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A B S T R A C T   

Objective: Robust differentiation between infarcted and normal tissue is important for clinical diagnosis and 
precision medicine. The aim of this work is to investigate the radiomic features and to develop a machine 
learning algorithm for the differentiation of myocardial infarction (MI) and viable tissues/normal cases in the left 
ventricular myocardium on non-contrast Cine Cardiac Magnetic Resonance (Cine-CMR) images. 
Methods: Seventy-two patients (52 with MI and 20 healthy control patients) were enrolled in this study. MR 
imaging was performed on a 1.5 T MRI using the following parameters: TR = 43.35 ms, TE = 1.22 ms, flip angle 
= 65◦, temporal resolution of 30–40 ms. N4 bias field correction algorithm was applied to correct the in
homogeneity of images. All images were segmented and verified simultaneously by two cardiac imaging experts 
in consensus. Subsequently, features extraction was performed within the whole left ventricular myocardium (3D 
volume) in end-diastolic volume phase. Re-sampling to 1 × 1 × 1 mm3 voxels was performed for MR images. All 
intensities within the VOI of MR images were discretized to 64 bins. Radiomic features were normalized to obtain 
Z-scores, followed by Student’s t-test statistical analysis for comparison. A p-value < 0.05 was used as a threshold 
for statistically significant differences and false discovery rate (FDR) correction performed to report q-value (FDR 
adjusted p-value). The extracted features were ranked using the MSVM-RFE algorithm, then Spearman corre
lation between features was performed to eliminate highly correlated features (R2 > 0.80). Ten different ma
chine learning algorithms were used for classification and different metrics used for evaluation and various 
parameters used for models’ evaluation. 
Results: In univariate analysis, the highest area under the curve (AUC) of receiver operating characteristic (ROC) 
value was achieved for the Maximum 2D diameter slice (M2DS) shape feature (AUC = 0.88, q-value = 1.02E-7), 
while the average of univariate AUCs was 0.62 ± 0.08. In multivariate analysis, Logistic Regression (AUC = 0.93 
± 0.03, Accuracy = 0.86 ± 0.05, Recall = 0.87 ± 0.1, Precision = 0.93 ± 0.03 and F1 Score = 0.90 ± 0.04) and 
SVM (AUC = 0.92 ± 0.05, Accuracy = 0.85 ± 0.04, Recall = 0.92 ± 0.01, Precision = 0.88 ± 0.04 and F1 Score 
= 0.90 ± 0.02) yielded optimal performance as the best machine learning algorithm for this radiomics analysis. 
Conclusion: This study demonstrated that using radiomics analysis on non-contrast Cine-CMR images enables to 
accurately detect MI, which could potentially be used as an alternative diagnostic method for Late Gadolinium 
Enhancement Cardiac Magnetic Resonance (LGE-CMR).  
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1. Introduction 

The worldwide prevalence of cardiovascular disease (CVD) in adults 
older than 20 years in 2018 is 49.2% (126.9 million people) and in
creases with age [1]. CVD affects different parts of the heart and induce 
structural and functional complications [2]. Cardiac ischemia, which is 
characterized by reduced blood flow and oxygen to the heart, could 
trigger myocardial infarction (MI) [3,4]. Therefore, the ventricular 
myocardium loses part of its functions, a state commonly referred to as 
infarcted myocardium [3,4]. According to previous studies, parameters 
including systolic function and ventricular volumes could be used as 
main predictive markers of MI consequences [2,5]. To this end, diag
nostic methods, including transthoracic echocardiography and Cardiac 
Magnetic Resonance (CMR) are fast, reproducible, accurate and widely 
available approaches to evaluate these parameters. Furthermore, 
single-photon emission tomography (SPECT), positron emission to
mography (PET) and computed tomography (CT) imaging modalities 
proved to be clinically relevant approaches for cardiac malfunctions 
detection and diagnosis [6]. 

Clinical evidence seems to indicate that the precise assessment of the 
location and size of infarction is important for prognosis and provides 
more accurate information to guide critical therapeutic strategies, such 
as implanting implantable cardioverter-defibrillators [7]. As a feasible 
diagnostic approach, CMR imaging has been used to examine the 
viability of left ventricular myocardium muscles [8]. Late Gadolinium 
Enhancement CMR (LGE-CMR) could determine the infarction. 
Conversely, LGE is more sensitive than nuclear medicine (SPECT and 
PET) for MI detection according to some previous studies [9–11]. 
Considering this evidence, LGE-CMR was introduced as a key clinical 
approach to assess MI location and size. A number of studies have re
ported that visual assessment of LGE-CMR is the standard method for the 
diagnosis of MI [8,12]. However, this method bears some inherent 
limitations, including the dependence on physician’s subjective assess
ment and intra-observer variability. In addition, the injection of Gado
linium (Gd) to patients with severe renal disease could lead to 
nephrogenic systemic fibrosis [13], an important issue in clinical setting 
because of the frequency of coexisting of kidney disease and CVDs in 

patients [14]. Recent studies used unenhanced Cine-CMR images as an 
alternative to LGE-CMR to enable reading diagnosing CVDs without Gd 
injection. Baesler et al. [15] compared the performance of Cine-CMR 
and LGE-CMR for subacute and chronic MI using radiomic features of 
180 patients (120 MI cases and 60 control subjects). Using logistic 
regression classifier, they demonstrated that non-contrast Cine-CMR is 
capable of differentiating between normal and subacute and chronic MI. 
Zhang et al. [16] evaluated the diagnostic capability of Cine-CMR using 
deep learning algorithms. Their deep learning framework could di
agnose the presence of MI (AUC of 0.94) and detect the position and 
delineate MI in 299 patients (212 MI cases and 87 control subjects). 

Furthermore, radiomics and machine learning-based imaging 
biomarker discovery brought new horizons for more accurate detection, 
diagnosis, prediction, and prognostication [17–20]. This is an advanced 
image processing approach enabling the correlation of mineable imag
ing data to biological and clinical parameters [21–25]. Radiomic fea
tures have great potential to translate imaging data to acceptable clinical 
models, including diagnostic, prognostic, and predictive models 
[26–32]. Radiomics analysis was recently investigated in the context of 
CVD, where its ability to identify left ventricular hypertrophy, high and 
low risk of post MI arrhythmia, and to differentiate between acute, 
subacute and chronic MI, and myocarditis and healthy myocardium 
tissue was demonstrated [15,33–36]. 

The detection of infarcted tissue is important for clinical decision 
making since any medical or surgical intervention would not be of value 
in the dead myocardium because no improvement in the function can be 
expected. The detection of non-infarcted tissue would be the main target 
of any intervention, including medical or surgical procedures, such as 
coronary bypass graft [37,38]. As mentioned earlier, robust differenti
ation between MI and normal tissue is important for clinical diagnosis 
and precision medicine [39]. Currently, manual, and semi-manual 
methods are used for MI detection from LGE-CMR examinations. More 
recently, different machine and deep learning algorithms have been 
developed for cardiac segmentation [39–43]. The aim of this work is to 
investigate the radiomic features and to develop a machine learning 
algorithm to differentiate MI and viable tissues/normal cases in the left 
ventricular myocardium on non-contrast Cine-CMR images. 

Fig. 1. Flowchart describing the different steps involved in the current study design.  
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2. Materials and methods 

Radiomics analysis included different steps as shown in Fig. 1 and 
elaborated in the following sections. 

2.1. Study population 

This study was conducted in accordance with international ethical 
standards considering the institutional recommendations and the 1964 
Helsinki declaration and its later amendments. The protocol was 
approved by the ethics committee of Shahid Beheshti University of 
Medical Sciences (No. IR.SBMU.MSP.REC.1398.811). Informed consent 
was waived owing to the retrospective nature of the study (no impact on 
clinical diagnosis or patient management). This work involved patients 
referred by cardiovascular specialist to radiology department to acquire 
CMR images for viability assessment. To conduct this study, 200 clinical 
studies were reviewed and cardiomyopathy patients with available 
Cine-CMR in which different range of transmurality (low to high) can be 
seen were included. Therefore, infarcted tissue is present in the left 
ventricle of these ischemic patients. However, those experiencing non- 
ischemic cardiomyopathy (61 cases) and myocarditis (42 cases) were 
excluded. Since their symptoms may be similar to MI, they might 
mistakenly be considered as MI cases, hence impacting accurate diag
nosis. We also excluded 25 cases because of low image quality or patient 
movement. In addition, 20 healthy subjects were considered as normal 
group. After applying inclusion and exclusion criteria, 72 patients 
including 52 MI (LGE-CMR images of patients considered as gold stan
dard) and 20 normal cases were included. Fig. 2 summarizes inclusion 
and exclusion criteria adopted in this study protocol. 

2.2. MR image acquisition 

MR imaging was performed on a 1.5 T MRI scanner (MAGNETOM 
Aera; Siemens Healthcare) using the following parameters: TR = 43.35 

ms, TE = 1.22 ms, flip angle 65◦, temporal resolution 30–40 ms pa
rameters. Gated cine images were acquired using a balanced steady-state 
free precession pulse sequence in short-axis view, covering the LV from 
the base to apex. Image resolution varied from 1.37 to 1.68 mm2/pixel. 

2.3. Volume of interest definition 

All images were segmented and verified simultaneously by two 
cardiac imaging experts (with 6 and 10 years of experience in cardio
vascular imaging) in consensus using the 3D Slicer software [44]. As 
depicted in Fig. 1, the whole left ventricular myocardium was selected as 
a volume of interest (VOI) in the end diastolic volume of Cine-CMR 
images. Overall, 72 VOIs were defined for the 72 patients. In addition, 
for a better understanding of MI cases, Supplementary Figs. 1–4 show 
three Cine slices of infarcted cases compared with their corresponding 
LGE slices and with the MI labeled LGE slices. 

2.4. Preprocessing and feature extraction 

It is a prerequisite to normalize the images to obtain comparable 
features from different Cine-CMR images. In the pre-processing step, N4 
bias field correction algorithm was applied to correct the inhomogeneity 
of images [45]. Subsequently, features extraction was performed in the 
whole left ventricular myocardium (3D volume) in end-diastolic volume 
phase. Radiomic features extraction was performed using the Pyr
adiomics image biomarker standardization initiative (IBSI) consensus 
python library [46]. Re-sampling to 1 × 1 × 1 mm3 was performed for 
MR images (interpolation using sitkBSpline B-Spline with order 3 
interpolation). All intensities within the VOI of MR images were dis
cretized to 64 bins. These features included intensity-based, textur
e-based and shape-based features. One hundred and seven features were 
extracted whose characteristics are summarized in Table 1. These fea
tures potentially describe the tissue structure of the myocardium 
through assessing gray-level values of Cine-CMR images to compute 

Fig. 2. Flowchart of inclusion and exclusion criteria.  
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texture matrices, including GLCM, GLSZM, GLRLM, NGTDM and GLDM. 
Therefore, radiomic features are used in this work to potentially 
recognize changes in the cardiac tissue after myocardial infarction, 
which is not possible by naked eyes [15,22,23,47]. 

2.5. Univariate analysis 

Radiomic features were normalized to obtain Z-scores, followed by 
Student’s t-test statistical analysis for comparison. Student’s t-test was 
used to indicate statistically significant differences between MI and 
normal cases for radiomic features extracted from Cine-CMR images. A 
p-value < 0.05 was used as a threshold for statistically significant dif
ferences and false discovery rate (FDR) correction performed to report q- 
value (FDR adjusted p-value). Univariate analysis and statistical tests 
were implemented using the R 3.6.3 package. 

2.6. Multivariate analysis 

2.6.1. Feature selection and classification 
In this work, multiple support vector machine recursive feature 

elimination (MSVM-RFE) was used for automatic feature selection [48]. 
In this algorithm, a support vector machine (SVM) was trained recur
sively to rank all features. In each iteration, the features with the 
smallest ranked score were removed. First, the extracted features were 
ranked using the MSVM-RFE algorithm, then Spearman correlation be
tween features was performed to eliminate highly correlated features 
(R2 > 0.80). Different models, including Logistic Regression (LR) as 
linear model, Linear Discriminant Analysis (LDA) and Quadratic 
Discriminant Analysis (QDA) as discriminant analysis models, Extra 
Tree (ET), Random Forest (RF) and AdaBoost (AB) as ensemble methods, 
k-nearest neighbors (KNN) as an instance-based model, Naive Bayes 
(NB) as a probabilistic classifier, Linear Support Vector Machine (SVM) 
and finally Multi-Layer Perceptron (MLP) as a neural network method, 
were used in the current study. The scikit-learn library [49] was used to 
implement multivariate analysis. 

Table 1 
Radiomic features included in the current study.  

First Order Statistics (FO) Gray Level Co- 
occurrence Matrix 
(GLCM) 

Gray Level Run Length 
Matrix (GLRLM) 

Energy 
Total Energy 
Entropy 
Minimum 
10th percentile 
90th percentile 
Maximum 
Mean 
Median 
Interquartile Range 
Range 
Mean Absolute 
Deviation (MAD) 
Robust Mean 
Absolute Deviation 
(rMAD) 
Root Mean Squared 
(RMS) 
Standard Deviation 
Skewness 
Kurtosis 
Variance 
Uniformity 

Autocorrelation 
Joint Average 
Cluster Prominence 
Cluster Shade 
Cluster Tendency 
Contrast 
Correlation 
Difference Average 
Difference Entropy 
Difference Variance 
Joint Energy 
Joint Entropy 
Informal Measure of 
Correlation (IMC) 1 
Informal Measure of 
Correlation (IMC) 2 
Inverse Difference 
Moment (IDM) 
Inverse Difference 
Moment Normalized 
(IDMN) 
Inverse Difference (ID) 
Inverse Difference 
Normalized (IDN) 
Inverse Variance 
Maximum Probability 
Sum Average 
Sum Entropy 
Sum of Squares 

Short Run Emphasis (SRE) 
Long Run Emphasis (LRE) 
Gray Level Non- 
Uniformity (GLN) 
Gray Level Non- 
Uniformity Normalized 
(GLNN) 
Run Length Non- 
Uniformity (RLN) 
Run Length Non- 
Uniformity Normalized 
(RLNN) 
Run Percentage (RP) 
Gray Level Variance 
(GLV) 
Run Variance (RV) 
Run Entropy (RE) 
Low Gray Level Run 
Emphasis (LGLRE) 
High Gray Level Run 
Emphasis (HGLRE) 
Short Run Low Gray Level 
Emphasis (SRLGLE) 
Short Run High Gray 
Level Emphasis (SRHGLE) 
Long Run Low Gray Level 
Emphasis (LRLGLE) 
Long Run High Gray Level 
Emphasis (LRHGLE) 
Gray Level Dependence 
Matrix (GLDM) 
Small Dependence 
Emphasis (SDE) 
Large Dependence 
Emphasis (LDE) 
Gray Level Non- 
Uniformity (GLN) 
Dependence Non- 
Uniformity (DN) 
Dependence Non- 
Uniformity Normalized 
(DNN) 
Gray Level Variance 
(GLV) 
Dependence Variance 
(DV) 
Dependence Entropy (DE) 
Low Gray Level Emphasis 
(LGLE) 
High Gray Level Emphasis 
(HGLE) 
Small Dependence Low 
Gray Level Emphasis 
(SDLGLE) 
Small Dependence High 
Gray Level Emphasis 
(SDHGLE) 
Large Dependence Low 
Gray Level Emphasis 
(LDLGLE) 
Large Dependence High 
Gray Level Emphasis 
(LDHGLE) 

Shape Features Gray Level Size Zone 
Matrix (GLSZM) 

Volume 
Surface Area 
Surface Area to 
Volume ratio 
Sphericity 
Spherical 
Disproportion 
Maximum 3D 
diameter 
Maximum 2D 
diameter (Slice) 
(M2DS) 
Maximum 2D 
diameter (Column) 
(M2DC) 
Maximum 2D 
diameter (M2D) 
Major Axis 
Minor Axis 
Least Axis 
Elongation 
Flatness 

Small Area Emphasis 
(SAE) 
Large Area Emphasis 
(LAE) 
Gray Level Non- 
Uniformity (GLN) 
Gray Level Non- 
Uniformity Normalized 
(GLNN) 
Size-Zone Non- 
Uniformity (SZN) 
Size-Zone Non- 
Uniformity Normalized 
(SZNN) 
Zone Percentage 
Gray Level Variance 
(GLV) 
Zone Variance 
Zone Entropy (ZE) 
Low Gray Level Zone 
Emphasis (LGLZE) 
High Gray Level Zone 
Emphasis (HGLZE) 
Small Area Low Gray 
Level Emphasis 
(SALGLE) 
Small Area High Gray 
Level Emphasis 
(SAHGLE) 
Large Area Low Gray 
Level Emphasis 
(LALGLE) 
Large Area High Gray 
Level Emphasis 
(LAHGLE) 

Neighboring Gray Tone 
Difference Matrix 
(NGTDM) 
Coarseness 
Contrast 
Busyness 
Complexity 
Strength  

Table 2 
Summary of area under the curve (AUC), p-value and q-value of the top 10 
univariate radiomics features after elimination of highly correlated features (R2 

> 0.80).  

Type Feature’s 
Name 

AUC p- 
value 

q- 
value 

MI 
(mean ±
SD) 

Normal 
(mean ±
SD) 

SHAPE Maximum 2D 
Diameter Slice 

0.885 1.02E- 
8 

1.02E- 
7 

87.7 ±
9.30 

76.1 ±
5.28 

GLSZM Small Area 
Low Gray 
Level 
Emphasis 

0.786 8.49E- 
4 

1.41E- 
3 

0.220 ±
0.145 

0.375 ±
0.164 

FO Minimum 0.781 2.59E- 
3 

3.70E- 
3 

− 0.927 
± 0.158 

− 0.778 
± 0.178 

GLSZM Size Zone Non- 
Uniformity 
Normalized 

0.779 3.74E- 
5 

1.87E- 
4 

0.248 ±
0.073 

0.324 ±
0.057 

GLRLM Long Run Low 
Gray Level 
Emphasis 

0.771 6.02E- 
4 

1.41E- 
3 

11.8 ±
9.52 

6.04 ±
4.10 

SHAPE Sphericity 0.747 9.80E- 
5 

3.26E- 
4 

0.278 ±
0.031 

0.304 ±
0.019 

GLRLM Run Length 
Non- 
Uniformity 

0.712 7.25E- 
4 

1.41E- 
3 

1200 ±
717 

788 ±
271 

GLSZM Zone Entropy 0.702 3.21E- 
3 

4.01E- 
3 

2.97 ±
0.452 

2.65 ±
0.37 

FO Skewness 0.692 7.25E- 
3 

8.06E- 
3 

1.00 ±
0.67 

0.548 ±
0.592 

FO Energy 0.690 9.20E- 
2 

9.21E- 
2 

1445 ±
1156 

995 ±
924  
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2.7. Model evaluation 

Metrics area under the curve (AUC) of receiver operating charac
teristic (ROC) curves, p-value and q-value were calculated to evaluate 
univariate models or parameters. For multivariable modelling using ten- 
fold cross-validation for model’s validation, evaluation parameters, 
including AUC, accuracy, F1 score, precision, and recall were calculated. 

3. Results 

3.1. Univariate analysis 

The highest AUC value was achieved for the Maximum 2D diameter 
slice (M2DS) shape feature (AUC = 0.88, q-value = 1.02E-7), while the 
average of univariate AUCs was 0.62 ± 0.08. Table 2 summarizes the 
AUC, p-value, q-value and mean ± SD of high AUC radiomic features 
after elimination of highly correlated features (R2 > 0.80). It can be seen 
that p-values and q-values are smaller than 0.01 (except for energy), 
which highlights the potential of radiomic features in differentiating 
between MI and normal cases. The mean ± SD report the original values 
of radiomic features extracted from Cine-CMR, hence enabling the 
comparison with original values for MI and normal cases. These mea
sures for M2DS, the best univariate feature, are 87.7 ± 9.30 for MI and 
76.1 ± 5.28 for normal cases with a p-value of 1.02E-8. Yet, in Fig. 3 we 
used box plots of the z-score of the features to visualize differences be
tween MI and normal cases. 

M2DS from shape, Small Area Low Gray Level Emphasis (SALGLE) 
from GLSZM and Minimum from FO showed the highest AUC (0.88, 0.78 
and 0.78, respectively) in differentiating MI from normal cases in uni
variate analysis. Fig. 4 shows an example of radiomics texture feature 

map with high rank (using MSVM-RFE) in differentiating MI from 
normal cardiac cases. Cine-CMR slices can be seen in the left column of 
the figure, while their corresponding feature maps are shown in the 
following columns. These feature maps with high MSVM-RFE ranking, 
including joint entropy, max probability, sum entropy, joint energy 
features from GLCM and RLNU from GLRLM were displayed in this 
figure. The first two rows of the image show Cine-CMR slices with 
feature maps of two normal cases, while the second two rows display 
Cine-CMR slices of two MI cases. 

The different feature maps present different characteristics of cardiac 
tissue. This difference is strongly highlighted between two studied 
groups, since an obvious non-homogeneous pattern can be seen in the 
MI cases, whereas normal cases feature maps represent less changes in 
the pattern. In this figure, we depict only one slice even though the 
feature maps were extracted in 3D. Fig. 5 compares the results of feature 
maps for MI cases with the corresponding scar tissue VOI mask of LGE- 
CMR images. Cine-CMR slices of four MI cases, their corresponding LGE- 
CMR slices and the labeled LGE-CMR slices are illustrated in the first 
(left), second (middle) and third (right) column of the figure, respec
tively. The same features, as described above, are reported in this figure 
to show their capability in recognizing MI tissue. An approximate cor
respondence can be seen between the patterns represented by the 
feature maps and the area delineated as MI label in the third column. 

3.2. Multivariate analysis 

The top selected features obtained by the MSVM algorithm are pre
sented in Table 3 . These features include one intensity-based feature 
(robust mean absolute deviation), one shape-based feature (surface 
area) and eleven texture-based features (joint entropy, maximum 

Fig. 3. Box plot of Z-score of univariate analysis of radiomic features.  
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Fig. 4. Example of radiomics feature map with high MSVM-RFE ranking in differentiating MI and normal cardiac cases. Cine-CMR (first column) and different 
radiomics feature maps. 

Fig. 5. Example of radiomics feature with high ranking (using MSVM-RFE) in representing scar tissue maps in different clinical studies based on LGE-CMR scar 
labels. Cine-CMR slices of four MI cases, with their corresponding LGE-CMR slices and the labeled LGE-CMR slices in the first (left), second (middle) and third (right) 
columns of the figure, along with radiomics feature maps. 
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probability, sum entropy, joint energy, and cluster shade from GLCM, 
small area low gray level emphasis, large area high gray level emphasis 
and zone percentage related to GLSZM, run length non-uniformity from 
GLRLM and coarseness and busyness from NGTDM). 

4. Discussion 

In this study, we investigated the capability of non-contrast Cine- 
CMR in MI diagnosis using radiomics analysis and machine learning 
algorithms. The univariate method using a single radiomic feature 
produced the highest AUC (0.88) for the M2DS feature. An average AUC 
of 0.62 ± 0.08 was obtained for all univariate analysis techniques using 
radiomic features. To improve the robustness of the results, we analyzed 
the feasibility of radiomic features extracted from Cine-CMR images 
using ten different supervised algorithms to distinguish between normal 
and MI cardiac cases. We found that LR (AUC = 0.93 ± 0.03, Accuracy 
= 0.86 ± 0.05, Recall = 0.87 ± 0.1, Precision = 0.93 ± 0.03 and F1 
Score = 0.90 ± 0.04) and SVM (AUC = 0.92 ± 0.05, Accuracy = 0.85 ±
0.04, Recall = 0.92 ± 0.01, Precision = 0.88 ± 0.04 and F1 Score = 0.90 
± 0.02) yielded optimal performance as the best machine learning al
gorithm for this radiomics analysis. These results confirmed that 
multivariate radiomics analysis is able to distinguish MI from healthy 
cases. 

Two radiomic features were common between the top univariate and 
MSVM-RFE selected features, including Small Area Low Gray Level 
Emphasis (SALGLE) and Run length non-uniformity (RLNU). SALGLE is 
one of the GLSZM features selected as one of the top features by both 
MSVM-RFE and univariate methods. GLSZM represents the number of 
regions (group of neighboring voxels with the same intensity values), 
distributed over different size of regions [50]. SALGLE as GLSZM feature 

emphasizes on small zones with lower gray level values [50]. In CMR 
images, in which infarcted regions are displayed by significantly lower 
intensities (even detectable visually), this feature represents infarcted 
regions. Yet, this feature seems to differentiate between MI and normal 
cases even in Cine-CMR images, where infarcted regions are not visually 
detectable. 

In addition, RLNU is classified as one of the best features in both 
MSVM-RFE and univariate methods, indicating its robustness in the 
diagnosis of MI cases. RLNU is one of the GLRLM features which 
represent runs distribution in the gray values and if runs were distrib
uted equally, the value of this feature would be low [51]. Fig. 4 shows 
the potential capability of RLNU in finding a homogeneous pattern in 
normal cases as opposed to MI cases. Fig. 5 indicates that RLNU cannot 
only discriminate between normal and MI cases but also represents more 
homogeneity in the healthy part of the myocardium in MI cases [50]. 

In Figs. 4 and 5, we also showed 5 texture features. Entropy is one of 
the GLCM descriptors which clarifies the degree of randomness [50]. 
Joint Entropy measures the randomness of intensity values of images in 
a particular neighborhood [50]. Like Joint Entropy, Sum Entropy in
dicates the randomness in Cine-CMR images by measuring the sum of 
the differences between intensity values of a neighborhood [50]. It is 
having been shown measurement is lower for normal cases but calcu
lates more differences of intensities in MI cases (Fig. 4). In addition, a 
low rate of intensity difference is shown for the healthy part of the 
myocardium in MI patients. Joint Energy is one of the GLCM features, 
which represents the myocardium tissue homogeneity [50]. In Fig. 4, we 
observe the homogeneous patterns of normal cases as opposed to the 
non-homogeneity of MI cases. In Fig. 5, we perceive that this 
non-homogeneity strongly separated infarcted from healthy tissues in 
MI cases. Maximum probability is one of the GLCM features [50], It 
simply indicates the most frequent pairs of intensity values that 
neighbor each other in the Cine-CMR images [50]. 

Several studies investigated the diagnostic capability of Cine-CMR 
images. Cetin et al. [52] analyzed more than 5000 CVD CMR images 
for cardiovascular risk factors assessment and showed a significant dif
ference between control groups and CVD cases using radiomic features. 
A recent study performed by Schofield et al. [33] used Cine-CMR to 
differentiate etiologies of left ventricular hypertrophy on more than 200 
patients with the aim of reducing Gd injection in CVD patients. They 
were able to distinguish 5 different groups of patients using 6 
intensity-based features. In our study, several texture-based features 
were used along with intensity-based features to improve the algo
rithms’ discriminative capability. 

Larroza et al. [53] investigated how Cine-CMR texture features could 
be used as indicators for differentiating MI from normal tissues. They 
reported that texture features extracted from Cine-CMR images could 
detect MI tissues, which may be applied in the detection of the infarcted 
myocardium as a Gadolinium-free approach. In another study by Lar
roza et al. [36], normal tissue was differentiated from MI through 
applying non-linear support vector machine on images of ten patients. 
Overall, 122 variables were first extracted, then the top 17 variables 
were used to train the non-linear support vector machine algorithm, 
reporting an accuracy of 0.95. 

Table 3 
Top selected features using MSVM-RFE ranking.  

Rank Feature’s Name Type 

1 Surface Area Shape 
2 Small Area Low Gray Level Emphasis GLSZM 
3 Joint Entropy GLCM 
4 Robust Mean Absolute Deviation FO 
5 Maximum Probability GLCM 
6 Sum Entropy GLCM 
7 Large Area High Gray Level Emphasis GLSZM 
8 Zone Percentage GLSZM 
9 Joint Energy GLCM 
10 Cluster Shade GLCM 
11 Run Length Non-Uniformity GLRLM 
12 Coarseness NGTDM 
13 Busyness NGTDM 

Table 4 summarizes the calculated metrics, including AUC, accuracy, precision, 
recall and F1 score for different classifiers. LR (AUC = 0.93 ± 0.03, Accuracy =
0.86 ± 0.05, Recall = 0.87 ± 0.1, Precision = 0.93 ± 0.03 and F1 Score = 0.90 ±
0.04) and SVM (AUC = 0.92 ± 0.05, Accuracy = 0.85 ± 0.04, Recall = 0.92 ±
0.01, Precision = 0.88 ± 0.04 and F1 Score = 0.90 ± 0.02) yielded the best 
performance. Fig. 6 presents the AUC, accuracy, precision and recall of machine 
learning algorithms. 

Table 4 
Area under the curve (AUC), accuracy, precision, recall and F1 score for each multivariate analysis algorithm.  

Method AUC Accuracy Precision Recall F1 score 

RF 0.83 ± 0.05 0.82 ± 0.04 0.84 ± 0.03 0.92 ± 0.08 0.88 ± 0.03 
ET 0.70 ± 0.05 0.70 ± 0.08 0.85 ± 0.01 0.70 ± 0.14 0.76 ± 0.09 
LR 0.93 ± 0.03 0.86 ± 0.05 0.93 ± 0.03 0.87 ± 0.10 0.90 ± 0.04 
LDA 0.90 ± 0.05 0.82 ± 0.07 0.90 ± 0.05 0.84 ± 0.12 0.86 ± 0.06 
QDA 0.76 ± 0.04 0.82 ± 0.04 0.86 ± 0.04 0.90 ± 0.08 0.87 ± 0.03 
AB 0.86 ± 0.05 0.82 ± 0.07 0.85 ± 0.05 0.90 ± 0.05 0.88 ± 0.04 
KNN 0.80 ± 0.05 0.74 ± 0.07 0.77 ± 0.04 0.90 ± 0.05 0.83 ± 0.04 
NB 0.77 ± 0.09 0.67 ± 0.08 0.90 ± 0.10 0.63 ± 0.11 0.73 ± 0.07 
SVM 0.92 ± 0.05 0.85 ± 0.04 0.88 ± 0.04 0.92 ± 0.01 0.90 ± 0.02 
MLP 0.89 ± 0.09 0.84 ± 0.05 0.89 ± 0.03 0.89 ± 0.03 0.89 ± 0.03  
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A wide range of studies exploited LGE-CMR images to evaluate MI 
patients. Zhang et al. [16] trained a deep learning algorithm on 300 MI 
patients with LGE-CMR and Cine-CMR images to determine the presence 
and location of MI tissue and to delineate it on Cine-CMR images. 
Baessler et al. [15] applied radiomics analysis to evaluate and differ
entiate between acute and chronic MI tissues. Their aim was to 
demonstrate the ability of non-contrast Cine-CMR images in MI diag
nosis. They examined LGE-CMR and Cine-CMR images of 120 patients 
and selected 5 features from 286 extracted features using the random 
forest algorithm. After applying logistic regression, an AUC of 0.93 was 
obtained for Cine-CMR, indicating the high potency of Cine-CMR in MI 
tissue discrimination. In a similar study conducted by Di Noto et al. [35], 
LGE-CMR images were used to differentiate MI tissues from myocardial 
edema. They extracted 563 and 933 features from 2D and 3D segmented 
images, respectively, and showed that the features extracted from 2D 
segmented images with a support vector machine classification resulted 
in higher accuracy (0.88) compared to 3D segmentation (0.85). More 
recently, Avard et al. [54] trained SVM and RF algorithms to differen
tiate between MI and normal tissues using LGE-CMR. They specifically 
achieved their aim using a small dataset consisting of 42 MI patients. 

In the current study, we aimed to demonstrate the capability of 
radiomic features and machine learning algorithms in discriminating MI 
from normal cases. Using Cine-CMR radiomic features could potentially 
decrease Gd injection and increase the accuracy of MI detection from 
MR images. Clinical routine segmentation algorithms rely mainly on the 
intensity of images. However, we determined the radiomic features 
enabling to accurately detect MI tissue from unenhanced Cine-CMR (the 
performance of these features was improved by machine learning al
gorithms). In addition, the methodology followed in this work could be 
combined with an automated segmentation algorithm, which divides 
the myocardium into different segments to classify each segment apart 
for detecting the MI tissue in the myocardium. The feature map of 
univariate radiomic features could be used as a tool to detect MI regions 
in the myocardium. The small sample size with no external validation 
dataset is one of the limitations of the current study. Future work will 
assess the proposed model using a larger size of the external validation 
set. Most radiomics studies have been conducted based on manual seg
mentation. Furthermore, in some radiomics studies, the robustness of 
segmentations (both manual and automatic) were studied and manual 
segmentation was considered as ground truth [55–57]. Deep 

Fig. 6. Comparison of average A) AUC, B) Accuracy, C) Recall and D) Precision of various multivariate analysis methods.  
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learning-based radiomics analysis was suggested as a new method for 
radiomics analysis, an end-to-end process that does not require seg
mentation, feature extraction and data analysis. In this work, we used 
only one cardiac cycle (end diastolic) as all segmentations were per
formed manually by cardiac imaging experts. The segmentation of 
different cardiac cycles is time-consuming and labor intensive. Further 
studies should focus on using deep learning-based cardiac segmentation 
to exploit the different cycles of cardiac features for radiomics feature 
extraction. 

5. Conclusion 

In univariate analysis, M2DS from shape, SALGLE from GLSZM and 
Minimum from FO showed the highest performance in differentiating MI 
and normal cases. In addition, in multivariate analysis, LR and SVM 
yielded optimal results as the best machine learning algorithms for this 
radiomics analysis study. This work showed that using radiomics on 
Cine-CMR images is helpful to accurately discriminate between MI and 
viable tissues/normal cases, and as such, could potentially be used as an 
alternative to LGE-CMR in MI patients. 
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