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Abstract

The overall thermal–mechanical properties of a fibrous composite out of an elastic deformation range can be simply simulated using a
recently developed micromechanics model, the Bridging Model. Only the in situ constituent fiber and matrix properties of the composite and
the fiber volume fraction are required in the simulation. This general yet easy-to-implement micromechanics model is reviewed and
summarized in the present paper. Application of the model to predict various properties of unidirectional laminae and multidirectional
laminates, including thermoelastic behavior, elasto-plastic response, ultimate failure strength, strength at elevated temperature, and fatigue
strength andS–N curve, is demonstrated. It is suggested that use of the bridging model, appropriately calibrated with experimental data, can
therefore inform composite design by identifying suitable constituent materials, their contents, and their geometrical arrangements. Some
technical issues regarding applications of the bridging model are also addressed.q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Over the last four decades or so, a great number of micro-
mechanics models have been proposed in the literature.
Surveys about these models can be found, among others,
in Refs. [1–5]. Most these models can be used to accurately
estimate the linear elastic property of a fibrous composite.
However, it is difficult to generalize them to the inelastic
deformation situations. The majority of these models, with-
out significant modifications, cannot be applied to predict
the yield strength, failure strength, or the nonlinear stress–
strain relationship of fibrous composites, since the existing
models for estimating composite elastic behavior do not
have any inherent connections with the other mechanical
properties of the composites.

Yet, several attempts have been made to understand
micromechanically the inelastic and failure behaviors of
composites by using their constituent properties and
geometric parameters [6]. One such model is the concentric
cylinder model [7], well known in analyzing lamina elastic
properties [2,3]. A concentric cylinder representative

volume element (see Fig. A1) is taken for the composite,
and a set of governing equations on this geometry are solved
using, e.g. Finite Difference method. However, it is difficult
to use this model to simulate the composite responses under
transverse and in-plane shear loads, and hence the model
cannot perform general composite laminate analysis.
Dvorak and Bahei-El-Din [8,9] developed a vanishing
fiber diameter model. This model assumes that the fibers
possess a vanishingly small diameter even though they
occupy a finite volume fraction of the composite. Only the
longitudinal constraints between the fibers and the matrix
have been considered in the model. Rule of mixtures
assumptions have been made for the averaged stress and
strain relations. Therefore, the model gives exactly the
same predictions as the rule-of-mixtures formulae for
composite elastic properties. As we know, these predictions
are not accurate for the composite transverse and in-plane
shear responses. Hopkins and Chamis [10,11] proposed a
multicell model, by requiring that longitudinal strains and
transverse stresses in the fiber and matrix be equal to each
other. This is similar to the rule of mixture assumption. The
material nonlinearity is described as a multifactor interac-
tion relationship, whereas each material property is
described as a product of many power law equations each
of which indicates how that property is affected by one
parameter. Aboudi [12,13] developed a method of cells

Composites: Part A 32 (2001) 143–172

1359-835X/01/$ - see front matterq 2001 Elsevier Science Ltd. All rights reserved.
PII: S1359-835X(00)00142-1

www.elsevier.com/locate/compositesa

* Present address: Materials Science Division, Department of Mechanical
& Production Engineering, National University of Singapore, 10 Kent
Ridge Crescent, Singapore 119260. E-mail: mpehzm@ nus.edu.sg.

E-mail address:huangzm@email.com (Z.-M. Huang).



model in a rather general sense. The main drawback of this
model is in its complexity. In fact, Teply and Reddy [14]
have shown that the method of cells model can be reformu-
lated and cast in the form of a finite element analysis by
employing the Hellinger–Reissner variational principle.
The user-unfriendly feature of this model is thus clearly
seen. Further, a regular fiber packing pattern must be pre-
assumed before applying the method of cells model. As has
been investigated by Brockenbrough et al. [15], the compo-
site transverse and in-plane shear responses at a plastic
region are sensitive to the fiber packing patterns assumed.
They found that predictions for the transverse and in-plane
shear responses based on any of their regular fiber packing
patterns do not correlate well with experiments. It is seen
that a significant advancement on micromechanical
simulation of composite inelastic and failure properties is
necessary.

Recently, the author developed a new versatile and
user-friendly micromechanics model, named as the Brid-
ging Model. The key step of the model is to correlate the
averaged stress states in the constituent fiber and matrix
by using a bridging matrix. As the bridging matrix can
only depend on the constituent properties and on the fiber
packing geometry in the matrix (Appendix B), a unified
model is established by focusing on determination of the
bridging matrix for composite elastic responses. This is
achieved by making use of some established elastic solu-
tions for composites in the literature. An extension of the
so-defined bridging matrix to an inelastic region is
straightforward: only the constituent properties involved
need to be changed because the fiber packing geometry
does not change or only varies to a negligibly small
amount when the constituents undergo inelastic deforma-
tion. The bridging model can be applied to predict the
effective properties of a unidirectional (UD) composite
made from any constituent fiber and matrix materials
[16–19,21–23]. These properties include the thermo-elas-
tic constants, yield strength, failure strength, ultimate
strain, rubber–elastic stress–strain curve, etc. The predic-
tion only uses the in situ constituent properties and the
fiber volume fraction. In the case where the fibers are
linearly elastic until rupture and the matrix is bilinearly
elastic–plastic, closed-form formulae for composite
strengths under uniaxial loads (longitudinal tension, trans-
verse tension, and in-plane shear) are obtainable [24,25],
which are as concise as the rule of mixtures formulae for
composite stiffness. The bridging model has been success-
fully applied to simulate inelastic and failure behaviors of
composite laminates [20,26–29], fatigue properties andS–
N data of fibrous laminae and laminates [30,31], and elastic,
inelastic and strength responses of various textile (woven,
braided, and knitted) fabric reinforced composites subjected
to in-plane as well as flexural loads [32–43]. The purpose of
this paper is to summarize and review the bridging model
developed as well as its potential applications to unidirec-
tional laminae and multidirectional laminates.

2. The bridging micromechanics model

2.1. Model development [16,21–23]

Consider a UD fibrous composite. Casting in an incre-
mental form, the volume averaged stress increments in the
fibers and matrix of the composite can be correlated using a
bridging matrix through

{dsm
i } � �Aij �{ds f

j } �1�

where {ds i} � {ds11;ds22;ds33; ds23; ds13;ds12}
T and

the suffixes “f” and “m” refer to the fiber and matrix, respec-
tively. A quantity without any suffix in the following will
refer to the composite. The bridging matrix [Aij] represents
the load share capacity of one constituent phase (the fiber or
the matrix) in the composite with respect to the other phase
(the matrix or the fiber). Substituting Eq. (1) into the volume
averaged stress relationship (see Appendix A)

{ds i} � Vf {ds
f
i } 1 Vm{dsm

i } ; �2a�
and making use of (Appendix A)

{d1i} � Vf {d1
f
i } 1 Vm{d1m

i } ; �2b�

{d1f
i } � �Sf

ij �{ds f
j } ; �2c�

{d1m
i } � �Sm

ij �{dsm
j } ; �2d�

{d1i} � �Sij �{ds j} ; �2e�

the overall instantaneous compliance matrix of the compo-
site as well as the stress increments shared by the fiber and
matrix are derived, respectively, as (Appendix B)

�Sij � � �Vf �Sf
ij �1 Vm�Sm

ij ��Aij ���Vf �I �1 Vm�Aij ��21
; �3�

{ds f
i } � �Vf �I �1 Vm�Aij ��21{ds j} � �Bij �{ds j} ; �4a�

{dsm
i } � �Aij ��Vf �I �1 Vm�Aij ��21{ds j} � �Aij ��Bij �{ds j} :

�4b�
In the above,V denotes the volume fraction, {d1j} �
{d111;d122;d133;2d123; 2d113;2d112}

T
; and [I] is a unit

matrix. In practice, the fibers used are generally at most
transversely isotropic and the matrix is isotropic. The result-
ing UD composite is then considered as transversely isotro-
pic. There are only five independent elements in [Sij], and so
are in [Aij]. Further, [Sij] must be symmetric, i.e.

Sij � Sji ; i; j � 1; 2;…;6: �5�

Therefore, the bridging matrix, [Aij], has the general form
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[16,17,21,22] (also see Appendix B)

�Aij � �

a11 a12 a13 a14 a15 a16

0 a22 a23 a24 a25 a26

0 a32 a33 a34 a35 a36

0 0 0 a44 a45 a46

0 0 0 0 a55 a56

0 0 0 0 0 a66

26666666666664

37777777777775
: �6�

In the above,a11, a22, a33, a66, and a32 are independent
elements.a55 � a66 due to the fact that shear stress–strain
responses in (1,2) and (1,3) planes are the same, whereasa44

is not independent because of a correlation among the trans-
verse Young’s modulus, shear modulus, and transverse
Poisson’s ratio (see Eq. (B7)). The remaining 15 nonzero
elements are determined from Eq. (5) together with Eq. (3).

For simplicity, let the fiber become isotropic in a plastic
region. Such typical fibers are glass, carbon/graphite,
aramid, boron, silicon carbide, alumina, etc. which can be
considered as linearly elastic until rupture. Further, suppose
that the matrix is an elastic–plastic material. When the
matrix undergoes a rubber–elastic deformation, Ref. [19]
provided an approach methodology, see also Refs.
[37,38]. With these assumptions, the independent bridging
elements in (6) are given by [16,17,21,22] (see also Appen-
dix B)

a11 � Em=Ef1; �7a�

a22 � a33 � a44 � b 1 �1 2 b� Em

Ef2
;

0 , b , 1 �b � 0:35–0:5 in most cases�;
�7b�

a55 � a66 � a 1 �1 2 a�Gm

Gf
;

0 , a , 1 �a � 0:3–0:5 in most cases�;
�7c�

a32 � 0: �7d�
It should be noted that since the independent elementa32

also takes zero, the bridging matrix is simply given by an
upper triangle, as given in Ref. [22]. In the above,Em, Gm,
Ef1, Ef2, andGf are called effective moduli and are defined as

Em �
Em

; whensm
e # sm

Y

Em
T ; whensm

e . sm
Y

(
�8a�

Gm �
0:5Em

=�1 1 nm�; whensm
e # sm

Y

Em
T =3; whensm

e . sm
Y

(
�8b�

Ef1 �
Ef

11; whens f
e # s f

Y

Ef
T; whens f

e . s f
Y

(
�8c�

Ef2 �
Ef

22; whens f
e # s f

Y

Ef
T; whens f

e . s f
Y

(
�8d�

Gf �
Gf

12; whens f
e # s f

Y

Ef
T=3; whens f

e . s f
Y

(
�8e�

Em, nm, andEm
T are Young’s modulus, Poisson’s ratio, and

hardening modulus (tangent to the uniaxial stress–strain
curve in a plastic region) of the matrix, respectively.Ef

11;

Ef
22; Gf

12; and Ef
T are the longitudinal, transverse, in-plane

shear, and hardening moduli of the fibers, respectively.sY

represents the yield strength of a material (fibers or matrix),
whereasse is the von Mises effective stress of the material
defined using three principal stresses of the material,s 1,s 2,
ands 3 �s 1 $ s 2 $ s 3�; via

se �
������������������������������������������������������
1
2 ��s 1 2 s 2�2 1 �s 2 2 s 3�2 1 �s 3 2 s 1�2�

q
: �9�

2.2. Elastic response [16,21,22]

When both the fibers and the matrix are in elastic defor-
mation, all the dependent elements of the bridging matrix,
Eq. (6), are zero except fora12 anda13, which read

a13 � a12 � �Sf
12 2 Sm

12��a11 2 a22�=�Sf
11 2 Sm

11�: �10�
Hence, the five engineering moduli of the composites are
found to be (Appendix B)

E11 � Vf E
f
11 1 VmEm

; �11a�

n12 � Vfn
f
12 1 Vmn

m
; �11b�

E22 � �Vf 1 Vma11��Vf 1 Vma22�
�Vf 1 Vma11��Vf Sf

22 1 a22VmSm
22�1 Vf Vm�Sm

21 2 Sf
21�a12

;

�11c�

G12 � �Vf 1 Vma66�Gf
12G

m

Vf Gm 1 Vma66Gf
12

; �11d�

G23 � 0:5�Vf 1 Vma44�
Vf �Sf

22 2 Sf
23�1 Vma44�Sm

22 2 Sm
23�

: �11e�

It is noted that Eqs. (11a) and (11b) are obtained based on
bridging element formulae (7a) and (7d), whereas Eqs.
(11c)–(11e) are based on formulae (7b) and (7c).

2.3. Plastic response [17,21,22]

As long as any constituent has undergone a plastic defor-
mation, the composite is defined to have such a deformation
too. In such case, only the instantaneous compliance matrix
of the constituent,�Sf

ij � or �Sm
ij �; needs to be redefined. It is to

be noted that the fibers have been assumed to take isotropic
hardening. Hence, both the constituent materials can use a
same plastic flow theory to define their instantaneous
compliance matrices. Many such theories have been
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developed, and any of them can be equally well
incorporated with the bridging model. Let the general
Prandtl–Reuss theory be employed, which gives [22,44]

�Sij � �
�Sij �e; whent0 #

��
2
p
3

sY

�Sij �e 1 �Sij �p; whent0 .

��
2
p
3

sY

8>>><>>>: �12�

t0 � 1
3
s 0ijs

0
ij

� �1=2

; �13�

s 0ij � s ij 2
1
3
skkdij : �14�

In Eqs. (13) and (14), a summation is applied to the repeated
suffixes, ands ij are total stresses. In Eq. (12), [Sij]

e is the
elastic component of the compliance matrix specified by
Hooke’s law, and [Sij]

p is the plastic component defined as
[22,44]

�Sij �p � 1
2MT�t0�2

×

26666666666664

s 011s
0
11 s 022s

0
11 s 033s

0
11 2s 023s

0
11 2s 013s

0
11 2s 012s

0
11

s 022s
0
22 s 033s

0
22 2s 023s

0
22 2s 013s

0
22 2s 012s

0
22

s 033s
0
33 2s 023s

0
33 2s 013s

0
33 2s 012s

0
33

4s 023s
0
23 4s 013s

0
23 4s 012s

0
23

4s 013s
0
13 4s 012s

0
13

symmetry 4s 012s
0
12

37777777777775
;

�15�

MT � E11ET

E11 2 ET
: �16�

Note that for the matrix material,E11 � E: Note also that the
plastic component, [Sij]

p, can only occur in a loading condi-
tion. Whenever there is an unloading, the compliance matrix
is simply given by its elastic component.

2.4. Planar formulae [23]

If the composite is only subjected to a planar load, as it
generally is in practice, the stress states in the constituents
are correlated through

dsm
11

dsm
22

dsm
12

8>><>>:
9>>=>>; �

a11 a12 a16

0 a22 a26

0 0 a66

2664
3775

ds f
11

ds f
22

ds f
12

8>><>>:
9>>=>>;: �17�

In Eq. (17),a12 is defined by Eq. (10), and the other off-
diagonal elements are given by

a16 � d2b11 2 d1b21

b11b22 2 b12b21
; �18a�

a26 � d1b22 2 d2b12

b11b22 2 b12b21
; �18b�

d1 � �Sm
16 2 Sf

16��a11 2 a66�; �18c�

d2 � �Sm
26 2 Sf

26��Vf 1 Vma11��a22 2 a66�

1�Sm
16 2 Sf

16��Vf 1 Vma66�a12; �18d�

b11 � Sm
12 2 Sf

12; b12 � Sm
11 2 Sf

11;

b22 � �Vf 1 Vma22��Sm
12 2 Sf

12�;
�18e�

b21 � Vm�Sf
12 2 Sm

12�a12 2 �Vf 1 Vma11��Sf
22 2 Sm

22�: �18f�
The incremental stresses generated in the fiber and matrix
phases are derived as

ds f
11

ds f
22

ds f
12

8>><>>:
9>>=>>; �

b11 b12 b16

0 b22 b26

0 0 b66

2664
3775

ds11

ds22

ds12

8>><>>:
9>>=>>; � �B�

ds11

ds22

ds12

8>><>>:
9>>=>>;;
�19a�

and

dsm
11

dsm
22

dsm
12

8>><>>:
9>>=>>; �

a11 a12 a16

0 a22 a26

0 0 a66

2664
3775

b11 b12 b16

0 b22 b26

0 0 b66

2664
3775

ds11

ds22

ds12

8>><>>:
9>>=>>;

� �A��B�
ds11

ds22

ds12

8>><>>:
9>>=>>;; (19b)

where

b11 � �Vf 1 Vma22��Vf 1 Vma66�=c;
b12 � 2�Vma12��Vf 1 Vma66�=c;

�19c�

b16 � ��Vma12��Vma26�2 �Vf 1 Vma22��Vma16��=c;
b22 � �Vf 1 Vma11��Vf 1 Vma66�=c;

�19d�

b26 � 2�Vma26��Vf 1 Vma11�=c;
b66 � �Vf 1 Vma22��Vf 1 Vma11�=c;

�19e�

c� �Vf 1 Vma11��Vf 1 Vma22��Vf 1 Vma66�: �19f�
Note that Eqs. (18a)–(18f ) and (19a)–(19f ) are valid
regardless of any plastic flow theory applied to the fibers
and matrix. However, if both the constituents are in elastic
deformation, we haveSf

16 � Sf
26 � Sm

16 � Sm
26 � 0; and

hence,b16 � b26 � a16 � a26 � 0:
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2.5. Failure criterion [18,20]

As both the internal stresses in the constituents and the
overall stresses on the composite are already known, any
failure criterion, either applied to isotropic and/or homoge-
neous materials, or applied to anisotropic and/or heteroge-
neous materials, can be incorporated to determine the
allowable load sustained by the composite. Let us choose
a failure criterion that is only employed at the constituent
level. Namely, the composite ultimate strength is assumed
when any constituent material fails.

The maximum normal stress criterion is among the best
of such criteria. It is efficient when the three principal stres-
ses of the material differ from each other significantly. If,
however, two or three of them become equal, which can
easily occur in the matrix material of a composite, the accu-
racy of this criterion is certainly questionable. Otherwise, a
material would be able to sustain a same amount of equi-
biaxial or equitriaxial tension as it does uniaxial tension,
which might be impossible phenomenologically. In light
of this, a generalized criterion to detect tensile failure of
the material is expressed as [20]

seq $ su; �20a�
where

seq�

s 1
; whens 3 , 0

��s 1�q 1 �s 2�q�1=q; whens 3 � 0

��s 1�q 1 �s 2�q 1 �s 3�q�1=q whens 3 . 0;

1 , q # ∞

8>>>>><>>>>>:
�20b�

In the above,s 1, s 2, ands 3 are the three principal stresses
of the material withs 1 $ s 2 $ s 3 andsu is the ultimate
tensile strength of the material under a uniaxial load. It is
seen that when the power-indexq� ∞; (20a) together with
(20b) is equivalent to the maximum normal stress criterion.
In a subsequent example, a comparison study will show that
q� 3 is pertinent. Thus, the difference between the general-
ized and the classical maximum normal stress criteria is
distinct only when the second or the third principal stress
of the material is close to its first principal stress.

In contrast to multiaxial tensions, an equitriaxial
compression on an isotropic material can hardly cause it
to fail. Hence, a criterion to govern the compressive failure
of the material is simply given by

s 3 # �2su;c�; �21�
wheresu,c is the ultimate compressive strength of the mate-
rial under a uniaxial load. It should be pointed out that no
material buckling is assumed in the compression concerned
herein. Further, the material parameters used in Eqs. (7a)–
(7c) may be different, under compression, from those under
tension.

2.6. Strength formulae under uniaxial loads [24]

Suppose that the fibers used are linearly elastic until
rupture and the matrix is bilinearly elastic–plastic. From
Eqs. (19a) and (19b) withb � a � 0:5; and based on the
classical maximum normal stress criterion, closed form
strength formulae for UD composites under different uniax-
ial loads are derived as follows [24].

The ultimate strength only due to a longitudinal tensile
load (s11) is given by

s u
11 � min

s f
u 2 �af

e1 2 af
p1�s 0

11

af
p1

;
sm

u 2 �am
e1 2 am

p1�s 0
11

am
p1

( )
;

�22a�
where

s 0
11 � min

sm
Y

am
e1
;
s f

u

af
e1

( )
; �22b�

af
e1� Ef

11

Vf Ef
11 1 �1 2 Vf �Em ; �22c�

am
e1� Em

Vf E
f
11 1 �1 2 Vf �Em ; �22d�

af
p1 � Ef

11

Vf E
f
11 1 �1 2 Vf �Em

T

; �22e�

am
p1 � Em

T

Vf E
f
11 1 �1 2 Vf �Em

T

: �22f�

The ultimate strength only due to a transverse tensile load
(s22) is determined from

s u
22 � min

s f
u 2 �af

e2 2 af
p2�s 0

22

af
p2

;
sm

u 2 �am
e2 2 am

p2�s 0
22

am
p2

( )
;

�23a�
where

s 0
22 � min

sm
Y

am
e2
;
s f

u

af
e2

( )
; �23b�

af
e2� Ef

22

Vf E
f
22 1 0:5�1 2 Vf ��Em 1 Ef

22�
; �23c�

am
e2� 0:5�Ef

22 1 Em�
Vf Ef

22 1 0:5�1 2 Vf ��Em 1 Ef
22�

; �23d�

af
p2 � Ef

22

Vf Ef
22 1 0:5�1 2 Vf ��Em

T 1 Ef
22�

; �23e�

am
p2 � 0:5�Ef

22 1 Em
T �

Vf Ef
22 1 0:5�1 2 Vf ��Em

T 1 Ef
22�

: �23f�
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The ultimate strength only due to an in-plane shear load
(s12) reads

s u
12 � min

s f
u 2 �af

e3 2 af
p3�s 0

12

af
p3

;
sm

u 2 �am
e3 2 am

p3�s 0
12

am
p3

( )
;

�24a�
where

s 0
12 � min

sm
Y��

3
p

am
e3

;
s f

u

af
e3

( )
; �24b�

af
e3� Gf

12

Vf Gf
12 1 0:5�1 2 Vf ��Gm 1 Gf

12�
; �24c�

am
e3� 0:5�Gf

12 1 Gm�
Vf G

f
12 1 0:5�1 2 Vf ��Gm 1 Gf

12�
; �24d�

af
p3 � 3Gf

12

3Vf Gf
12 1 0:5�1 2 Vf ��Em

T 1 3Gf
12�

; �24e�

am
p3 � 0:5�3Gf

12 1 Em
T �

3Vf G
f
12 1 0:5�1 2 Vf ��Em

T 1 3Gf
12�

: �24f�

It is noted that the above equations have not incorporated
any effect of thermal residual stresses. The strength formu-
lae with thermal residual stress influence have been given in
Ref. [25].

2.7. Thermal analysis [25,28]

Let T1 represent the working temperature of the compo-
site, andT0 the reference temperature at which the internal
stresses of the fiber and the matrix are both known (e.g.
zero). Due to mismatch between the thermal expansion
coefficients of the fibers and the matrix, thermal stresses
will be generated in the constituent materials during the
temperature variation, dT � T1 2 T0: The general constitu-
tive equations of the fiber, matrix, and the composite are
modified to

{d1f
i } � �Sf

ij �{ds f
j } 1 {af

i }dT; �25a�

{d1m
i } � �Sm

ij �{dsm
j } 1 {am

i }dT; �25b�
and

{d1i} � �Sij �{ds j} 1 {ai}dT: �25c�
where af

i ; am
i ; and a i, respectively, denote the thermal

expansion coefficients of the fiber, matrix, and the compo-
site at the initial temperatureT0 with af

3 � af
2; a

m
3 � am

2 �
am

1 ; andaf
4 � af

5 � af
6 � am

4 � am
5 � am

6 � 0: It should be
noted that the compliance matrices in (25a) and (25b),�Sf

ij �
and�Sm

ij �; are also defined at the initial temperatureT0, which
may not be merely the elastic components.

On the other hand, we have (see Eqs. (4a) and (4b))

{ds f
i } � �Vf �I �1 Vm�Aij ��21{ds j} 1 { bf

i }dT

� �Bf
ij �{ds j} 1 { bf

i }dT; �26a�

{dsm
1 } � �Aij ��Vf �I �1 Vm�Aij ��21{ds j} 1 { bm

i }dT

� �Bm
ij �{ds j} 1 { bm

i }dT: �26b�
{ bf

i } and {bm
i } are called thermal stress concentration

factors of the fiber and the matrix, satisfying

Vf { bf
i } 1 Vm{ bm

i } � {0} : �27�
Both Levin (see Refs. [25,45]) and Benveniste and Dvorak
(Refs. [28,46]) have found rigorous expressions for the
composite thermal expansion coefficients by making use
of the constituent concentration matrices,�Bf

ij � and �Bm
ij �:

Choosing {bm
i } as independent, the Benveniste and Dvorak

formula reads [46]

{ bm
i } � ��I �2 �Bm

ij ����Sf
ij �2 �Sm

ij ��21�{am
j } 2 {af

j } �:
By means of the bridging matrix, the last equation becomes

{ bm
i } � ��I �2 �Aij ��Vf �I �1 Vm�Aij ��21���Sf

ij �2 �Sm
ij ��21

� �{am
j } 2 {af

j } �: (28)

The overall thermal expansion coefficients of the composite
are determined from

{ai} � Vf {a
f
i } 1 Vm{am

i } 1 Vm��Sm
ij �2 �Sf

ij ��{ bm
j } : �29�

If there is no overall load applied to the lamina, namely,
{ds j} � {0} ; the pure thermal stress increments in the
constituents are simply given by

{dsm
i } �T� � { bm

i }dT and {ds f
i }
�T� � 2

Vm

Vf
{ bm

i }dT:

�30�
Total stresses increments in the constituents are obtained by
firstly performing an isothermal analysis and then a pure
thermal analysis.

3. Simulation of unidirectional laminae

3.1. Effective elastic moduli [16,21,23]

It can be recognized from the above model development
that the unique feature of the present model is in the explicit
determination of averaged internal stresses in the constitu-
ent fiber and matrix materials until rupture. For this purpose,
a bridging matrix has been employed. The most important
task is to determine the independent bridging elements in
Eq. (6). As elaborated in Appendix B, the independent brid-
ging elements can only depend on the material properties of
the constituents and on the fiber packing geometry in the
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matrix. As long as the composite elastic responses obtained
based on these independent elements are correct, the valid-
ity of these elements with varied material properties when
applied to a composite inelastic response analysis can be
expected (Appendix B). It is thus of critical importance to
check the accuracy of the resulting formulae, Eqs. (11a)–
(11e), for the composite engineering moduli.

The longitudinal Young’s modulus and Poisson’s ratio
formulae, Eqs. (11a) and (11b), are the same as rule of
mixtures formulae, which are sufficiently accurate for
most unidirectional composites. Hence, the corresponding
bridging elements, Eqs. (7a) and (7d), are generally valid.
On the other hand, the composite transverse and in-plane
shear responses are much more sensitive to the specific fiber

packing geometry. Accordingly, the parametersb anda ,
which are called as Bridging Parameters for convenience,
stand for the influences of this packing geometry. It is
important to realize that these bridging parameters are inde-
pendent of material properties.

A UD composite made using isotropic glass fibers and
epoxy matrix with Ef � 73:1 GPa; Em � 3:45 GPa; nf �
0:22; andnm � 0:35 is used for both analytical prediction
and experiment to obtain the transverse modulusE22 of the
composite. The results are shown in Fig. 1 in which the
experimental data are taken from Ref. [47]. For comparison,
predictions by using other two established micromechanics
model formulae, the Chamis model [48] and the Hill–
Hashin–Christensen–Lo model [49] formulae, are also
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shown in the figure. It is seen that for this composite, the
bridging model predictions based on 0:4 # b , 0:5 are in
closest agreement with the experiments. It is also seen that
the smaller the parameterb used the stiffer the predicted
modulus will be. To obtain comparison for the shear modu-
lusG12, another glass/epoxy composite withGf � 30:2 GPa
andGm � 1:8 GPa is used. The experimental data forG12,
also taken from Ref. [47], are plotted in Fig. 2 to compare
with the predicted results based on the bridging model, the
Chamis model, and the Hill–Hashin model. Similar
evidences have been observed. It is noted that the bridging
model formula witha � 0:5 is identical with the Hill–
Hashin formula for the in-plane shear modulus. Other
comparisons are listed in Table 1, and more in Refs.
[16,21,23].

3.2. Overall thermal expansion coefficients [28,29]

Overall thermal expansion coefficients of four polymer-
matrix based UD composites were calculated, using inde-
pendently measured constituent properties of the compo-
sites reported in Ref. [50], and are listed in Table 1. For
comparison, predictions by using Schapery’s formulae [51]
were also made, and are reported in the table. It is seen that

the overall longitudinal thermal expansion coefficients from
these two models are identical, whereas the present predic-
tions for the transverse coefficients are more accurate than
Schapery’s model predictions. It should be noted that Scha-
pery’s formula can be derived based on an assumption of
free transverse thermal-stress components in the constituent
materials [47], whereas the present formulae, Eq. (26) or Eq.
(30), also give nonzero transverse thermal stresses in the
constituents. The latter is seen to be consistent with a
three-dimensional FEM solution [52].

In all the following calculations, the bridging parameters
are chosen asb � a � 0:5:

3.3. Elasto-plastic response [17,22]

Two boron (B) fiber reinforced aluminum (Al) UD
composites were studied for this purpose. For the first
composite, Brockenbrough et al. [15] employed a FEM
(finite element method) technique to investigate the influ-
ence of fiber arrangement and fiber cross-sectional shape on
its elastic–plastic response. The boron fiber was considered
as isotropically linear elastic until rupture while the alumi-
num matrix as elastic–plastic. They found that little influ-
ence exists in the elastic region. The same is true for the
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Table 1
Thermal–mechanical properties of four UD laminae [50] (b � 0:45 anda � 0:35)

Composite 1 Composite 2 Composite 3 Composite 4

Fiber volume fraction,Vf 0.60 0.60 0.62 0.60
Fiber properties [50] Type AS4 T300 E-glass 21× K43 Gevetex Silenka E-Glass 1200tex

Ef
11 (GPa) 225 230 80 74

Ef
22 (GPa) 15 15 80 74

Gf
12 (GPa) 15 15 33.33 30.8

nf
12 0.2 0.2 0.2 0.2
af

1 ( × 1026/8C) 20.5 20.7 4.9 4.9
af

2 ( × 1026/8C) 15 12 4.9 4.9

Matrix properties [50] Type 3501-6 epoxy BSL914C epoxy LY556/HT907/DY063 epoxy MY750/HY917/DY063 epoxy
Em (GPa) 4.2 4.0 3.35 3.35
nm 0.34 0.35 0.35 0.35
am ( × 1026/8C) 45 55 58 58

Lamina properties
(measured [50])

E11 (GPa) 126 138 53.48 45.6

E22 (GPa) 11 11 17.7 16.2
G12 (GPa) 6.6 5.5 5.83 5.83
n12 0.28 0.28 0.278 0.278
a1 ( × 1026/8C) 21 21 8.6 8.6
a2 ( × 1026/8C) 26 26 26.4 26.4

Lamina properties
(Bridging model
prediction)

E11 (GPa) 136.7 139.6 50.87 45.74

E22 (GPa) 9.23 9.09 14.38 13.45
G12 (GPa) 5.54 5.04 5.72 5.31
n12 0.256 0.26 0.257 0.26
a1 ( × 1026/8C) 0.06 20.06 6.23 6.46
a2 ( × 1026/8C) 27.9 29.6 20.62 21.67

Schapery’s prediction a1 ( × 026/8C) 0.06 20.06 6.23 6.46
a2 ( × 1026/8C) 33.04 36.83 31.8 33.17



longitudinal plastic response when a tensile load is applied
longitudinally. However, the conclusion is no longer valid
for the transverse plastic response. The most significant
influence is on the transverse tensile and in-plane shear
deformation due to different fiber arrangements. In their
modeling, four fiber arrangement patterns, i.e. square diag-
onal packing, triangle packing, random packing, and square
edge packing, were considered. With random packing
assumption, the FEM solution gave results closest to the
experimental data [53]. This is unsurprising, since any regu-
lar arrangement assumption for the fibers is generally not
found in a real composite. The predicted results of the
present model were comparable with the random packing
FEM solution, as indicated in Fig. 3. In the present calcula-
tion, the following parameters were directly taken from Ref.
[15]: Ef � 410 GPa; nf � 0:2; Em � 69 GPa; nm � 0:33;
sm

Y � 43 MPa; andVf � 0:46: The matrix hardening modu-
lus, however, was measured from the testing curve reported
in Ref. [15, Fig. 2]. Three linear segments were used to
represent the plastic hardening curve of the aluminum

matrix. The used matrix hardening modulus is given as:

Em
T �

1:88 GPa; when 43 MPa, sm
e # 93:6 MPa

0:66 GPa; when 93:6 MPa, sm
e # 123:8 MPa

0:17 GPa; whensm
e . 123:8 MPa

8>><>>:
The second B-Al UD composite is subjected to combined
axial tension and torsion loads. Experimental data for this
composite are taken from a part of the results reported in
Ref. [54]. The whole load sequence consisted of several
load paths, some of which were reversed in load directions
from the others, see Ref. [54, Figs. 11 and 12] for details. In
order to simulate this complicated load sequence, a number
of load intervals have been chosen in which some intervals
are considered as loading while the others as unloading.
Whenever there is one stress component (called key stress
component), which begins to change its direction, it is
considered to begin a new loading or unloading interval.
Each loading or unloading process continues till the key
stress component reaches zero. Then a reversed unloading
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Table 2
Key points in the load sequence of a boron/aluminium UD composite used for elastic–plastic response analysis

Load sequence: O to A (loading); A to B (loading); B to B0 (unloading); B0 to C (loading); C to D (unloading); D to D0 (unloading); D0 to E (loading); E to E0

(unloading); E0 to F (loading); F to F0 (unloading); F0 to G (loading); G to H (unloading); H to J (loading); J to K (loading); K to K0 (unloading); K0 to L
(loading)

Point Magnitude Point Magnitude Point Magnitude

s11 (MPa) s21 (MPa) s11 (MPa) s21 (MPa) s11 (MPa) s21 (MPa)

O 0 0 A 0 18 B 0 54
B 0 0 0 C 0 262 D 62 252
D 0 62 0 E 62 64 E0 62 0
F 62 263.4 F0 62 0 G 62 4
H 48 0 J 180 0 K 180 73
K 0 180 0 L 180 269



or loading process is considered to start. Details for loading
and unloading intervals are listed in Table 2 in which
endpoint values of the intervals are also included. These
values were measured from Ref. [54, Figs. 11, 12 and 26].

It is known that the in-situ matrix properties depend on
the composite processing condition, and may be different
from the bulk matrix properties [55]. Also, the yield
strengths of a material in different load directions are
usually different. Because of no relevant data available
from Ref. [54], three piece-wise linear segments were
used to approximate the tensile stress–strain curve of the
aluminum plotted in Ref. [54, Fig. 27] to obtain the matrix
hardening moduli. The elastic constants of boron were
inversely calculated from the overall lamina properties
given in Ref. [54, Table 1], by using Eq. (11). The experi-
mental stress–strain curves of the first two load paths,
shown in Ref. [54, Fig. 26] were used to adjust the matrix
yield strengths corresponding to the positive and the nega-
tive shear loads. The material properties thus obtained are:
Ef � Ef

T � 445 GPa; nf � 0:17; Em � 72:39 GPa; nm �
0:33; and

Em
T �

23:1 GPa; whensm
Y , sm

e # sm
Y 1 14 MPa

6:9 GPa; whensm
Y 1 14 MPa, sm

e # sm
Y 1 32 MPa

1:9 GPa; whensm
e . sm

Y 1 32 MPa

8>><>>:
where sm

Y � 40 MPa for the positive shear andsm
Y �

30 MPa for the negative shear loads. This difference in
yield strengths under shear loads may be attributed to the
thermal residual stresses in the composite. The present

prediction, however, did not consider any thermal residual
stress effect due to no processing information (including
stress-free temperature and constituent thermal–mechanical
properties at different temperatures) available. The fiber
volume fraction,Vf, is 0.45 [54]. The predicted results
using these parameters together with the experimental
data, which were taken from Ref. [54], are plotted in Fig.
4. It can be seen from the figure that most parts of the stress–
strain curves from the prediction and the experiment agree
quite well.

3.4. Off-axial strength [17,21–23,34]

Ultimate strength is a critical parameter for composite
design. Prediction of this strength can be simply achieved
using the bridging model. Let us consider a UD composite
of glass/epoxy system subjected to an off-axial load. Its
constituent elastic properties together with fiber volume
fraction, taken from Ref. [56], are summarized in Table 3.
No additional constituent properties were reported. These
properties can be retrieved from the overall composite
strengths in two different directions, e.g. longitudinal
strength (X) and transverse strength (Y).

The recovering is begun by assuming that the glass fiber
is linearly elastic until rupture, and that the matrix plasticity,
if any, consists of bilinear segments. As the stiffness and
strength of the glass fiber are much higher than those of the
epoxy matrix, Eqs. (23a)–(23f) indicate that the transverse
tensile strength of the composite is governed by the strength
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Table 3
Parameters of a glass/epoxy UD composite used for off-axial strength analysis (X � 1236 MPa; Y � 28:45 MPa; S� 38 MPa) (X� longitudinal tensile
strength,Y� transverse tensile strength,S� in-plane shear strength)

Material Volume fraction E11 (GPa) E22 (GPa) n12 n23 G12 (GPa) ET (GPa) sY (MPa) su (MPa)

Glass 0.6 73 73 0.22 0.22 29.92 73 2047 2047
Epoxy 0.4 3.45 3.45 0.35 0.35 1.28 – – 19



of the matrix. Thus, Eq. (23a) gives

s u
22 � sm

Y

am
e2

1
sm

u 2 sm
Y

am
p2

� Y <
sm

u

am
e2
; �31�

sinceam
p2 < am

e2: From Eq. (31), the matrix strength is recov-
ered to be 18.4 MPa (a slight amendment is later made for
the recovered parameter due to incorporation of matrix plas-
ticity, i.e.am

p2 ± am
e2; see Table 3). Next, let us use Eq. (22a)

to recover the fiber strength. It is required that

s u
11 � min

s f
u 2 �af

e1 2 af
p1�s 0

11

af
p1

;
sm

u 2 �am
e1 2 am

p1�s 0
11

am
p1

( )

� X:

At this stage, we cannot assume thatam
p1 < am

e1: However,
the longitudinal strength of the composite is most probably
governed by the strength of the fiber especially when the
fiber volume fraction is high. Thus, we can considerX �
s u

11 < s f
u=a

f
e1; due to af

p1 < af
e1; provided that we can

choose the other two parameters of the matrix,Em
T and

sm
Y ; such that

sm
Y

am
e1

1
sm

u 2 sm
Y

am
p1

 !
sm

u �18:4 MPa

$ X: �32�

It is clear that many different combinations ofEm
T andsm

Y ;

which satisfy inequality (32), exist. Since
�sm

u =am
e1�sm

u �18:4 MPa , X; the epoxy used cannot be consid-
ered as linearly elastic until rupture. On the other hand, any
combination ofEm

T and sm
Y ; which satisfy (32), can be

regarded as the matrix plastic parameters due to no other
information. Calculated results for the off-axial tensile
strength of the composite with four different combinations
of Em

T andsm
Y are plotted in Fig. 5, which are compared with

experimental data taken from Ref. [56]. It is seen that all the

four curves almost coincide with each other. This may be
attributed to the fact that the ultimate strength of the compo-
site is mainly dependent on the ultimate stresses, but less on
the yield strength or hardening modulus, of the constituent
materials, although the ultimate strain and the entire stress–
strain curve of the composite do depend on them. This is
especially true when the modular ratio of the two constituent
materials is large. It should be pointed out that the conclu-
sion made herein is only applicable to UD composites which
are statically determinate. For an angle-plied lamina in the
laminate which is statically indeterminate, its strength
prediction depends heavily on its plastic properties [26],
see also the subsequent section for details. Other examples
of off-axial strength predictions have been reported else-
where [17,21–23,34].

3.5. Tensile strength at elevated temperature [22]

Metal matrix composites usually have high service
temperature. When these composites are subjected to a
mechanical load, the ultimate strength of the composites
varies with both the elevated temperature and the external
load. In this example, a ceramic alumina fiber reinforced
aluminum matrix composite was investigated, having a
fiber volume fraction ofVf � 0:5: The measured off-axial
tensile strengths of this composite at a number of tempera-
tures from room temperature to 773 K were performed by
Matsuda and Matsuura [57]. The alumina fibers (being line-
arly elastic until rupture) were considered as temperature
independent [58], and its thermal–elastic properties were
taken from Ref. [58]. On the other hand, the properties of
the aluminum matrix depend on temperature heavily, and
were taken, except for the tensile strengths, from Ref. [59].
Thus, only the constituent strengths at each temperature
were recovered from some overall strengths of the
composite. However, the alumina strength is temperature
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independent. Only the longitudinal tensile strength of the
composite at room temperature was used to retrieve the
fiber strength. Because the matrix plastic parameters had
already been chosen, this retrieval was easy to perform,
by simply setting the fiber strength equal to the resulting
maximum normal stress in the fiber when applying a long-
itudinal tensile load to the composite. This longitudinal
tensile load should be equal to the composite longitudinal
tensile strength. The aluminum matrix tensile strength,
however, is very temperature dependent. Its strength at
each temperature was backed out using the overall trans-
verse tensile strength of the composite at the corresponding
temperature. The constituent properties thus obtained are
summarized in Tables 4 and 5. The predicted and measured
[57] off-axial tensile strengths at temperature of 773 K are
plotted in Fig. 6. Good correlation is seen to exist. Further
results are referred to Ref. [22].

3.6. Fatigue strength prediction [30]

It is believed that any failure of a material results from its
internal stresses, no matter what kind of load has been
applied to the material. As such, the overall fatigue strength
of a fibrous composite can be similarly estimated by using
the Bridging Model, based on the information of the fatigue
behaviors of the constituent fiber and matrix materials. Two
UD composites are investigated for this purpose. One is a
graphite/epoxy (AS/3501-5A) lamina, with a fiber volume
fraction of 0.7, and another is a glass/epoxy lamina, with a
fiber volume fraction of 0.6. Awerbuch and Hahn [60] made
extensive experiments on the first composite, whereas
Hashin and Rotem [56] measured theS–N curves of the
second lamina, both under off-axial tensile fatigue loads.
As no cyclic tests for the constituents were reported, the
overall fatigue data of both the composites at some off-

axial directions must be used to retrieve the constituent
fatigue data. The retrieval is similar to that in obtaining
the constituent static parameters. A procedure about this
retrieval as per the first example is described below.

First, the scattered fatigue data were best approximated
using some polynomial function (a first-order polynomial in
the present case). Using the polynomial function, the
composite fatigue strength at each off-axial angle corre-
sponding to a given cycle number was determined, as
shown in Table 6 (those atN � 0 were not shown). From
the measured lamina static properties including the lamina
longitudinal and transverse tensile strengths, shown in Table
7, the constituent static properties could be backed out, and
are listed in Table 8. The elastic properties of the constitu-
ents were kept unchanged at every subsequent cyclic load
condition, whereas the matrix plastic parameters were kept
as constant as possible. At each cycle number, the overall
longitudinal and transverse fatigue strengths of the compo-
site were employed to adjust the fiber and matrix strengths,
respectively. This adjusting was done as though the same
amount of “static loads” had been applied to the composite.
If the fiber and matrix strengths could be determined
successfully, the matrix plastic parameters were kept
unchanged. Otherwise, the matrix yield strength was
adjusted accordingly. For example, at a cycle number of
N � 103

; the matrix strength, around 26.4 MPa, was firstly
determined by applying an equivalent “static” transverse
load of 38.5 MPa (see Table 6) to the composite, without
changing matrix plastic parameters, i.e.sm

Y � 25 MPa and
Em

T � 1:8 GPa (see Table 7). Then, if we loaded the compo-
site longitudinally, we would find that we could not apply to
a load level of 1323.7 MPa, which is the composite long-
itudinal fatigue strength atN � 103

: Thus, the matrix plastic
parameters must be adjusted. Keeping the hardening modu-
lus of Em

T � 1:8 GPa unchanged, the yield strength of the
matrix was adjusted to 18 MPa. The constituent fatigue
parameters thus defined are summarized in Table 8.

Similarly, the constituent fatigue parameters of the
second example, glass/epoxy lamina, were retrieved. The
only difference is that the overallS–N data of this latter
composite at 608 rather than at 908 (transverse direction)
off-axial load were used to determine the matrix fatigue
strengths whenN . 0; since no cyclic tests had been
performed for the transverse direction specimens. The
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Table 4
Material properties of the alumina/aluminium UD composite�Vf � 0:5�
used for elevated temperature off-axial strength analysis: properties of
alumina fibers, independent of temperature [58]

Young’s modulus
(GPa)

Tensile strength
(MPa)

Poisson’s
ratio

Thermal expansion
coefficient (× 1026/K)

300 1380 0.26 6.0

Table 5
Material properties of the alumina/aluminium UD composite�Vf � 0:5� used for elevated temperature off-axial strength analysis: properties of aluminium
matrix [59]

Temperature
(K)

Young’s modulus
(GPa)

Yield strength
(MPa)

Hardening modulus
(MPa)

Tensile strength
(MPa)

Poisson’s
ratio

Thermal expansion
coefficient (× 1026/K)

297 68.9 41.4 6500 78.4 0.33 23.4
394 63.8 39.3 4500 65 0.33 23.6
473 59.6 36.5 1150 51 0.33 23.9
573 54.6 32.5 500 34 0.33 24.8
673 48.3 15.9 200 21 0.33 24.8
773 42.0 10.5 80 12.5 0.33 25.7



retrieved constituent parameters of the glass/epoxy system
are given in Table 9.

Using the retrieved constituent fatigue parameters and the
respective fiber volume fractions, the predicted off-axial
fatigue strengths together with the measured fatigue
strengths [60] for the graphite/epoxy composite atN �
103 and 105 are shown in Figs. 7 and 8, whereas the results
for the glass/epoxy composite are shown in Fig. 9. More
results can be found in Ref. [30]. These figures clearly indi-
cate that the bridging model is efficient for lamina fatigue
strength analysis.

4. Simulation of multidirectional laminates

4.1. Classical laminate theory

4.1.1. Iso-thermal analysis [20]
Suppose that the laminated composite consists of multi-

layers of UD laminae, each of which has a different ply
angle. Let a global coordinate system, (x, y, z), to have its
origin on the middle surface of the laminate, withx andy in

the laminate plane andz along the thickness direction.
Let the fiber direction of thekth lamina have an
inclined ply-angle u k with the global x direction. In
the classical lamination theory, only in-plane stress
and strain increments, i.e. {ds} G � {dsxx; dsyy;dsxy}

T

and {d1} G � {d1xx; d1yy; 2d1xy}
T
; are retained, where

G refers to the global system. The global in-plane strain
increments of the laminate at a material point (x, y, z)
are expressed as [61]

d1xx � d10
xx 1 zdk0

xx; d1yy � d10
yy 1 zdk0

yy;

2d1xy � 2d10
xy 1 2zdk0

xy;

where d10
xx; etc. and dk0

xx; etc. are the strain and the
curvature increments of the middle surface, respectively.
The global stress increment at the considered material
point is obtained from

{ds} G � �C�Gk {d1} G � ��CG
ij �k�{d1} G

� ��T�c�k��S�k�21��T�Tc �{d1} G
; �33�

where [S]k is the compliance matrix of thekth lamina in
its local coordinate system given by

�S�k �
S11 S12 S16

S22 S26

symmetry S66

2664
3775

k

;

�Tc� �
l21 l22 2l1l2

m2
1 m2

2 2m1m2

l1m1 l2m2 l1m2 1 l2m1

26664
37775:

�34�

with l1 � m2 � cosu; l2 � 2m1 � sinu:
Hence, the averaged stress increments in thekth lamina
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Fig. 6. Predicted and measured [57] off-axial tensile strengths of an alumina fiber and aluminium matrix composite at 773 K. The parameters used are given in
Table 4.

Table 6
Material properties of a graphite/epoxy composite�Vf � 0:7� under tensile
fatigue: measured [60] off-axis fatigue strengths of the composite (Rp � 0:1
and vpp � 18 Hz) (p� stress ratio, i.e. R� smin=smax;

pp� cyclic
frequency)

Angle Cyclic number,N

103 104 105 106

08 1323.7 1254.6 1185.5 1116.4
108 295.8 257.6 219.5 181.3
208 156.6 142.7 128.9 115.1
308 65.5 68.7 71.9 75.2
458 67.1 59.5 52.0 44.4
608 47.0 45.3 43.5 41.8
908 38.5 36.2 33.9 31.7



can be determined from

{ds} G
k � ��T�c�k��S�k�21��T�Tc �{d1} G

k ; �35�

where

{d1} G
k �

(
d10

xx 1
zk 1 zk21

2
dk0

xx;d1
0
yy

1
zk 1 zk21

2
dk0

yy;2d10
xy 1 �zk 1 zk21�dk0

xy

)T

:

�36�

zk and zk21 are thez coordinates of the top and bottom
surfaces of the lamina. These stresses can be transformed
into the local coordinates through

{ds} k � ��T�Ts �k{ds} G
k �37�

where another coordinate transformation matrix, [T]s, is
defined as

�Ts� �
l21 l22 l1l2

m2
1 m2

2 m1m2

2l1m1 2l2m2 l1m2 1 l2m1

26664
37775 �38�

Substituting (37) into the right-hand sides of Eqs. (19a) and
(19b), the averaged stress increments in the fiber and matrix
phases of this lamina can be calculated. It is thus only
necessary to determine the middle surface strains and curva-
ture increments, which can be achieved using the classical

lamination theory, giving [61]

dNxx

dNyy

dNxy

dMxx

dMyy

dMxy

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
�

QI
11 QI

12 QI
16 QII

11 QII
12 QII

16

QI
12 QI

22 QI
26 QII

12 QII
22 QII

26

QI
16 QI

26 QI
66 QII

16 QII
26 QII

66

QII
11 QII

12 QII
16 QIII

11 QIII
12 QIII

16

QII
12 QII

22 QII
26 QIII

12 QIII
22 QIII

26

QII
16 QII

26 QII
66 QIII

16 QIII
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66

266666666666664

377777777777775

�

d10
xx

d10
yy

2d10
xy

dk0
xx

dk0
yy

2dk0
xy

8>>>>>>>>>>><>>>>>>>>>>>:

9>>>>>>>>>>>=>>>>>>>>>>>;
; �39�

QI
ij �

XN
k�1

�CG
ij �k�zk 2 zk21�;

QII
ij � 1

2

XN
k�1

�CG
ij �k�z2

k 2 z2
k21�;

QIII
ij � 1

3

XN
k�1

�CG
ij �k�z3

k 2 z3
k21�

�40�

whereN is the total number of lamina plies in the laminate.
�CG

ij �k are the stiffness elements of thekth lamina in the
global coordinate system, see Eq. (33). In Eq. (39), dNxx,
dNyy, dNxy, dMxx, dMyy, and dMxy are the overall incremental
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Table 7
Material properties of a graphite/epoxy composite�Vf � 0:7� under tensile fatigue: static properties (cyclic number,N � 0)

E11 (GPa) E22 (GPa) n12 G12 (GPa) sY (MPa) ET (GPa) Xa (MPa) Yb (MPa)

Fiber 194.3 15.4 0.275 18.1 – – 2610 –
Matrix 3.45 3.45 0.35 1.28 25 1.8 38.5 –
Lamina (measured [60]) 137 9.6 0.3 5.24 – – 1836 56.9
Lamina (predicted) 137 9.56 0.298 5.24 – – 1837.6 56.6

a Longitudinal tensile strength.
b Transverse tensile strength.

Table 8
Material properties of a graphite/epoxy composite�Vf � 0:7� under tensile
fatigue: retrieved constituent fatigue properties (R� 0:1 andv � 18 Hz)

Cyclic number,N

103 104 105 106

s f
u (MPa) 1880 1780 1683 1586

sm
u (MPa) 26.4 24.8 23.2 21.8

sm
Y (MPa) 18 17 15 14

Em
T (GPa) 1.8 1.8 1.8 1.8

Table 9
Retrieved constituent fatigue properties of a glass/epoxy composite under
off-axial fatigue loads (Ef � 73 GPa; nf � 0:22; Em � 3:45 GPa; nm �
0:35; Vf � 0:6; R� 0:1; andv � 19 Hz)

Cyclic number,N

0 102 103 104 105 106

s f
u (MPa) 2055 1460 1235 1013 790 570

sm
u (MPa) 18.6 19.5 18 16.5 15 13.4

sm
Y (MPa) 13 13 13 13 13 12

Em
T (GPa) 0.21 0.21 0.21 0.21 0.21 0.21



in-plane forces and moments per unit length exerted on the
laminate, respectively. Suppose that the total applied in-
plane stresses are�s 0

xx;s
0
yy;s

0
xy�: The incremental in-plane

forces and moments are defined as

dNxx �
Zh=2

2 h=2
�ds 0

xx� dz; dNyy �
Zh=2

2 h=2
�ds 0

yy� dz;

dNxy �
Zh=2

2 h=2
�ds 0

xy� dz;

�41a�

dMxx �
Zh=2

2 h=2
�ds 0

xx�zdz; dMyy �
Zh=2

2 h=2
�ds 0

yy�zdz;

dMxy �
Zh=2

2 h=2
�ds 0

xy�zdz (41b)

whereh� PN
k�1 �zk 2 zk21� is the whole thickness of the

laminate. In all the laminates considered subsequently,
each lamina in the laminates will assume a same
thickness.

4.1.2. Post-failure analysis
It is evident that different ply in the laminate is

subjected to a different load share. Therefore, some
lamina ply must have failed first before others. As
soon as one ply fails, its contribution to the overall
instantaneous stiffness matrix of the laminate must be
reduced. Various reduction strategies have been
proposed in the literature [62,63]. Here, we adopt a
total reduction strategy, which is somewhat similar to
that used by Chiu [64]. Once thekth

0 lamina ply has
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Fig. 7. Comparison between measured [60] and predicted off-axis fatigue strengths of a UD graphite/epoxy composite atN � 103
: The material parameters

used are given in Table 5.
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Fig. 8. Comparison between measured [60] and predicted off-axis fatigue strengths of a UD graphite/epoxy composite atN � 105
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failed the stiffness elements in Eq. (39) are redefined as

QI
ij �

XN
k�1;k±k0

�CG
ij �k�zk 2 zk21�;

QII
ij � 1

2

XN
k�1;k±k0

�CG
ij �k�z2

k 2 z2
k21�;

QIII
ij � 1

3

XN
k�1;k±k0

�CG
ij �k�z3

k 2 z3
k21�:

�42�

Note that the incremental forces and moments are deter-
mined using the same formulae, Eqs. (41a) and (41b).

The stiffness reduction, as given by Eq. (42), must be
continued until the last-ply has failed, if the laminate is
only subjected to an in-plane load. Then, the composite
ultimate strength results. If, however, the laminate is
involved with a flexural load, the stiffness reduction must
be performed more carefully. For example, let the laminate
be subjected to only a bending load. The above stiffness
reduction process should be stopped before reaching the
last or the second last ply failure [42,43]. This is because
under the bending condition, the middle plane strain incre-
ments, d10

xx; etc. are negligibly small. The remaining bend-
ing curvature will have very small, if not zero, stress
contribution to the last ply failure or the last two-ply fail-
ures, according to Eqs. (35) and (36). For instance, if the
laminate consists of odd-number (e.g. 5, 7, 9,…) of plies
each of which has the same global property and the same
thickness, the central ply will not carry any load no matter
how much a pure bending will be applied to the laminate,
according to Eqs. (35) and (36). Thus, the last ply will not
fail at all, but the deflection (curvature) can be increased
unlimitedly. In bending tests of some laminated beams, we
have observed that the central ply/plies of the beams cannot

be forced to failure due to the limitation of the testing appa-
ratus to excessive beam deflections [42,43]. This is consis-
tent with our theory.

Therefore, if a flexural load is involved, an additional
critical deflection/curvature condition has to be employed
in order that the ultimate strength of the laminate can be
determined [42,43]. However, only in-plane loads will be
concerned in the present paper.

4.1.3. Thermal analysis [28,29]
Due to stacking constraint, each lamina in the laminate

may be still subjected to nonzero thermal stress components
even though no overall load is applied to the laminate. This
is because each lamina may have different global coeffi-
cients of thermal expansion (although the local ones may
be the same).

For the kth lamina, the thermal stress and strain
increments in the global coordinate system satisfy [see
Eq. (25c)]

{ds} G;�T�
k � �C�Gk {d1} G;�T�

k 2 {b} G
k dT �43a�

where

{b} G
k � { �b1�Gk ; �b2�Gk ; �b3�Gk } T � ��T�c�k��S�k�21{a} k:

�43b�

On the other hand, the thermal stress increments applied
on the kth lamina in its local coordinate system are
obtained from Eq. (37). These stress increments must
be substituted into the right-hand sides of Eqs. (26a)
and (26b), rather than Eqs. (19a) and (19b), to deter-
mine the thermal stress increments in the constituent
fiber and matrix materials. Note that the thermal strain
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increments, {d1} G;�T�
k ; in (43a) are defined as

{d1} G;�T�
k �

(
d10;�T�

xx 1
zk 1 zk21

2
dk0;�T�

xx ;d10;�T�
yy

1
zk 1 zk21

2
dk0;�T�

yy ;2d10;�T�
xy

1 �zk 1 zk21�dk0;�T�
xy

)T

�44�

where the middle surface strain and curvature incre-
ments due to the temperature variation are obtained
from

dV I
1

dV I
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dV I
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dV I
i �

XN
k�1

�bi�Gk �zk 2 zk21�dT;

dV II
i � 1

2

XN
k�1

�bi�Gk �z2
k 2 z2

k21�dT:

�46�

4.2. Inelastic response [27]

A number of laminates made using the same graphite/
epoxy (T300/5208) UD laminae but placed in different
configurations were experimentally investigated by
Sendeckyi et al. [65] to obtain their whole stress–strain
curves under a longitudinal (x-directional) load condition.
The laminae had a nominal fiber volume fraction ofVf �
0:664 [65]. The constituent elastic properties together with
lamina longitudinal tensile and compressive strengths,X
andX0, were taken from the literature [50], see also Table
1. No thermal residual stress was assumed for these compo-
sites, since no related information was given [65]. The
matrix tensile stress–strain curve was retrieved using the
lamina in-plane shear stress–strain data, because these
data are least influenced by any possible residual thermal
stress. The retrieval was performed in such a way that by
only adjusting plastic parameters,sm

Y andEm
T ; at each load

level, the predicted and measured in-plane shear stress–
strain curves were in close agreement. The retrieved tensile
stress–strain curve was then expressed as a combination of
10 linear segments. A further assumption made was that the
matrix had a same stress–strain curve at compression as that
at tension. The fiber tensile and compressive strengths were
then backed out fromX andX0, respectively. However, the
matrix tensile strength, 36 MPa, retrieved from the lamina
transverse tensile strength,Y, was different from the matrix
tensile strength, 48 MPa, retrieved from the lamina in-plane
shear strength,S. Thus, a simple average was used to define
the matrix tensile strength, giving 42 MPa. Finally, the
matrix compressive strength was backed out using the ulti-
mate strength of the [̂30]2S laminate under a uniaxial load
(along 08 direction), because at such load condition the
matrix material in the [̂ 30]2S laminate is subjected to
essentially compressive stresses. The retrieved constituent
properties are summarized in Tables 10 and 11. Using these
parameters, the uniaxial stress–strain curves up to final fail-
ure of a number of laminates having different stacking
arrangements were simulated [27], and some of them are
plotted in Figs. 10–13. Good agreement has been found.
Additional information is present in Ref. [27].

4.3. Thermal–mechanical strength [28]

Four metal matrix laminates made from the same silicon-
carbide fibers (SCS-6) and Ti-15-3 matrix, with a same fiber
volume fraction ofVf � 0:34; but in different lay-ups were
analyzed. Measured uniaxial (inx-direction) tensile
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Table 10
Constituent properties of T300/5208 laminates�Vf � 0:664� used for
inelastic response analysis: elastic and strength parameters
(X � 1619 MPa; X 0 � 900 MPa; Y � 49 MPa; S� 76 MPa)

E11 (GPa) E22 (GPa) G12 (GPa) n12 su (MPa) su,c (MPa)

Fibera 235 15 15 0.25 2417 1342
Matrixa 4.2 4.2 1.57 0.34 42 104

a Elastic properties were taken from Ref. [50].

Table 11
Constituent properties of T300/5208 laminates�Vf � 0:664� used for inelastic response analysis: plastic parameters of 5208 epoxy matrix

i

1 2 3 4 5 6 7 8 9 10

�sm
Y �i (MPa) 28.0 34.8 42.2 49.4 56.4 63.0 69.1 74.8 80.3 83.0

�Em
T �i (GPa) 4.20 3.30 3.07 2.63 2.22 1.81 1.45 1.20 0.99 0.42



strengths of these laminates at two or three different
temperatures were reported in Ref. [66]. The laminate lay
ups as well as the measured laminate tensile strengths at
different temperatures are summarized in Table 12, in
which the 08-direction parallels to the globalx-coordinate.
According to Ref. [66], the laminates assumed a stress-free
processing temperature of 8158C. Therefore, residual ther-
mal stresses were firstly generated in the constituent fiber
and matrix materials when the laminates were cooled down
from 8158C to room temperature before applying subse-
quent thermal and mechanical loads. The SCS-6 fiber was
considered as isotropic and linearly elastic until rupture
[66], whereas the Ti-15-3 matrix as isotropic and bilinearly
elastic–plastic. The thermal–mechanical properties of
them, obtained from Refs. [52,67] whenever possibly, are
given in Tables 13 and 14, where schemes in determining
the remaining constituent parameters are noted. Using these

parameters, the laminate final failure strengths at different
temperatures were estimated, and are summarized in Table
12. The predictions and the experiments are in reasonable
agreement.

4.4. Failure envelope [20,29]

One important feature of the Bridging Model is its simpli-
city. The model can be easily used to estimate the ultimate
failure strength of fibrous composites under any multi-axial
stress condition. Let us illustrate this by considering two
glass/epoxy laminates subjected to combined bi-axial stress
states. The E-glass fiber reinforcement was Silenka 051L,
1200 tex, and the epoxy resin system was Ciba-Geigy
MY750/HY917/DY063. All required constituent properties
and the properties of a unidirectional lamina made from the
same constituents were measured independently [50], and,
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Fig. 10. Longitudinal stress versus longitudinal and transverse strains for T300/5208 [^608]2S laminate. The material parameters used are given in Table 7,
whereas experimental data were taken from Ref. [65].
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Fig. 11. Longitudinal stress versus longitudinal and transverse strains for T300/5208 [08/^458/08]S laminate.



except for the matrix plastic parameters, are summarized in
Table 15 (see also Table 1). In their original data report,
Soden et al. [50] only gave the ultimate tensile stress and
strain of the epoxy matrix, 80 MPa and 5%. Choosing a
typical yield strength ofsm

Y � 50 MPa; the matrix harden-
ing modulus was found to be 0.85 GPa, both of which are
also listed in Table 15. Using these independent properties,
the predicted strength envelopes based on the present theory
and on Tsai–Wu’s theory [47] for the two angle-ply lami-
nates, [̂ 458]s and [̂ 558]s, are shown in Figs. 14 and 15.
Experimental data reported by Soden et al. [68] are also
shown in the figures. It can be seen from the figures that
the bridging model predictions are grossly more accurate
than the predictions made using Tsai–Wu’s theory. It is
also noted that the bridging model predictions were based
on independent constituent properties whereas the predic-
tions from Tsai–Wu’s theory were based on the material
parameters measured from the composite. If some overall

properties of the composite are used to calibrate some
constituent parameters for the bridging model, an improved
prediction can be expected. One such an example is shown
in Fig. 14, in which the bridging model prediction using a
lower matrix compressive strength (without changing any
other parameter) gave even better correlation with the
experiments. Other more information on bridging model
predictions for the 14 multidirectional laminates [50]
subjected to biaxial loads has been reported in Ref. [29].

4.5. Life prediction [31]

Rotem and Hashin [69] experimentally measuredS–N
data of angle ply Glass/Epoxy laminates, [^u ]2s, with u �
30; 35, 41, 45, 49, 55, and 608. The laminates were subjected
to tensile fatigue unixaially along the 08 (x-) direction, with
a stress ratio ofR� 0:1 and cyclic frequencyv � 19 or
1.8 cps. Both stress and strain controls were used during
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Fig. 13. Longitudinal stress versus longitudinal and transverse strains for T300/5208 [908/^608/908]S laminate.



their tests. From measured lamina behaviors, the elastic
properties of the constituents were retrieved (using Eq.
(11)), and were assumed unchanged during the cyclic load-
ing. Because a tensile fatigue applied to the [^u ]2s laminate
can hardly generate any compressive failure to the fiber
material, the fiber compressive strength data were immater-
ial for the present prediction. The fiber tensile fatigue data
were taken from those given in Table 9, whereas the matrix
tensile and compressiveS–N parameters were back calcu-
lated using measured overallS–N data (which were defined
similarly as those in Table 6) of the [̂608]2s and [̂ 308]2s

laminates, given in Table 16. This is because under the
uniaxial tensile load condition the matrix in the [^608]2s

or [^308]2s laminate is essentially subjected to tension or
compression. The constituent fatigue properties are
summarized in Table 17, whereas a detailed procedure for
the retrieval of the matrix fatigue data is described below.

As the measured stress–strain curves of the composites
under static tensile load condition displayed nonlinear beha-
vior [69], the matrix used could not be considered as linearly
elastic until rupture. Instead, it was assumed to be bilinearly
elastic–plastic in the retrieval. The matrix tensile strength at
a given cycle number was specified as the maximum normal

stress generated in the matrix of the [^608]2s laminate when
it was subjected to the corresponding ultimate tensile load.
For example, when the [̂608]2s laminate was subjected to
the uniaxial tensile stress of 53.6 MPa, which is the fatigue
strength of the composite at the cycle number ofN � 0
(Table 16), the maximum normal stress in the matrix was
found to be 35 MPa, which was taken as the matrix tensile
strength corresponding to the cycle number ofN � 0:
Meanwhile, the plastic parameters (yield strength and hard-
ening modulus) of the matrix were determined by trial-and-
error due to no other information being available, but in
such a way that the predicted failure strain of the [^608]2s

laminate was as close to the measured value as possible. On
the other hand, the predicted unidirectional tensile strength
of the lamina based on the so-defined matrix parameters and
the other given constituent properties must be equal to the
measured strength of the lamina. For example, with the
constituent properties ofs f

u � 2055 MPa; sm
u � 35 MPa;

sm
Y � 16 MPa; andEm

T � 0:86 GPa and a fiber volume frac-
tion of Vf � 0:60; the predicted longitudinal strength of the
resulting unidirectional lamina is 1247 MPa, which is equal
to the measured value atN � 0 [56], whereas the predicted
ultimate strain of the [̂ 608]2s laminate is 0.8762%, higher
than the measured strain, 0.4022% [69]. However, if we take
Em

T � 2:46 GPa; the predicted longitudinal strength is
577 MPa, which is incorrect, although the predicted lami-
nate ultimate strain has been improved to 0.4532%. Thus,
the matrix plastic and tensile strength parameters atN � 0
were chosen assm

Y � 16 MPa; Em
T � 0:86 GPa; andsm

u �
35 MPa: These plastic parameters were kept unchanged for
all the subsequent cycle numbers unless the corresponding
longitudinal load was unable to apply to the unidirectional
lamina. In such cases (N � 105 and N � 106), the matrix
yield strengths were adjusted accordingly. For example,
with sm

Y � 16 MPa; Em
T � 0:86 GPa; sm

u � 21 MPa; and
s f

u � 790 MPa; the predicted longitudinal strength of the
unidirectional lamina was lower than 480 MPa, which is
the longitudinal tensile strength of the unidirectional lamina
at N � 105 [56]. Thus, the yield strength was adjusted to
15.5 MPa (Table 17), with which the predicted lamina long-
itudinal strength is 480 MPa. The retrieved matrix tensile
strengths and plastic parameters at cycle numbers ofN � 0
to N � 106 are listed in Table 17.

Under the assumption that the matrix plasticity at
compression was the same as that at tension, the compres-
sive strengths of the matrix at the chosen cycle numbers
were back calculated straightforwardly: by applying the
uniaixal loads at the respective numbers to the [^308]2s

laminate, the maximum compressive stresses (2s 3) in the
matrix were taken as the matrix compressive strengths at the
corresponding cycle numbers.

Using the constituent properties given in Table 17, the
predictedS–N curves of angle ply laminates withu � 35;
41, 45, 49, and 558 are plotted in Figs. 16–20, respectively.
For comparison, the measured data by Rotem and Hashin
[69] are also shown in the corresponding figures. It is seen
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Table 12
Measured and predicted total tensile strengths of SCS-6/Ti-15-3 composite
laminates under uniaxial load (Vf � 0:34 and each ply being of same thick-
ness)

Lay-up Temperature Measured [66] (MPa) Predicted (MPa)

[0]8 RTa 1336–1517 1425
4278C 1365–1387 1249
6508C 948 949

[0/90]s RT 945–1060 1046.5
6508C 548 518

[02/^45]s RT 1069 1282.1
6508C 554 792.4

[0/^45/90]s RT 752 994.9
6508C 421 624.4

a RT� room temperature, taken as 258C.

Table 13
Thermoelastic properties of the SCS-6 fiber [67]

T (8C) Ef (GPa) n f s f
u (MPa) a f ( × 1026/8C)

25 393 0.25 2600a 3.564
93 390 0.25 2576b 3.660
204 386 0.25 2537b 3.618
316 382 0.25 2498b 3.638
427 378 0.25 2458b 3.687
538 374 0.25 2419b 3.752
650 370 0.25 2380a 3.826
760 365 0.25 2341c 3.903
871 361 0.25 2302c 3.980
1093 354 0.25 2224c 4.103

a Retrieved using the tensile strength of [08]8 laminate.
b Interpolated.
c Extrapolated.



that correlation between all the predictions and the experi-
ments is satisfactorily high.

Finally, it deserves special mentioning that the present
prediction can also display clearly the averaged interlaminar
stress in the laminate, i.e. the stress component in the thick-
ness direction. This stress is critical to the laminate delami-
nation. The present prediction indicated that under the
tensile fatigue load, the two in-plane principal stresses, i.e.
sm

max andsm
min; in the matrix material of the [̂ u ]2s laminate

have a negative averaged value (i.e.sm
max 1 sm

min , 0) when
88 , u , 448: Thesm

min attains a critical value when 168 ,
u # 398: Out of that range, i.e. whenu # 88 or u $ 448; the
sum of the two in-plane principal stresses is positive.
According to the classical lamination theory, the out-of-
plane strain components are zero. This means that a
positive stress component will be generated in the
matrix in the thickness direction, due to Poisson’s
ratio effect, when 88 , u , 448; and will attain the
largest when 168 , u # 398: Such a stress component
is the source to initiate the laminate delamination.
Thus, an angle-plied laminate made from the current
glass/epoxy system subjected to a uniaxial tensile (fati-
gue) load may generate delamination when 88 , u ,
448; and most probably when 168 , u # 398: On the
contrary, no delamination can occur whenu # 88 or
u $ 448: These observations are consistent with Rotem
and Hashin’s experimental evidences [69]. They noticed
that the laminate failure was initiated by delamination
at edges whenu , 458 (i.e. for the [̂ 308]s, [^358]s,
and [̂ 418]s laminates), whereas no delamination
occurred in the [̂ u ]s laminates whenu . 458:

5. Summary remarks

(1) The bridging parameters,b anda , in Eqs. (7b) and
(7c), can be adjusted using measured transverse and in-
plane shear moduli of a unidirectional composite, respec-
tively. They have effect on both the predicted elastic proper-
ties and the predicted ultimate strength of the composite. It
has been found that without changing the predicted elastic
modulus significantly, a smaller value inb or a would give
a slightly better prediction for an off-axial strength of some
composites. If no other information is available, the follow-
ing recommendations can be considered for these two
parameters:

b � 0:4–0:45 and a � 0:3–0:35:

It should be pointed out that not too much difference can be
experienced when using some other bridging parameters, as
indicated in most examples of this paper, in whichb � a �
0:5 have been used.

(2) The power index,q, in Eq. (20b) is an empirical
parameter. One example (Fig. 14) in this paper suggested
that this parameter should be greater than 2. However, by
choosingq� 3; only some small difference can be observed
between the classical and the generalized maximum normal
stress criteria. As such, the simpler classical maximum
normal stress criterion should be able to generate reasonably
good predictions in most cases. The majority of the results
shown in this paper were obtained just based on the classical
maximum normal stress criterion.

(3) The matrix plasticity is not very important for lamina
strength prediction, as long as the lamina is statically
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Table 14
Material properties of the Ti-15-3 matrix [67]

T (8C) Em (GPa) sm
Y (MPa) Em

T (GPa) nm sm
u (MPa) am ( × 1026/8C)

25 83.6 763 3.32 0.36 848a 8.48
315 80.4 645b 3.54b 0.36 719c 9.16
482 72.2 577 3.67 0.36 645c 9.71
538 67.8 447 2.69 0.36 500 [52] 9.89
566 64.4 287 2.39 0.36 321c 9.98
650 53.0 198 1.12 0.36 222c 10.26
900 25.0 20b 0.8b 0.36 22c 10.50

a Retrieved using the tensile strength of [0/90]2s laminate.
b Interpolation/extrapolation value.
c Determined according to:sm

u �T� � a�T�sm
Y �T�; a�T� � a1 1 ��T 2 25�=�5382 25���a2 2 a1�; a1 � 848=763� 1:1114 anda2 � 500=447� 1:1186:

Table 15
Material properties of a glass/epoxy lamina (Silenka 051L/MY750/HY917/DY063) used for failure envelope prediction (Ef � 74 GPa; nf � 0:2; Em �
3:35 GPa; nm � 0:35; sm

Y � 50 MPa; Em
T � 850 MPa; E11 � 45:6 GPa; E22 � 16:2 GPa; n12 � 0:278; G12 � 5:83 GPa; andVf � 0:60)

Longitudinal tensile
strength (MPa)

Longitudinal compressive
strength (MPa)

Transverse tensile
strength (MPa)

Transverse compressive
strength (MPa)

In-plane shear
strength (MPa)

Fiber 2150 1450 – – –
Matrix 80 120 – – –
Lamina 1280 800 40 145 73



determinate (i.e. the stress components applied to the lamina
can be determined only using an equilibrium condition) and
as long as the fiber fracture controls the longitudinal failure
of the composite. Another implicit assumption involved
is that the fiber stiffness should be significantly higher
than the matrix stiffness. In contrast, the matrix plasti-
city becomes very important for laminate progressive
failure analysis and for its strength prediction. The
reason is that an angle-plied lamina in the laminate
becomes always statically indeterminate.

(4) The in situ constituent strength parameters, especially
the matrix ultimate strength, are crucial to the accurate
prediction of the resulting composite strength. This is
because the failure of most composites, except for those
that carry out a main load component closer to the fiber
direction, results from the matrix fracture, based on the

bridging model theory. It is noted that this conclusion is
valid only when the stiffness and strength of the fibers are
significantly higher than those of the matrix. On the other
hand, the composite transverse and in-plane shear responses
are quite sensitive to the composite fabrication conditions
involved. As such, the matrix ultimate strengths (tensile and
compressive strengths) should be, whenever possibly, cali-
brated using overall uniaxial strengths of the composite
along some proper directions. If a laminate is going to be
accurately analyzed, some laminate strength rather than
lamina strength should be used in the calibration. On the
contrary, the matrix plastic parameters or stress–strain
curves obtained from bulk material tests under both tension
and compression can be directly employed in the bridging
model simulation.

(5) For most composite examples shown in this paper,
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their constituent matrix materials have been subjected to
essentially tensile loads or have been assumed to take the
same response (i.e. the same elastic and plastic properties) at
compression as that at tension. The latter assumption is seen
to be inaccurate in general, and may be attributed to one
reason that some parts of the simulation results did not show
very high correlation with the corresponding experiments.
As can be understood, in reality, most matrix materials,
especially polymer matrices, do exhibit different response
at compression than that at tension. Therefore, different
matrix properties should be employed for a more accurate
simulation, depending on whether the matrix material in the
composite is subjected to the resulting tension or compres-
sion. However, the matrix material in a complex composite
such as a multidirectional laminate or a textile fabric rein-
forced composite is generally subjected to the resulting
multiaxial stress-state even though the composite itself is
under a simple uniaxial load condition. It is highly possible
that some of the matrix stress components are positive
(tensile) while the others are negative (compressive). A
criterion is thus necessary to indicate whether the material
is subjected to essential tension or compression. A straight-
forward choice for this is to use the three material principal
stresses [40,41]: if the sum of these three stresses is nega-
tive, the material is understood to be under compression;
otherwise, it is under tension. Namely [40,41],

if �s 1�m 1 �s 2�m 1 �s 3�m , 0; the matrix is under
essential compression;
if �s 1�m 1 �s 2�m 1 �s 3�m $ 0; the matrix is under
essential tension.

In the above, (s 1)m, (s 2)m, and (s 3)m stand for the three
principal stresses in the matrix.

(6) When the constituent elastic as well as matrix plastic
parameters have been given, the retrieval of only the consti-
tuent strengths is performed straightforwardly. By simply
applying some uniaxial load to the composite until its ulti-
mate level (i.e. the level which would have caused the
composite to fail), the resulting maximum (or equivalent
maximum, in Eq. (20)) normal stress in the matrix or the
fiber is defined as the ultimate strength of the matrix or the
fiber.

(7) The composite theory (i.e. the basic equations (2a)–
(2e)) was established at the level of a representative volume
element (RVE). By definition, a RVE is the smallest repeat-
ing element in the composite. Therefore, it can be a single
fiber together with a matrix enclosure, as indicated in Fig.
A1. The bridging model has been developed with respect to
the RVE: as long as the overall applied load on the RVE is
given, the composite internal response can be determined
with this model. Different RVEs in the composite (such as a
composite structure or component) may sustain different
overall loads. An FEM Software package can be used to
determine the overall loads on all the elements of the
composite, whereas the bridging model is incorporated to
determine the internal response and instantaneous stiffness
matrix (elemental local stiffness matrix) of an element.
Evidently, one Finite Element may contain quite a lot of
RVEs, and the analysis becomes more and more accurate
when the Finite Element contains less and less RVEs.

6. Conclusions

A recently developed micromechanics model, the Brid-
ging Model, is summarized and reviewed in this paper. The
model is so general that it can be applied to essentially any
continuous fiber reinforced composite, and yet is so easy to
implement that it only involves explicit formulae and
requires no iteration especially when the composite is
subjected to a planar load condition. Potential applications
of the model to estimate various mechanical properties of
unidirectional laminae and multidirectional laminates,
including thermo-elastic behavior, ultimate strength, inelas-
tic response, strength at elevated temperature, strength
envelope, fatigue life andS–N curve, etc. have been demon-
strated in this paper. Its powerful applications to textile
fabric (knitted, woven, and braided fabrics) reinforced
composites will be reviewed in a subsequent paper.

Appendix A

Let V0 denote the volume of the representative volume
element (RVE) of a UD composite, as shown in Fig. A1.
The volumes of the fiber and the matrix in the RVE areV 0f
andV 0m; respectively. Suppose that theith point-wise stress
in the RVE iss i which may be different at a different point.
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Table 16
Measured [69] failure stresses of angle ply laminates (MPa)

Lay up Cycles to failure,N

0 102 103 104 105 106

^ 308 343.5 343.5a 288.6 229.2 169.9 110.5
^ 608 53.6 53.6b 48.9 40.6 32.3 24

a Linear extrapolation� 347.9.
b Linear extrapolation� 57.3.

Table 17
Retrieved constituent fatigue properties of glass/epoxy laminates used for
life prediction (Ef � 80 GPa; nf � 0:25; Em � 4:0 GPa; nm � 0:35; and
Vf � 0:65)

Cycles to failure,N

0 102 103 104 105 106

s f
u (MPa) 2055 1460 1235 1013 790 570

sm
u (MPa) 35.0 35.0 32.0 26.5 21.0 16.0

sm
u;c (MPa) 70.0 70.0 59.0 47.0 34.0 22.0

sm
Y (MPa) 16.0 16.0 16.0 16.0 15.5 12.0

Em
T (GPa) 0.86 0.86 0.86 0.86 0.86 0.86



The volume-averaged stress�s i of the composite is defined
as

s i � 1
V 0

Z
V 0
s i dV � 1

V 0
Z

V 0f
s i dV 1

Z
V 0m

s i dV

" #

� V 0f
V 0

 !
1

V 0f

Z
V 0f

s i dV

 !
1

V 0m
V 0

 !
1

V 0m

Z
V 0m

s i dV
� �

� Vfs
f
i 1 Vms

m
i ;

i � 1;2;…;6; (A1)

whereVf �� V 0f =V
0� andVm �� V 0m=V

0� are the volume frac-
tions of the fiber and the matrix, respectively, ands f

i and
sm

i are the volume-averaged constituent stresses. Similarly,
we can derive an identity for volume averaged strains
among 1i ; 1f

i ; and 1m
i : As we are only concerned with

volume averaged stresses and strains, the over-bar can be
omitted. Thus, Eq. (2a) holds in any case. Further, the
constitutive relationship between volume averaged stresses
and strains has the same form as that between point-wise
stresses and strains, because a compliance matrix is inde-
pendent of volume averaging. This shows that Eqs. (2c)–
(2e) are correct.

Appendix B

Volume averaged stresses and strains in a representative
volume element (RVE) of the lamina satisfy (Appendix A)

{ds} � Vf {ds
f } 1 Vm{dsm} �B1�

and

{d1i} � Vf {d1
f } 1 Vm{d1m} : �B2�

The constitutive equations correlating the averaged stresses

Z.-M. Huang / Composites: Part A 32 (2001) 143–172166

Ply-angle=35 (deg.)

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7

Cycles to failure, Log(N)

M
ax

.s
tr

es
s

(M
P

a)
Measured (stress control)
Measured (strain control)
Predicted

Fig. 16. Predicted and measured [69]S–N curves of a glass/epoxy [̂358]s laminate.
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Fig. 17. Predicted and measured [69]S–N curves of a glass/epoxy [̂418]s laminate.



and strains in different phases of the RVE are expressed as

{d1f } � �Sf �{ds f } ; �B3�

{d1m} � �Sm�{dsm} ; �B4�
and

{d1} � �S�{ds} : �B5�
Substituting Eq. (1) into Eq. (B1) and inverting the resulting
equations yields Eq. (4a), whereas substituting Eq. (4a) into
Eq. (1) gives Eq. (4b). Further, substituting (B3) and (B4)
into (B2) and making use of (1), one obtains (B5), or Eq. (3).
Let us consider an elastic deformation first. In such a case,
the overall compliance matrix of the lamina, Eq. (3), reads

�S� �
�Sij �s 0

0 �Sij �t

" #
; �B6a�

where

�Sij �s �
1=E11 2n12=E11 2n12=E11

1=E22 2n23=E22

symmetry 1=E22

2664
3775; �B6b�

and

�Sij �t �
1=G23 0 0

1=G12 0

symmetry 1=G12

2664
3775: �B6c�

Note that the material parametersE22, G23, andn23 are not all
independent but are related by

G23 � E22

2�1 1 n23� : �B7�

Therefore, there are only five independent elements in the
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Fig. 18. Predicted and measured [69]S–N curves of a glass/epoxy [̂458]s laminate.
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Fig. 19. Predicted and measured [69]S–N curves of a glass/epoxy [̂498]s laminate.



bridging matrix (6). The other nonzero elements are deter-
mined by substituting (6) into (3) and by making the result-
ing compliance matrix to be symmetric [see Eq. (5)]. Note
that the constituent compliance matrices, [Sf] and [Sm], have
the same structure as that of [S], Eqs. (B6a)–(B6c). Hence,
the most general form of the bridging matrix (in an elastic
region) should read

�Aij � �

a11 a12 a13

a21 a22 a23

a31 a32 a33

a44

a55

remaining zero a66

26666666666664

37777777777775
:

�B8�
As G12 is an independent modulus, the bridging element
a55 � a66 must be independent. In light of Eq. (B.), i.e.
G23 is not independent, the other four independent bridging

elements should be amongaij ’s wherei # 3 andj # 3: We
may thus seta21 � a31 � 0; and takea11, a22, a33, anda32 to
be independent.

Substituting the chosen [Aij] into Eq. (3) and imposing
that Sji � Sij for all i; j � 1;2; 3; three algebraic equations
are obtained as follows:

a11a12 1 a12a13 1 a13a23 � p1; �B9a�

a21a12a23 1 a22a13 1 a23a23 � p2; �B9b�

a31a12a23 1 a32a12 1 a33a13 1 a34a23 � p3: �B9c�
In Eqs. (B9a)–(B9c), the parametersa ij ’s andpi’s are given
by:

a11 � �Vf 1 Vma33��Sf
11 2 Sm

11�;

a12 � 2Vm�Sf
11 2 Sm

11�a32;

a13 � 2Vm�Sf
12 2 Sm

12�a32;
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Fig. 20. Predicted and measured [69]S–N curves of a glass/epoxy [̂558]s laminate.
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a21 � Vm�Sf
11 2 Sm

11�;

a22 � 2�Vf 1 Vma22��Sf
11 2 Sm

11�;

a23 � 2��Vf 1 Vma11��Sf
12 2 Sm

12�2 Vm�Sf
13 2 Sm

13�a32�;

a31 � Vm�Sf
12 2 Sm

12�;

a32 � �Vf 1 Vma33��Sf
31 2 Sm

31�;

a33 � 2��Vf 1 Vma22��Sf
12 2 Sm

12�1 Vm�Sf
31 2 Sm

31�a32�;

a34 � 2�Vf 1 Vma11��Sf
22 2 Sm

22�;

p1 � �Vf 1 Vma33��Sf
12 2 Sm

12��a11 2 a22�

2�Vf 1 Vma11��Sf
13 2 Sm

13�a32;

p2 � �Vf 1 Vma22��Sf
13 2 Sm

13��a33 2 a11�;

p3 � �Vf 1 Vma11���Sf
23 2 Sm

23��a33 2 a22�2 �Sf
33 2 Sm

33�a32�:

As Eqs. (B9a)–(B9c) are nonlinear, there might exist two
sets of solutions toa12, a13, and a23. Choosinga12 as the
primary variable, two solutions of it are given, respectively,
by

aI
12 � 2b 1

�����������
b2 2 4ac
p

2a
; aII

12 � 2b 2
�����������
b2 2 4ac
p

2a
;

�B10a�
where a� a21g2; b� a21b2 1 a22g1 1 a23g2; c�
a22b1 1 a23b2 2 p2;

b1 � �a13�p3=a31 2 p2=a21�2 p1�a34=a31 2 a23=a21��
a13�a33=a31 2 a22=a21�2 a12�a34=a31 2 a23=a21� ;

�B10b�

b2 � �p1�a33=a31 2 a22=a21�2 a12�p3=a31 2 p2=a21��
a13�a33=a31 2 a22=a21�2 a12�a34=a31 2 a23=a21� ;

�B10c�

g1 � �2a13�a32=a31�1 a11�a34=a31 2 a23=a21��
a13�a33=a31 2 a22=a21�2 a12�a34=a31 2 a23=a21� ;

�B10d�

g2 � �a12�a32=a31�2 a11�a33=a31 2 a22=a21��
a13�a33=a31 2 a22=a21�2 a12�a34=a31 2 a23=a21� :

�B10e�
With formulae (B10a)–(B10e), the other two variables are
obtained as

a13 � b1 1 g1a12; a23 � b2 1 g2a12: �B10f�
The independent elements,a11, a22, a33, anda32, are expected
to depend on the elastic properties of the matrix and the
fibers, and on the fiber packing geometry (the relative

position of the fibers embedded in the matrix, the fiber
volume fraction, the fiber cross-sectional shapes, etc.).
When the properties of the two materials become the
same, the bridging matrix, [Aij], must be identical (of unit
matrix). Hence, the general forms of the independent
elements are always expressible as the power series of the
material properties, i.e.

a11 � 1 1 b11�1 2 Em
=Ef

11�1 …; �B11a�

a22 � 1 1 b21�1 2 Em
=Ef

22�1 …; �B11b�

a32 � b31�1 2 Em
=Ef

11�1 b32�1 2 nm
=nf

12�1 …; �B11c�

a33 � 1 1 b41�1 2 Em
=Ef

22�1 …; �B11d�

a55 � a66 � 1 1 b51�1 2 Gm
=Gf

12�1 …; �B11e�
whereb ij ’s only depend on the fiber packing geometry but
are independent of material properties. For clarity, we call
b ij ’s as bridging parameters.

The most rigorous method to determine the bridging para-
meters is through experiments. Supposing that the five elas-
tic constants of the composite have been measured, the
bridging parameters can be determined using some best
approximation, such as the least-squares techniques.
However, explicit expressions for them are much more
important in application. The most significant feature is
that when the bridging parameters are determined using
an elastic deformation condition, they remain unchanged
during an inelastic deformation. As the composite elasticity
theory has already been fairly well established, we may use
it to explicitly determine a set of bridging parameters.

Thus, let us imagine that a representative volume element
is composed of a concentric cylinder (Fig. A1). Based on
this, some rigorous analyses have been done and it was
found that [70]:

sm
12 � a66s

f
12; �B12a�

where

a66 � 1
2

1 1
Gm

Gf
12

 !
: �B12b�

Comparing (B12b) with (B11e), we see that

b51 � 20:5: �B13�
Further, experiments have shown that the overall longitudi-
nal stress of a unidirectional fiber reinforced composite is
comparable with the stress of the fiber in the same direction,
whereas the overall transverse stress of the composite is
comparable with the matrix stress in that direction. It is
thus reasonable to assume that the averaged normal stresses
between the fiber and the matrix are correlated by

sm
11 � a11s

f
11 1 a12s

f
22 1 a13s

f
33; �B14a�

Z.-M. Huang / Composites: Part A 32 (2001) 143–172 169



sm
22 � a22s

f
22; �B14b�

sm
33 � a33s

f
33: �B14c�

Because of the axi-symmetry of the concentric cylinder
geometry, we may further assume thata33 � a22: Substitut-
ing so definedaij ’s, i.e.

a21 � a31 � a23 � a32 � 0 and a33 � a22 �B15�
into Eq. (B10), it is found that

a13 � a12 � �Sf
12 2 Sm

12��a11 2 a22�=�Sf
11 2 Sm

11�: �B16�
Hence, there are only two independent elements,a11 anda22,
to be defined. Again, substituting (B15) into Eq. (3) and
making some manipulation, the longitudinal Young’s
modulus is obtained as

E11 � �Vf 1 Vma11�
�Vf S

f
11 1 Vma11S

m
11�

: �B17�

It is well known that the rule of mixture approach gives a
quite accurate approximation to the composite longitudinal
modulus. Supposing that the modulus defined by (B17) is
equal to that given by the rule of mixture formula, we get

a11 � Em
=Ef

11 �B18�
or

b11 � 21: �B19�
It is noted that with this set ofaij ’s, the resulting longitudinal
Poisson’s ratio,n12, is exactly the same as that given by the
rule of mixture formula, i.e.n12 � Vfn

f
12 1 Vmn

m
:

There remainsa22, which defines the transverse modulus
E22, to be determined. Many different micro-mechanical
formulae have been proposed for the transverse modulus
E22. In fact, one of the main motivations of different micro-
mechanics approaches is to give a distinguished expression
for the transverse modulus [5]. Tsai and Hahn [47] chose
a22 � 0:5 in a modified rule-of-mixture formula and much
better estimations were found for some composites. In light
of the fact thata22 � 1 must be valid when the fiber and the
matrix become the same, a formula similar to (B12b) is
chosen fora22, i.e.

a22 � 1
2

1 1
Em

Ef
22

 !
; �B20�

which corresponds tob21 � 20:5 in (B11b). Finally, using
condition (B7), the bridging elementa44 is found to have the
same expression asa22, i.e. Eq. (B20).

By means of the bridging matrix defined above, a set of
new formulae for the five engineering moduli of the unidir-
ectional fibrous composite are derived as

E11 � Vf E
f
11 1 VmEm

; �B21�

n12 � Vfn
f
12 1 Vmn

m
; �B22�

E22 � �Vf 1 Vma11��Vf 1 Vma22�
�Vf 1 Vma11��Vf S

f
22 1 a22VmSm

22�1 Vf Vm�Sm
21 2 Sf

21�a12
;

�B23�

G12 � Gm �Gf
12 1 Gm�1 Vf �Gf

12 2 Gm�
�Gf

12 1 Gm�2 Vf �Gf
12 2 Gm� ; �B24�

G23 � 0:5�Vf 1 Vma22�
Vf �Sf

22 2 Sf
23�1 Vma22�Sm

22 2 Sm
23�

: �B25�

Eqs. (B21) and (B22) are the rule of mixture formulae for
composite longitudinal Young’s modulus and Poisson’s
ratio, which are sufficiently accurate. Eq. (B24) is the result
of an exact elastic solution for the overall in-plane shear
modulus (G12) of the composite, see Ref. [70]. The accuracy
of formula (B23), which is obtained based on Eq. (B20), can
be seen from the comparison between predicted and experi-
mental results for the transverse modulus of a glass/epoxy
composite shown in Fig. 1 (withb � 0:5). It is seen that the
present model and Chamis’s model give comparable results
for the transverse modulus of the composite, both of which
are in close agreement with the experimental data.

Having validated the correctness and accuracy of the
independent bridging matrix elements, Eqs. (B12b), (B18),
and (B20), in an elastic region, we can now easily extend
them to a plastic region based on a logical consideration. As
the bridging matrix correlates the stress states generated in
the fiber and matrix materials, it can only depend on the
physical and geometrical properties of the constituent mate-
rials in the composite. As long as the bridging matrix has
been determined using an elastic deformation condition,
only the physical properties involved need to be changed
when any constituent material undergoes a plastic deforma-
tion. The geometrical properties, i.e. the fiber volume frac-
tion, the fiber arrangement in the matrix, the fiber cross-
sectional shape, etc. do not change or only vary by a negli-
gibly small amount. Therefore, the independent elements of
the bridging matrix should be given by Eqs. (7a)–(7d) (with
b � a � 0:5), whereas the dependent elements of the brid-
ging matrix must be determined by solving Eq. (5). It should
be noted that the bridging matrix has the form of Eq. (6)
rather than Eq. (B8). This is because the constituent compli-
ance matrix may be fully occupied due to the plastic defor-
mation, see Eq. (15).

Some further remarks deserve mentioning. It has been
recognized that the composite longitudinal property (E11

together withn12) is the least “case sensitive”. However,
the composite transverse and in-plane shear properties are
much more dependent on the in situ conditions involved,
such as fabrication defects, processing condition, fiber-
matrix interface bonding, fiber arrangement, fiber cross-
sectional shape. In order to account for these variations,
the corresponding independent bridging elements, i.e.a22

and a66, may be chosen as variable. This can be achieved
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by using, e.g. the following formulae:

a22 � a33 � a44 � b 1 �1 2 b� Em

Ef
11

; 0 # b # 1;

�B26�

a55 � a66 � a 1 �1 2 a� Gm

Gf
12

; 0 # a # 1; �B27�

as shown in Eqs. (7b) and (7c). The parametersb anda can
be calibrated using measured transverse Young’s modulus
and in-plane shear modulus, given by Eqs. (11c) and (11d),
respectively. It is important to realize that the same para-
metersa andb can be used in the inelastic and strength
analysis of the composite.
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