting (3.285)—(3.287) from (3.281) and (3.283)—(3.284), respectively, we
obtain the system of error equations as follows:

1 e nt O R )
S_<b0 6fei - ’Z (bn—k—l - bn—k)(sfei P - bn—l -0
k=1

y
() n-1 4@ ()
1{a _1 a® +a® 1
+— L5t672+2—"k nlkge
Se\ 2 ! ] 2 !

1
=0, 1<isM-1,
0, ey=0, 0O<n<N.
Combining (3.282) with Theorem 3.8.2, we obtain
n
6" < 6,617 + 2@ - )Tt Y )
k=1

<2 - y) T el ey (7723 4 1))

<AQ-PT'LA(T™M N L 12)2 1<n<N.

This completes the proof. O

3.9 The ADI method based on L1 approximation for 2D problem

Consider the following problem of the two-dimensional time-fractional wave equa-
tions:

SDIUMG Y, 0) = U (6,1, 8) + Uy (6,1, 8) + FOG Y, B),
(x,y) € Q,t € (0, T], (3.290)

U(XJ’, O) = (P(X;J/)’ ut(X,% 0) = l/’(X,)’)) (X)y) €, (3291)
u(x,y,t) = u(x,y,t), (xy)eoQ, tel0,T], (3.292)
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where Q = (0,L;) x (0,L,), y € (1,2), the functions f, ¢, i, u are given and when
(x,y) € 0Q, u(x,y,0) = @(x,y), u;(x,y,0) = P(x,y). Suppose the exact solution u e
c**3)(Q x [0,T)).

Take the same mesh partition and notations as those in Section 2.10. For any mesh
functionv = {v | (i,j) € @,0 < k < N} defined on Qy x Q,, let

k-3 1, & k=3 1,k k-1
1 2(v]+v1 ", 6vy ° T(v]—v] ).

Introduce the same mesh function spaces V), and V), as those in Section 2.10.
Denote

Ui;'l = U(Xi,y]-, o) l/)ij = ll)(xi,y,-), fl;l =f(Xi,y]', t),
(1,j) ew, 0<n<N.

3.9.1 Derivation of the difference scheme
Considering equation (3.290) at the point (x;,y;, t,,), we have
SDIUCG, Vo ty) = U (6 Vi b) + Uy (6 Vi b)) + £, (1)) € w, 0 < n<N.

Taking an average on two adjacent time levels and applying the L1 formula (1.69)
and the second-order central difference quotient to approximate the time-fractional
derivative and the spatial second-order derivative, respectively, we have from Theo-
rem 1.6.2 and Lemma 2.1.3 that

LR ) W W k=3 o)
G- y) by 6f kz::(bn k-1~ bn—k)atUij ' = b,y
&1] +@ +u@ :, (ij)ew, 1<n<N, (3.293)

and there is positive constant c;3 such that
_1
|(rl3)Z. Y|<cp(CV + K+ k), (i) ew, 1<n<N,

where {b(y)} is defined in (1.64).
1
Adding a small term r(3 HER) T 6.6.6, U; 2 into both hand sides of (3.293) produces

1-y
T () (%) )
1"(3 y) Y Z(bn k-1 by 5 U bnyl ij

IG-y) 14y 2, M- 2,4
TT +y5)(5y6t[]1 =6.U 6ini 2

X l]
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_1 _1
+fl.;' 2y (rm);. 2 (j)ew, 1<n<N, (3.294)

where

G-y 52625 Un—%
A £4 U

1
n-s n-;
(rig)y * = (rz)y * + 4

and there is a positive constant c¢;, such that
n-3 3y 32, 32 .
|(r14)1.]. | <cu(T”V+h+hy), (Lj)ew, 1<n<N. (3.295)
Noticing the initial-boundary value conditions (3.291)-(3.292), we have

Uj = p(y), (i) € w, (3.296)
Uj = Uy ty),  (i,j) € 0w, 0 <n<N. (3.297)

_1
Omitting the small term (rll,)" 2 in (3.294) and replacing the exact solution U; ’; with its
numerical one u give the dlfference scheme for (3.290)—-(3.292) as follows:

T (Y) Z(b _p» )6tul.(.7% _p» vy
I'G-y) n-k ij n-171ij
TG -Y) 1y 2 5 -l n-l
| =T +y5X5y6tuU = 82uy; joorou T f 7
(i,j)ew,1<n<N, (3.298)
;= 90y, (i) € w, (3.299)
| U = uxypt), (b)) €dw, 0<n<N. (3.300)
Denote
n=7"TG-y).

Equation (3.298) can be rearranged as

1 1 1
n- 2. n-3 on-3 1 57200, n-j
Suuy * —nbuy * -nbuy * + LT &,6,00u; *
0 %) k=3 ) n-3
2 2
kZ(bn e~ b8 * + by 2
=1

or

N_e2n_ N_o 2, 26262 10
u]——‘r6xuu——‘r6 i + )116X6yuij

n-1 2,1 2n1 12200 n1
=u;  + T5X i ts T& —1116x5yui]~

) %) ( -3
+T Z(bn"_k_l - bny_k)5tu +7b}) V) "\ + Ty "2,
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which is
n n n n -
(I - ET6)2(><I - ET&;)U; = (I+ §T5)2(><I+ ET&;)H; 1
T om W \a k@) n-1
+T Y (b ey = by )8ty * + by +nfy
Let

(I— QT(Sz) U,

then the difference scheme (3.298)-(3.300) can be written as the following ADI form:
On each time level t = t,, (1 < n < N), firstly, for any fixed j from 1 to M, - 1, solve a
series of linear systems in {ui’;- | 0 <i< M,;}inx direction

(I— 216)2()111-’; = (I + 216,2()(1 + gﬁ;)u;’fl

3 +TZ(b 6tu 2+‘rbn1 U+‘rrqu , 1<isM; -1,

Ug; = <I n162>u0], Uy i = <I—gr5}2,>u}fdlj

to obtain the value of

on the intermediate time level.
Then, for any fixed i from 1 to M; — 1, carry out some calculations for the unknown
{u | 0 <j < M,}iny direction

2 .
<I—§T6 )u —uu, 1<j<M,-1,

Ug = H(Xi Yoo ta)s  Uing, = KXo Vg, o)
to produce the desired value of

{wj 11<j <My -1}

Next, the corresponding theoretical analysis on the difference scheme (3.298)-
(3.300) will be studied.

3.9.2 Solvability of the difference scheme

Theorem 3.9.1. The difference scheme (3.298)—(3.300) is uniquely solvable.
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Proof. Let
u" = {uZ | (i,)) € @}.

The value of u° is determined by (3.299)-(3.300). Now assume that the values of
u®,ul,...,u™! have been uniquely determined, then the linear system in u" is ob-
tained from (3.298) and (3.300). To show its unique solvability, it is sufficient to verify

that the corresponding homogeneous one

1 IG-y) yw 2 2 .
n—Tug- + TTVSX(Syug- = —(SXu;' + 6yug-), (i,j) € w, (3.301)
up =0, (i,)) € ow (3.302)

has only the trivial solution.
Making the inner product on both hand sides of (3.301) with u", it follows from
(2.200)-(2.202) that

n—l_r(u",u”) + F(34 y) ' (8,6,u", 6,6,u") = %[(6xu”,6xu") + (8", 8,u")],
that is,

i n2 F(3 Y) _y __1 n|2

pe T+ =180 = =5 vl <0,

thus |u"| = 0. Noticing (3.302), we have u" = 0.
By the principle of induction, the difference scheme (3.298)-(3.300) is uniquely
solvable. The proof ends. O

3.9.3 Stability of the difference scheme

Theorem 3.9.2. Suppose {vi']'- | (i,j) € @,0 < n < N} is the solution of the difference
scheme

’1 b<w6f Vi T~ Z(bn k-1 bily—)k)(sfv b(y 1"01}

1
+ —n5)2(5§8[v = 82V, = + 62V, = +f; 2,

X ij y ij
(i,j)ew, 1<n<N, (3.303)
vi = 90wy, @) ew,
[ V=0, (i,j)€ow, 0O<n<N. (3.304)

Then it holds

IVaI” < [V°) e ||!/)|| + 27T -y)r an 1<n<N, (3305

k=1




3.9 The ADI method based on L1 approximation for 2D problem =— 251

where
, M-1M,—1 il MMl
I =hhy Y Y wh I =k, Y Y ()
i=1 j=1 =1 j=1

Proof. Taking the inner product on both hand sides of (3.303) with n5tv""% yields

_1 _1 _1 _1
bY 6" 2| - Z(bnkl bV )62, 8" 2) — bY, (p, 6" 2)

1

+ %nzrz(5§5§6tvn_%,6tvn_5) = n(S)Z(v"_%,(Stv"_%)
+ n(ﬁ)z,v"_%,ﬁtv"_%) + n(f"_%,dtv"_%), 1<n<N.
Noticing (3.304), it follows from (2.200)—(2.202) that
(82826,/"2, 6 2) = (8,8,6V"7,6,6,602) 2 0,
(B3, 60"8) = (8" 3,8,80"3) = (6| - |8 P)
(83, 6"8) = ~(6,"1,8,60" %) = —_(|,v" " - 8,7,

hence,
b6 2 I + LI + 6, 1) = (18I + 8, )]
HZ(bg’)k 1 bﬁ,y,)k)(‘stvk_%, ‘Stvn_%) + bi&('pr 6tvn_%)
k=1
+ n(f"_%,Stv"_%), 1<n<N.
By the Cauchy-Schwarz inequality, we have
b6 2| + —(IIth "= 19"
<3 2 (b, = V)52 + 6 3
# S+ 503 ) 080 5), 1<,

which can be reduced to
2 T 12
V™" + ~ Z b, [18:/77|

_1.2
S R W

kl
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T _1 _1
+ Eby_’luzpnz +21(f"2,80"2), 1<n<N.

The recursive process will produce
|9 + = Zb WAl s
<[ 012 . TC »0) g2 N S
< Vv’ +—Zbk Il +2TZ(f 2,6,v°72)
M k=0 k=1
o2 TN 102
<PVl Zbk Il
k=0

3 Pk g, i 1 ) enen

that is,
N R A Zb(y)||z/)|| +TZ ) “LF3P, 1<n<N. (3306)

By (3.20) and (3.22), it follows (3.305) from (3.306). The proof ends. O

3.9.4 Convergence of the difference scheme

Theorem 3.9.3. Suppose {Ui;’ | (i,j) € @,0 < n < N} and {u | (i,j) € @,0 £ n < N}
are solutions of the problem (3.290)—(3.292) and the dzjference scheme (3.298)-(3.300),
respectively. Let

n n n .. _
ej=Uj-uwj, @ij)ed 0<n<N,

then it holds

IVhe"| < VT'T@ = Y)LiL, (Y + K2 +H2), 1<n<N.

Proof. The subtraction of (3.298)—(3.300) from (3.294), (3.296)—(3.297), respectively,
produces the system of error equations as follows:

1 1 nod
E[bg)&e; S, 8t b0
k=1

TG-Y) 14y2020 n3
+ TT y6 5y6tei]. 2

)’l—1 P
= 8le; 2+5§ 4 2+(r14)i]. ,, (ij)ew, 1<n<N,
eij =0, (l;]) € w,

€j=0, (ij)edw, 0<n<N.
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Noticing (3.295), the application of Theorem 3.9.2 will lead to

n
9" < 7' T@ -yt Y )|
k=1

<TTQ- YLl (@ + B+’ 1<n<N.

Taking the square root on both hand sides of the inequality above will reach the de-
sired result. The proof ends. O

3.10 The compact ADI method based on L1 approximation for 2D
problem

In this section, the spatial compact ADI difference method will be developed for
(3.290)—-(3.292). Suppose u € C®*3(Q x [0, T]). Take the same mesh partition, mesh
function spaces and notations as those in last section. In addition, for any mesh
function u € V,, define the average operators as follows:

T+ By,  1<i<M -1, )
Axui]-—{ 257 ! 0<j<M,,

U, i=0ori=M,

Au; =

, 0<i<M,.

(I+ 1;6)2/)111']‘, 1 <] < M2 -
ij =
u

ij’ j: 001‘j=M2,

3.10.1 Derivation of the difference scheme

Considering equation (3.290) at the point (x;,y;, t,,), we have
gD?”(ber tn) = U (Xp, Vs ) + Uy, (X3, Vi t) + ffs - (L)) € @, 0<n<N.

Performing the operator A, A, to both hand sides of the equality above, it follows from
Theorem 1.6.2 and Lemma 2.1.3 that
A Ay GDIUG, Vi ) = Ay (Agth (066, Vo )
+ A (Ayltyy (X, Yjs t) + A A fif
= A 8.U + A8 UL + A A ST
+O(h{ +h3), (i,j)ew, 0<n<N.

Taking an average on two adjacent time levels and applying the L1 formula (1.69) to ap-
proximate the temporal Caputo fractional derivative, it follows from Theorem 1.6.2 that

Y

( » (0} »
AN TE T " bY8,U kZ(an 1 bny_k)stu - bYWy
=1
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1
2 27
= Ay6x p = +Ax6y = + A Ayf + (r15) ,
(i,j) ew, 1<n <N, (3.307)
and there is a positive constant ¢;; such that

1
|(r15)g. Y| <o(PY +hf+hy), (L) ew, 1<n<N,

_1
where {b;y)} is defined in (1.64). Adding a small term @THY&(&,&U; 2 into both
hand sides of (3.307) arrives at

L ) i S (2] (2] (2]
Ay AYFG 53| 200U Z—kZ(bn_k_l—b )8U -bY
=1
TG-y) 1y 2y 2, -3
+ T Vo 8,6.U; T = ASUL P+ AB UL
F AAS] 2+ (ng)y 5 () €w, 1<n<N, (3.308)

where

F(3 - Y) T1+y52525t n-3

1
-3 _ 2
(rl6)ij - (r15)ij + 4

and there is a positive constant ¢, such that
n-3 3y 34, L4 .
|(r16)i]. 2| <e(t” +hf +hy), (L) ew 1<n<N. (3.309)
Noticing the initial-boundary value conditions (3.291)-(3.292), we have

U = pxy), (b)) € w, (3.310)
Ui = u(yjptp),  (0,)) € 0w, 0 <n<N. (3.311)

Omitting the small term (r16)"_5 in (3.308) and replacing the exact solution U”
with its numerical one u produce another difference scheme for (3.290)-(3.292) as
follows:

1-y
T » » p)
AxAyF(B_y)[bo 6tu Z(bn o~ b? )5u by
G-y - _1
]+ (34 Y)T1+Y5)2(5}2/5tui]_ y,si Z LA 52 +Ax-'4yfi;l :
(i,j) ew, 1<n <N, (3.312)
u) = 9(x.y), (i) € w, (3.313)

{ ug- = u(x;,yj,ty), (i) € 0w, 0 <n<N. (3.314)
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Denote
n=7"TG-y).

Rewrite (3.312) as

nr nr
<A 6x><Ay - ?(Sy)ug
T T
= (.AX + %6§><Ay + — 1 62>

+TAxAy[kz(b;yk l—by) )8,u l.. & +bny)1 u] +NTA, Ayfl]
=l

Let

* nt
ui]. = <Ay 62> 1]’

then the difference scheme (3.312)—(3.314) can be written into the following ADI form:
On each time level t = t,, (1 < n < N), firstly, for any fixed j from 1to M, - 1, solve a
series of linear systems in the unknown {u | 0 i< M;}in x direction

NT 2\« nt . NT 2\ n-1
(AX - 75;()”17 = <AX + 75)()(.,4}, + ?5y>ug~

n
[

) k=3 )
bny—k)afuij P bny—llpil']
k=1

+rZT.AAyf 1<isM; -1,
% TIT % I’IT
Ug; = (A 62>u0], Uy j = <A 52> Uy, j

to obtain the value of

on the intermediate time level.
Then, for any fixed i from 1 to M; — 1, carry out some calculations about the un-
known {u; | 0 < j < My} in y direction

<Ay HT(SZ)u =u;

Ujp = KOG Yor tn)s “i,M2 = U(Xi> Yary» t)

i 1<j<M;-
to get the desired value of
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3.10.2 Solvability of the difference scheme

Some preparation work is firstly done in order to show the unique solvability of the
difference scheme (3.312)—(3.314).
For any mesh functions u,v € V,, define

Jw,v) = (A Au,v).

Noticing (2.200)-(2.202), it follows

Jw,v) = <(I+ ?—35)2()(I+ h_gaz)u,]/)

127
n? h2 h2h?
= (u,v) - 1—;(5,(11, 8,v) - 1—;(5},11, 8,v) + ﬁ(&xd},u, 8,6,v).
It is easy to verify that
1
§||u||2 <Jwu) < Jul?, (3.315)

which reveals that J(u, v) is an inner product defined on f/h. Denote

WV)a =JWw,v), ully = \(w,u)y -

In view of (3.315), the following lemma is true.
Lemma 3.10.1. For any mesh function u € Vy, it holds
1,2 2 2
Slull” < flully < ful”.
3
Now the existence and uniqueness of the solution to the difference scheme
(3.312)-(3.314) will be proved.
Theorem 3.10.1. The difference scheme (3.312)—(3.314) is uniquely solvable.

Proof. Let
u' = {uf]’ | (i,j) € @}.

The value of u° is determined by (3.313)-(3.314).

Suppose the values of u°,u!,...,u"™! have been uniquely determined, then the
system in 1" can be obtained from (3.312) and (3.314). To show its unique solvability,
it is sufficient to prove that the corresponding homogeneous one

1 FG-y) yo 1 2 2 .
EAXAJ/”Z‘ + Tryéxc?yug- = E(Ayﬁxug- + AX(Syu;}), (i,j) € w, (3.316)

u; =0, (1)) € 0w (3.317)
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has only the trivial solution.
Taking the inner product on both hand sides of (3.316) with u" yields

Ty(6,2(6}2,u",u") = %[(A),Siu",u") + (AX6}2,u",u")]. (3.318)

1 IG-y)
n—T(AX.Ayu",u") = Y

Noticing (3.317), it follows from Lemma 3.10.1 that

1
(A ") = "), = | §||u"||2. (3.319)
Noticing (2.200)—(2.202), we have
(8262u",u") = (8,8,u", 8,8,u") = |6, 6,u"|", (3.320)
2
(A, 50" u") = <<I + %63,)6)2(11",11")
h2 2
= 5| + 288N < - Sh8r", (3321
2.n . ny _ h% 2\e2. n n
(A u"u") =T+ Eﬁx su",u
n 2
— " + é||6x6yu"||2 < —§||5yu"||2. (3.322)

Substituting (3.319)-(3.322) into (3.318) arrives at

1 2 T3-y) 2 1 2
ST =5 188 < =5 e[ <0,

thus ||u"|| = 0. Noticing (3.317), we have u" = 0.
By the principle of induction, the difference scheme (3.312)-(3.314) is uniquely
solvable. The proof ends. O

3.10.3 Stability of the difference scheme

For any mesh function u € V,, define

n n?
153t} = (10, - 208,802 ) + (18, - 218,817 ).

The following lemma will state the equivalence between ||V}, - ||, and ||V}, - |.

Lemma 3.10.2. For any mesh function u € V, it holds

2 2 2
§||vhu||2 < IVpully < IVul.



258 — 3 Difference methods for the time-fractional wave equations

Proof. First, it follows from the inequalities of inverse estimate

4 4
16, 8,ull* < Puéxunz, 16,8,ull® < Fncsyun2
2 1

that

2
[Vyully >

WIN

2
(I8l + 18, ul”) = 13l
Second, it is easy to know that
IVpuls < 18l + 18,ul* = |Vyul’.
The proof ends. O
Another lemma will be needed.

Lemma 3.10.3. For any mesh function u € V, it holds

2 n-l _1 _1 1 2 12

(A GU"2 + Ax5}2,u" 2, 6" 2) = ‘Z("Vh“n”/q o\ 1||A).
Proof. Noticing (2.200)-(2.202) and applying the summation by parts arrive at
(Ayé)z(u"_% + AX6§u"_% , 6tu"_%)
h3 h?
: ((z+ é&ﬁ)sﬁunf%,@u“ﬂ " ((z n éaﬁ)aiu"*%,atu"*%>

2 n-1 2 n-1 n-1
= (GU" 2+ G2, 6" 2)

2 _1 1. K _1 _1

+ 1—;(5x5yu" 2,8,6,6u"7) + 1—;(6X6yu" 2,6,6,6,u"7)
1 2 2 12 12

= = (181" + 8,47 = (fo™ |+ 18,4 ])]

o1 2 _12

L (o s - 5,600 )
h% 1 n|2 n-1)2

* 1 " 5 U = 88,4

1 nj2 h% n2 ny2 h% ny2
- L0 (psa - B ) (0 - oy

(- By s ) o (15, - 5]}
x 2T y 220y
1 2 —12
(N )

The proof ends. O

Next, the stability result of the difference scheme (3.312)—(3.314) will be shown.
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Theorem 3.10.2. Suppose {v{]’- | (i,j) € @,0 < n < N} is the solution of the difference
scheme

1 ol = n-1
Ay Y8y - Y (Y, - bff_)k)o}vl.j b | + —n526§5tv1.j :
k=1
1
—Ay5§ZZ+A52 i 2+gU , (ij)ew 1<n<N, (3323)
Vi = 0.y, (b)) €w, (3.324)
| vj=0, (ij)€dw, 0<n<N, (3.325)

where Yy ;iyca = O- Then it holds

n
vl < 190l + @y Y 1<n<N,G326)

with
M;-1M,-1 ' M,-1M,-1
12 =hhy Y Y @y g =k Y Y (g
i=1 j=1 i=1 j=1

Proof. Taking the inner product on both hand sides of (3.323) with n6tv"‘% yields
-1 k-1 -1
b(y ”5tv" " kz bi,wk 1 bﬁ,y_)k)(f?tv 2, 6tVn 2 )A
-1

- b(y (U 8" - )a T_2U2(5)2(5)2/5t‘/n_% > 5tVn_% )
=n(A, 8V . Ay 62 i , 6" ) + n(g"‘% , 6tv"‘% ). (3.327)
It is easy to see that
(82626,/"°2, 60" 2) = 6,8,60" 2| > 0, (3.328)
and it follows from Lemma 3.10.3 that
(A 820" 4 A B2, 6,V"77) = —%("th"“fl v ). (3.329)

Substituting (3.328) and (3.329) into (3.327), by the Cauchy—Schwarz inequality, we
have

12 2 102
b(y) 166v™ 2y + i(”Vh‘/n"A 4 1”A)

A e R SR EaR
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1 1.2 1.2
<5 kz(bily—)k—l =B )18y + 182
1

2 _1 _1
* = b(y1(||'l’||A+||5tV a)+n(g" 7, 60"), 1<n<N,

N

which gives

_1.2 2 —1112
B 6"+ 2V = 19712

n-1

Kk-1,2 _1 _1
< kZ(bf{jkfl — b8V 2|y + B IplE + 2n(8" 2,8V 2), 1<n<N. (3.330)
=1
Let

= [v°]

2 2 T 12
o H =1l 5 Y B 6 2 1<n<N,
k=1

then it follows from (3.330) that

n-1 y) -1
H'<H" + - b ||1/)|| +21(g" Zétv 72), 1<n<N.

The recursive process leads to

1 1
H'<H+ Z b Iyl +ZTZ R )

k=0
n-1 n b(y)
<HO+ Ty bl er Y (S ngk*%uz - 2o
1 k=0 k=1 b

n-1 n (
<H0+£ Zb}(”ulpnsz( ||gk_7" + - k"5t kh“A) l<n<N,
k=0 k=1

that is,

0 < o+ £ S B0 e 30y TP 1enen. a3
S5 iz b

By (3.20) and (3.22), the desired result (3.326) can be obtained from (3.331). The
proof ends. O

3.10.4 Convergence of the difference scheme

Theorem 3.10.3. Suppose{Ui’]? | (i,j) € @,0 < n < N} and {u | (i,j) € @,0 < n < N}
are solutions of the problem (3.290)—(3.292) and the dlﬁerence scheme (3.312)- (3 314),

respectively. Let
n n

n P =
i (L)) ew, 0sn<N,
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then it holds
Vel <

\2T'T2 - Y)L,L, (Y + b} +Rh3), 1<n<N.

Proof. Subtracting (3.312)—(3.314) from (3.308), (3.310)—(3.311), respectively, the sys-
tem of error equations can be obtained as follows:

N W

n 1

1 1 n-1
L [sset- S aond oo o
k=1
IG-Y) 1y 2 n-;
+ TT +y6x6y6teu Ay6x ij +A 5}'e1} + (r16)ii g
(I,j)ew,1<n<N,
e)=0, (ij)€w
e;j=0, (i) €dw, 0<n<N.

Noticing (3.309), the application of Theorem 3.10.2 will yield

[Vhe" 3 < 3¢ 'T@- p)r le(rls)
<3TTQ-YLiLycig(T” + hi +h§), 1<n<N.

Taking the square root on both hand sides of the inequality above, it follows from
Lemma 3.10.2 that

[Vhe"|| < \Envhe“u 4 < %\/mr(z ~YLLy cig(TY + b + 1), 1<n<N.

The proof ends. O

3.11 Supplementary remarks and discussions

1. In this chapter, the finite difference methods for solving the initial-boundary value
problems of time-fractional wave equations were discussed. The time Caputo frac-
tional derivative was approximated by the L1 approximation, the fast L1 approxima-
tion, the L2-1; approximation or the fast L2-1, approximation. The spatial second-order
derivative was discretized by the second-order central difference quotient or the com-
pact approximation. Several difference schemes were derived. The unique solvability,
unconditional stability and convergence of each scheme were analyzed. For 2D prob-
lem, the ADI and compact ADI methods were mainly addressed.

2. The concerned problems in this chapter were the time-fractional wave equa-
tions in the differential form and the difference schemes were derived using the
fractional numerical differentiation formulae to directly approximate the fractional
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derivatives. It is worth to mention that in 1993, Tang[87] investigated the difference

method for a class of pseudo-differential equations with the weak singularity ker-
nel, which are precisely the integral form of the fractional wave equations of order
3/2. There are also some results on the difference methods for the integral forms of
fractional differential equations. Huang et al.b8l performed the fractional integral op-
erator OD}’“ on both hand sides of (3.1) and obtained an equivalent form of (3.1) as
follows:

U6, 6) = Y(X) + oD} U (6, £) + oD} *F (X, 1). (3.332)

Then the first-order G-L formula was used to derive the difference scheme. Wang and
Vong[%] also studied the difference method for solving (3.332) and the second-order
convergent difference scheme was established, where the second-order G-L formula
was derived to approximate the R-L integral. Huang et al.”? continued to study the al-
ternating direction implicit scheme for the two-dimensional time fractional nonlinear
super-diffusion equations by the above transformation.

3. All problems in this chapter are ones with the Dirichlet boundary conditions.
Ren and Sun'®® studied the high-order difference method for this kind of equations
with the Neumann boundary conditions. Later on, Vong and Wang[90] also discussed
the difference method for this kind of problem. Besides, the difference method for the
time-fractional wave equations in unbounded domains was focused on by Brunner
etal.ll.

4, In Section 3.6 and Section 3.7, a class of multiterm time-fractional wave equa-
tions was briefly studied. For the numerical method solving this kind of problems, Gao
and Liu ?% discussed the fourth-order multi-term time fractional wave equations.;
LiuP! also made some research results on the 1D problem. For the 2D problem, the
compact ADI method was developed in [68] and the energy method was used to make
some analyses.

5. Sun etal.® obtained a temporal second-order difference scheme for the frac-
tional wave equation by using the method of order reduction and L2-1, approxima-
tion. Then Sun etal.!®®! combined the method of order reduction with the method in
[19] to construct the temporal second-order difference scheme for the multiterm time
fractional wave equation. Sun and Sun [79] developed a fast temporal second-order
difference scheme for the multiterm time fractional wave equation.

6. Feng et al.[ls], Sun etal.””! have studied the difference methods based on L1
approximation for the time fractional mixed diffusion and wave equations. Du and
Sun” have studied the difference methods based on L2-1, approximation with the
method of order reduction for the time fractional mixed diffusion and wave equations.
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Exercises 3

31

3.2

Consider the problem
oDYu(x, t) = uy 06, ) + f(x,t), x €(0,L), t € (0,T],

u(x,0) =0, u(x,0) =0, x¢€(0,L),
u(o,t) = u(t), u(L,t) =v(t), tel0,T],

(3.333)
(3.334)
(3.335)

wherey € (1,2), the functions f, y, v are given and u(0) = v(0) = u'(0) =v'(0) =

For any fixed x € [0, L], define the function

0, t<O,
A u(x,t), o<t<T,
ux,t) =
vix,t), T <t<?2T,
0, t>2T,
. . . . vixt Fult vt
where v(x, t) is a smooth function satisfying gt’k‘ Yer = :—;tf 2 ers gt’k‘ )

0, k = 0,1,2,3. Suppose it(x, ) € € (R).
For the problem, construct the difference scheme as follows:

NI

n-1 1 1
—(y-1 (y-1) n-k—s 2 n—s n-s
TN gV Vsu =8 2 +f 2,
k=0
1<i<M-1,1<n<N,

=0, 1<is<M-1,
= u(ty), Uy =v(t,), 0<n<N.

u
ug
For this difference scheme, try to

(1) analyze the truncation error;

(2) show the unique solvability;

(3) show the stability with respect to the function f;
(4) show the convergence.

lt=or =

For the problem (3.333)-(3.335), construct the following difference scheme:

( =D Zgy%tu > 82u ""+Af

1<i<M-1,1<n<N,
=0, 1<i<M-1,
ug = u(t,), uy =v(t,), 0<n<N.
For this difference scheme, try to

(1) analyze the truncation error;
(2) show the unique solvability;
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(3) show the stability with respect to the function f;
(4) show the convergence.

3.3 For the problem (3.1)-(3.3), apply the H2N2 approximation (1.106) in Subsection
1.6.5 to construct the following difference scheme:

1

"”6 b(" (ny) -3 _ oy
ey ;o Z( —BMYs - By,

) :5§u?_5+f1.7, 1<i<M-1,1<n<N,
u?z(p(xi), 1<isM-1,
uy = u(t,), uy =v(t,), 0<n<N.

For this difference scheme, try to
(1) analyze the truncation error;
(2) show the unique solvability;
(3) show the stability with respect to the initial value ¢ and the function f;
(4) show the convergence.
3.4 For the problem (3.1)-(3.3), apply the fast H2N2 approximation (1.154)—(1.156) in
Subsection 1.7.3 to construct the following difference scheme:

1 1
M - l,b,-):ﬁ,z(u +f2, 1<isM-1,

F(Z—y)
N,
1 S 7 o 2 n-
_— wF;+ —6u | =8u 2+f
F(2—y)[; i 2_y t¥i
1<i<M-1,2<n<N,
t1
2 y s(t;t
Ffl:;J “GOdtGu} — ), 1<i<M-1,1<1< Ny,
O

n -7 pn-1 "‘% ”‘%
Fy=e " F; +B(6u; * = 6uu; ),

1<1<Nyy 1<i<M-1,3<n<N,
O o), 1<i<M-1,

L ug = p(ty), upy =v(t), 0<n<N.

For this difference scheme, try to
(1) analyze the truncation error;
(2) show the unique solvability;
(3) show the stability with respect to the initial value ¢ and the function f;
(4) show the convergence.
3.5 Consider the problem

oD u(x, t) + oDVulx, t) = uy (x,t) + f(x,t), x € (0,L), t € (0,TI,
u(x,0) =0, us(x,0)=0, x¢€(0,L),
u(0,t) = u(t), u(L,t) =v(t), tel0,T],
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where 1 < y; < y < 2, the functions f, u, v are given and u(0) = v(0) = u'(0) =
V'(0)=0

Define the function ii(x, t) like that in Exercise 3.1, and suppose ii(x, -) € Y (R).
For the problem, construct the difference scheme as follows:

n-1 1
—(y,— - —k—3 k-
DY gD e z 0D
k=0 k=0

_1 _1
1 =8u 2+f %, 1<i<M-11<n<N,
O 1<isM-1,

0
l
ug = U(ty), Uy =v(t,), 0<n<N.

For this difference scheme, try to

(1) analyze the truncation error;

(2) show the unique solvability;

(3) show the stability with respect to the function f;

(4) show the convergence.

For the following problem of the time-fractional mixed diffusion and wave equa-
tions

SDVu(x, £) + SDfu(x, £) = ug (6, t) + f(x, 1), x € (0,L), t € (0, T],
u(X) 0) = (P(X)a ut(xa 0) = lpb(x)> X € (O)L)>
u(0,t) = u(t), u(L,t) =v(t), tel0,T],
where1 < y < 2,0 < a < 1, the functions f, ¢, Y, u, v are given and u(0) = ¢(0),

v(0) = (L), ' (0) = ¥(0),v'(0) = (L), construct the following compact difference
scheme:

k=1

1 st 5w W)y ks g

A{g[boy Seu; _Z(bny—k—l_bny—k)‘S ’ byl‘rbl
@ @ @

A{Si[—ao st 4 S Qnck Gk kstu’.“i”

1

2 ! 2

=8 P+ Af 7, 1<i<M-1,1<n<N,
u?z(p(x,), 1<isM-1,
L ug = pu(ty), uy=vt,), 0<n<N

For this difference scheme, try to

(1) analyze the truncation error;

(2) show the unique solvability;

(3) show the stability with respect to the initial value ¢ and the function f;
(4) show the convergence.
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3.7

3.8

Consider the problem

oDIUX, Y, 1) = U (6 Y, 1) + Uy, (X, Y, 1) + F(X, Y, 1),

(y)eQ, te(0,T], (3.336)
ux,y,0)=0, uxy,0 =0, (xy)eQ, (3.337)
UGy, t) = ux,y,t),  (xy) €oQ, te[0,T], (3.338)

where Q = (0,L;) x (0,L,), y € (1,2), the functions f, u are given and

UG Y, 0)l(xy)ean = 0, ’ff(x’y’ 0)l¢xy)ean = O-
For any fixed (x,y) € Q, define the function

0, t<O0,
. u(x,y,t), 0<ts<T,
u(Xs y, t) =
vy, t), T<t<?2T,
0, t > 2T,
k 1 L
wherev(x, y, t) is a smooth function satisfying avé+”|t r=2 “é’t‘kyf I, 2 a)t(ky O]y =

0, k = 0,1,2,3. Suppose it(x,y,-) € € (R).
For the problem, construct the difference scheme as follows:

1
—-(y-1) (- 1) 2 - 2 2 2 =3
Zg 6X ij +5y ij +fij >

(1,j)ew,1<n<N,
up=0, (ij)ew,

Wi = P, yjpty),  (i,j) €dw, O0<n<N.

For this difference scheme, try to

(1) analyze the truncation error;

(2) show the unique solvability;

(3) show the stability with respect to the function f;

(4) show the convergence.

Similar to Exercise 3.7, define #(x,y, t) and suppose u(x,y,) € &MY (R). For the
problem (3.336)-(3.338), construct the following difference scheme:

( leg(yl)(st >

n-1
<_Ay6§:j +A62 +AXAyfij , (ij)ew 1<n<N,

ul-j =0, (@(1,j)ecw,

ug- = u(x;, Y5, ty), (i) € 0w, 0 << N.

For this difference scheme, try to
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(1) analyze the truncation error;

(2) show the unique solvability;

(3) show the stability with respect to the function f;
(4) show the convergence.






4 Difference methods for the space-fractional partial
differential equations

The space-fractional differential equation can be used to model the diffusion process
related to the whole space. In mathematics, it can be obtained by replacing the spa-
tial integer-order derivative in the classical diffusion equation with the R-L fractional
derivative or the Riesz fractional derivative. In this chapter, we mainly focus on the
numerical method for the space-fractional partial differential equations in R-L type.
It is a natural idea to approximate the R-L fractional derivative using the standard
G-L formula, whereas, the resultant difference scheme is unstable. Meerschaert and
Tadjeran' %% °% applied the shifted G-L formula to study the numerical solution of
the space-fractional differential equation and some stable difference schemes were
derived. In this chapter, for the one-dimensional space-fractional partial differential
equation, the first-order method in both time and space based on the shifted G-L for-
mula, the second-order method in both time and space based on the WSGL formula,
the method of order two in time and order four in space will be introduced succes-
sively. For the 2D case, the method of order two in time and order four in space will be
developed. The whole chapter consists of 5 sections.

4.1 The first-order method based on the shifted G-L formula for 1D
problem

Consider the initial-boundary value problem of the space-fractional partial differential
equations

u 06 t) = Ky oDPulx, t) + Ky (DPux, t) + f(x, t),

x € (0,L), t €(0,T], (4.)
u(x,0) = p(x), xe€(0,L), (4.2)
u(0,t) =0, u(L,t)=0, tel0,T], (4.3)

where K;, K, are two nonnegative constants, K; + K, > 0, § € (1,2), the functions f, ¢
are given and ¢(0) = ¢(L) = 0.

Introduce the same mesh partition, notations and the mesh function spaces 4,
U, as those in Section 2.1 and Section 3.1. In addition, for any fixed t ¢ [0, T], define
the function

u(x,t), 0<x<lIL,

u(x,t) = {
0, x ¢ [0,L].

Suppose u(x,-) € C*[0,T] and the function @(x, t) satisfies the conditions of Theo-
rem 1.4.2, that is, (. t) € €"P(R).

https://doi.org/10.1515/9783110616064-004
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Define the mesh functions

U = u(x;, t,), f=f(xpty), O<i<M, 0<n<N.

4.1.1 Derivation of the difference scheme

Considering equation (4.1) at the point (x;, t,,), we have
u(x;, ty) = Ky Ofou(xl-, ty) + K, XDlzu(xi, ty) +f7,
1<isM-1,1<n<N. (4.4)

For the space-fractional derivatives on the right-hand side of (4.4), by the shifted G-L
formula (1.19), it follows

oDPu(x; t,) = hF Z gPul . + o), (4.5)
k=0
M-i+1

Do, t) =nt Y ¢Pur, .+ om. (4.6)
k=0

For the time first-order derivative on the left-hand side of (4.4), we have
1 _
u (X, t,) = ;(U;’ UMY+ 0(1). (4.7)

The substitution of (4.5)—(4.7) into (4.4) gives

%(U{' Uy =k, kz;)g(ﬁ)Ul e K P Z g(/” Uty + 1+ ()
1<i<M-1,1<n<N, (4.8)
and there is a positive constant c; such that
|r)f| < c(t+h), 1<i<M-1,1<n<N. (4.9)

Noticing the initial-boundary value conditions (4.2)—(4.3), we have
{ U =p(x;), 1<i<M-1, (4.10)
Uy=0, Uy=0 0<n<N. (4.11)

Neglecting the small term (ry) in (4.8) and replacing the exact solution U}® with its
numerical one u}' produce a difference scheme for solving (4.1)-(4.3) as follows:

(u w2k, h‘ﬁZg(ﬁ’ e + K B Z gﬁ) i +
k=0 k=0
1<i<M-1,1<n<N, 4.12)

= (), 1<i<M-1, (4.13)
uy=0, uy=0 0<n<N. (4.14)
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Denote

T T

Al :K Az :th_ﬁ.

178

4.1.2 Solvability of the difference scheme

Theorem 4.1.1. The difference scheme (4.12)—(4.14) is uniquely solvable.

Proof. Let

u" = (ug, Uy, ..., Uy).

The value of u° is obviously determined by (4.13)—(4.14). Suppose that the values of
u®,ul, ..., u™! have been uniquely determined. From (4.12) and (4.14), we can obtain
the linear system in the unknown u". To prove its unique solvability, it suffices to show
the corresponding homogeneous one

i1
—u _thﬁz 1k+1+thﬁ Z g@ e
k=0
1<isM-1, (4.15)
Uy =uy =0 (4.16)

has only the trivial solution.
When 1 < f < 2, it follows from Lemma 1.4.1 that

géﬁ =1, gl(ﬁ)=—ﬁ) g;ﬂ)>g§’8) >0,
m

Zg,(f)zo, Zg,((ﬂ)<0, mz1.

k=0 k=0

Rewrite equation (4.15) as

(1 A(-8)") + 2o @)M

1
®B) .
_Alzgk zk+1+A2 z 8k ,n+k1, 1<isM-1
k#l kﬂ

Suppose |[u"|o, = Iuﬁl, where i, € {1,2,...,M - 1}. Letting i = i, in the equality
above and taking the absolute value of both hand sides, it follows from the triangle
inequality that

[1+ A=) + (=g

i,+1
<A Z

k=0
k#1

M-i,+1

—k+1| + AZ z

k#l
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i,+1 M-i,+1
<AlZg o + 22 Z 81"
k#l k#l

Noticing Zk Og(ﬁ) < 0 (m = 1), we have

i,+1 M-i,+1

Il <Alzg‘ﬂ’llu oo + 22 Z & "l <

thus |u"|l., = 0, which implies that (4.15)—(4.16) has only the trivial solution.
By the principle of induction, the difference scheme (4.12)-(4.14) is uniquely solv-
able. The proof ends. O

4.1.3 Stability of the difference scheme

Theorem 4.1.2. The solution of the difference scheme (4.12)—(4.14) is stable with respect
to both the initial value ¢ and the right hand function f. More precisely, it holds

n
[l < [l +7 Y WMo 1<n<N,
m=1
where

1™l =

Proof. Rewrite equation (4.12) as follows:

[1+A(~ <’”>+Az< g up

1

max [f"].

1<isM-1

M-i+1
-1 B ®B)
= u? +A1 Z gkﬁ u?—k+1 +A2 Z g 1n+k 1t Tf
= k=0
k#1

k#1

1<i<M-1,1<n<N.

Suppose [u"|lo, = |U;;|, where i, € {1,2,...,M - 1}. Letting i = i, in the equality
above and taking the absolute value of both hand sides, the application of the triangle
inequality leads to

[1+A(-g )+/‘2( )]”un“oo

ip,+1 M-i,+1
< Ju g + A Z P + A Z gD, + Tl 1sn<N,
k#l k#l

that is,

M-i,+1

"o < " oo + A Zg(ﬂ P+ Y. 8P+ 7l
k=0
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<" oo+ 7"l 1SN,

The recursive process will produce

n
4"l < 1%l + 7 D WMo T<m<N.
m=1

The proof ends. O

4.1.4 Convergence of the difference scheme

Theorem 4.1.3. Suppose {U' | 0 < i < M,0 < n < N}and {uf | 0 <i < M,0 <
n < N} are solutions of the problem (4.1)—(4.3) and the difference scheme (4.12)—(4.14),
respectively. Let

ef =Ul' -y, 0<i<M,0<n<N,
then it holds
le"lo <T@ +h), 1<n<N.
Proof. The subtraction of (4.12)-(4.14) from (4.8), (4.10)—(4.11), respectively, yields the

system of error equations as follows:

1 1 BN B 2" ®
n n— — n - n
;(ei —e =K hP Y gl + Ko h P Y glel,
k=0 k=0

+(r)f, 1<i<M-1,1<n<N,

e: =0, 1<isM-1,

s o

—_ n_
ep=0, e;=0, O<n<N.

Noticing (4.9), the application of Theorem 4.1.2 produces

n
le"l, <t Z [r)™ |l SnTC(T+h) <;T(T+h), 1<n<N.
m=1

The proof ends. O

4.2 The second-order method based on the WSGL formula for 1D
problem

In this section, a difference method of order two in both time and space will be devel-
oped for the problem (4.1)-(4.3).

Suppose u(x,-) € C3[0,T] and the function @(x, t) defined in Section 4.1 satisfies
the condition of Theorem 1.4.3, that is, &(-, ) € €***(R).
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4.2.1 Derivation of the difference scheme

Considering equation (4.1) at the point (x;, t,,), we have

U (X, t) = Ky oDPuCx;, ty) + Ky (DouCc;, t,) + 1,
1<i<M-1,0<n<N.

Taking an average on two adjacent time levels gives

1
[0 ) + 2063 )] = 5K [oDjuOK ) + oDRu0K b))

N | —

1
+ EKz [ngu(Xi’ tn) + fou(Xi’ tn—l)]

nol

+f, %, 1<i<M-1,1<n<N. (4.17)

For the space-fractional derivatives in (4.17), by the WSGL formula, it follows from
Theorem 1.4.3 and Corollary 1.4.2 that

i+1
oDPulx; t,) = hP Z 7PUL,,, +0(r), (4.18)
Dhu(, t) = P Z wﬁ)UHk L +O(K?), (4.19)

where the coefficient {~(ﬁ } is defined by (1.35), which satisfies (1.36).
For the time first-order derivative in (4.17), it follows from the Taylor’s formula that

[, O, t) + U (X, t_1)] = %(Uln - U{H) +0(1%). (4.20)

NI =

Substituting (4.18)—(4.20) into (4.17) produces

1 -1 - U ESE ~</3> n-;
(U -Uh = KhﬁZwﬁ 2GRy wPuT
k=0
_1
+f 2+(r2 2, 1<i<M-1,1<n<N, (4.21)
and there is a positive constant ¢, such that
() | cy(t?+h?), 1<i<M-1,1<n<N. (4.22)

Noticing the initial-boundary value conditions (4.2)—(4.3), we have

{ U =), 1<i<M-1, (4.23)
Uy=0,Uy=0 0<n<N. (4.24)
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_1
Omitting the small term (rz):l ? in (4.21) and replacing the exact solution U* with its
numerical one u? produce another difference scheme for solving (4.1)—(4.3) as follows:

M-i+1

1
—(u —u =K h_ﬁZW(ﬁ) L+ K, n? Z wﬁ)u T +flrl 2

k=0 k=0
1<i<M-1, 1<n<N,

4.2.2 Solvability of the difference scheme

We start our proof from the following important lemma.

Lemma 4.2.1. For any mesh function u = (ug, uy,.. ., Uy) € Uy, it holds

i+1

W3 (3 <o
M-i+1

hZ( Z wk qu 1)u1<0

k=0

Proof. We only prove (4.28) here. The inequality (4.29) can be proved similarly.

Noticing u, = uy; = 0 and (1.36), it follows

h Z (f Wi zk+1>ui

i=1 \k=0
B S 2 (B B S
=W hZ(u,) +(Wy +W )hZuluH1
i=1 i=1
M1 M
+ ~k h Z Ui_g+1Ui
k=3 i=k

M-2 2 5
TP + @0+ Py G B

& 2
+le~ " Z ")+ (ul k1)
k=3
M-1
< <Z w,((ﬁ))llull2 <0,
k=0

which implies the truth of (4.28). The proof ends.

(4.25)
(4.26)
(4.27)

(4.28)

(4.29)
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Next, the unique solvability of the difference scheme (4.25)—(4.27) will be proved.
Theorem 4.2.1. The difference scheme (4.25)—(4.27) is uniquely solvable.

Proof. Let
n n n n
u" = (g, Ups. .., Upyp).

The value of u° is uniquely determined by (4.26)—(4.27). Now suppose the values of
u®,ul, ..., u™! have been uniquely determined, from (4.25) and (4.27), we can obtain
the linear system in u". To show its unique solvability, it suffices to show the corre-

sponding homogeneous one

% .=_1< h‘ﬁz~(ﬂ W+ th” Z w(‘” Wy, 1<i<M-1,(430)
k=0

Uy =uy =0 (4.31)

has only the trivial solution.
Taking the inner product on both hand sides of (4.30) with u", it follows from
Lemma 4.2.1 that

M-1

1
hy () ——thﬁhz<§wﬁ)1"k+l>u
i=1
M-i+1 ®
+2K2 _th< z ~ﬂ 7+k1>“

<0,

e

which implies [[u"] = 0. Combining with (4.31), it follows that u" = 0, namely, the
homogeneous system (4.30)—(4.31) has only the trivial solution.

By the principle of induction, the difference scheme (4.25)—(4.27) is uniquely solv-
able. The proof ends. O

4.2.3 Stability of the difference scheme

Theorem 4.2.2. The solution of the difference scheme (4.25)—(4.27) is stable with re-
spect to both the initial value @ and the right-hand function f. More precisely, it holds

n
[ < )+ Y I3 1<n<n,

where
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Proof. Taking the inner product on both hand sides of (4.25) with un yields
= ). n— n-1
) P Y (3 s
M-i+1 nol
+mﬂﬂ2wﬁqz

It follows from Lemma 4.2.1 that
1, o2 e M-1
e U U SR W
it B Tid
1 _ 1
<L R 1<,
Hence,
1 - 1
Y- < 1ensen,
or
o) < )+ e

Performing the recursive process gives

|, 1<n<N.

n
[ < [+ YU 1<ns<N.
m=1

The proof ends. O

4.2.4 Convergence of the difference scheme

Theorem 4.2.3. Suppose {U' | 0 < i < M,0 < n < Nyand{ul | 0 <i< M,0 <
n < N} are solutions of the problem (4. 1) (4.3) and the difference scheme (4 25) (4.27),
respectively. Let

ef =U'-uf, 0<i<M,0<n<N,
then it holds

le"| < ;TVL(z* +h*), 1<n<N.
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Proof. Subtracting (4.25)-(4.27) from (4.21), (4.23)-(4.24), respectively, yields the sys-
tem of error equations as follows:

n_,
1+k 1

'1 @ n- M-i+1
(€] - =K, h”Zw & K h Z W’

+(ry); %, 1<i<M-1,1<n<N,
, 1<isM-1,

0
;=0
ep=0, €y=0, 0<n<N.

Noticing (4.22), it follows from Theorem 4.2.2 that
n
le" <7 ) ||(r2)m_%|| <nte, VL(©? + h*) < o TVL(T* + B%), 1<n<N.
m=1

The proof ends. O

4.3 The fourth-order method based on the WSGL formula for 1D
problem

In this section, a difference method of order two in time and order four in space will
be derived for (4.1)—(4.3) by the mean of the three-term WSGL formula (1.38) in Theo-
rem 1.4.5.

Suppose u(x,-) € C3[0, T] and the function i(x, t) defined in Section 4.1 satisfies
the condition of Theorem 1.4.5, that is, @(-, ) € €**B(R).

For any mesh function u = (uy, uy, ..., uy) € Uy, define the operator

(8P), - Su g+ (-2 + Buyyy, 1<i<M-1,
! Ui, i= 0, M,

where

B +B+4 (1 1)
=——¢€|=,-) 1 2,
Cg 24 ¢ 12°6 <B<

In addition, for any mesh function u € i1, define
lullg = lull® - WcB )18l

The following lemma is true.

Lemma 4.3.1. For any mesh function u € L?h, it holds

1
(BPu,u) = |ul3, §||u|| < lully < Jul.
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Proof. For any mesh function u ¢ Lolh, noticing the definition of the operator B(ﬂ), a
direct calculation yields

(BPu,u) = (T + En262)u,u)
=W u)+ cghz(éiu, u)
= ull? - RPE18,ull? = .

Besides, noticing % < cg < é, it follows from the inverse estimate inequality [|6,ull <
%llull in Lemma 2.1.1 that

4
Nl > llul® - 25 - ol = (1- 4By u?
1 2 1.5
z(1-4x—|ull” = =ul".
( 6)” =l
It is clear that
Nl =l - 28l < Jull®.

The proof ends. O

4.3.1 Derivation of the difference scheme

Considering equation (4.1) at the point (x;, t,,), we have

u (6, t) = Ky oDPulx;, ty) + Ky DPulx, t) + £
0<i<M, 0<n<N.

Taking an average on two adjacent time levels and performing the operator B ® toboth
hand sides of the resultant equality lead to

1
SB[, t0) + w06 )]
1
=K [B® oDPu(x, t,) + BP DPuix, t, 1))
1
+ EKZ (B8P XDfu(x,-,tn) +BP XDfu(x,-,tn,l)]

nl

+BPF2 1<i<M-1,1<n<N. (4.32)

1

For the space-fractional derivatives in (4.32), it follows from Theorem 1.4.5 that

i+1
B® oDhuix.t,) =Py wPur,,, + o), (4.33)
k=0
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M-i+1
B® D Lu(xl,t y=h"? z ‘(ﬁ)UYl

e+ O(hY), (4.34)
k=0

where the coefficient {W,((ﬁ )} is defined by (1.45), which satisfies (1.46).
For the time first-order derivative in (4.32), it follows from the Taylor’s formula that

1 1 _
> [0t t) + 106 1)) = —(UF = UF Y +o(). (4.35)
The substitution of (4.33)-(4.35) into (4.32) produces
B B By BN 0
BPs U P =K h P Y WU + K h P Y W UHk .
k=0 k=0
1 1
+BOFT ()7, 1<i<M-1,1<n<N, (4.36)
and there is a positive constant c; such that
|r3); 2| <cs( +h*), 1<i<M-1,1<n<N. (4.37)

Noticing the initial-boundary value conditions (4.2)—(4.3), we have

{ U? = p(x), 1<i<M-1, (4.38)
Uy=0, Uy=0 0<n<N. (4.39)

_1
Omitting the small term (r3)? 2 in (4.36) and replacing the exact solution Ui” with its
numerical one ulf', we get another high order difference scheme for solving (4.1)—(4.3)
in the form of

M i+1 1
B(ﬁ)(stu =K h B Z W(ﬁ) +K nt Z W(ﬁ) (ﬁ)fin 2
k=0
1<i<M—1,1<n<N, (4.40)
w=0pk), 1<i<M-1, (4.41)
uy=0, uy=0 0<n<N. (4.42)

4.3.2 Solvability of the difference scheme

At first, there is a lemma similar to Lemma 4.2.1, which will state some properties of

the coefficient {va{ﬁ)}.

Lemma 4.3.2. For any mesh function u = (ug, Uy, . .., Uy) € Uy, it holds
i+1
h Z <Z Wk u, k+1>u, o,

M-1/M-i+1 ®
h Z( Z Wk u,-+k_1>ui < 0.

i=1 k=0



4.3 The fourth-order method based on the WSGL formula for 1D problem =— 281

Next, the unique solvability of the difference scheme (4.40)—(4.42) will be shown.
Theorem 4.3.1. The difference scheme (4.40)—(4.42) is uniquely solvable.

Proof. Let

u" = (ug, Uy, ..., Uy).

The value of u° is uniquely determined by (4.41)—(4.42). Now assume that the values of

u®,ul,...,u"! have been uniquely determined, then we can obtain the linear system

in the unknown u" from (4.40) and (4.42). To show its unique solvability, it is sufficient
to verify that the corresponding homogeneous one

_in1
%B@ n_zK hﬁzwﬁ) noe thﬁ Z WPl
1<1<M—1, (4.43)

W=l =0 (4.44)

has only the trivial solution.
Taking the inner product on both hand sides of (4.43) with u", it follows from
Lemma 4.3.2 that

M-1

hZ(B(p)u :—thBhZ(Zw lk+l>u
i=1
M-i+1
+ K2 _ﬁhZ( Z wﬁ) ke 1>u

<0.

S

Hence, (BPu",u") < 0. According to Lemma 4.3.1, we have
(BPu ") = [l > ST

thus |u"|| = 0. It follows that u™ = 0 with the combination of (4.44), which reveals that
the homogeneous system (4.43)—(4.44) has only the trivial solution.

By the principle of induction, the difference scheme (4.40)—(4.42) is uniquely solv-
able. The proof ends. O

4.3.3 Stability of the difference scheme

Theorem 4.3.2. The solution of the difference scheme (4.40)—(4.42) is stable with re-
spect to both the initial value ¢ and the right-hand function f. More precisely, it holds

n
'l < V3| + 3¢ Y BPF™ ), 1<n<n,
m=1
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. M-1 ml
[BOF™] = \h Y (BOFY
i=1

nl ol
g :B(ﬂ)fi 3

where

Proof. Denote

Taking the inner product on both hand sides of (4.40) with u"‘%, it follows from
Lemma 4.3.2 that

=

i 1
h (B(ﬁ>6t ) :l_z

i

—ﬁ i+1 1
Sty (3w
M-i+1
+K, _ﬁhz< Z w(ﬁ) Zkl) '.1/+th ui

i=1

N
—_

M-1 - n_i
<h) s
i=1
<" W7, 1<n<N.

Noticing

=

1
h (B(ﬁ 6t ) :’_2

13

TI

h (5tu 2 dRsisal

1

§~
L»—-

1 1 & 1 1
R Y ()0 2) = - hY (B8 )60 )

i=1

—_

1 2 142 1 2 1,2
= o (" - )—C’ihz-;(lwxu"ll -6
1 2 12
= ("5 - "), 1<n<N

and Lemma 4.3.1, further we have

1 2 112 _1 _1
52 ("5 = 1) < g™ 2] - "2
1 _1
< V3Jg" |- w2
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V3 n-l .
<> ls" Ny + 1), 1<n<N,
or
1 - _1
(U PR U Nz < V3lg" 2|, 1<n<N,
that is
[l < Ju" My + V3T)g"3]. 1<n<N.

The recursive process will arrive at

n
[l < [0l + V37 X g™ 2]
m=1

1<n<N.

It is easy from Lemma 4.3.1 to get
n
S < 1+ B Yl 1<n <.

Hence the conclusion is true. The proof ends. O

4.3.4 Convergence of the difference scheme

Theorem 4.3.3. Suppose {U' | 0 < i < M,0 < n < Nland{u] | 0 <i< M0 <
n < N} are solutions of the problem (4.1) (4.3) and the difference scheme (4.40)—(4.42),
respectively. Let

then it holds
le"|| < 3¢;TVL(z* +h*), 1<n<N.

Proof. The subtraction of (4.40)—(4.42) from (4.36), (4.38)—(4.39), respectively, will
produce the system of error equations as follows:

BP5.el 2 = K, hP ZW +K P Z “ﬁ)

i- k+1 1+k 1

_1
7 +(r3)l. 2, 1<isM-1,1<n<N,
e)=0, 1<is<M-1,

[ €5=0, e};=0, 0<n<N.

Noticing (4.37), it follows immediately from Theorem 4.3.2 that
le"]| <3t z ()™ | <3nte; VL(r? + h*) <3¢ TVL(T? + h*), 1<n<N.

The proof ends. O
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4.4 The fourth-order ADI method based on the WSGL formula for
2D problem

The finite difference method for solving the two-dimensional space-fractional partial
differential equations will be considered in this section.
Consider the problem

( u(x,y,t) =K 0D/ju(x,y, t)+ K, XD‘ﬁlu(x,y, t)
+ K3 oDyu(x.y, 6) + Ky Dy u(y,t) + f(xy,t),

) (x,y) e Q, te(0,T], (4.45)
u(x,y,0) =py), xy) eQ, (4.46)
ux,y,t) =0, (x,y)€0Q, tel0,T], (4.47)

where Q = (0,L;) x (0,L,), 0Q is the boundary of Q, the constant K;(i = 1,2,3,4) is
nonnegative, K; + K, > 0, K3 + K, > 0, B,y € (1,2), the functions f, ¢ are given and
©0CY)lxy)ean = 0. ]

Introduce the same mesh partition, notations and mesh function spaces V;, V,
as those in Section 2.10. Besides, for any mesh function u € V), define the average
operators

o - S+ -2y + Bugyy T<i<M -1, 0<j<i,
X ui]-, i=Oori=M1,
y Auig + (12w + gz, 1<j<My—1, _
Byu,-j: . . 0<1<M1,
Uy, j=0orj=M,,

where

Cﬁ:—ﬁ2+ﬁ+4€<l 1>)

2
: 11 CVZLME(i,l)_
24

12’6 2 24 12’6

Introduce the following difference operators:

B @ PR
Suy = Kih? Y wPu o+ KR Y wPue;
k=0 k=0

j+1 ) M,-j+1 )
Yy, — -y - (v -y - (v
6yuij = Kzh, z Wy ui’j_k+1+K4h2 z W Ui g
k=0 k=0

For any fixed y € [0,L,], t € [0, T], define the function

u(x,y,t), xel0,L],

v(x,y,t) = {
0, x ¢ [0,Ly].
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For any fixed x € [0,L,], t € [0, T], define the function

U(X,y,t), y € [O’LZ])

wx, y,t) = {
0, y ¢ [0,L,].

Suppose V(»y, t) € €*F(R), w(x, -, t) € €**Y(R) and u(x,y,") € C*[0, T].
Define the mesh functions

Uj =u(ypty), fij =f0Gypt)), (1Lj) €@, 0<n<N.

4.4.1 Derivation of the difference scheme

Denote

fou(x, y,t) =K, ODfu(x, Vv, t) + K, XDflu(x, y,t),
DJu(x,y,t) = K3 oDyu(x,y, t) + K, yDLu(x,y, t).

Considering equation (4.45) at the point (x;, y;, t,), we have

Uy (X;, Y, ty) = Dfu(xi,yj, tn) + DIu(x;, y;, ty) + i,

(i,j) € @ 0 <n<N.

Taking an average on two adjacent time levels and performing the operator BEB;' to
both hand sides of the resultant equality lead to

1
EBfB;[”t(Xi)Yj’ tn) + U (X V) t1)]
1 -1 1 1 n-1
= S BY[B(DLU} + DLUG™)] + S BL[B)(DYU} + DYUG™)] + BIBYf 2,
(i,j)ew, 1<n<N, (4.48)
. n-1 1.en n-1
withfy, 2 = 5(f +f; )
For the time first-order derivative in (4.48), it follows from the Taylor’s formula
that

1 _
[ (X, V) t) + U (X3, Yy ty )] = ;(UI;’ - U H+o(d). (4.49)

NI =

For the space-fractional derivatives in (4.48), it follows from Theorem 1.4.5 that

P M, -i+1 ®
- A 4
ki1 + Kol Z Wy Ufyyj + O(hy)

1

i+1
N B
sEPUl = kP Y wPur

i
k=0 k=0
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= 8LUf + o(hy), (4.50)
j+1 ) M,—j+1 ) .
B}:D;Ug = K3h2y Z ka Uir,;fkﬂ + K4h2y z ka ir,lj+k71 +0(h3)
k=0 k=0
= 8)U} + O(h3). (4.51)

Substituting (4.49)—(4.51) into (4.48), we get

nl nl nl nol ol
BB8U; 2 = ByoLUL * + BiSIU 2 + BLBYf, 2 + (r)y 2,

(i,j) ew, 1< n <N, (4.52)

and there is a positive constant ¢, such that
-1
|(r)y 2| < ey +hf + 1), (Lj) ew, 1<n<N.

_1
Adding a small term %125§6§6t U; 2 to both hand sides of (4.52) arrives at

2 1 1 1
Brvs "2 . L sBsVs "7 _ pVeBi 4 Py
BIB)U; " + 880Uy 7 = Bl8U;  + B
B3y £ 3 n-; ;
+ BXByfi]. + (r5)i]. , ({,j)ew,1<n<N, (4.53)
where
n-3 el T gy ned
(r5),'j = (r4)ij + ZSX(S),&(UI.I.
and there is a positive constant c¢; such that
_1
|r5); 2| < es(® + Hi +13),  (ij) ew, 1<n<N. (4.54)
Noticing the initial-boundary value conditions (4.46)—(4.47), we have

Uj = p(x,y), () € w, (4.55)
Ui =0, (i) €dw, 0<n<N. (4.56)

_1
Neglecting the small term (r5)g. 2 in (4.53) and replacing the exact solution Ui'} with its

numerical one ug., we get a difference scheme for solving (4.45)—(4.47) as follows:

2
n-1 T n-1 n-1 n-1 n-1
B§B§5tui]’ e+ 2655;&“17 ' = B));&guij et 855;):“17 i Bfl% E

(i,j) ew, 1<n<N, (4.57)

ug = (P(Xi,y]'), (1’]) € w, (4-58)

u;=0, (ij)€ow, O0<n<N. (4.59)
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Reformulate equation (4.57) as

Bg_T y _Toy)\,n
<Bx -2 X)(sy - an)u,.j

T T 1 n-1
= <Bf + 55{3)(8}’1 + Eb‘;)ug + TBfB)’ffij 2, (4.60)

Let
T
* _ [y _Toy\ n
uij—<By 25y>uij,

then the difference scheme (4.57)-(4.59) can be decomposed into the following ADI
form:

On the time level t = t, (1 < n < N), at first, for any fixed j (1 < j < M, — 1), solve
the one-dimensional problem with respect to {ui’} | 0 <i< M,;}in x direction

B_TBY s [ oB . TB N[y, Tav\ nl, _pBryets :
(BX—E(SX)uij—<BX+§6X><By+§6y>uij +TBB)fy %, 1<i<M; -1,

ufy = <B; - 26;>u8j, g = (B~ 30 )
to get the value of
{uj 11<i<M -1}
Then, for any fixed i (1 < i < M; - 1), solve the one-dimensional problem with respect
to {ug. | 0 <j < M,}iny direction
<B§ - g&,’f)m; =uj, 1<j<My-1,
Up=0, Uy =0
to get the value of
fui 11<j<M,-1}.

U]

4.4.2 Three lemmas

In this subsection, three important lemmas will be listed so as to facilitate the analysis
on the difference scheme presented above.

In view of the self-adjoint and positive definite operators Bf and B}f , they can be
performed the square root decomposition, that is, there are two operators Qf and Qy,
such that

B = (), B =(Q).
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It is easy to see that Bf and B}' are commutable and so are fo and Q}f.
Next, three useful lemmas will be introduced.

Lemma 4.4.1. For any mesh functionv € Vy, it holds
1 -1 -1
sWIE< Qv 1) (Q) vl <3l
Proof. It follows from the definitions of the operators Bf R B}' and Lemma 4.3.1 that
1.2 V; 2 1, o y 2
§IIVII < (Bv,v) < |vll%, §IIVII < (B, v) < vI™.
On the one hand, we have
(BEBv,v) = () Bv.v) = (&fBv, Q)

= (B, Qfv, &) > (QBV o) = L(Bvv) > —||v||2. (4.61)

3
On the other hand, it holds
(BiByv.v) = (2 () w)
= (o, o) = |l (4.62)
The combination of (4.61) and (4.62) gives
Tivi <l (4.63)
AN B .
Moreover, it follows from (4.63) that
1 -1 -1
1@ (@) W < 1y (@) vl = v,
which implies the second inequality in this lemma. The proof ends. O
Lemma 4.4.2. For any mesh functionv € V), it holds
v, 8fv)<0, (v, 8yv) <0.

The proof can be proceeded similarly to that for Lemma 4.2.1 and the details are
omitted here.

Lemma 4.4.3. For any mesh functionv € f)h, it holds

(-S|
(et et et)y

> | By + || CARCALR

2 T 18 2
<l + 1) 8l
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(-3 s)
(a5 s)

Proof. By Lemma 4.4.2, some calculations give

”(Qﬁ () >
N(CREEATCEEEAY

_ (o, Qﬁv) - T (@) ol () of) (<l () o)

>+ || 9)’'s

<l + || AT

2

= | + II ()8 - (v.8)

2 —
> Qv+ TH(eh) s
Other three inequalities in this lemma can be proved similarly. The proof ends. O

The following part will focus on the analysis for the difference scheme (4.57)-
(4.59).

4.4.3 Solvability of the difference scheme

Theorem 4.4.1. The difference scheme (4.57)—(4.59) is uniquely solvable.
Proof. Let
Ut = {uf]’ | (i,j) € @}.

The value of u° is obviously determined by (4.58)-(4.59).

Now assume that the values of u°,ul,...,u"! have been uniquely determined,
then we can obtain the linear system in the unknown u" from (4.57) and (4.59). To
show its unique solvability, it is sufficient to verify that the corresponding homoge-
neous one

(ij - gaf)(zs; - 25;>u;; =0, (ij)cw, (4.64)
w=0, (ij)edw (4.65)

has only the trivial solution.
To this end, performing the operator (Qﬁ)"l(Qiﬁ)‘l to both hand sides of (4.64)
yields

(of-F@ ) (-2 g -0 Gpew
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From Lemmas 4.4.1, 4.4.2 and 4.4.3, we obtain

o ge e G

2

T - 2 - T _
X(Q;—E(Q;) 16§>u" =71 155(9;—5(95) 15;>u"
T - -1 T -1
T<Q§<Q;—§(Q;) 16§>u",(gfj) 55(@5—5(95) 5;>u">
2 2 2
= of T T B\—1 08 T -1
- QX(Q;-Z(QY) 6V> + 1<) 5x<Q¥-§(Q§) 55)11"
T -1
~o((9- 3oy Jun sl o) - S ey )ut)
T -1 2 'l'2 -1 T -1 2
> (- Japey Jur + Ty el o) - Seap e Ju
2 2 2
_ T -1 T T -1 Br\—1 0B
- (Q;—z@y) sY)inu" e (A

> o)+ = || AR
(b o+ T syl o (4:66)
> |y > Sl
thus, ||u""|| = 0. We conclude that u" = 0 from (4.65).
By the principle of induction, the difference scheme (4.57)—(4.59) is uniquely solv-
able. The proof ends. O

4.4.4 Stability of the difference scheme

Theorem 4.4.2. Suppose {u | (i,j) € @, O < n < N} is the solution of the difference
_1 _1
scheme (4.57)-(4.59) and denote si]. z = BfB,’fﬁ;l 2, then it holds

) < 3(||QYQ€u°|| - 2 a0t + ool o]

||(QY) (SY(Qﬁ 5ﬁ 0||>+9TZ||5 i, 1<ng<N,

m=1

where
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Proof. Noticing that equation (4.57) can be rewritten as (4.60) and performing the op-
erator (Qf)‘l(Qz)‘l to both hand sides of (4.60) arrive at

(Qﬁ - —(Q”) 16ﬁ>< - —(Qy) )

(e Gehyel) (o Seep ) Jur
~r(@) @) @) ew 1<n<N. 4.67)

Taking the norm on both hand sides of (4.67), it follows from the triangle inequality
that

H(in Zeh)s ><Q" (Q;)’16§>u"
(QB Ths )(Qy (Q;)‘les;)u”‘l

+l()7 (@)™, 1<n<N. 4.68)

In analogy to the derivation of (4.66), we have
CR g(gf)’léf)(gy : §<Q§)’16V)u"

> | Qo + - || (@) "8+ % IIQy () s’

Ty sy s (4:69)
and
2
(et 56 o e
—112 ‘l'2 -1 12
T B 2 R B
T -1 -1 —1)2
+ el 8 () s (4.70)
Denote

2 T2 -1 2
=<I|Qy9ﬁu”ll + || Q)8 + 19 8
'['4 -1 -1 2 12
+ Q) syl o ) . 0<n<N.
It follows from (4.68)—(4.70) and Lemma 4.4.1 that

E" < BVt (26)7N(Q) S < B4 37)s" 2], 1<n<N.
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Applying the recursive process leads to

n
E"<E®+3t Y |s"3], 1<n<N.

m=1

Noticing
1
E" > |Qyofu’| > 31l
further it follows

n
Ju' <3E° + 9t Y s 2|

m=1

<3( 1yl + S12) oyl + S0y o]
T -1 B\1oB. 0 m-1
Tl 8y o) vor YL 1<ne,
m=1

which is exactly the desired result. The proof ends. O

4.4.5 Convergence of the difference scheme

Theorem 4.4.3. Suppose {Ul-;’ | (i,j) € @,0 < n < N}and {u | (i,j) € @,0 < n < N}are
solutions of the problem (4.45)—(4.47) and the difference scheme (4.57)-(4.59), respec-
tively. Let

e —Ul;l ]']l, (1,j)ew, 0<n<N,
then it holds

le"|| < 9T\LiL, cs(t* + hi + h3), 1<n<N.
Proof. Subtracting (4.57)-(4.59) from (4.53), (4.55)—(4.56), respectively, will arrive at
the system of error equations as follows:

-l T nol
BEB;(Steij 24 Zﬁ’f@’&eu Byb‘ﬁe : +Bf§§ i - +(rs) s
(i,j)) ew,1<n<N,
e =0, (i))ew,
egzo, (i,j) € 0w, 0 <n<N.

Noticing (4.54), the application of Theorem 4.4.2 immediately yields
n
le"] <ot Y rs)™ 2| < OT\LiLy c5(r? + b + BY), 1<n<N.
m=1

The proof ends. O
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4.5 Supplementary remarks and discussions

1. This chapter mainly focused on the finite difference methods for solving the initial-
boundary value problems of space-fractional partial differential equations in R-L type.
For 1D problem (4.1)—(4.3), three difference schemes of order one in both time and
space, order two in both time and space, together with order two in time and four in
space, respectively, were built. The unique solvability, stability and convergence of
each scheme were analyzed. For 2D problem (4.45)—(4.47), an ADI difference scheme
of order two in time and four in space was mainly addressed along with the analysis
on its unique solvability, stability and convergence.

2. For the R-L fractional derivative in the space-fractional partial differential equa-
tions, Meerschaert and Tadjeran pointed out that the difference scheme using the
standard G-L formula to approximate the R-L fractional derivative was unstable in
[58, 85], and proposed the shifted G-L formula for the approximation of the R-L frac-
tional derivative to derive the difference scheme.

3. For the R-L fractional derivative in the space-fractional differential equations,
Tian etal.l®®! presented a two-term WSGL formula to establish the difference method
of order two in both time and space. Besides, a three-term WSGL formula was also
derived. Based on the work!®®! , a series of works have been done by this group; please
see [7, 117] and so on.

4, The numerical solution of the following one-dimensional space-fractional par-
tial differential equation:

Bﬂu(x, t)

W+f(x,t)

u(x, t) =
was studied in [4], where a Crank-Nicolson difference scheme of order two in both
time and space was developed with the help of the central difference quotient formula
(Lemma 1.5.1) to approximate the Riesz fractional derivative. In [64, 102], the numer-
ical methods for solving the diffusion and advection-diffusion equations with Riesz
fractional derivatives were also discussed.

5. A fourth-order numerical differentiation formula (1.54) to approximate the
weighted value of Riesz fractional derivatives at three points was proposed by Zhao
etal."®, On this basis, a higher-order difference method was investigated for solv-
ing the nonlinear space-fractional Schrédinger equation in the Riesz derivative type.
Ding etal. ® derived a different higher-order numerical differentiation formula to
approximate the Riesz fractional derivative and applied it to the numerical solution
of the space-fractional differential equation in the Riesz derivative type.

6. For the difference schemes to solve the space-fractional differential equations,
Wang et al.’»%) and Lei et al.l*’ developed some fast methods in view of the special
structures of difference schemes.

7. Wang etal.’”> %8 presented implicit conservative difference schemes for the
space fractional nonlinear Schrédinger equations. Wang and Huang® %!, Hao and
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Sun[34], He and Pan® have studied the difference methods for the fractional Ginzburg-
Landau equation.

Exercises 4

4.1

4.2

4.3

For the problem (4.1)-(4.3), construct the following explicit difference scheme:

1
T(u"“ u)—thBng ut, + K P Z g(ﬁ) fe

\st—l,O\nsN—l,
u; = (), 1<i<M-1,

0
1
ug=0, uy=0, 0<n<N.

Define the function ii(x, t) like that in Section 4.1 and suppose (-, t) € %’“ﬁ(R).
For this difference scheme, try to
(1) analyze the truncation error;
(2) show the stability with respect to the initial value ¢ and the function f when
K, +K) B <13
(3) show the convergence when (K; + Kz)% < 1, and derive the error expression.
For the problem (4.1)-(4.3), construct the following implicit difference scheme:
. M—-i+1 ®
—(u ~u) =K P z w ul . + K P > W
k=0 k=0
1<i<M-1,1<n<N,
u; =p(x;), 1<i<M-1,

0
1
up=0, uy=0, 0<n<N.

Define the function ii(x, t) like that in Section 4.1 and suppose (-, t) € ¢*h (R).
For this difference scheme, try to

(1) analyze the truncation error;

(2) show the unique solvability;

(3) show the stability with respect to the initial value ¢ and the function f;

(4) show the convergence and derive the error expression.

For the problem (4.1)—(4.3), construct the following difference scheme:

u -y ® )
B(B)—l - —KhﬁZwﬁ U g + K P Z wﬁ :’+k1+8(ﬁ)f,-n,

k=0
1<isM-1, l\nsN,

Define the function ii(x, t) like that in Section 4.1 and suppose (-, t) € i (R).
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For this difference scheme, try to
(1) analyze the truncation error;
(2) show the unique solvability;
(3) show the stability with respect to the initial value ¢ and the function f;
(4) show the convergence and derive the error expression.
4.4 For the problem (4.45)-(4.47), construct the following difference scheme:

n—-
5tu.

L sBsv B v,
i 2+ 7 6X6y5tu =6u +6yui]. 2+f. 2,

x4 ij ij

(1,j)ew,1<n<N,
uj =0y, (i) € w,
uE.:O, (i,j) € ow, 0 < n < N.

Define the functions V(x,y,t), w(x,y,t) like those in Section 4.4 and suppose
Ve t) € €2 F(R), wix, - t) € €7 (R).
For this difference scheme, try to
(1) analyze the truncation error;
(2) show the unique solvability;
(3) write the ADI form;
(4) show the stability with respect to the initial value ¢ and the function f;
(5) show the convergence and derive the error expression.
4.5 For the problem

U (x, t) = 6B;4|()|cﬁt +f(x,t), 0<x<L 0<t<T, (4.71)
X
ux,0)=pkx), 0<x<IL, (4.72)
u(0,t) =0, u(l,t)=0, 0<t<T, (4.73)
where
aﬁu(x t) 3 1
W \Pﬁ( DBU(X t)+ Dﬁu(x t)) = m,
1 @[ u&b
DA D) = g a_i - ep1 e
N u(¢,t)
DO = gy J €01

the functions f, ¢ are given and ¢(0) = ¢(L) =
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4.6

Construct the following difference scheme:

ul —ul” _ .

S =-h ht Z P +fl, 1<i<M-1,1<n<N,
k=i-M

u; =), 1<i<M-1,

0

1

n n

U, =0, uy=0, 0<n<N,

where the coefficient {g(ﬂ )} is defined by (1.48).

Define the function ii(x, t) like that in Section 4.1 and suppose (-, t) € ¢*P (R).
For this difference scheme, try to

(1) analyze the truncation error;

(2) show the unique solvability;

(3) show the stability with respect to the initial value ¢ and the function f;

(4) show the convergence and derive the error expression.

For the problem (4.71)-(4.73), construct the following difference scheme:

u - 3 W
-h Zg W +f T 1<isM-1,1<n<N,
k=i-M
u =), 1<i<M-1,

0
1
0=0, uy=0, 0<n<N,

<

where the coefficient {g(ﬁ )} is defined by (1.48).

Define the function ii(x, t) like that in Section 4.1 and suppose (-, t) € ¢*F(R).
For this difference scheme, try to

(1) analyze the truncation error;

(2) show the unique solvability;

(3) show the stability with respect to the initial value ¢ and the function f:

(4) show the convergence and derive the error expression.



5 Difference methods for the time-space-fractional
differential equations

In this chapter, the finite difference methods for a class of time-space-fractional dif-
ferential equations (Bloch-Torrey equations) will be considered. Many applications
for this kind of equations can be found. It has been successfully applied to describe
the diffusion image of human brain tissues and provides new insights into further in-
vestigations of tissue structures and the microenvironment. The Bloch-Torrey equa-
tion consists of both the time-fractional derivative (Caputo derivative) and the space-
fractional derivative (Riesz derivative). In this chapter, for 1D problem, the method of
order two in both time and space and another method of order two in time and four
in space will be successively discussed. For 2D problem, the method of order two in
both time and space and another method of order two in time and four in space will be
developed in sequel. The unique solvability, stability and convergence of each scheme
will be analyzed. The whole chapter is divided into 5 sections.

5.1 The second-order method in space for 1D problem

In this section, the following 1D initial-boundary value problem of time-space-fractional
differential equation

ED%u(x, t) = aﬁalj(Tl;t) +fout), 0<x<L O<t<T, .1)
X

u(x,0) = @(x), 0<x<IL, (5.2)

u(0,6)=0, ull,)=0, O0<t<T (.3)

will be considered, where a € (0,1), 8 € (1,2), gD?u(x, t) is the a-th order Caputo frac-

tional derivative, aﬁa’ff(’l(,;t) is the B-th order Riesz fractional derivative, that is,
aﬁu(x t) 1
T2 -y (oDPux, b) + ,DPux, 1), Wy= ———,
ol P ol DU D). ¥ 2cos(&)
Dﬁu(x t) = 1 6_2 jf Md{
0+x )= F(Z—ﬁ) Xzo (x—.{)ﬁ‘l >
1 2| u(é,t
Dhuix, t) = —J = _dé,
X Lu(X ) r(z _ﬁ) ax J ({_X)ﬁ—l {

the functions f, ¢ are given and ¢(0) = ¢(L) = 0.
Take the same mesh partition and notations as those in Section 2.1. In addition,
leto=1-3,ty 1,5 = tyg +07,5=TT2 - ).

https://doi.org/10.1515/9783110616064-005
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Define the mesh functions

Ul' =u(x,ty), 0<i<M,0<n<N;
fin_Ho =f(Xi:tn—1+a)> ISisM-11<n<N.

For any fixed t € [0, T], define the function

ulx,t), 0<x<lIL,
u(x,t) =
0, x ¢ [0,L].

Suppose u(x,-) € C[0, T] and (- t) € €*B(R).

5.1.1 Derivation of the difference scheme

Considering equation (5.1) at the point (x;, t,_y,,), we have

aﬁu(xv n 1+0)

C
OD?u(Xl"tn—1+0') = oIx |ﬁ

+fT 1<i<M-1,1<n<N.  (54)
For the Caputo fractional derivative in equation (5.4), using L2-1, approximation (1.81),
it follows from Theorem 1.6.4 that

—a n-1

—k —k- -
ED U(X;y by_14q) = s a)z (U - Ul + o). (5.5)

For the Riesz fractional derivative in equation (5.4), the result of a linear interpolation
approximation reads

E}Bu(x,-, tn,lm) aﬁu(x,,t ) aﬂu(xl, th1)

+(1-0 +0(1). 5.6
P P (1-0) A () (5.6)
Moreover, it follows from Theorem 1.5.1 that
aﬁu(xi tn)
5 —l} 2
Z el & +0(h (5.7)
olx|? kgM e+ 00F).
The combination of (5.6) and (5.7) arrives at
aﬁu(Xi,tn—Ho _ —ﬁ z (ﬁ)[o. o+ a- O') kl] n O( +h2). (5.8)
a|X|B k=i-M

Substituting (5.5) and (5.8) into (5.4), we obtain

Z n,a) nk_Unkl)

F(2 a)
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- hP Z (ﬁ)[o Uy +(1- U)Ul"kl] +f 1+‘7+(rl)?,
k=i-M
1<i<M-1,1<n<N, (5.9)

and there is a positive constant c; such that
|Df| < ci(7? +h%), 1<i<M-1,1<n<N. (5.10)
Noticing the initial-boundary value conditions (5.2)—(5.3), we have

{ U =), 1<i<M-1, (5.11)
Uy=0, Uy=0, 0<n<N. (5.12)

Omitting the small term (r;)}' in (5.9) and replacing the exact solution U;' with its nu-
merical one u!, a difference scheme for solving (5.1)-(5.3) can be produced as

—a n-1
T (na) ., n—k n-k-1
c u. - u;
Ir2-a g e i)

=_nh Z g(ﬂ) lou , + (1 - o]+,

k=i-M
1<i<M-1,1<n<N, (5.13)
=), 1<isM-1, (5.14)
[ ug=0, uy =0, 0<n<N. (5.15)

Next, some analyses on the difference scheme (5.13)—(5.15) will be carried out.

5.1.2 Solvability of the difference scheme

Theorem 5.1.1. The difference scheme (5.13)-(5.15) is uniquely solvable.

Proof. Let

u" = (ug, Uy, ..., Uy).
The value of u° is obviously determined by (5.14)—(5.15).

Now assume that the values of u°,u},...,u"! have been uniquely determined,
then the linear system in u" can be obtained from (5.13) and (5.15). To show its unique
solvability, it suffices to verify that the corresponding homogeneous one

Lemayn - ont z gl 1<i<M-y, (5.16)
S

k=i-M
ug = O, u;‘[/j =0 (5.17)
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has only the trivial solution.
Rewrite (5.16) as

1 B B v s .
gc(()"’“) +oh 'Bgéﬂ)]u? =oh? Y (gPnly, 1<i<M-1 (5.18)
k=i-M
k0

Suppose [[u"| o, = |u§1|, where i, € {1,2,...,M —1}. Letting i = i, in (5.18) and taking the
absolute value on both hand sides of the equality, it follows from Lemma 1.5.2 that

[ s+ ot g |,

i"
<oh® Z ( gk

il

k=i,—M
k+0
i
<oh? Y (2P,
k=i,-M
k+0

<oh g ).,

Hence, |u"||., = 0, which implies that (5.16)—(5.17) has only the trivial solution.
By the principle of induction, the theorem is true. The proof ends. O

5.1.3 Animportant lemma
In this subsection, we present an important lemma.
Lemma 5.1.1. For any mesh functionv = (Vo,Vy, ..., Vy) € Uy, it holds

M-1 ® M-1 ,
~hPn Z( Y &Py k>v,~ <-cPanPhy v,
i=1

k=i-M i=1

where c ) is defined by (1.55),1 < B < 2.
Proof. From Lemma 1.5.2 and Lemma 1.5.3, it is easy to see that

ﬁ)

[ee]
B 5B _ 5B
gl <o, k> § P > (-87) > ( +1)ﬁ’

[k|=M

M=1,

therefore,

M-1
A=-h"*n Z( Y gy, k)v,-
i=1

k=i-M



=n?

[ M-1
hz A(B)V+
L i=1
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|

Vi k+V2):|

=

v+hz Z(gk Vi_iVi
i=1 k=i-M
k0

1 M-1 i
shY 2
i=1 k=i-M
k+0

N
[N

M-1 i

2 2 (

i=1 k=i-M
k+0

1

M-1
z z (_g(/?)
i=1 k=i-M

k+0

—_

“(ﬁ )V +1h

A(ﬁv+1h 5

: N ] (5.19)

—_

ME

For the second term on the right-hand side in (5.19), we have

1 M (ﬁ) M-1 M-1 1 M ® M-1 ,
ShY 2 (g7 W< hz > (BOWi=5 Y (&)Y Vi (520
i=1 k=i-M i=1 k=1-M |k|=1 i=1
k#0 k#0
For the third term on the right-hand side in (5.19), we have
] M1 ®
Eh Z z (=8¢ ik
i=1 k=i-M
k+0
1 -1 ® k+M 5 M-1 ®
= h|: (_gk ) V1k+z )Zvl k:|
k=1-M i=1 k=1
1 @ .0y, .0 LS
SE Z(_gk )+Z(_gk) -h Vi
k=1-M k=1 i=1
1 ®B) = 2
DA ORDAG (5.21)
k|=1 i=1
Substituting (5.20) and (5.21) into (5.19), it follows from Lemma 1.5.2 and Lem-
ma 1.5.3 that
M-1 M-1 M-1
A< hﬁ[(—ggﬁ’)h vie Y (8P ny vl?]
i=1 k|=1 i=1
M-1 @ M-1 ,
= h_ﬁ (_gk ) h Z Vi
k=1-M i=1
M-1
- h‘ﬁ( ‘}(ﬁ)) -h Viz
k=M i=1
I G o
M+1E G
B (B powa,
= ~(Mh)Pc! <M+1> ~hi§vi
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1 B M-
< —(Mh)’ﬁciﬁ)<§> h YV

i=1

M-1
= —cEf”(2L)_ﬁ -h z viz.
i=1

The proof ends. O

Similarly, the following conclusion can be proved (the only difference is to replace
V;_iv; and vi2 with (v;_, v;) and ||vl-||2, resp.).

Corollary 5.1.1. Suppose V is an inner product space, (-,-) is an inner product in V and
|| - |l is the induced norm; For any mesh functions ol oM ey satisfying v0 =0,
vM = 0, it holds

M-1 i ) . M1,
~h*n Z( Y g;mvl‘k,vl) <-cPenPh Y v

i=1 \k=i-M i=1

where ¢ is defined by (1.55),1 < < 2.

5.1.4 Stability of the difference scheme

Theorem 5.1.2. Suppose {u} | 0 < i < M, 0 < n < N} is the solution of the difference
scheme (5.13)—(5.15), then it holds

Br(1 -
CLITA =) oy (e [f™ ), 1<n<N,

n|2 02
I < ) + 2B o

where
m-1+0|2 i m-1+02
N = Yy )
i=1

Proof. Taking the inner product on both hand sides of (5.13) with ou" + (1-0)u™ ! yields

n-1 M-1

% c"h @ =N ou + (1 - o]
k=0 i1
M-1 i
= —h*h D ‘,(f) [oul , + 1=} - [oul + 1 - o]
i1 k=i-M
M-1
+h Y foul! + (1 - o] (5.22)

i=1

Now each term in (5.22) will be estimated.
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For the left-hand side, it follows from Lemma 2.6.1 that
1 ) -k n—k- 1 -1
gz "“hz T —u ) [ou]! + (1- ol ]
Z na) k—l)o,un " (1 _ O_)un—l)
n-1 12
Z e (= . (5.23)
For the first term on the right-hand side, using Lemma 5.1.1, we have
-1 i
~h*n >y Dol + (1 -] - [oul + (1 - o]
i=1 k=i-M
M-1 ,
<-cPerL)*n Z [oul' + (1 - o)l
i=1
= —cff)(ZL)_ﬁHau" +(1- o)u"_lnz. (5.24)

For the second term on the right-hand side, with the aid of the Cauchy-Schwarz in
equality, we have

M-1
h z o oul + (1 - o]

i=1

<IN o + (- o™

B
<cP Ly Plou™ + (1- 0)u"‘1||2 PCis ||f”’1+"||2

(5.25)

4ciﬁ)

Substituting (5.23), (5.24) and (5.25) into (5.22) arrives at
% Zc‘"” W - ) < (2” " ", 1<n<N. (5.26)

It follows from Lemma 1.6.3 that

s TTQR-a) 1 o ary o jap
Cﬁ,’ftlx) = ;n?) < 1_an TT2-a)=t,T1-a).
Reformulate (5.26) as
n-1
; 2 s(2L)
O < Y (e - O+ e ] + IIf" e
k=1

< Z (6 = )
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2L ”‘F 1
e [+ EXELDyrep] 1enen
The inductive process will lead to
(ZL) Il-a) m-1+0
e <+ T max el T dsnsn
The proof ends. O

5.1.5 Convergence of the difference scheme

Theorem 5.1.3. Suppose{U]' |0 <i<M,0<n<N}and{u |0<i<M,0<n<N}are
solutions of the problem (5.1)—(5.3) and the difference scheme (5.13)—(5.15), respectively.
Let

then it holds
B-171+B Ta —
uwaZL TG, 1<n<N, .27
Cy

Proof. The subtraction of (5.13)-(5.15) from (5.9), (5.11)-(5.12), respectively, will pro-
duce the system of error equations as follows:
- n-1

T na), .n-k _n-k-1
E C e; —e;
r2-w & 0 @ i)

1 - n# Z g(ﬁ)(oelk+(1 a)elk)+(rl)l, 1<i<sM-1,1<n<N,
k=i-M

e, =0, 1<i<M-1,

0
1
n n

L ¢0=0, e =0, 0<n<N.

Noticing (5.10), the application of Theorem 5.1.2 yields

2L -
Il < S max ")

PR
s# AP+ R, 1<n<N.
B
Taking the square root on both hand sides of the inequality above will lead to (5.27).
The proof ends. O
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5.2 The fourth-order method in space for 1D problem

In this section, another difference scheme of order two in time and four in space for
solving the problem (5.1)-(5.3) will be developed.
Suppose u = (Ugy, Uy, . .., Uy) € Uy, define the average operator

Aﬂu-: 2[2“11"'(1 ﬂ)ui"’%uﬂb I<isM-1,
h™1 u;, i=0, M.

It is apparent that
Aﬁui = <I+ ;%hZ(Si)ui, 1<isM-1

Suppose u, v € U,. Noticing
M-1 B
h Z Aﬁu, Vi Z <ul + —h262 )vi =Wwv) - h (6,u,6,v),

i=1

define an inner product and the induced norm as follows:

M-1
(w,v),=h z (Aﬁui)vi, lully = V@, u),.
i=1

It follows by noticing Lemma 2.1.1 and f € (1, 2) that
M-1
2 2 2.2, 2
R (A =l - Lo > (1 _ lg)Hu" > 2pu” (5.29)

i=1

It is easy to know that

2
3 luall® <l < . (5.29)

Define the function ii(x, t) like that in Section 5.1. Suppose (-, t) € ¢*b (R) and
u(x,-) € C’[0,T).

5.2.1 Derivation of the difference scheme
Considering equation (5.1) at the point (x;, t,_;,), we have

aﬂu(xiatr[—l-'.o') +fin—1+o

Cna _
ODt u(xi’ tn—1+o) = a|X|ﬁ

, 0<i<M,1<n<N.
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Using (3.85), it follows that

Fux,t,) Fulx,t, )
Ca _ iy _ 1 'n-1
oDrulxp ty_146) = G_a|X|ﬁ +(1-0) oIx|P
+fin—1+a + O(Tz), 0<i<M,1<n<N. (5.30)

Performing the operator Aﬁ to both hand sides of (5.30) gives

Fu X;, ty Fu X;, b,
ABEDEU(X; o) = |0 AP a(| L), ) 1-a Al é bl )
+ A4 0(r), 1<i<M-1,1<n<N. (5.31)

For the Caputo derivative in (5.31), using L2-1, approximation (1.81), it follows from
Theorem 1.6.4 that

—a

el k- _
ng‘u(Xi,tn_Hg) m Z na)(Un k -U k 1) + O(‘l’3 ). (5.32)

For the Riesz derivative in (5.31), it follows from Theorem 1.5.2 that

ﬁaﬁu(Xi, tn) _ﬁ By
ATl gPur, (5.33)
"ol kle ")

Substituting (5.32) and (5.33) into (5.31) arrives at

B Tﬁa = (n a)(Un k U.nfkfl)
h"T2-a) & !

i
=-nt > gﬁ)[aU + (1= +Aﬁfi"_1+” +(r)!,
k=i-M
1<isM-1,1<n<N, (5.34)
and there is a positive constant ¢, such that
|)f| < cp(t® +h*), 1<i<M-1,1<n<N. (5.35)

Noticing the initial-boundary value conditions (5.2)-(5.3), we have

{ UP =p(g), 1<isM-1, (5.36)
Uy=0, Uy=0 0<n<N. (5.37)



5.2 The fourth-order method in space for 1D problem =— 307

Neglecting the small term (r,)] in (5.34) and replacing the exact solution U with its
numerical one u;’, another difference scheme for solving (5.1)-(5.3) can be obtained as

B T° (n,a) n—k-1
Ay Te-a 2 Z @ -u T

-t z g(ﬁ) [ou]' ) + (1 - o)l ] +Aﬁf,~"‘1+0,

k=i-M
1<i<M-1,1<n<N, (5.38)
w =), 1<i<M-1, (5.39)
uy=0, uy=0 0<n<N. (5.40)

Next, some analyses on the difference scheme (5.38)-(5.40) will be made.

5.2.2 Solvability of the difference scheme

Theorem 5.2.1. The difference scheme (5.38)-(5.40) is uniquely solvable.
Proof. Let
u' = (ug,ug,...,uy).

The value of u° is uniquely determined by (5.39)—(5.40).

Now suppose that the values of u°,u,...,u"! have been uniquely determined,
then the linear system in u" can be obtained from (5.38) and (5.40). To show its unique
solvability, it suffices to verify that the corresponding homogeneous one

1
cgmw’ "o _ghP z gl 1<i<M-1, (5.41)

uy=0, uy=0 (5.42)

has only the trivial solution.
Taking the inner product on both hand sides of (5.41) with u™ arrives at

lcg"”‘)hle(,éthu;')u;l = —oh_pthl< Zl: g}f’)u?k>u;’. (5.43)
s i=1 i=1 \k=iiM
It follows from Lemma 5.1.1 that
M-1]
~h'h Z[ Y glu "k]ul"< ~cPen Pl <o. (5.44)
i k=i-M

The substitution of (5.44) and (5.28) into (5.43) will give |u"| = 0. Then it can be
concluded that u" = 0 from (5.42).

By the principle of induction, the difference scheme (5.38)—(5.40) has a unique
solution. The proof ends. O
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5.2.3 Stability of the difference scheme

Theorem 5.2.2. Suppose {u}' | 0 < i < M, 0 < n < N} is the solution of the difference
scheme (5.38)—(5.40), then it holds

QLT - a)

"’ < II o+ 2P

max (¢ A5 P), 1<n<n,

1<m<n

where
B pm-1+02 i B em-1+0y2
[AR ™ =k Y (A ET)
i=1

Proof. Taking the inner product on both hand sides of (5.38) with ou™ + (1- o) will
produce

nl M-1
—Zc("“hz A’B mK N [oul + (1 - o)l

M-1 i
=-ntny z g(ﬁ)[aul L+ 1 — o [od + 1 - ol
i=1 k=i-M
M-1
+h (Aﬁfinflm)[au? +(1-ou
i-1
=C+D. (5.45)

Now each term in (5.45) will be estimated.
For the left-hand side of (5.45), we have

1 n-1 M-1
B=-Yc"nYy [Aﬁ(u;’_k Y] [oul + (1 - o)
S k=0 i-1
1 n-1 1k
§ Z na)(y Tou+(1- G)u"’l)A.

By Lemma 2.6.1, we have

Z e (" — [ )- (5.46)

It follows from Lemma 5.1.1 that the first term on the right-hand side
C< —Ciﬁ)(ZL)_ﬁ“ou" +(1- 0)u"‘1||2. (5.47)

By the Cauchy-Schwarz inequality, we know that the second term on the right-
hand side

D < A" fou" + (1 o™
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(ZL)

<Ly Plou + - o™ + ||Ahf” o2, (5.48)
Substituting (5.46)-(5.48) into (5.45) gives
1 k2 k12 (ZL) 2
3 2 6 ) < Sl Len e
k=0
Noticing
S
) < t,’fl"(l -a),
n-1

it follows from the inequality above that

eIy

n-1
0112 s(2L)
Z(c,‘("f) ] i PRl T IIA;.f” e

BR‘
Lo

k2
Z ] i

L) t“l"(l a)

e | I + J 4| 1ensen.

The inductive process will lead to

QLT - o)

2 2
Iy < B - G ma AT 1enen
By noticing (5.29), further we have
2 3 QLT - a) .
Ju"|” < 5 " Tﬁf”l<m<n x{t) IIA,fm +"|| 1<n<N.
The proof ends. O

5.2.4 Convergence of the difference scheme

Theorem 5.2.3. Suppose {U!' |0<i<M,0<n<N} and {u}' |0<i<M,0<n<N}
are solutions of the problem (5.1)—(5.3) and the difference scheme (5.38)—(5.40), respec-
tively. Let

ef =U'-uf, 0<i<M,0<n<N,

then it holds

2BLBTAr(1 -
le"|| < \F FLTPTA - a) c(?+h*), 1<n<N. (5.49)

4 P
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Proof. Subtracting (5.38)—(5.40) from (5.34), (5.36)—(5.37), respectively, gives the sys-
tem of error equations as follows:

(na) nkl
hr(z a)zc )

=-nt Z gP(gel + 1- o)) + ()T,
k=i-M

1<i<M-1,1<n<N,
0, 1I<isM-1,

0
el
n n
[ e0=0,e,,=0, 0O<n<N.

Noticing (5.35), the application of Theorem 5.2.2 immediately yields

e < 2. CIETU=0) oy
) (/3) 1<m<n 2
B 1+/3 a
% Lr(la) 2( h4) , 1<n<N.
2 zc*ﬂ)

Taking the square root on both hand sides of the inequality above will arrive at (5.49).
The proof ends. O

5.3 The second-order method in space for 2D problem
In this section, consider the following 2D initial-boundary value problem:

Pulx, y,t) K 0"u(x,y,t)

Cna
Diu(x,y,t) =K +
oDeulxy,t) 1 a|x|ﬁ 2 Y

+f(xy,t),

(6y)eQ, 0<t<T, (5.50)
u(x,y,0) = p(x,y), xy)eQ, (5.51)
u(y,t)=0, (x,y)eoQ, 0<t<T, (5.52)

where « € (0,1), 8 € (1,2),y € (1,2),K; > 0,K, > 0, Q = (0,L;) x (0,L,) and
P06 Y) | yyeaq = O-

Take the same mesh partition and notations as those in Section 2.10. In addition,
define 0 =1- 5, ty_1, = tyq + 07,5 = T°TQ2 - @).

Similar to Section 4.4, define functions v(x,y, t) and w(x, y, t). Suppose V(-,y,t) €
(R, Wix, - t) € €2 (R) and u(x,y, ") € C’[0, T).

Define the mesh functions

U? = u(Xi,y)', tn)’ (l)]) € d)’ O sn < N;

T = F Y tarre)s (b)) €@, 1<n<N.
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5.3.1 Derivation of the difference scheme
Considering equation (5.50) at the point (x;, yj, tn_1,4), We have
aﬁu(xi’ Yj’ tn—1+0) ayu(xi’yj’ tn—1+0)

n-1+o
olx|B h alylY Hi
(i,j) ew, 1<n<N. (5.53)

C
OD?u(Xi’ V> thve) = K4

For the Caputo derivative in (5.53), using L2-1, approximation (1.81), it follows from
Theorem 1.6.4 that

-a n-1

Y U - U Y v o). (5.54)

Cna
oD ulxi, Yjo tn-140) = T2-a) P

For the Riesz derivatives in (5.53), it follows from the linear interpolation and Theo-
rem 1.5.1 that

aﬁu(xb yj’ tn—1+o)

olx|B
_ oaﬁu(x,-,y}-, t) f(l- o)aﬁu(xi,y]-, th1) .\ O(‘rz)
olx|B olx|f

i
- o|-h?* Z g lk]]+(1—0)[—h1_ﬂ Y gPurl | +o(?+ )

k=i-M, k=i-M,
=-n’ Z gPloUl; + A - 0)UML] + O(T + h). (5.55)
k=i-M,
Similarly, we have
0o u(xl’y]’ n— 1+a) y A(y 2
— " = -h, Z oUfs 4+ (1= U]+ O(T* + B).  (556)
k=j-M,
Substituting (5.54)-(5.56) into (5.53) yields
o g (na) 7k n-k-1
U; " - Uy
I2-a) £ Z ( )

_Kl —ﬁ Z g(ﬁ) Unk]+(1 0) 5{1}]
k=i- Ml

~ -1
- Koh; VkZM gV [oUl + (1- o) U]
=]—M,

+fi+ ()}, () ew, 1<n<N, (5.57)
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and there is a positive constant c; such that
)i < cs(r° + i +h3), (i) ew, 1<n<N. (5.58)
Noticing the initial-boundary value conditions (5.51)—(5.52), we have

Uj = %y, (0,)) € w, (5.59)
Uj=0, (i,j)€ow, 0<n<N. (5.60)

Omitting the small term (r3)g- in (5.57) and replacing the exact solution Ul-']? with its
numerical one uu, we get a difference scheme for solving (5.50)—(5.52) in the form of

(RS (n,a) ., n-k n-k-1
I2-a) 4 Z "~y )

= Kb, Z g,ﬁﬁ)[ou?,k,,-+(1—0)u?fkl,;]
1<:1>M1

_th 14 Z g()’)[ou” k+ (l O)MU k] +fln 1+0’

k=j-M,
(i,j)ew, 1<n<N, (5.61)
ug = (p(Xi)yj)s (1)]) € w, (5'62)
| uj=0, (ij)edw, O<n<N. (5.63)

5.3.2 Solvability of the difference scheme

Theorem 5.3.1. The difference scheme (5.61)—(5.63) is uniquely solvable.

Proof. Let
u" = {“Z | (i,j) € @}.

The value of u° is determined by (5.62)-(5.63).

Now assume that the values of u°,u!,...,u"! have been uniquely determined,
then we can obtain the linear system in the unknown u" from (5.61) and (5.63). To show
its unique solvability, it is sufficient to verify that the corresponding homogeneous one

1 ) 500y .

;cg“" uj; = -K,0h; ﬂk Z gﬁ u'yj — Kooh, 4 z Y Wi (1)) €w, (5.64)
i-M, k=j-M,

ug- =0, (i,j) €ow (5.65)

has only the trivial solution.
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Rewrite (5.64) as

Ecgl’“) + Klahl_ﬁ g(‘f )+ Kzah;ygéy)]ug

i j
- K,oh/* > g,(f)) Uiy + Kol Y ( g,((")) u o (1)) € w. (5.66)
k=i-M, k=j-M,
k#0 k#0
Suppose [u"]lo = Iuf AL where (i, j,) € w. In (5.66), letting (i,j) = (i, j,) and

taking the absolute value of both hand sides, the application of the triangle inequality
gives

Ecé"’“) +Kloh1_ﬁ ® +K,0h,"8 (y)]"u oo

iy Jn
<Kioh? 3 (Gl + Koo Y (8,
k=t,—-M, k=j,—M,
k+0 k+0

< [Kyoh ﬁg(ﬁ) +K,0h,'g, y) oo
which implies [u"|,, = 0. The combination with (5.65) will reveal that (5.64)—(5.65)
has only the trivial solution.

By the principle of induction, the difference scheme (5.61)—(5.63) is uniquely solv-
able. The proof ends. O

5.3.3 Stability of the difference scheme

Theorem 5.3.2. Suppose {u{‘j | (i,j) € @, O < n < N}is the solution of (5.61)—(5.63), then
it holds

1<n<N,

n ra 2L 2L m-1+o
WP < P+ S 2 13,)+§<;3y)] (Gl er

where

M,-1M,-1

"fm—1+a -h hz z Z m 1+0

i=1 j=1

Proof. Taking the inner product on both hand sides of (5.61) with ou" + (1 - o)u" ! will
arrive at

M,-1M,-1

1 _
;I;)c,((”“)h sy Z Z ue 1)[ou;’.+ (1- o 1

i=1 j=1
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My-1 i
=Kk Y { n’n, Z z gPoul i+ (1 - ot k,][0u2}+(1—a)u§}‘1]}

j=1 i=1 k= z—M1

M- j
+K2hlz<| yhzz Z ”(Y) ouf; .+ (1- oy k][au +(1- oy ]}

i=1 = k=M,
M,-1M,-1

+ hyh, Z Z fi7Hlouf + - oy '] (5.67)
i=1 j=1

Now each term in (5.67) will be estimated.
By Lemma 2.6.1, we have

- M,-1M,-1
Z ™ h b, >y (ug-_k - ul'-}_k_l)[aug- +(1- o]
k=0 =1 j=1
1 (n a) n-k-1)2
SPX (i I i (5.68)

It follows from Lemma 5.1.1 that

M1 i
—hl_ﬁhl > oy g}j” [oujly; + (1 - a)u?:,ij] [oujj + (1 - a)ug-"l]

i=1 k=i-M,
M;-1 )
<-cP@L)Ph Y [ouf + (1 -o)uf ] (5.69)

i=1

and

-h,'h, Z Z g(y) ok + (L- oy k][oug + (1—a)ug71]
j=1 k=j-M,

My-1
<-cY@L,)7h, Z ou +(1- o)u ] (5.70)
j=1

Substituting (5.68)-(5.70) into (5.67) gives

1T (na U k2 n-k-1)2

= 2 A - )
M-1M,-1

< -K,c®2L,)Pn,h, z z ou + (1- o)y~ ]
i=1 j=1
M—1M,-1 ,

~KcV@L) Yk, Y Y [ouf + (1- o]

i1 j=1
My-1M,-1

+hhy Y T [ouf + (- o]

i=1 j=1
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< -k, P L) Plou® + 4 - o™
- KV L)Y fou + (1 - o™
I fou" + (- o™

<L (ZLl) (2Lz)) "fn 1+a" 1<n<N. (5.71)
16 chiﬂ) K,c; ¥

By Lemma 1.6.3, we have

s
tT(1-a)
o
Then it follows from (5.71) that
O’ < Z (e - M) "M+ &
k=1

1@ @Ly) |y onetioy?
Q (/3) ( "f “
8lg,c® Ky

n-1
< Y e
k=1
(n @) (2Ly) (ZLz)y] a _ n-1+o 2}
{|| I+ [chi’” v |-y enen
The inductive process will lead to
B < 5 28 22 - gl T 1<
1 *

The proof ends.

5.3.4 Convergence of the difference scheme

Theorem 5.3.3. Suppose {Ui’} | (i,j) € @,0 <n < N} and {u | (i,j) € @,0 < n < N} are
solutions of the problem (5.50)-(5.52) and the difference scheme (5.61)-(5.63), respec-

tively. Let

n_ rm n .. ~
e;=Uj—uwy (L)) €ew, 0<n<N,

then it holds

17 @Ly)P 2Ly 2, 2
le"]| < \jg[Kl ® +K 2 ;[T = a)TOLyL, (T +h +h3), 1<n<N. (572
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Proof. The system of error equations can be obtained by the subtraction of (5.61)—(5.63)
from (5.57), (5.59)—(5.60), respectively, as follows:

1 (na), n—k k-1
n,a n n—

kz G (e —e )

-0

= -Kih, B Z g(ﬁ) o€} 4+ (1- U)e?:kl,j]
k=i M1

- K>k, Y z g(y)[ae” - a)e” k] +(r3)u, (i,j)ew,1<n<N,
k=j-M,
ej=0, (ij)ew
[ €j=0, (ij)eow, O<n<N.

Noticing (5.58), the application of Theorem 5.3.2 yields

B
"enuz < l[(ZLl)) + (ZLZ)
8Lk, c® KV
17 2L)P L)
glz® v
8LK,cP Ky}

]F(l a) max (&)™

]m — T L LA + K+ 1), 1<n<N.

Taking the square root on both hand sides of the inequality above will produce (5.72).
The proof ends. O

5.4 The fourth-order method in space for 2D problem

In this section, another higher-order difference scheme of order two in time and four
in space for solving (5.50)—(5.52) will be developed.

For any mesh function v = {v; | (i,j) € @} € Vy, define the following average
operators:

B B B ;
’}-[gvij _ {ﬂvi 1j+(1_ _)Vij"' ﬂvl’+l,].’ 1<1 ng —1; 0 <]<M2)

vy, 1=0, M,

y y Yy
Hyv; = {zVi’-jl = i Vi 1T <M 1, 0<i<M,.
Vi, J =0, My,
Obviously,

v =v +£h252,], 1<i<M;-1,0<j<My;
Hv; = h262 vj, 1<j<My-10<i<M.

Define the functions v(x, y,t) and w(x,y,t) like those in Section 4.4. Suppose
V(,y,t) € P (R), Wix, , £) € €4 (R) and u(x,y, ") € C*[0, T].
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5.4.1 Derivation of the difference scheme

Considering equation (5.50) at the point (x;,y;, t,_1.4), by the mean of the linear inter-
polation, we have

C
OD?u(Xi’Yj’ tn—1+0)

aﬁu(xh V> tn—1+a) ayu(xi’ Vi tn—1+a) fn7]+o'
i

_ N "
b o 2 oy j
Pulx,y,t Pux,y:, t
:Kl[a—( oY) ”)+(1—a)—( oY) ”‘1)]
olx|P olx|p
ayu(xi’yj)tn) ayu(xi>yj>tn—1) -1 2
* 2[ a0 g ]*ff? o),

(1,j)ew,1<n<N.
Performing the operator Hf’)—t}ﬁ to both hand sides of the equality above arrives at

’HﬂHchau(x,-, Y ta-1so)

aﬂu(xi’yj’ tn)

B ( ‘)’i n—)
a uxp )t

x o|x|A
o'u(x;, yi, t,) u(x;, yi, ty_y)
K,Hﬁ[ 7_[y i Yjptn Yjptn ]
M R T Ayl
+ R+ 0(7), () ew, 1<n<N. (5.73)

=K [o%ﬁ

+(1-0)H,

For the Caputo derivative in (5.73), using L2-1,, approximation (1.81), it follows from
Theorem 1.6.4 that

-

I2-a) Z

SDIUCG V) byteg) = Z MU - Uy o(r). (5.74)

For the Riesz derivatives in (5.73), it follows from Theorem 1.5.2 that

aﬁu(x-, Vi, t,) ~ i
EW - _hlﬁ Z gl(cﬂ i-kjt O(hl‘) (5.75)
k:i—Ml
'u(x;, yj tn) )
- Z DUl + o(hS). (5.76)
y ki,

Substituting (5.74)—(5.76) into (5.73) gives

n,a) nk n-k-1
Z }_U )

x‘m
‘<‘<
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i
=KH(-hP) Y g PoUl,+ (- U]
k:i—Ml

+ KHP (~h z g(")[oU} + (1=, ]k]
k=j-M,

+ HEHETO 4 (r)E (L) €w, 1<n <N,

i
and there is a positive constant ¢, such that
|} < cy( +Hf +h3), (Lj) ew, 1<n<N.

Noticing the initial-boundary value conditions (5.51)—(5.52), we have

Uj = (), () € w,
Ul;.’:o, (i,j) edw, O0<n<N.

(5.77)

(5.78)

(5.79)
(5.80)

Neglecting the small term (r4)g~ in (5.77) and replacing the exact solution Ui’]? with its

numerical one u’
lows:

I]’

B TS i, nk k-1
y na) . n n-k-
H H)f T(2-a) Z;,)Ck (ul) —Uj )

= K H)(-hyP) Z gP 10Ul + - o]
k= 1—M1

+ MR Z 8 0wy i+ (1 - o]
k=j-M,
+ HﬁHyfn 1+0, (l,]) cew,1<n<N,
ul) = (p(Xl’ y])’ (i)j) € w,
| 4j=0, (ij) €dw, 0<n<N.

we get another difference scheme for solving (5.50)—(5.52) as fol-

(5.81)
(5.82)
(5.83)

In the subsequent part, the theoretical analyses on this scheme will be imple-

mented.

5.4.2 Solvability of the difference scheme

Theorem 5.4.1. The difference scheme (5.81)-(5.83) is uniquely solvable.

Proof. Let

u" = {ulr]’ | (i,j) € @}.
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The value of u° is determined by (5.82)—(5.83).

Now suppose the values of u®, u, ..., u" ! have been obtained, then the linear sys-
tem in u" can be determined by (5.81) and (5.83). To show its unique solvability, it suf-
fices to prove that the corresponding homogeneous one

1 _ Lo
—cMOHEHE = ok P, Y gl
k:i—M1
~ ok, HE Z g . () ew, (5.84)
k=j-M,
ug- =0, (i,j) €ow (5.85)

has only the trivial solution.
Taking the inner product on both hand sides of (5.84) with u", we have

M-1M,-1
gco"")hh Y Y (ruig
i=1 j=1
:_Klohl_ﬁhl Z Z A(ﬁ)[h Z (Hy lk] ]
i=1 k=i-M,

- K,0h,"h, Z Z [ Z AT ] (5.86)

J=1 k=j-M,

Denote v; = (0, ujj, U, ..., uferl, 0)7, then the term h, Z (Hy Ui ys) - u can be
taken as the inner product of v;_, with v;. This inner product is 31m11ar to () deﬁned
in Section 5.2.

Similarly, denote w; = (0, ujj;, Uy, ..., Uy _y o 0)", then the term h; Y''! bl LW
can be taken as the inner product of w;_, with w;. This inner product is also similar to
(+,+)4 defined in Section 5.2.

It follows from Corollary 5.1.1 and (5.29) that

i M,-1
_h_ﬁhl Z Z A(ﬁ)[ Z Hy lk]) Z]
j=1

i=1 k=i-M,;

M-1T  M,-1
<-cPaL)?n Yy [hz Y (Huhu ,]

i=1 j=1
2 _
< -gcy”(le) Pl (5.87)
and

j M;-1
S Y ‘(y[ (M ]
1

j=1 k=j-M, i=
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M-1[ My-1
S —CiY)(ZLz)_yhz z [hl Z HE Z) n]

j=1 i=1

< -§c1y>(zL2>-y||u"||2. (5.88)

On the other hand, we have

M-1M,-1

hih; Z Z (HﬁHy 11 11 " n” (5.89)

i=1 j=1

Substituting (5.87)-(5.89) into (5.86) produces |u"| = 0. Then u" = 0 is followed
by combining with (5.85).

By the principle of induction, the difference scheme (5.81)-(5.83) is uniquely solv-
able. The proof ends. O

5.4.3 Stability of the difference scheme

Theorem 5.4.2. Suppose {ug | (i,j) € @, 0 < n < N} is the solution of the difference
scheme (5.81)—(5.83), then it holds

9 [(zmﬁ , L)

2 052 B -1 2
Rl <318 + = e A et

6lgcP " g,
1<n<N, (5.90)
where
M,-1M,-1
"HﬁHyfm 1+c7|| -h hz Z Z 7_[ﬁ,’,_lyflm l+<r) )
i=1 j=1

Proof. Taking the inner product on both hand sides of (5.81) with ou™ + (1 - o, we
have

18 K B k 1 1
na )’l n n-
LS S S (e 1o
k=0 i=1 j=1

n-1

M,- i
= K;h, Z {—hlﬁh1 Z ”(B [(H) (0wl + (1 - o)u” k})]
Jujj

, >
j=1 i=1 k=i-M,
)

[ouji+(1-0

M-1 j
+ Khy Z { "\, z z f(y)[HB (0w} 4 + (1 - oy )]

i=1 j=1 k=j-M,
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) [au;}E +(1- a)ug’-_l]}

M-1M,-1
thhy Y Y (IR o + (1 - o], (5.91)
i=1 j=1

Now each term in (5.91) will be estimated.
Suppose u, v € V. Define the inner product

M,-1My-1
(u,V)H = h1h2 Z Z (HEH)):ul])VU
i=1 j=1
It follows from Lemma 2.6.1 that
M,-1M,-1
z ™ p, h, Zl Zl H’BH" Ul ) [oufy + (1- o)
i=1 j=

n-1
= Z el (T VL VL (I)u"fl)H
n-1
A - @ WY (5.92)
For the former two terms on the right-hand side of (5.91), by Corollary 5.1.1, similar
to (5.87) and (5.88), we have

M,-1 i
h2 Z { h hl Z Z g}iﬁ)[Hy(O-ul —k,j +(1 O-)ul k))]
j=1 i=1 k=i-M,

- [ougi + (1 - a)ugl]}

< —gcim(le)*ﬂuou"+<1—o)u"*1||2 (5.93)
and
{ (-h,")h, Z Z g(y Hﬁ (0w 4 + (1 - oy ]
i=1 j=1 k=j-M,
-1
- [owji + (1 - o)uj; ]}
< —%ci”(sz)‘ynau"+(1-a)u"‘1||2. (5.94)

For the last term on the right-hand side of (5.91), it follows from the Cauchy-

Schwarz inequality that

M1 M,-1
hhy Y Y (HEAF0) 0wl + (1 - o
i=1 j=1
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< ||’H§H)’ff"_1+0|| o™ + (1 - 0)u""1||

< [%Iﬁciﬂ’(ul)"’ + %chi”(uzry]llou" +a-ou" [’
2L @
2| & ]||H i, (595)
R21g,c?  Kye
Substituting (5.92)—(5.95) into (5.91) arrives at
z C(na)[ n- k n—k)H _ (un—k—l,un k 1)H]
2L
\—[( ), @y ]u WFE, 1<n<N. (5.96)
161 g, c® K,V
By Lemma 1.6.3, we have
s
) < tfll"(l -a).
n-1
Then it follows from (5.96) that
C(n,a)(un un)
0 U )y
n-1
: } -k n—k 0.0
< Y (e - )@y + P ),
k=1
(L) (2Lz) 1402
O v L
Kic; K¢
n-1
z C,((n ?) (n ) unfk)un—k)H e a){(u 0,
k=1
QL) @Ly o2
+ —[ o ]r(l—a)tgnﬂf?{;f" o } 1<n<N.
6Lk, P Ky
The application of the inductive process can yield
2L L)
W u")y < (@ u0), + —[( 1(2) + ( 2()) ]F(l -
16lgc?  Kic!
(5.97)

B -1
- max (o [HH ™), 1<n< N,

Noticing

1 2 2
s < @)y < o

the inequality (5.90) can be obtained from (5.97). The proof ends
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5.4.4 Convergence of the difference scheme

Theorem 5.4.3. Suppose {Ul-'} | (i,j) € @,0 <n< N} and {ug- | (i,j) € @,0 < n < N} are
solutions of the problem (5.50)—(5.52) and the difference scheme (5.81)-(5.83), respec-
tively. Let

n_ rm n s s -
ej=Uj-u @j)ew, 0<n<N,

then it holds

2L)F 2Ly
le"|| < 3 [Er L) T(1-a)TLiL, c,(7> + hf +h3), 1<n<N. (598)
4\LEc? Ky

Proof. Subtracting (5.81)—(5.83) from (5.77), (5.79)—(5.80), respectively, produces the
system of error equations as follows:

1% B -k _nk-
X YN n 1
k=0

i
- Ky (-hiP) D gD o€l + (1-0)ell]
=i—-M,

]
+IGHERY) Y g (oef + (1- 0)eli ] + (1)),
k=j-M,
(i,j) ew,1<n<N,
e =0, (ij)ew,

| €j=0, (i,j)€dw, 0O<n<N.

Noticing (5.78), the application of Theorem 5.4.2 immediately yields

||e"u2<2[<ﬂl>" Ly
161K, kY
_9 [(nl)ﬁ (2L,)"
16lg,cP K

[ra - max e

]1"(1 — T LLA( + h + RS, 1<n<N.

Taking the square root on both hand sides of the inequality above will reach (5.98).
The proof ends. O

5.5 Supplementary remarks and discussions

1. The finite difference methods for 1D and 2D time-space-fractional Bloch-Torrey
equations were discussed in this chapter. The time Caputo fractional derivative was
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handled by L2-1, approximation of order 3 - a, and the space Riesz fractional deriva-
tives or the weighted values of space Riesz derivatives at three points were approxi-
mated by the fractional central difference quotient formula (Theorem 1.5.1 or Theorem
1.5.2). Several difference schemes were derived and for each of them, the unique
solvability, stability and convergence in L norm were proved®),

2.1n [110], the following fourth-order numerical differentiation formula to approx-
imate the Riesz derivatives was established:

(- %)

24 hP 12 hB
BN M P
+( 24)[ - ]_ Lo o). (5.99)

Comparing (1.54) with (5.99), the former one is to use the fractional central differ-
ence quotient formula to approximate the weighted value of Riesz derivatives at three
points, whereas, the latter one is to use the weighted value of the fractional central
difference quotient formula to approximate the Riesz derivative at one point.

3.In[106], Yu et al. investigated the numerical solutions of 3D time-space-fractional
Bloch-Torrey equations, where the time Caputo derivative was discretized by the L1
formula and the space Riesz derivatives were approximated by the shifted G-L formula
(1.47) and a positive-type difference scheme was derived. The unconditional stability
and convergence of the resultant scheme were proved by the maximum principle and
the convergence order in the maximum norm was o™ + h, + hy + hy). In [107],
the authors studied the numerical solutions of 2D time-space-fractional Bloch-Torrey
equations, where the time Caputo derivative was discretized by the L1 formula and
the space Riesz derivatives were approximated by the fractional central difference
quotient formula (Theorem 1.5.1, or [4]) and a positive-type difference scheme of order
O(t** + h} + h}) was proposed. The unconditional stability and convergence of the
resultant scheme were proved by the maximum principle and the convergence order
in the maximum norm was O(7*™* + h,z( + hf,). The method in [107] can also be used
to solve the 3D time-space-fractional Bloch-Torrey equations by the finite difference
method”!.

4, Ran and Zhang[65] derived a two-level Crank—Nicolson difference scheme and
a three-level linearized difference scheme for the nonlinear time-space-fractional
Schrédinger equations.

5. Xu and Sun®”! developed a fast second-order difference scheme for the time-
space fractional equation.
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Exercises 5

5.1 For the problem (5.1)-(5.3), construct the following difference scheme:

,

T (zx) n () (a) (@)
r(z_a) Ou _Z(ankl )u _an lu

{1 =-n? Z gPu 4 fl, 1<isM-1,1<n<N,
k=i-M

=@(;), 1<i<M-1,
=0, uy=0, 0<n<N.

u

o3 ~oO

u

Define the function ii(x, t) like that in Section 5.1 and suppose (-, t) € %2”3(73).
For this difference scheme, try to
(1) analyze the truncation error;
(2) show the unique solvability;
(3) show the stability with respect to the initial value ¢ and the function f;
(4) show the convergence and derive the error expression.
5.2 For the problem (5.1)—(5.3), construct the following difference scheme:

- n-
g_T (@), n @ (a) @
hr(z 0() a U; kz_l(nkl )u nlu
i
=0ty gPul + AfT 1<i<M-11<n<N,
k=i-M

=), 1<i<M-1,

0
ul
[ up=0, uy =0, O<n<AN.

Define the function ii(x, t) like that in Section 5.1 and suppose (-, t) € s (R).
For this difference scheme, try to
(1) analyze the truncation error;
(2) show the unique solvability;
(3) show the stability with respect to the initial value ¢ and the function f;
(4) show the convergence and derive the error expression.
5.3 For the problem (5.50)—(5.52), construct the following difference scheme:

—Q
T (@) (a)
T2-a) 0 ul} - Z(an k-1~ Ay k)u —ay” 1”11

j
= Ky(-h) Z AT &E nO N Y- LAY
k=i-M, k=j—-M,

(1,j)ew,1<n<N,
uj = 9.y, (1)) € w,
uf =0, (i,j)€dw, 0<n<N.
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Define the functions v(x,y, t) and w(x, y, t) like those in Section 4.4 and suppose
VG, t) € €2 (R), W(x, - t) € €2 (R).
For this difference scheme, try to
(1) analyze the truncation error;
(2) show the unique solvability;
(3) show the stability with respect to the initial value ¢ and the function f;
(4) show the convergence and derive the error expression.
5.4 For the problem (5.50)—(5.52), construct the following difference scheme:

—Q
By T a) n_ (@) (a) (a)
HxHy r2-a) Z(an k-1~ 11 —a 1]

~h Py Z UL+ Ky (- HE Z gl + LD,
k=i-M, k=j-M,
(i,j)ew,1<n<N,
uj = 906y, (@))€ w,
=0, (ij)edw, 0<n<N.

Define the functions V(x,y, t) and w(x, y, t) like those in Section 4.4 and suppose
Ve, t) € €4 P(R), Wix, - t) € €Y (R).

For this difference scheme, try to

(1) analyze the truncation error;

(2) show the unique solvability;

(3) show the stability with respect to the initial value ¢ and the function f;

(4) show the convergence and derive the error expression.



6 Difference methods for the time distributed-order
subdiffusion equations

In the previous chapters, numerical solutions of the multiterm time-fractional dif-
ferential equations have been discussed. When the number of terms in the time-
fractional derivatives tends to the infinity, the time distributed-order differential
equation is derived. It can be used to model the complex processes with the vary-
ing diffusion exponents as the time, such as the retarding subdiffusion, superslow
diffusion, accelerating superdiffusion and so on. Numerous applications in polymer
physics, kinetics of particles moving in the quenched random force fields, iterated
map models, etc. have been found. In this chapter, the finite difference methods for
solving a class of time distributed-order subdiffusion equations will be concerned. For
each scheme, the unique solvability, stability and convergence will be investigated.
The entire chapter consists of 7 sections.

6.1 The second-order method in both space and distributed order
for 1D problem

Consider the following 1D initial-boundary value problem of time distributed-order
subdiffusion equation

Diu(xt) = Uy (. t) +f(x,t), 0<x<L, 0<t<T, 6.1
u(x,0)=0, O0<x<lIL, (6.2)
u0,6) = o,(t), ul,t)=@,(t), O0<t<T, (6.3)

where ¢,(0) = 0, ¢,(0) = 0 and

1
DYu(x,t) = J w(a) SD%u(x, tyda,
0
1 t -a
| (£ - us(x,6)dé, 0<a<l,
(O:D;XM(X, t) _ {r(l_a) J‘()( {) {( 5) é‘
u(x, t), a=1,
w(a) = 0, f; w(a)da = ¢ > 0, the functions f, ¢, and ¢, are given.
Define the function i(x, t) like that in Section 2.1. Suppose ii(x,-) € ¥**}(R) and
u(, t) € C*[0,L].

https://doi.org/10.1515/9783110616064-006
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6.1.1 Derivation of the difference scheme

Take three positive integers J, M, N and denote Aa = 2], h==,1= a; = IAa (0 <

1< 2]);x; =ih (0 <i<M);t, =nt (0<n<N). Introduce the same mesh function
spaces and notations hke those in Section 2.1.

The distributed-order integral is firstly discretized with proper quadrature formu-
lae. The composite trapezoid formula is listed below.

Lemma 6.1.1. (Composite trapezoid formula) Suppose function s € C*[0,1], then it
holds

1
Js(a)da Aa Z cs(a) - —s"({) & e (0,1),

0 =0

where

11=0,2,
C = 2
1 112/ -1

Define the mesh functions
Ut =u(xpty), f'=f0gt), 0<i<M,0<n<N.
Considering equation (6.1) at the point (x;, ¢,,), we have
D uxi, t,) = Uy (X t) +f, 1<i<M-1,1<n<N. (6.4)
Let
_ Cna
s(a, x;, ty) = w(a) oD;u(x;, ty).

Suppose function s(-, x;, t,,) € C?[0, 1]. It follows from Lemma 6.1.1 that

1
D u(x;, t,) = Js(a, x;, t,)da
0

0’ Jt
= Aachs(al,xl,t ) - Aa A 075(@ X by)

1=0 LI
2J

=0a ) ew(a) §DYulx,t,) + 0(Aa’), (6.5)
=0

where &' € (0,1).
By Corollary 1.4.1, associated with (6.2), we have

DU, ty) = o Dfu(x; ty)
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n
=Y WU +0(r%), 1<i<M-1,1<n<N, (6.6)
k=0

where {w,(("‘)} is defined by (1.33)-(1.34). Substituting (6.6) into (6.5) produces

2] n
DY u(ty) = Aa Y cw(a)t™ Y wU* +0(r + Ad®),
1=0 k=0
1<i<M-1,1<n<N. (6.7)
Notice
U (Xpo ty) = 62U + O(K?), 1<i<M-1,1<n<N. (6.8)

Substituting (6.7) and (6.8) into (6.4) arrives at

2J n
Ay ew(a)T™ Y WU = STUT + £+ (r)]
i=0 k=0

1<i<M-1,1<n<N, (6.9)
and there is a positive constant c¢; such that
|| < ci(f? + K + M%), 1<i<M-1,1<n<N. (6.10)
Noticing the initial-boundary value conditions (6.2)-(6.3), we have

{ UP=0, 1<isM-1, (6.11)
Uy = 1(t), Uy =@,(t,), 0<n<N. (6.12)

Neglecting the small term (r;)} in (6.9) and replacing the exact solution U}' with its
numerical one u}', we get a difference scheme for solving (6.1)-(6.3) as follows:

2J n

~a (&), n-k 2. n n

Aaz cw(ap)t Z w o u T =G+
1=0 k=0

1<isM-1,1<n<N, (6.13)
u =0, 1<i<M-1, (6.14)
Uy = @1(t,), Uy =@,(t), 0<n<N. (6.15)
In the subsequent part, denote
2y
p=20a) cwa)r ™ w, (6.16)

1=0



330 — 6 Difference methods for the time distributed-order subdiffusion equations

6.1.2 Solvability of the difference scheme

Theorem 6.1.1. The difference scheme (6.13)—(6.15) is uniquely solvable.

Proof. Let
n n n n
u" = (ug, Ups. .., Uyp)-

The value of u° is determined by (6.14)—(6.15).

Now assume that the values of u° u!,...,u"! have been uniquely determined,
then the linear system in u" can be obtained from (6.13) and (6.15). To show its unique
solvability, it suffices to verify that the corresponding homogeneous one

{ pul =8, 1<i<M-1, (6.17)
uy =y =0 (6.18)
has only the trivial solution.

Reformulate (6.17) as

2 1 .
<y+ ﬁ>u? = ﬁ(u?_l +upy,), 1<isM-1.

Suppose [[u"|ly, = Iu,fil, where i, € {1,2,...,M - 1}. Letting i = i, in the equality above
and taking the absolute value of both hand sides, the application of the triangle in-
equality produces

2 2
(14 75 1l < L

which implies |u"|, = 0, hence u" = 0.
By the principle of induction, the difference scheme (6.13)—(6.15) is uniquely solv-
able. The proof ends. O

For the analyses on the stability and convergence of the difference scheme (6.13)-
(6.15), three useful lemmas are essential.

6.1.3 Three lemmas

Definition 6.1.1. The matrix

to t ) frn tin
ot t, tn b
bt oty . tin tin
T, = . . . . . (6.19)
tha th3 Iy fo 14
[ ti1 fo s fo ]
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is called the Toeplitz matrix. That is, the entries of an n x n Toeplitz matrix T, are
constant along each diagonal.

Definition 6.1.2. ! If the entries {tk}z;%_n of the Toeplitz matrix (6.19) are Fourier co-
efficients of function f(x), that is,

n

1 )

tk = E Jf(x)e 1kxd)(,
-

then the function f(x) is called the generating function of matrix T,,.

Lemma 6.1.2. ¢ (Grenander—Szeg6 theorem) For the Toeplitz matrix T, given by
(6.19), if its generating function f(x) defined on [-m, ] is continuous and real-valued,
then

fmin < Amin(Tn) < Amax(Tn) < fmax’

where fi, and f.x denote the minimum and maximum values of f(x), respectively,
Amin(T) and Ay, (T),) denote the smallest and largest eigenvalues of T, respectively.
Moreover, if frin < fmax then for n > 1, any eigenvalue A(T),) of T, satisfies

fmin < A(Tn) < fmaX'
In particular, T, is positive definite when f,;, > O.

Lemma 6.1.3. ) Let the coefficient {WIE“)} be defined by (1.33)—(1.34). Then, for any vec-
tor (Vo,Vy,...,Vy)' € R™1, it holds

m n ( )
z ( Z w v,,_k>v,, > 0.
n=0 \ k=0
Proof. Notice the fact that the quadratic form
(N @
> ( > w Vnk)"n
n=0 \ k=0

is nonnegative is equivalent to that the symmetric Toeplitz matrix

r () 1, (@) 1,,(@ 1@ 7
WO EWI §W2 EWm
1. (a) (a) 1. (a) 1. (a
M Wo W 3Wmo1
1. (@ 1. () (@) 1., (a)
W=| 32 3™ w W2
1@ 1. () 1,,(a) ()
L 3Wm Wit 3Wmo Wo §

is positive semidefinite.
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Next, we try to show that the Toeplitz matrix W is positive semidefinite.
The generating function of W is given by

Flax) =w® + = Zw(a) ilox % EWI((a)eikx
= (1 + g)g(()a) + %2[( >g,((a) g}?i)l]eikx
33 ](1+5)sl - el e
k=1
T

z g(a) i(k+)x Z g(a) —i(k+1)x

;<1+2)(1 )" %<1+%>(l—e_b‘)a

- %(1 — ) e - %(1 —e Xy,

As we see, the function f(a, x) is an even function with respect to x with the period 27,
hence we only need to consider function f(a, x) for x € [0, ]. Reformulate f(a, x) as

fla,x) = —(1 + _>[(e—;x ~eb)et®

a

= 1<1+ E)[2is,in<—’-‘>e§" “) 2isin<’_‘>e-%x]
2 2 2 3 5
a X\ i1 a X 1%
- —[215111(——)95"] e’ - —[Zisin<—>e‘i"] o iX
4 2 4 >
X * 1 a sox_m Jp
= [Zsm(—)] {_<1+ _)[el(f_g)ﬂ +e1(5—5)a]
2 2 2

o) ()l -]l gn o)

Let

a a a a
h(a,x) = (1 + E>cos[§(n—x)] - Ecos[z(n—x) —x].
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One can easily check that

h,(a,x) = g<1 + g){sin[g(n—x)] —sin[g(n—x) -X

= g(1+ %){sin[(%(n—x)— §>+ ;]
s (ge-2-2)-3)
=a<1+ §>cos[§(n—x)— %]sin(%).

|

Therefore, h,(a,x) > 0 when x € [0,7]. Hence, h(a,x) > h(a,0) = cos % > 0, which

implies that f(a, x) > 0.
The lemma now follows as a result of Lemma 6.1.2. The proof ends.

Lemma 6.1.4. For the constant u defined by (6.16), it holds

1
m_0<|lnr|>'

Proof.

J 1 a;
UT = Aa;)clw(al) . E(l + —)T
1

0
N 1
= w(a*)(l + %) Jrlf”‘da
. a\ e !
- wia )<“ ?>|lnr| w0
. a*\1-1
=w(a )<1+ 7>|lnrl’

where a* € (0,1). Hence, ut = O(ﬁ). The proof ends.

6.1.4 Stability of the difference scheme

O

Theorem 6.1.2. Suppose {v]' | 0 < i < M,0 < n < N} is the solution of the difference

scheme
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2 n
Ao cw(a)T™ Y Wik = 83T 4 gl

=0 k=0
1<i<M-1,1<n<N, (6.20)
v?=<p,, 1<isM-1,
vo=0, vy=0, 0<n<N
Then it holds
1<m<N,
where

le"f* =1 Y (&7

Proof. Making the inner product on both hand sides of (6.20) with v", it follows from
Lemma 2.1.1 that

2J
Ay cw(ag)T™ z w(a’) kv
1=0 k=0
= (80" V") + (g7 ")
2
=-[8:v"" + ("V")
a2 3 nn2 I? 2
<[+ ST+ 318"
2 1 2 L2 2
<8I + S0 + 518

2
= o+ Slgf. 1<n<N.

Summing up for n from 1 to m produces

Aaz cw(a)T™™ Z Z w(“l)

nlkO

<-= Z||5Xv"||2 + z||g"||2, 1<m<AN.
2 n=1 12 n=1

Adding the term u(v°,v°) to both hand sides of the inequality above gives

Aaz cw(a)T ™™ z Z w7k y

n=0 k=0

<3 Z||6Xv”||2 +u(vO ) + E Z||g"||2, 1<m<N. (6.21)
n=1 n=1



6.1 The second-order method in both space and distributed order for 1D problem

By Lemma 6.1.3, we have

M-1

HME
Ms
M:

n
Z (al n k,V ) h

(;

& an2 o2 L & a2
Y 6V < 2ut | +ETZ||g [, 1<m<N.
n=1 n=1

(“l A k>vf > 0.

i=1n 0

It is clear from (6.21) and (6.22) that

The proof ends.

6.1.5 Convergence of the difference scheme
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(6.22)

Theorem 6.1.3. Suppose {U]'|0<i<M,0<n<N} and {ul' |0<i<M,0<n<N}
are solutions of the problem (6.1)—(6.3) and the difference scheme (6.13)—(6.15), respec-

tively. Let
ef =Uj' —uf, 0<i<M,0<n<N,

then it holds

TZNe loo LTclr +h +Ad?).

Proof. Subtracting (6.13)—(6.15) from (6.9), (6.11)—(6.12), respectively, we get the system

of error equations as follows:

a (ay) n -k 2 n n
Aa Z aw(a)t Z w! =66 + (1),
1=0 k=0

1<isM-1,1<n<N,

, ey=0, 0<n<N.

Noticing (6.10), the application of Theorem 6.1.2 produces

N
Y [6.e"| < —TZ“( " < —TL[cl 2+ 1+ 2]
n=1

By the Cauchy-Schwarz inequality, Lemma 2.1.1 and the inequality above, we have

2

(2t ) < (e21)(r 2t )
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L X 2
T —TZIISXe"II

LT L3
<o e Tla@its A,
that is,
Tzue loo —L Ty (1% + 1 + Ad®).
The proof ends. O

6.2 The fourth-order method in both space and distributed order
for 1D problem

In this section, we continue to consider the problem (6.1)—(6.3) and want to develop a
difference method of order two in time and four in both space and distributed order.
The unique solvability, stability and convergence of the proposed difference scheme
are also proved.

Define the function i(x, t) like that in Section 2.1. Suppose i(x,-) € €>"}(R) and
u(-t) € C°[0, L].

6.2.1 Derivation of the difference scheme

At the beginning, two useful lemmas are presented that will be used later on.

Lemma 6.2.1. (Composite Simpson formula) Suppose function s € C*[0,1], then it
holds

1

Js(a)da Aa Z dis(eq) - —s 4)(11) n € (0,1),

180
0
where
1 -
L 1=02,
di=1 3 1=24,..,20-42-2
3 1=1,3...,27-32-1
Denote
J
v =Aa Z dlw(a,)r’“lwg"’). (6.23)

=0
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Lemma 6.2.2. For the constant v defined by (6.23), it holds

1
VT_O<|lnT|>'

Proof. The proof can be proceeded with the same trick used in the proof for Lem-
ma 6.1.4 and the details are omitted here. O

Now we begin to build the difference scheme for (6.1)-(6.3).
Considering equation (6.1) at the point (x;, t,,), we have

D ux;, ty) = X t) +f, 0<i<M,1<n<N.
Performing the operator .4 to both hand sides of the equality above yields
ADu(x;, t,) = Aug (X;, ty) + Af', 1<i<M-1,1<n<N, (6.24)

where the operator A is defined in Section 2.1.
Let

s(a, x;, t,) = w(Q) gD;“u(x,-, ty).

Suppose function s(-, x;, t,) € C*[0, 1]. It follows from Lemma 6.2.1 that

1
D u(x;, t,) = Js(a, x;, t,)da
0

Y 4 4
Aa® 0"s(a, x;, t
= Aa Z dls(al)xi) tn) _ LM

% 180 oa’ a=n
2

=AY dw(ay) §D{ulx,t,) +0(Aa’), (6.25)
=0

where ' € (0,1).
Noticing (6.2), Corollary 1.4.1 and (6.25), we have

2 n
Dulx;, ty) = Ay dw(a) [T Y w Um0 | + 0(8a®),
=0 k=0
0<is<M,1<n<N. (6.26)

It follows from Lemma 2.1.3 that

Aty (3, t) = 82U + O(h*), 1<i<M-1,1<n<N. (6.27)
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Substituting (6.26) and (6.27) into (6.24) gives

2J n
Aba ) diw(ay) [T_“’ Y w,(f’)Ui""k] = 82U + Af + (),
1=0 k=0
1<i<M-1,1<n<N, (6.28)
and there is a positive constant c, such that
|| < (T +h* +Aa*), 1<i<M-1,1<n<N. (6.29)

Noticing the initial-boundary value conditions (6.2)-(6.3), we have

{ UP=0, 1<i<M-1, (6.30)
U = @1(ty), Uy =@y(t,), O<n<N. (6.31)

Omitting the small term (r2 in (6.28) and replacing the exact solution U; " with its
numerical one uj, another difference scheme for solving (6.1)-(6.3) is produced as

2
AAaZdlw(al)[ — Z w(“’) - k] = 52Ul + Aff,

1=0
1<i<M-1, 1<n<N, (6.32)
=0, 1<i<M-1, (6.33)
ub = oi(ty), Uy =@(t,), 0<n<N. (6.34)

We now turn to the analyses on this difference scheme.

6.2.2 Solvability of the difference scheme

Theorem 6.2.1. The difference scheme (6.32)—(6.34) is uniquely solvable.
Proof. Let

u" = (ug, uy, ..., uy).
The value of u° is determined by (6.33)-(6.34).

Now suppose the values of u°,u',...,u""! have been uniquely determined, then
the linear system in u" can be obtained from (6.32) and (6.34). To show its unique
solvability, it suffices to verify that the corresponding homogeneous one

Xl’

{ VAUl = 8!, 1<i<M-1, (6.35)
ug=uy =0 (6.36)

has only the trivial solution.
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Making the inner product on both hand sides of (6.35) with u™ arrives at

V(A" ") = (82" u) = -8 .
Noticing
> R 2.2 2
(A" ") = "= S8 > Sl
we have

2 2 2
SV < e < o,
thus |[u"| = 0. Then u™ = 0 is followed by noticing (6.36).
By the principle of induction, the theorem is true. The proof ends. O
6.2.3 Stability of the difference scheme

Theorem 6.2.2. Suppose {V{' | 0 < i < M,0 < n < N} is the solution of the difference
scheme

2
Aba Y’ diw(ay) [T “@N Wy k] 8V + gl

1=0 k=0
1<i<M-1,1<n<N, (6.37)
V=@, 1<i<M-1, (6.38)
vo=0, Vvj=0, 0<n<N (6.39)

Then it holds

UL 2 2 32 T 2
T Z“(‘va”“ <3vr|VO|| + ?Tn;“g"" , 1<m<gN,
where

g 1
=1

Proof. Taking the inner product on both hand sides of (6.37) with .4v", it follows from
Lemma 2.1.1, Lemma 2.1.2 and the Cauchy-Schwarz inequality that

2] n
Aay dw(a)T™ ) w,(f")(Av”*k, AV
i=0 k=0

= (82", AV + (8", A
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——l|5 VG + (6" A7)
< —§l|5xv I+ "1 - J4v"]

<2t 411V
<26+ 2P+ Spe?
<26 + Lo+ Spep
- 2o g 1<nen

Summing up for n from 1 to m leads to

Aa z dw(a)T ™™ Z Z wy @k av")

nlkO

<“Z||5 v’ b Zilg I, 1<m<N.
Adding the term v(Av°, Av°) to both hand sides of the inequality above yields

Aaz dw(a)T™™ Z z wi (AvE, avt

n=0 k=0
<—-ZII5V I+ v(Av®, Av°) leg I, 1<m<N. (6.40)
n 1
By Lemma 6.1.3, we have
m n M-1 m n
5w (a4 < b Z[Zw“‘) ]Av) e
n=0 k=0 i=1 n=0L k=0

It follows from (6.40), (6.41) and Lemma 2.1.1 that
TZ”5V I <3ve(Av®, Av°) TZ"
012 2
<3vr|p?||" + ?Tnzz;ug"n , 1<m<N.

The proof ends. O

6.2.4 Convergence of the difference scheme

Theorem 6.2.3. Suppose {U'|0<i<M,0<n<N} and {ul' |0<i<M,0<n<N}
are solutions of the problem (6.1)—(6.3) and the difference scheme (6.32)—(6.34), respec-
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tively. Let

then it holds
T zue oo —L Tey(1% + h* + Aa®).

Proof. The subtraction of (6.32)—(6.34) from (6.28), (6.30)—(6.31), respectively, pro-
duces the system of error equations as follows:

AAaZdlw(al [ & Z w(“’) nok | 82l + (r)l,
i=0
1<i<sM-1,1<n<N,

Noticing (6.29), the application of Theorem 6.2.2 immediately yields

TZI|5 e[’ < —T le(fz) I

2 N
3L ZLCZ(T +h4+Aa)]

< %T[cz(rz YOI

It follows from the Cauchy-Schwarz inequality, Lemma 2.1.1 and the inequality above
that

N n 2 N N -
(rzne ||oo) < ( zl)<rzue ||oo)
n=1 n=1 n=1
L N 2
Y
LT 3L3

<S4 —T[ (T2+h4+Aa4)]2.

Taking the square root on both hand sides of the inequality above gives
TZ||e oo —L Tc,(? + h* + Aa®).

The proof ends. O



342 — 6 Difference methods for the time distributed-order subdiffusion equations

6.3 The second-order method in both space and distributed order
for 2D problem

Consider the following 2D initial-boundary value problem of time distributed-order
subdiffusion equation

D u(x,y, t) = gy (X, y, t) + U, (6, t) + f(6, 1),

(x,y)eQ, te(0,T], (6.42)
ux,y,0)=0, (xy) eQ, (6.43)
u(x,y,t) = (x,y,t), (xy)eoQ,tel0,T], (6.44)

where Q = (0,L,) x (0, L,), 0Q is the boundary of Q; When (x,y) € 0Q, ¢(x,y,0) = 0;

1
Diu(x,y,t) = jw(a) ng‘u(x, y, t)da,

0
1t _a
_— t— s Y d N 0 <ac< 1)
(C)D‘fu(x,y, t) = 4 T-a) Jo( &) ug(x,y, §)dé
U (x,y,t), a1

w(a) = 0, jé w(a)da = ¢y > 0, the functions f and ¢ are given.

In this section, a second-order difference scheme for solving (6.42)—(6.44) will
be considered and its unique solvability, stability and convergence will also be illus-
trated.

Take the same mesh partition and notations like those in Section 2.10 in both
space and time directions. Besides, for any mesh function u € V;, define

_ Q2 2
Ahuij = 6Xuij + 6yul-j.

For any mesh functions u,v € f/h, let

M,-1 M,-1
Ot Bpv) = iy Y Y Byuy) Brvip),  [184ull = \/(Apu, Apu) .
i=1 j=1

The following lemma is true.

Lemma 6.3.1. %76 For any mesh function u € V, there is a positive constant c such
that

ulloo < cllAgull.

3713
2LlLZ

More precisely, we have ¢ = \] S22 +12) + ezl
1 2

Define the function ii(x, y, t) like that in Section 2.10. Suppose u(x,y,-) € %ZH(R)
and u(- -, t) e C*(Q).
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6.3.1 Derivation of the difference scheme
Define the mesh functions
Ui;-’ = u(x;, yj, ty), fl;' =f(yptn), () €@, 0<n<N.
Considering equation (6.42) at the point (x;,y;, t,), we have

'Dyu(XbYP tn) = uxx(xbyj’ tn) + uyy(Xi’yj’tn) +fir’l>
(i,j) ew, 1<n<N. (6.45)

Let
S(a,X;, Y ) = W(@) §DFU(K Vo by).

Suppose function s(;, x;,y;, t,) € C%[0,1]. From Lemma 6.1.1, Corollary 1.4.1 and
(6.43), we have

D;‘Nu(xb y)’ tn)

2J
=0a ) cw(a) DY ulx;,y;t,) + O(Aa’)
=0

2J
=0 cw(a)|T™™ Z wP U+ 0(r) | + 0(ad). (6.46)
=0

It follows from Lemma 2.1.3 that

U (X, Yo t) = U5 + O(MY), Uy (X3, Yo ) = 65U + O(h3). (6.47)

x“ij

Substituting (6.46) and (6.47) into (6.45) gives

J
Aay c,w(al)[ ~ Z w U } MUS +ff + ()}, (b)) ew, 1<n<N, (6.48)
=0

and there is a positive constant c; such that
|(r3)g.| <o’ + hf + h% +Ad®), (i,j) ew, 1<n<N. (6.49)
Noticing the initial-boundary value conditions (6.43)-(6.44), we have

Uj =0, (i))e€w (6.50)
Ui;-' = o Ypty),  (i,)) € 0w, 0 <nm<N. (6.51)
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Neglecting the small term (r3)g- in (6.48) and replacing the exact solution Ui;-' with its

numerical one “u’ we get a difference scheme for solving (6.42)—(6.44) in the form of

-

2J
Aachw(al)[ 4 Z w Wyl "] = Aypuji +

1=0
4 (i,j) ew, 1<n<N, (6.52)
up=0, (ij)ew, (6.53)
| ug- = o Yjty), (i) € 0w, 0 << N. (6.54)

Next, we aim to make some analyses on the difference scheme (6.52)—(6.54).

6.3.2 Solvability of the difference scheme

Theorem 6.3.1. The difference scheme (6.52)—(6.54) is uniquely solvable.

Proof. Let
u't = {uZ | (i,j) € @}.

The value of u° is determined by (6.53)—(6.54).

Now assume that the values of u°,u!,...,u"! have been uniquely determined,
then we can obtain the linear system in the unknown u" from (6.52) and (6.54). To
show its unique solvability, it is sufficient to verify that the corresponding homoge-
neous one

{ uu; _Ahul], (i,j) € w, (6.55)
ui]- =0, (i,j)€ow (6.56)

has only the trivial solution.
Rewrite (6.55) as follows:

2 2 1 1,5 n -
U+ = >u = Sl +ufy )+ 5 uL,), () € w.
( 12 h2 iR Uiy Uisj R i+

Suppose "5 |”1 i |, where (i,,j,) € w. Letting (i,j) = (i,,j,) in the equality above
and taking the absolute value on both hand sides of the result, the application of the
triangle inequality gives

2 2 2 2
(1 i+ 1 < o+ e

therefore, [u"|,, = 0. Then u" = 0 is concluded from the combination with (6.56).
By the principle of induction, the difference scheme (6.52)—(6.54) is uniquely solv-
able. The proof ends. O
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6.3.3 Stability of the difference scheme

Theorem 6.3.2. Suppose {vi']f | (i,j) € @,0 < n < N} is the solution of the difference
scheme

2J
Aa ) cw(ag)T ™ z WV = A+ gl
1=0
4 (1,]) €w,1<n<N, (6.57)
vg =@ (1)) cw, (6.58)
| vir;:O, (i,j) € ow, 0 < n < N. (6.59)
Then it holds
& a2 02 Sy a2
Y A" < 2tV T+ 7 Y |g"|, 1<m<N,
n= n=
where

M,-1M,—1

”g " _th Z Z gl]

i=1 j=1

Proof. Making the inner product on both hand sides of (6.57) with —A,v", it follows
from the Cauchy-Schwarz inequality that

2J
Aa )y cw(a)T™ Z w7k, ")
10 k=0

—(Apv", Apv"™) - (8", Apv"™)
2
<= [Anv" "+ "] - lanv"
2 1 2 1 2
<o+ SIaw " + 518"

1 2 1 2
= _EllAhvn” + E”gn" 5 1< n $N

Summing up for n from 1 to m and adding the term u(v°, -A,v°) to both hand sides of
the obtained inequality arrive at

2
Aa Z aw(a)t ™!
1=0

1 & a2
<2 S I ¢ 0 -)
n=1

7 MS

n
Z m) nk Ahv)

1<m<N. (6.60)

By Lemma 6.1.3, we have

i Z w(“’) K _Ap™)

n=0 k=0

(=}
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‘Mil[i

= 0. (6.61)

Combining (6.60) with (6.61) leads to

TZIIAhv I” < 2ur (v, - +TZIIg §

n=1

m
= 2ur|vp P+ Y "> 1<m<N.
n=

The proof ends. O

6.3.4 Convergence of the difference scheme

Theorem 6.3.3. Suppose {U,-;-l | (i,j) € @,0 <n< N} and {uf]'. | (i,j) € @,0 < n < N} are
solutions of the problem (6.42)—(6.44) and the difference scheme (6.52)-(6.54), respec-
tively. Let

n n n P _

then it holds
N
TY €'l < €T\LLy c3(r° + hf + 5 + Ad?), (6.62)
n=1
where the constant c is defined in Lemma 6.3.1.

Proof. Subtracting (6.52)—(6.54) from (6.48), (6.50)—(6.51), respectively, we get the sys-
tem of error equations as follows:

] y

Aachw(al)[ - z w(“’) - k] = Myeji + (13)j,
1=0

J (i,j)ew,1<n<N,

e) =0, 1,)) € w,

el=0, (i,j)edw, 0<n<N.
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Noticing (6.49), the application of Theorem 6.3.2 yields
N - N 1
NIV S (R
n=1 n=1

N
<T Z LiLy[cs(T + B + b5 + Aafz)]2
n=1

< TLiLy[c5(t% + B2 + B + Aa?)). (6.63)

It follows from the Cauchy-Schwarz inequality, Lemma 6.3.1 and (6.63) that

N 2 N N
(2l ) <(21)(r 2
n=1 n=1 n=1
N 2
<STET Y [|Aye’|
n=1
< CT’LiLy[cs( + hf + k5 + Aaz)]z,

which implies (6.62). The proof ends. O

6.4 The fourth-order method in both space and distributed order
for 2D problem

This section is devoted to a difference method of order two in time and four in both
space and distributed order for the problem (6.42)—(6.44).

Define the function ii(x, y, t) like that in Section 2.10. Suppose i(x,y,-) € €**}(R)
and u(, - t) € C®9(Q).

6.4.1 Derivation of the difference scheme
Considering equation (6.42) at the point (x;,y;, t,,), we have

D}Nu(xix y]> tn) = uxx(xi)yja tn) + uyy(xiayj: tn) +fl'"l>

(i,j) €@, 1<n<N.

Performing the operator .A,.A, to both hand sides of the equality above and noticing
Lemma 2.1.3, we have

AA, D u(x;, yj, ty)

= AY<Axuxx(Xi>yj’ tn)> + Ax<Ayuw(Xi’yi’ t")> + AX‘Ayfi;l
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= A, 6LU} + A UL + A AT + O(hY + h3),
(i,j) ew, 1<n<N, (6.64)

where the operators A, and A, are defined in Section 3.10.
Let

(@, X;, V> ty) = w(@) gD‘t"u(xi,yj, ty).
Suppose function SG XY ty) € c*[0,1]. By Lemma 6.2.1 and Corollary 1.4.1, we

have

2J
Dy ulx, v ty) = ba Y dw(ay) §DFu(x;,y;t,) + 0(Aa*)
=0

2] n
=Aa )y dw(a) [r % Z w “I)U" ky )] +0(Aa™). (6.65)
=0

Substituting (6.65) into (6.64) yields

2J

AcAMay dlw(al)[ ~ Z w “’)U" k]
=0

= A, 8LU + ABUS + AGAST + (r)f, (b)) €w, 1<n <N, (6.66)

and there is a positive constant ¢, such that
|(r4)5-| < C4(T2 + hi‘ + hg + Aa‘*), (i,j) ew, 1<n<N. (6.67)
Noticing the initial-boundary value conditions (6.43)-(6.44), we have

{ Uj=0, (ij)ew, (6.68)

Ul;-’ = (X Ypty), (i) € 0w, 0<n<N. (6.69)

Omitting the small term (m){} in (6.66) and replacing the exact solution Ui;-‘ with
its numerical one uj;, we can obtain the following difference scheme for solving
(6.42)—(6.44):

l] ’

2y
AXAyAaZdlw(al)[ A Z w\ Wyl "]

=0
{ = Ay6§ug + A, 62u" +A Ay 1 (j)ew, 1<n<N, (6.70)
ui)- =0, (ij)€w, (6.71)
U = 90, t,), (1)) € 9w, 0<n<N. 6.72)

In the subsequent part, the unique solvability, stability and convergence of this
difference scheme will be shown.
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6.4.2 Solvability of the difference scheme

Theorem 6.4.1. The difference scheme (6.70)—(6.72) is uniquely solvable.

Proof. Let
u" = {uj | (i,j) € @}

The value of u° is uniquely determined by (6.71)-(6.72).

Now suppose the values of u°,u!,...,u""! have been uniquely determined, then
the system in u" can be obtained from (6.70) and (6.72). To show its unique solvability,
it is sufficient to prove that the corresponding homogeneous one

VAANMG = ASoul + A, (L)) €, (6.73)
ug- =0, (i,j) €ow (6.74)

has only the trivial solution.
To this end, making the inner product on both hand sides of (6.73) with u" pro-
duces

V(A AU ") = (A,,&iu", u") + (AX(S;u", u™). (6.75)

It follows from Lemma 3.10.1 that

(A ) > S (6.76)
By (3.321) and (3.322), we have
(A, 80" u" ——||6 "7, (A A" " ——||6 "I (6.77)

Substituting (6.76) and (6.77) into (6.75) yields

L g R A

hence, ||[u"|| = 0, which implies u" = 0 by noticing (6.74).
By the principle of induction, the theorem is true. The proof ends. O
6.4.3 Stability of the difference scheme

Two useful lemmas are firstly prepared.

Lemma 6.4.1. 1“®! For any mesh functionv € V, it holds

2
§||Ahv||2 < (A8 + A8, Dyy) < 1AV,
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Lemma 6.4.2. 1“8 For any mesh functionv € f/h, it holds
1 2 2
§"th" < (A AV, =Apy) < |IVpVl”.

Next, the stability result is given.

Theorem 6.4.2. Suppose {vir} | (i,j) € @,0 < n < N} is the solution of the difference
scheme

2] n
Aa ) dw(a)T™ ) w,({“’)AXAyv{}_k
1=0 k=0
{1 = Ay6,2(vg + Axé)z,vg +g, () ew 1<n<N, (6.78)
vi =gy (1)) €w, (6.79)
vi=0, (i,j) €dw, 0<n<N. (6.80)
Then it holds
T §:||Ahv"||2 <3tV + 2 ing" I, 1<m<N, (6.81)
n=1 4 n=1
where
R MMl
"l =hiha 3. Y (5)"
i=1 j=1

Proof. Taking the inner product on both hand sides of (6.78) with —A,v", it follows
from Lemma 6.4.1 that

2J n
Aa ) dw(a)t™ ) W (A AV A"
i=0 k=0
= (4,60 + AX5§V", ~AV") + (8", -ApV™)
2 2
<=3+ g™ - 18w
2 2 1 2 3 2
St O IR AR R
==l + 218" 1<n<N.

Summing up over n from 1 to m and adding the term V(.AXAyVO, —Ahvo) to both hand
sides of the result, we get

2] m n
Aoy dw(a)T™| Y ) Wi (A AV A"
10 n=0 k=0
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2, 1<m<N. (6.82)

1 & 2 0 0 35
<-3 A"+ v(A AN, A °) + " 2 lg"
=1 n=1

Since the operators A, and A, are both positive definite, there exist two positive
definite operators P, and Py, such that A, = Pf, A, = 735. Therefore,

(AcAY" ™, -")
= (A AV -8V + (A AV, -8
= (P PV, =P P 6v™) + (P PV, ~P, P8V
= (P P8V 5 PP, 6V + (P P,8 V" X, PP, 8"
= (8, PPV .8, PP V") + (8, P, PV, 6, P PV").

Similar to the proof for (6.61), we have

m n
Y Y W (A, A" > 0. (6.83)
n=0 k=0
By Lemma 6.4.2, it holds
(A V0, -2°) < V. (6.84)
Substituting (6.83) and (6.84) into (6.82) will yield (6.81). The proof ends. O

6.4.4 Convergence of the difference scheme

Theorem 6.4.3. Suppose {U,-;-‘ | (i,j) € @,0 <n< N} and {ug. | (i,j) € @,0 < n < N} are
solutions of the problem (6.42)—(6.44) and the difference scheme (6.70)—(6.72), respec-
tively. Let

n_ rm n
eij—Ui}-—u

ij> (i,j)ew, 0<n<N,

then it holds
v 3
T Z”e"”oo < ECT LyL, c,(T° + hi + B + Aa®), (6.85)
n=1
where the constant c is defined in Lemma 6.3.1.

Proof. Subtracting (6.70)-(6.72) from (6.66), (6.68)-(6.69), respectively, we get the sys-
tem of error equations as follows:

2J n
Ay diw(ay) [r"‘l y w,(fl)AXAyegk]
1=0 k=0

i = Abref+ A8l + (r)f,  (ij) €w, 1<n<N,
ej=0, (ij)cw,

el=0, (ij)€dw, 0<n<N.
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Noticing (6.67), the application of Theorem 6.4.2 yields
N N
2 _9 2
2 1w < 27 X 0"
n=1 n=1
9 ¥ 2
<47 Z LyLy[c,(7* + h} + h3 + Aa™)]
n=1

< %TLlLZ[C4(T2 +h +hy+ Aa4)]2. (6.86)

By the Cauchy—Schwarz inequality, Lemma 6.3.1 and (6.86), we have

(r iue"uOO)Z <(r21)(r )
< TczréNAhe"nz

< %cszLle[cl‘(T2 +h+hy+ Aa4)]2,

which implies (6.85). The proof ends. O

6.5 The second-order ADI method in both space and
distributed-order for 2D problem

In this section, an ADI difference scheme for solving the 2D problem of time distributed-
order subdiffusion equation (6.42)—(6.44) will be proposed and its unique solvability,
stability and convergence will also be shown.

Define the function i(x, y, t) like that in Section 2.10. Suppose i(x,y,-) € > (R)
and u(- - t) € C*“(Q).

6.5.1 Derivation of the difference scheme

n_ ﬂ—l
Adding the small term ﬁ5§5§ % to both hand sides of (6.48) arrives at

J n 0
Dy cw(a) [T‘“Z > wli“’)Ui;.""] + 15i5§u
=0 k=0 K T
= MU +fi + (), (L) ew, 1<n<N, (6.87)

where

n n-1
n_ oo, T~ Uy
ro)h = (ry)h + —6262 2L —2
(51] 37ij ny T
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It is easy to see that }11 = 0(*|InT) by Lemma 6.1.4. Hence, there exists a positive
constant ¢; such that

|(r5)Z~| <c(T?+h + b5+ Ad®) +cs’|InT], (i) ew, 1<n<N. (6.88)
Noticing the initial-boundary value conditions (6.43)-(6.44), we have

Ul =0, (ij)€w (6.89)
Ui = o Ypty), (i) € 0w, 0<n<N. (6.90)

Neglecting the small term (rs)g- in (6.87) and replacing the exact solution Ui;-' with its

numerical one u?, a difference scheme for (6.42)—(6.44) is obtained as follows:

l]’

e (@), n-k 2 02 Ui ”g_l
A wyn 6 6, ———
al;)clw(al)[ Zw } +y =
= Ahug- + i}’, (i,j) ew, 1<n <N, (6.91)
uy =0, (ij) €w, (6.92)
[ uj = (Y ty), (1)) € 0w, 0<n<N. (6.93)

Rewrite (6.91) in the form of
2 2 100
,uug'- - (8, + 6y)ug- + }—léxéyug-
——Aachw(a)T o Zwal) n- k+ 5252 n- 1+f1 )
or

(vﬁz— %5§><\/ﬁ1— %(ﬁ)ug

:—AaZClw(a)T alzwal) nk+ 5262 n1+fu

Let

" 1
uj; = <\/]71— ﬁéi;)ug

Then the difference scheme (6.91)-(6.93) can be decomposed into the following ADI
form:
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On each time level t = ¢, (1 < n < N), firstly, for any fixed j from 1to M, — 1, solve a
series of linear systems in the unknown {u | 0 i< M;}in x direction

<\/_I— ﬁ52>u = —Aachw a)T ™™ Zw(‘x’) n-k

1<i<M, -1, (6.94)

ij >

+H6262 n-l,

u(’;j=<\/_2— \/_62>u0], Uy, j = (x/_I— \/_62>uM11

to get the value of
{uj 11 <i<M; -1}

Then, for any fixed i from 1 to M; -1, compute a series of one-dimensional problems
in the unknown {ug- | 0 <j < M,}iny direction

<\/—I——62>u =u;, 1<js<M,-1,
VA Y j

1‘0 - (P(Xi’yO’ tn)) ul(sz - gD(Xi)yMz)tn)

(6.95)

to get the desired value of
1< < My~ 1),

The linear systems (6.94) and (6.95) are both tridiagonal, which can be easily
solved using the Thomas algorithm.
In the subsequent part, we aim to analyze the proposed difference scheme.

6.5.2 Solvability of the difference scheme

Theorem 6.5.1. The difference scheme (6.91)—(6.93) is uniquely solvable.
Proof. Let
u' = {ug | (i,j) € @}.

The value of u° is determined by (6.92)—(6.93).

Now suppose the values of u°,u',...,u""! have been uniquely determined, then
we can get the linear system in u" from (6.91) and (6.93). To show its unique solvability,
it suffices to prove that the corresponding homogeneous one

pag; + }15?(6511” =Nl (i) €, (6.96)
ug- =0, (i,j) € ow (6.97)

has only the trivial solution.
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To this end, making the inner product on both hand sides of (6.96) with u" leads
to

uu" ") + H(szazu" u") = (A ") = [T
Therefore,
D
which implies |u"| = 0. Noticing (6.97), it is clear that u" = 0.
By the principle of induction, the theorem is true. The proof ends. O
6.5.3 Stability of the difference scheme

Theorem 6.5.2. Suppose {v{}’. (i,j) € @,0 < n < N} is the solution of the difference
scheme

) ik ViV
A o (o n 22V Vi
a Z aw(a)T z W, + H6 5, -
] = Ahvi]- +gij, (1,]) ew,1<n<N, (6.98)
Vi =y 0))ew, (6.99)
[ vj=0, (i,j)€dw, 0O<n<N. (6.100)
Then it holds
2 2
rznahv ROV R
m
<tV + £ ||525yv°||2 w682+ Y e’ 1<m<N,  (6.101)
=1

where

M,-1 My-1

|g || _thZ Z gl]

i=1 j=1

Proof. Making the inner product on both hand sides of (6.98) with —-A,v" and using
the Cauchy-Schwarz inequality, it follows that

2J
Aay cw(a)T™ Z W\ (VE —p")
=0 k=0

n_ . n-1
+ £<5§5§%,—Ahv">
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—(Bpv", DpV") + (8", V")
2 1 2 1 2
<ol + L+ L
- L L renen (6102

For the second term on the left-hand side of the inequality above, by noticing (6.100),
we have

:<5252Vn—_vn_1’_62 n) <5262V_ 5 n>
T T
(87 ) (s s
> (1838, - 1528, )
+ (16,831 - 6.5 IP). (6.103)

Summing up for nin (6.102) from 1 to m and adding the term y(vo, —Ahvo) to both hand
sides of the obtained inequality, with the aid of (6.103), we get

2] m n
Ay cw(ag)T™ Z z @k _pm

=0
1 2 2 2
+E(”6)2<5yvm" + 6™ - 1828,0°” - 18.:85v° )
1 & 2 1 2
<2 YT + 1 -2%) + 2 Y]
n=1 n=1
1 a2 o2 1 & a2
== 2+ uV I S Yl 1smsn. (6.104)
n=1 n=1
In view of (6.61), it holds
m n
z Z (oq) Vn) >0,
n=0 k=0

hence, (6.101) is followed from (6.104). The proof ends. O

6.5.4 Convergence of the difference scheme

Theorem 6.5.3. Suppose {Ul-;-l | (i,j) € @,0 <n< N} and {u | (i,j) € w,0 < n< N} are
solutions of the problem (6.42)—(6.44) and the difference scheme (6.91)-(6.93), respec-
tively. Let

n n o n N
e;=Uj—uwy (L)) ew, 0<n<N,
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then it holds
N
T Z]le"“m < cTALiL, (¢35 + ¢5)(TP| InT| + h2 + h3 + Ad®), (6.105)
n=1

where the constant c is defined in Lemma 6.3.1.

Proof. The subtraction of (6.91)-(6.93) from (6.87), (6.89)-(6.90), respectively, will
produce the system of error equations as follows:

2 Ry nk T, zelf;_ef’._l
- ;) n— L y
Da ) cw(a) |77 ) wel™ | + y6X6y—T
=0 k=0

1 =Mef+ (), () ew, 1<n<N,
e) =0, (ij)ew,

| eg-:O, (i,j) € 0w, 0 < n < N.

Noticing (6.88), the application of Theorem 6.5.2 immediately yields

N L N L
Y I RS DY (O
n=1 n=1

N
<T Z LyLy[c5(T% + b} + b5 + Ad®) + cs7°| In T|]2
n=1

< TLLy(c3 + 05)2(12| Int| + hf + hg + Aaz)z. (6.106)

By the Cauchy-Schwarz inequality, Lemma 6.3.1 and (6.106), we have

2

N N 2
n
(rzue ||oo) < T(rzue um)
n=1 n=1
N 2
<STET Y |Ane”
n=1

< CT?LiLy(cs + )X (TPl InT| + 3 + h5 + Aaz)z,

which implies (6.105). The proof ends. O

6.6 The fourth-order ADI method in both space and
distributed-order for 2D problem

This section is devoted to the derivation of another high order ADI difference scheme
for solving the problem (6.42)—(6.44) and the corresponding analysis on the resultant
scheme.

Define the function #(x,y, t) in the same way as that in Section 2.10. Suppose
i(x,y,") € €**Y(R) and u(, -, t) € C&9(Q).



358 —— 6 Difference methods for the time distributed-order subdiffusion equations

6.6.1 Derivation of the difference scheme

n_gn-1
Adding the small term 26262 Y% _ to both hand sides of (6.66) gives
voXTy T

g 4 k T 202 Uzﬂ B Uir'k1
AcAda Yy dlw(oq)[ra’ > wf{“’)Ui;'* ] + 62601 ——
=0 k=0 v T
= A SLUS + A8 UL + AAST + (), (b)) €w, 1<n <N,

where

n n-1
T 22U~ Uj
(%)Z- = (”4)3' + ;5,(5},7,

by noticing Lemma 6.2.2, there is a positive constant ¢4 such that
|(re)j] < c4(r® + i + B + Ba*) + coT°|InT], (i) €w, 1<n<N.
Noticing the initial-boundary value conditions (6.43)-(6.44), we have

Uj=0, (ij)ew,
Ui'; = o Yjty), (i) € 0w, 0 <m<N.

(6.107)

(6.108)

(6.109)
(6.110)

Omitting the small term (r6)g. in (6.107) and replacing the exact solution Ui}' with its

n

numerical one U,

follows:

’ S T k] T2 U

—Q Q n—

.AXAyAa Z le(al) [T ! z Wk ! ul-j ] + ;6X6YT
1=0 k=0

1 = A B+ ASUE + AAS, (L)) €w, 1<n<N,

up =0, (ij)€w

| ug = p(x;,Yj,ty),  (i,)) € 0w, 0 <n<N.

Equation (6.111) can be reformulated as

1
vAX.Ayug- - (AyS,z(ug- + AX(S}Z,uZ-) + 1—/5)2(5511;

2] n
- -k, 1202 no1
=-Aa )y dw(a)T ™y wl((a’)AxAyug + ;6x5yug~ + ACAfS
1=0 k=1

or

<WAX - %6)2()( VWA, - %63,)113-

we can obtain the difference scheme for solving (6.42)—(6.44) as

(6.111)
(6.112)
(6.113)
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- —AaZdlw(al)T_“’ Z w4 AU 4 = 6262 P AAS
=0 k=1

Let
2
( VA, - 7@)
Then the difference scheme (6.111)-(6.113) can be written as the following ADI form:

On each time level t = ¢, (1 < n < N), at first, for any fixed j from 1to M, — 1, solve
a series of one-dimensional problems in the unknown {u | 0 i< M;}in x direction

1 . 2J o B
(- it b
=0 k=1
) +16§6§u;}‘1 + AXAyflf.’, 1<i<M -1, (6.114)
| ugj = <\/—‘A \/— y)ugj’ <\/_.A \/_ y)

to get the value of

on an intermediate time level.
Then, for any fixed i from 1 to M; - 1, perform some calculations on a series of
one-dimensional problems in the unknown {u | 0 <j < M,}iny direction

WA, - 52>u =u, 1<jsM,-1,
( YoowY ¥ TS (6.115)
u?o = (p(Xb Yo» tn)’ ul(sz = (P(Xi’ )/Mz) tn)
to get the desired value of
{1 1<j <My -1},

The linear systems (6.114) and (6.115) are both tridiagonal, which can be easily
solved using the Thomas algorithm.

6.6.2 Solvability of the difference scheme
Theorem 6.6.1. The difference scheme (6.111)-(6.113) is uniquely solvable.
Proof. Let

Ut = {u;' | (i,j) € @}.

The value of u° is determined by (6.112)—(6.113).
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Now assume that the values of u°,u!,...,u"! have been uniquely determined,
then the system in u" can be obtained from (6.111) and (6.113). To show its unique solv-
ability, it is sufficient to prove that the corresponding homogeneous one

{ VAAML + 62620 = A 620 + AR (D)) € w, (6.116)
j T OxEy R yOxHy T Oy Ry
Wi =0, (i) €ow (6.117)

has only the trivial solution.
To this end, making the inner product on both hand sides of (6.116) with u" arrives
at

V(AA U U + %(6)2(6)2,u”,u“) = (A,,&iu",u") + (AX6)2,u",u").
Noticing (6.76), (6.77) and (8;6,u", u") = 6,6,u"||*, we have
1 2 1 2 2 2
Al o8 < -2 e <o,
thus, |[u"| = 0. Then u™ = 0 is followed by noticing (6.117).
By the principle of induction, the theorem is true. The proof ends. O
6.6.3 Stability of the difference scheme

Theorem 6.6.2. Suppose {v;} | (i,j) € @,0 < n < N} is the solution of the difference
scheme

2 n - virg _ Virg—l
Ay diw(a)t™ Y Wi A AV + 528
1=0 k=0 v T
1 =AWV + ABV+gl, (L)) ew 1<n<N, (6.118)
vi=op () ew, (6.119)
vi=0, (ij)€dw, 0<n<N. (6.120)
Then it holds
& nn2 3T 2 mn2 2 mn2
oY I+ (1528, + 15,60 )
n=1
2 3T 2 2
< 3vr||thO|| + 5(||5;2(5y‘/0" + ||5X5§v°|| )
9 & 2
+ 21 ) |g", 1<m<N, (6.121)
4 n=1
where
M,-1M,-1

2 2
Is"|” = hihy Z Z (gl})

izl j=1
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Proof. Taking the inner product on both hand sides of (6.118) with —A,v", it follows
from Lemma 6.4.1 that

AaZdlw(a “’Zw(“’ AAYVE —ap™)
10 k=0

T 22 L vn—l n
+ ;<5X6YT’ —AhV )
= (Ay6)2(v" + Axé)z,v", -ApV™) + (8", -Apv")

2 2 1 2 3 2
< —§||AhV" I”+ §||AhV"|| + Z||g"||

= —%"Ahv"”2 + Z 1<ng<N. (6.122)
By (6.103), we have
V- Vn—l
(520 )
1 20 2 2 ny2 2¢ n-1)2 2 n-12
(1528, + 18.53") - (28, + 18,3 ). (6123)

Summing up for n in (6.122) from 1 to m and adding the term V(AX.AyVO, —Ahvo) to
both hand sides of the obtained inequality, it follows by noticing (6.123) that

2] m n
Ay dyw(a)T™™ [ Y Y WAy A"

1=0 n=0 k=0

+ - (18w8," + 18530 - I838, v°u2 - ||6x52v°||2>

-= Z"Ahv 1P+ v(AA Y, -2 ) 1<m<N.  (6.124)

It is clear from (6.83) and (6.84), respectively, that

m n
z Z w,((a’ AA, V! ,—Ahv") =0 (6.125)
n=0 k=0
and
(AA 0, -2 °) < V. (6.126)

Substituting (6.125) and (6.126) into (6.124) produces (6.121). The proof ends. [

6.6.4 Convergence of the difference scheme

Theorem 6.6.3. Suppose {Ui'} | (i,j) € @,0 <n< N} and {u | (i,j) € @,0 < n < N} are
solutions of the problem (6.42)—(6.44) and the difference scheme (6.111)-(6.113), respec-
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tively. Let

n_ rm n P —
e;=Uj—w; (Lj)ew, 0sn<N,

then it holds
T Z"e oo cT LiL, (¢, + CG)(T |Int| + h4 + h4 +Aa*), (6.127)

where the constant c is defined in Lemma 6.3.1.

Proof. The subtraction of (6.111)-(6.113) from (6.107), (6.109)—(6.110), respectively,
gives the system of error equations as follows:

2y el — el
AaZdzwwq)[ B z w“’)A Ayel k] + 5262%
1=0 k=0

1 = A8l + Aboel + (), (L) ew, 1<n<N,

ei]' =0, (1)]) € w,
=0, (ij)edw, 0<n<N.

Noticing (6.108), the application of Theorem 6.6.2 yields
N N
2 _9 2
) Il < 2T Z||<r6>"||
n=1 n=

9TZL Ly[c, (7 + b} + h2 + Aa*) + cgT° Iln‘rl]

n=1

< ZTLlLZ(C4 + c6)2(12| Int| + hi‘ + h;‘ + Aa4)2. (6.128)

By the Cauchy-Schwarz inequality, Lemma 6.3.1 and (6.128), we have
2

(2L ) <r(r e, )

N
<1 Y |Mye"|?
n=1

< %cszLle(c4 + c6)2(‘rz| Int| + hf + hg + Aa4)2,

which implies (6.127). The proof ends. O

6.7 Supplementary remarks and discussions

1. In this chapter, the difference methods for solving 1D and 2D time distributed-order
subdiffusion equations have been introduced® ?!. For the approximation of the dis-
tributed integral, the composite trapezoid formula or the composite Simpson formula
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was used; For the discretization of time Caputo derivatives, the second-order WSGL
formula was applied and several higher order difference schemes were derived. For
2D problem, two ADI difference schemes were also discussed. For each scheme, the
unique solvability, stability and convergence were proved. Indeed, one can also di-
rectly apply the G-L formula to approximate the time Caputo derivatives and the first-
order difference scheme in time can be obtained, then the techniques of Richardson
extrapolation can be used to improve the accuracy in timel? 21,

2. For the approximation of distributed integral, the composite mid-point formula
can also be used. For details, see [103]. Also, the Gauss quadrature can be applied. For
the approximation of time Caputo derivatives, the L1 formula can also be used, please
refer to [60, 103].

3. In this chapter, we only discussed the numerical solutions of time distributed-
order subdiffusion equations. Now the numerical solutions of time distributed-order
wave equations are briefly introduced. Consider the following problem:

Diu(x, t) = Uy (X, t) +f(x,t), 0<x<L 0<t<T, (6.129)
u(x,0)=0, u((x,00=0, 0<x<L, (6.130)
u0,6) = oy(t), ul,t) = py(t), O0<t<T, (6.131)

where ¢;(0) = ¢,(0) = 0, ¢}(0) = 95(0) = 0 and

2
Dlu(x, t) = Jw(y) SD¥u(x, t)dy,
1

e Jot =& Yug(x,9d8, 1<y <2,

SDVu(x,t) = {
utt(X: t)> Yy = 2:

w(y) =0, _[12 w(y)dy = ¢y > 0, the functions f, ¢, and ¢, are all given.
Denote Ay = 5,y = 1+ 1Ay (0 <1< 2)).
Considering equation (6.129) at the point (x;, t,), we have
DU, ty) = U (X t) +f (X, b)), 1<i<M-1,0<n<N.
Taking an average on two adjacent time levels gives
1 w 1
E[Dt u(Xi’ tn) + Dt u(xi’ tn—l)] = 5[ uxx(xi’ tn) + uxx(xi’ tn—l)]
+ %[f(x,-,tn) +f.t)], 1<i<M-1,1<n<N. (6.132)

Let

Sy, X;, ty) = wly) SDVu(x;, ty).
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Suppose function s(-,x;,t,) € C*[1,2]. Applying the composite trapezoid formula to
discretize the distributed integral, it follows from Lemma 6.1.1 that

2J
Dyulx,ty) = Ay Y ew(y)) ¢Dl'u(x;, t,) + O(Ay?).
1=0

Substituting the result above into (6.132) produces

2
1
Ay Z aw(yp) - E[gDi’lu(xi, t) + gD}"u(xi, te-1)]
1=0

= %[uxx(xh tn) + uxx(Xi) tn—l)] + %[f(xi’ tn) +f(Xi’ tn—l)]

+0(8y?), 1<i<M-1, 1<n<N. (6.133)

Define the function #i(x, t) like that in Exercise 3.1 in Chapter 3. Suppose ii(x, ) €
%**2(R)and u(-t) € C*[0,L].
Let v(x,t) = us(x, t), then

n
c Cry-1 ~(-1 -1 2
§DYu(x;, t) = DV (e, t) =T DY W;(w W, b, 1) + O(T2).
k=0

Therefore,
1
5 SDMu(x;, t,) + SDMu(x;, ty )]

[ & - oond -
- —| WD Z W]({Yz DV(Xi, to ) +T -1 Z W}({)’z DV(Xi’tn—l—k)

2 k=0 k=0
+ O(Tz)

n-1
—(y- oy 1
=T 0N w2 ) + V0 0] + ()

k=0
n-1
(y— 1y u(xg, tyg) —ulx;, t_q
=71 (i1 ZWI((YI 1). ( tn k) - ( i tn-1 k) +O(T2). (6.134)
k=0

Substituting (6.134) into (6.133) and denoting

n—

£ = 510 + £ty )

we have

2] n-1 1

—(y-1 -1 n—k—s

Ay E cw(y)t ¥V E w,iyl )5tU1~ 2
1=0 k=0

-l ol n-l .
=8U; +f; 2+(rp); 5, 1<i<M-1,1<n<N,
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and there exists a positive constant c; such that

_1
)7 | < (P + R +4y?), 1<i<M-1,1<n<N.

Noticing the initial-boundary value conditions (6.130)—(6.131), we can get a differ-
ence scheme for (6.129)-(6.131) as follows:

2 n-1 1 nek_1
Ay Z Clw(yl).l.—()’l—l) z W}(()’z* )51‘“1' 2
=0 k=0
1 _1
1 =8u T+f 7, 1<i<M-11<n<N, (6.135)
=0, 1<i<M-1, (6.136)
[ ug = @i(t), uy =@s(t,), 0<n<N. (6.137)

It can be proved that the difference scheme (6.135)—(6.137) is uniquely solvable,
unconditionally stable and convergent. More details can be found in [26]. Regarding
the ADI difference scheme for solving 2D time distributed-order wave equations, in-
terested readers can refer to [27].

4. Ye etal.' and Hu et al.?”) studied the difference methods for the one-dimen-
sional and multidimensional distributed-order fractional wave equations based on
the L1 approximation, respectively.

5. There are some works on the difference methods for the space distributed-order
equations. The interested readers may refer to [94].

Exercises 6

6.1 For the problem (6.1)—(6.3), construct the following difference scheme:

2] n

-, (a;). n—k 2. n n

Aaz cw(a)t Z g U =6 +f,
1=0 k=0

1<is<M-1,1<n<N,

=0, 1<is<M-1,

n

=1(tn),  wy = @o(ty,), O<n<N.

Define the function ii(x, t) like that in Section 2.1 and suppose it(x, ) € 11(R).
For this difference scheme, try to

(1) analyze the truncation error;

(2) show the unique solvability;

(3) show the stability with respect to the function f;
(4) show the convergence.
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6.2 For the problem (6.1)-(6.3), construct the following difference scheme:

6.3

6.4

2] n
Aa )y dw(a)T™ ) g\ Ak = 82ul + AfT,
=0 k=0

1<i<sM-1,1<n<N,

=0, 1<is<M-1,
= @(ty), Uy =@s(t,), O0<n<N.
Define the function ii(x, t) like that in Section 2.1 and suppose ii(x, ) € *1(R).
For this difference scheme, try to
(1) analyze the truncation error;
(2) show the unique solvability;
(3) show the stability with respect to the function f;
(4) show the convergence.
For the problem (6.42)—(6.44), construct the following difference scheme:

2] n
Ay cw(a) [T'“’ > g,((“l)u?‘k] = Aty + ff
1=0 k=0
B, (i,j)ew,1<n<N,

up =0, (ij)€w,

| ug- = p(x;, ), ty),  (i,)) € 0w, 0 <n<N.

Define the function #(x,y,t) like that in Section 2.10 and suppose u(x,y,-) €
Cglﬂ (R) .

For this difference scheme, try to

(1) analyze the truncation error;

(2) show the unique solvability;

(3) show the stability with respect to the function f;

(4) show the convergence.

For the problem (6.42)—(6.44), construct the following difference scheme:

2J n
Ay dw(ap)| Ty g,‘(“l)AXAyquk
1=0 k=0

1= Ayﬁiug + Ax6§ug + AAf, (Gj) ew, 1<n<N,

up =0, (i))e€w

| ug- = p(x;, ), ty),  (i,)) € 0w, 0 <n<N.

Define the function u(x,y,t) like that in Section 2.10 and suppose u(x,y,-) €
%Hl (R)

For this difference scheme, try to

(1) analyze the truncation error;
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(2) show the unique solvability;
(3) show the stability with respect to the function f;
(4) show the convergence.

Denote
2]
fi=0a) cwla)t Mg, @,
1=0
Try to show that
1
ut = 0 .
K (Iln rl)
For the problem (6.42)—(6.44), construct the following difference scheme:
( 2J Ut !
) 1
Aalzc:)clw(al)[ ~a z 8 (&), = k] + ]15252% = Ath- + z;l
B (1,])ew,1<n<N,

up =0, (ij)€cw
| ujj = 90,5 ty), (i) € 0w, 0 <n<N.

Define the function @(x,y,t) like that in Section 2.10 and suppose i(x,y,) €
%Hl (R) .

For this difference scheme, try to

(1) analyze the truncation error;

(2) write the ADI form;

(3) show the unique solvability;

(4) show the stability with respect to the function f;

(5) show the convergence.

Denote
2
v=Aa) diw(ag) T gl?.
1=0
Try to show that

i 1
VT_O(HMI)'

For the problem (6.42)—(6.44), construct the following difference scheme:

n ug—l

AaZdlw(al [ 4 Zg,(f’)A Ayui k] + - 5262—” v
i=0 k=0 T
] _Ay5§u3+,4 Syl + AAS, (L)) ew, 1<n<N,

ui]- =0, (i,j) € w,

U} = o0y t), (i) € 0w, 0 <n<N.
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Define the function @(x,y,t) like that in Section 2.10 and suppose i(x,y,-) €
‘ﬁl“ (R)

For this difference scheme, try to

(1) analyze the truncation error;

(2) write the ADI form;

(3) show the unique solvability;

(4) show the stability with respect to the function f;

(5) show the convergence.



A The Matlab code of sum-of-exponentials
approximations for the kernel t™* in the Caputo
fractional derivative

function [xs,ws,nexp] = sumofexpappr2new(alpha,reps,dt,Tfinal )

%6%676767676%6%6%6%6.%6.%6.%6.76.76.76.76.76.76 767616 16 16 16 4696 96 76 76.76.76.76.76.76.16 16 16 16 1o 1o o 676 76 76 76767676 76 16 16 16 16 1o 1o 6 6 96 96 76 70 76766
% Copyright: all rights reserved by Shidong Jiang, Jiwei Zhang,

% Qian Zhang and Zhimin Zhang.

% Citation: please cite the following papers:

% [11 S. Jiang, J. Zhang, Q. Zhang and Z. Zhang. Fast evaluation

% of the Caputo fractional derivative and its applications to

% fractional diffusion equations. Commun. Comput. Phys., 21(2017),
% 650--678.

% [2] G. Beylkin and L. Monzn. On approximation of functions by

% exponential sums. Appl. Comput. Harmon. Anal. 19(2005), 17--48.
% [3] G. Beylkin and L. Monzn. Approximation by exponential sums

% revisited. Appl. Comput. Harmon. Anal., 28(2):131--149, 2010.
%%%%6%%76 %5676 %%66 %7676 %76 %6 %766 %96 % %96 % 66 %6766 %6766 %6766 %6766 %6766 %6766 %766 %766 %76 % %6 %6 %696 % %6 %6
%6%676767676%6%6%%.%6.%6.%6.76.76.76767676 76 76 76 16 16 16 %696 %6 %6 7676767676766 16 16 1o Jo 1o o 6 %6 76 76 76 76767676 76 76 16 1o 1o 1o o .96 %6 %6 76 7676
% For given positive parameters: alpha, reps, dt and T, return

% sum-of-exponentials approximation for 1/t*alpha for the inverval
% dt<t<T wunder relative error bounded by reps, i.\,e.,

%% |1/t*alpha - \sum_{1=1}"nexp ws(1l)*xexp(-xs(l))| <= reps,

% for all t in [dt,T]

% The following parameters will be calculated with

% xs: SOE approximation nodes

% ws: SOE approximation weights

% nexp: the number of SOE approximation weights or nodes

%6%%6%6%%676 %7676 %7676 %96 %6 %96 %66 %6766 %6766 %6766 %6766 %6766 %76 %6 %76 % %66 %6 66 %6766 6766 %6766 %6766 %76 %6 %7676
delta = dt/Tfinal;

h = 2*%pi/(log(3) + alphaxlog(1/cos(1)) + log(1/reps));

tlower = 1/alphaxlog(reps*gamma(1+alpha));

if alpha>=1,

tupper = log(1/delta) + log(log(1/reps)) + log(alpha) + 1/2;
else

tupper = log(1/delta)+log(log(1/reps));
end

M = floor(tlower/h);
N = ceil(tupper/h);

https://doi.org/10.1515/9783110616064-007
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nl = M:-1;

-exp(h*n1);

ws1 = h/gamma(alpha)*exp(alpha*h*n1);

% use prony's method to reduce the number of SOE

xs1

% approximation nodes

[wsTnew,xsTnew] = prony(xs1,wsl1);

n2= @:N;

-exp(h*n2);

ws2 = h/gamma(alpha)*exp(alpha*h*n2);
xs = [-real(xslnew); -real(xs2.')];

Xxs2

ws = [real(wslnew); real(ws2.')];
xs/Tfinal;

ws/Tfinal*alpha;

nexp = length(ws);

return;

XS

WS

end

function [wsnew, xsnew] = prony(xs,ws)
M = length(xs);
errbnd = 1d-12;
h=zeros(2xM,1);
for j=1:2xM
h(3)=xs.*(G-1)*ws";

end

C=h(1:M);
R=h(M:2xM-1);
H=hankel (C,R);
b=-h;

g = myls_gr(H, b, errbnd);
r = length(q);
A=zeros(2*M,r);
Coef = [1; flipud(q)];
xsnew=roots(Coef);
for j=1:2xM

A(J,:)= xsnew.*(j-1);
end
wsnew = myls_svd(A,h,errbnd);
ind = find(real (xsnew)>=0);
p = length(ind);
assert(sum(abs(wsnew(ind))<1d-15) == p)
ind = find(real (xsnew)<o);
xsnew = xsnew(ind);
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wsnew = wsnew(ind);
end

function x = myls_qgr(A,b,eps)

% solve the rank deficient least squares problem by QR
% x is the LS solution, res is the residue

[m,n] = size(A);

[Q,R] = ar(A,0);

if nargin < 3

eps = le-13;
end
s = diag(R);
r = sum(abs(s)>eps);
Q =QC:, 1:r);
R=R(:r,1:r);
b1 = b(r+1:m+r);
x = R\(Q. "*b1);
end

function [x,res] = myls_svd(A,b,eps)
% solve the rank deficient least squares problem by SVD
% x is the LS solution, res is the residue
[m,n] = size(A);
[U,S,V] = svd(A,0);
if nargin < 3
eps = le-12;

s = diag(S);
r = sum(s>eps);
x = zeros(n,1);
for i=1:r
x = x + (UC,1)"*b)/s(i)*V(:,1);
end
if (nargout>1)
res = norm(A*x-b)/norm(b);
end
end

This code is provided by the authors of [41]. We remark that the parameters in
Lemma 1.7.1 of this book correspond to the parameters in the above code as a = alpha,
T=T,e=reps, T =dt, N9 =nexp,, w%”‘) =ws(), sl(“) = xs(1).

exp
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