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a b s t r a c t

Security-constrained unit commitment (SCUC) is a complex optimization problem in power system
operation, which is computationally intensive. To bring significant time-savings, this paper presents
a graph convolutional network (GCN)-based SCUC approach (GCN-SCUC) using the information of
power grid topology. Instead of tackling the mixed integer linear programming (MILP)-based SCUC
(MILP-SCUC), the GCN learner predicts the unit decisions first, and then the MILP-SCUC problem is
transformed into a continuous convex one. Numerical experiments are performed on the modified
IEEE-30 and IEEE-118 systems to verify the feasibility of our approach both in terms of accuracy and
computation time. Moreover, compared with the state-of-the-art MILP-SCUC, the proposed approach
achieves speedups of between 13x and 17x on different testing examples with high accuracy.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As an extension problem of the traditional unit commitment
odel, the SCUC problem is an essential decision-making tool

or power system operation (Yang et al., 2022a). The best pos-
ible scheduling of unit commitment needs to be obtained by
onsidering various unit and system constraints (Muralikrishnan
t al., 2020). Although utilities use the DC-based SCUC problem
n practice for computational tractability, the SCUC problem is
aturally AC-based with voltage and reactive power constraints.
athematically, the SCUC problem is a large-scale mixed integer
rogramming (MIP) problem that is proven to be NP-hard (Pineda
nd Morales, 2022; Fu et al., 2013). The nonlinear AC power flow
quations and vast integer variables lead to a high computation
urden. Therefore, it is crucial to study effective methods for
rimming down its computational burden with almost no loss of
olution quality. There are several research achievements, either
f the physical-model-driven method or the data-driven method,
elated to the SCUC problem. See (Yang et al., 2022a) for a recent
urvey.
The physical-model-driven approach is based on rigorous logic

eductions, which are supported by mathematical theories ei-
her in model construction or model compacting. Safdarian et al.
2020) decomposed the scheduling horizon into multiple subhori-
ons to speed up the efficiency of solving the SCUC problem. A
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set of auxiliary logical expressions and counting variables was
formulated to handle intertemporal ramp constraints and min-
imum on/off times between consecutive subhorizons. In Chen
et al. (2020), by decomposing the system into several zones,
a distributed optimization framework was proposed to reduce
the size of the SCUC problem, which can be solved in parallel.
Since compacting the model is an effective way to enhance the
computational efficiency of SCUC, the details about the reduction
of the variable strategy and redundant constraints removing the
strategy-based physical model can be found in Li et al. (2020),
Zhai et al. (2010). In comparison, the authors of Du et al. (2019)
proposed a linearized model with minor approximation errors.
Generally, a more refined model can result in more accurate
results. However, model refinements usually aggravate the com-
putational complexity. Therefore, the computational efficiency
has been dramatically improved by tightening or linearizing the
SCUC model.

The data-driven method is based on historical data, which has
been applied to various fields of power systems, such as load
forecasting (Sakkas and Abang, 2022), unit on-off state prediction,
and so on. Long short-term memory (LSTM) was introduced in
Yang et al. (2019), which was the first time to apply the data-
driven method for the SCUC problem. The abilities of self-learning
and self-evolution were obtained by keeping revising the model.
On the basis of Yang et al. (2019, 2022b) further developed the
LSTM into the sequence-to-sequence (E-Seq2Seq) method. The
results indicated that, compared with the physical-model-driven
methods, the data-driven method possessed strong generality,

high solution accuracy, and efficiency. Information from historical
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Nomenclature

Indices and Sets

t Period index
T Periods set
NB Buses set
NG Units set
NL Branch lines set

Constants

ci Fixed coefficient of cost in unit i
bi Linear coefficient of cost in unit i
ai Quadratic coefficient of cost in unit i
FPi Fuel price of the unit i
SRt Spinning reserve in period t
Pl Upper bound of transmission line power
CUi,t Startup fuel consumption of unit i in the period

t
PDi,t Active load in the bus i at the period t
QDi,t Reactive load in the bus i at the period t
∆pi,t Difference between the upper and lower bound

of active load power in the bus i at the period t
∆qi,t Difference between the upper and lower bound

of reactive load power in the bus i at the period
t

V i/V i Lower/upper voltage in the bus i
Gij/Bij Real/imaginary part of the admittance matrix
RD
i /R

U
i Ramp down/up limit of the unit i

Ui,T/Di,T Minimum down/uptime of the unit i
PGi/PGi Upper/lower limit of active power at the unit i
Q Gi/Q Gi Upper/lower limit of reactive power at the unit

i
T on
i,t /T

off
i,t On/off time of unit i at the period t

pLDi,t/p
U
Di,t Lower/upper bound of active load power in the

bus i at the period t
qLDi,t/q

U
Di,t Lower/upper bound of reactive load power in

the bus i at the period t

Variables

ui,t Binary equal to 1 if the unit is online at the
period t

PGi,t Per unit active power capacity at the period t
QGi,t Per unit reactive power capacity at the period t
Vi,t The voltage in the bus i at the period t
Pli,t Transmission line power in the branch i at the

period t
∆Pi,t Unbalanced active power in the bus i at the

period t
∆Qi,t Unbalanced reactive power in the bus i at the

period t
ηi,t Abides by a uniform distribution between 0 and

1.

data is extracted by machine learning, which can improve the
performance of similar SCUC instances in the future.

In recent years, researchers have focused on studying how
achine-learning approaches may refine power system optimiza-

ion. Deep integration of optimization models and machine learn-
ng approaches is expected to be the most promising technology
3545
trend (Ruan et al., 2021). The model-data-driven method usu-
ally combines artificial intelligence technologies with the model-
based method to solve the SCUC problem. Generally, the data-
driven method was utilized as preprocess steps (Yang et al.,
2020; Pineda et al., 2020). A data-driven classification approach
to identify whether the SCUC instance is easy or hard, integrat-
ing a variable-aggregation method, is presented in Yang et al.
(2020). A support vector machine was introduced to predict re-
dundant constraints in the formulation, reasonable initial feasible
solutions, and affine subspaces, which can speed up the computa-
tional efficiency of the MILP solver (Xavier et al., 2020). Moreover,
the authors in Wu et al. (2022a) proposed a convolutional neural
network (CNN) to relieve the computation burden of the SCUC
problem.

Both data-driven and model-data-driven approaches can re-
lieve the computational burden of the SCUC problem. The power
grid is a complex network consisting of buses (generation points,
load points, etc.) connected by transmission lines. Therefore, they
can be conveniently represented as an undirected graph G =

V , E), where E ⊆ V×V and V denote the sets of edges and nodes
Fig. 1). The nodes include generator and load buses, respec-
ively. The data of SCUC with the network are defined as graph-
tructured data with nodes and edges (Liao et al., 2022). However,
he existing deep learning methods in Euclidean domains, such as
ecurrent neural network (RNN) and CNN, ignore the topological
nformation and need various samples for training.

The Graph neural networks (GNN), neural network architec-
ures targeted to learning representations of graphs, such as
raph convolutional networks (GCN), have shown good perfor-
ance on graph-structured data. The learning model for predic-

ion tasks is successful in practice on nodes, graphs, and con-
igurations of points. Based on graph neural networks, a graph
eural solver was developed to solve AC power flow for balancing
omputational speed and accuracy (Donon et al., 2020). In Liao
t al. (2020), the GCN proved that the accuracy and robustness
ere better than the convolutional neural network in settling
he reactive power optimization. In Liao et al. (2021), a spectral-
ased GCN is presented to prompt the accuracy of transformer
ault diagnosis. While the authors of Khodayar and Wang (2019),
u et al. (2022b) used the spatial–temporal graph convolutional
etworks for wind speed and short-term load forecasting, respec-
ively. Furthermore, Nair et al. (2020) encodes MIP to the GCN
s a bipartite graph and computes the initial feasible solution.
in et al. (2022) applied GCN to achieve distribution network
ituation awareness.
Motivated by the model-data-driven methods and the GCN

ethod for solving problems in power systems, in this paper, a
ovel method based on GCN is proposed to predict the state of
nits of SCUC problem first. Then, the outputs of units and the
oltage values can be obtained by tackling a convex problem. The
ey contributions of this paper are threefold:

• GCN is introduced to assist in solving the SCUC problem,
which is a typical scenario of machine learning applications
in the electrical field. The on-off variable of the thermal
power unit is the label of GCN learning. In contrast to
existing machine learning work, GCN can learn informa-
tion regarding network topology in the training process,
achieving high prediction accuracy with fewer samples.

• A combination of the data-driven and model-driven method,
that is, a GCN-based learner and a convex optimization
problem, solves the SCUC problem. If the zero–one variable
is not feasible, it can be used as the initial value to solve
the SCUC problem. The proposed GCN-based SCUC algorithm
(GCN-SCUC) allows us to find a primal feasible solution.
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Fig. 1. One-line diagram (left) and corresponding graphical representation (right) for synthetic grid 30-IEEE, blue and red circles denote load buses and buses with
generator, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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• The proposed GCN-SCUC method reduces the solution time
and outperforms the MILP-SCUC method in terms of compu-
tational efficiency with a lower degree of suboptimality or
infeasibility. The computational efficiency of the proposed
method achieves speedups of an average of about 15x for
testing power systems.

The remainder of this paper is laid out as follows: in Section 2,
the methodology is introduced, including the mathematical for-
mulation of the SCUC problem and the detail about the GCN-SCUC
method. Section 3 provides simulation results of different testing
systems, followed by a conclusion and future work in Section 4.

2. Methodology

In this section, the original mathematical model of the SCUC
roblem is introduced, referring to the equations in Bai and Wei
2009). Then, the detail for the process of the GCN-based SCUC
lgorithm (GCN-SCUC) applied to tackle the SCUC problem is
escribed. Fig. 2 shows the framework of the proposed method.

.1. Problem formulation

The SCUC problem can be formulated in (1). The objective of
CUC is to minimize the startup cost of units and the system
perating cost, just as follows:

min
T∑

t=1

NG∑
i=1

FPi(ui,t fi(PGi,t ) + ui,t (1 − ui,t−1)CUi,t ) (1a)

s.t. (2)–(12) (1b)

where fi(PGi,t ) = aiP2
Gi,t + biPGi,t + ci represents the fuel consump-

tion function of the unit, ai is the quadratic coefficient of cost in
the unit i, bi is the linear coefficient of cost in the unit i, ci is
the fixed coefficient of cost in the unit i. t is the period index,
T is period set, NG is units set. FPi denotes fuel price of the unit,
ui,t binary equal to 1 if the unit is online at the period t . PGi,t
represents per unit active power capacity at the period t , CUi,t is
the startup fuel consumption of the unit i in the period t . In this
model, the objective function should be minimized, subjecting the
constraints as follows:
(1) AC power flow constraints⎧⎪⎪⎨⎪⎪⎩

∆Pi,t =

∑
j∈NB

Vi,tVj,tGijcosθij,t +

∑
j∈NB

Vi,tVj,tBijsinθij,t

∆Pi,t = PGi,t − PDi,t , i ∈ NB, t ∈ T
(2)
V
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⎧⎪⎪⎨⎪⎪⎩
∆Qi,t =

∑
j∈NB

Vi,tVj,tGijsinθij,t −

∑
j∈NB

Vi,tVj,tBijcosθij,t

∆Qi,t = QGi,t − QDi,t , i ∈ NB, t ∈ T
(3)

where ∆Pi,t/∆Qi,t refers to unbalanced active/reactive power in
the bus i at the period t , NB is buses set, Vi,t is the voltage in
the bus i at the period t , Gij/Bij is the real/imaginary part of the
admittance matrix. QGi,t is per unit reactive power capacity at the
period t , if the bus has no generators, PGi,t/QGi,t is equal to 0.
PDi,t/QDi,t is active/reactive load in the bus i at the period t. θij,t is
phase angle difference at the period t . These constraints ensure
power balance.
(2) Branch flow limitations

− Pl ≤ Pli,t ≤ Pl, i ∈ NL, t ∈ T (4)

Pli,t = V 2
i,tGij − Vi,tVj,t (Gijcosθij,t + Bijsinθij,t ), (i, j) ∈ NL, t ∈ T

(5)

where Pl is the upper bound of transmission line power, Pli,t is
transmission line power in the branch i at the period t , NL is
branch lines set. The above constraints ensure that branch power
does not cross the boundary.
(3) Ramping up/down limitations

PGi,t − PGi,t−1 ≤ RU
i , i ∈ NG, t ∈ T (6)

PGi,t−1 − PGi,t ≤ RD
i , i ∈ NG, t ∈ T (7)

where RD
i /R

U
i is the ramp down/up limit of the unit i. The ramping

constraints limit the fluctuation of the power output of the unit.
(4) Minimum up/downtime limitations{
(ui,t−1 − ui,t )(T on

i,t−1 − Ui,T ) ≥ 0

(ui,t − ui,t−1)(T
off
i,t−1 − Di,T ) ≥ 0

, i ∈ NG, t ∈ T (8)

where Ui,T/Di,T is the minimum down/uptime of the unit i. T on
i,t−1/

T off
i,t−1 is on/off time of unit i at the period t − 1. The above

constraints ensure the requirements that the unit i lasts Ui,T
periods when turns on and Di,T when turns off.
(5) Active and reactive power limitations

PGiui,t ≤ PGi,t ≤ PGiui,t , i ∈ NG, t ∈ T (9)

Q Giui,t ≤ QGi,t ≤ Q Giui,t , i ∈ NG, t ∈ T (10)

where PGi/PGi is the upper/lower limit of active power at the unit
i, Q Gi/Q Gi is the upper/lower limit of reactive power at the unit i.
he unit’s output power needs to be limited between the upper
nd lower bound when the unit turns on.
6) Voltage limitations

≤ V ≤ V , i ∈ N , t ∈ T (11)
i i,t i B
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Fig. 2. The framework of the GCN-SCUC method.
here V i/V i is lower/upper voltage in the bus i. The voltage in
the bus i needs to be limited between the upper bound and lower
bound.
(7) Spinning reserves limitations∑
i∈NG

(ui,tPGi − ui,tPGi,t ) ≥ SRt , i ∈ NG, t ∈ T (12)

here SRt is the spinning reserve in period t . The above con-
straints ensure that the unit meets the spinning reserves of the
system.

In order to build the MILP model, which can make the SCUC
problem be solved by the MILP solver. Especially, the AC power
flow constraints and minimum up/downtime limitations have to
be linearized, and the linearized process can refer to Yang et al.
(2017), Zhu et al. (2019). The MILP model can be formulated like
this:
min cT x

s.t. Ax ≤ b

l ≤ x ≤ u

xi ∈ {0, 1}, i ∈ I

(13)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn. l and u are the lower or upper
bound of variables, respectively. I ⊆ {1, . . . , n} refers to the index
of integer variables.

2.2. GCN-based approximation to SCUC

The GCN-based SCUC method (GCN-SCUC) framework to tackle
the SCUC problem is displayed in Fig. 2, containing the GCN
training stage and the convex optimization problem calculating
part. The detailed information is introduced as follows.

2.2.1. GCN training process
Before solving SCUC, demand information and typology are

available. The entire learning process can be regarded as node
classification in graph learning, while each node is assigned a
feature vector xn. xn contains the load and unit parameters. The
admittance matrix Y is a weighted adjacency matrix. We propose
the following vector IN expressing the input for the trained GCN.

IN = [X, Y ] (14)

X =

⎡⎢⎢⎣
xT1
...

xTNB

⎤⎥⎥⎦ (15)

x = [P ,Q , P , P ,Q ,Q ]
T

∈ R6, i ∈ N , n ∈ N (16)
n Dn Dn Gi Gi Gi Gi G B
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In order to cover possible loading situations that may occur
during the operation of the system in the training stage concern-
ing the equation in Hasan et al. (2021), a set of demand scenarios
are generated as follows:⎧⎪⎪⎨⎪⎪⎩

∆pi,t = pUDi,t − pLDi,t
pi,t = pLDi,t + ∆pi,t × ηi,t

PD =
[
p1,1 . . . pi,1 . . . pi,t

]
, i ∈ NB, t ∈ T

(17)

⎧⎪⎪⎨⎪⎪⎩
∆qi,t = qUDi,t − qLDi,t
qi,t = qLDi,t + ∆qi,t × ηi,t

QD =
[
q1,1 . . . qi,1 . . . qi,t

]
, i ∈ NB, t ∈ T

(18)

where ηi,t abides by a uniform distribution between 0 and 1.
∆pi,t , ∆qi,t denote the difference between the maximum and
minimum bound of active and reactive load power, respectively.
Based on the demand provided with the standard IEEE sys-
tem, the possible minimum (pLDi,t/q

L
Di,t ) and maximum (pUDi,t/q

U
Di,t )

nodal demand values can be obtained. For each demand scenario,
MILP-SCUC is solved, and the optimal UC decisions are stored in
the set U . Demand scenarios making the SCUC problem infeasible
are deleted.

By training the GCN to predict unit decisions, the trained GCN
ΩU may capture the mapping relation of the node load, topology
structure, and units’ state. Which can be expressed as

IN ↦→ ui, ∀i = 1, . . . ,NG (19)

the input vector to ΩU is IN , and their target is U . The pseudocode
for training GCN is represented in Algorithm 1.

2.2.2. Optimization - GCN-SCUC
Once the GCN is trained for a given demand and typology, the

output ΩU is unit decisions Ũ . Ũ is used to construct the convex
optimization problem.

min
T∑

t=1

NG∑
i=1

FPi(fi(PGi,t ) + CUi,t ) (20a)

s.t. (2)–(7), (11) (20b)

PGi ≤ PGi,t ≤ PGi, i ∈ NG, t ∈ T (20c)

Q Gi ≤ QGi,t ≤ Q Gi, i ∈ NG, t ∈ T (20d)∑
i∈NG

(PGi − PGi,t ) ≥ SRt , i ∈ NG, t ∈ T (20e)

Constraints (2)–(5) refer to the linearized ones. Usually, neural
network predictions may endanger infeasibility. Therefore, it is
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necessary to demonstrate whether the result is a feasible solution
or not. According to Fig. 2(a), if the prediction result is feasible,
by solving a convex optimization problem, the outputs of units
and the voltage values can be obtained. Where M represents
he solution set of continuous variables, PG is the active power
olution set, QG is the reactive power solution set, V is the voltage
mplitude solution set, θ is the voltage phase angle solution set.
owever, in rare cases, when the prediction result is infeasible,
he unit decisions Ũ predicted by ΩU are not the feasible solution
or the SCUC problem. We solve problem (13) to obtain feasible
esults. The pseudocode for GCN-SCUC is as follows.

3. Numerical experiments

The proposed method GCN-SCUC is validated on the mod-
fied IEEE 30-bus system (case 30) with 6 generators and 41
ranches (Zimmerman et al., 2011; Zimmerman and Murillo-
anchez, 2020). Furthermore, the modified IEEE 118-bus system
case 118) with 54 generators and 186 branches is utilized to
how the effectiveness and scalability of GCN-SCUC. Two systems
overing a 24-hour period are considered. Notably, all the analysis
s under the condition of the power grids with a given topology
here all grid connections are the same among the samples.
he MILP optimization problem is programmed in MATLAB with
urobi (Gurobi Optimization, 2021) running on CPU (Intel(R) Core
TM) i7-8700, 3.2 GHz), and the MIP gap is set to be 10e−3. We
tilize GPU (NVIDIA RTX A6000) for the GCN predictions.
3548
3.1. Parameters description

Data by simulation are applied for training and testing the GCN
model. According to Algorithm 1, labeled 500 and 300 samples
are generated by solving the MILP-SCUC with Gurobi for case 30
and case 118, respectively. Then, transformed the data to graph
data like (14), where each timestamp denotes a complete graph
state. Similarly, collecting each timestamp data created a dataset
to load into the model.

The GCN used in this paper is the stack of 4 graph convolu-
tion layers with a mean aggregator to propagate the calculated
features to the hidden layers and 2 linear layers, activated by
the ReLU function. The sigmoid function transformed results from
linear layers to get the final results. Adam optimizer by minimiz-
ing the cross-entropy loss ρGCN between the targeted U and the
predicted output of the GCN.

ρGCN = −
1
k

∑
j

(u∗

j log p
∗

j + (1 − u∗

j ) log(1 − p∗

j )) (21)

here j ∈ NG. p∗

j is the predicted probability that the unit j is
n or off, while u∗

j is the ground-truth state of units. 90% of the
amples are used for the training and 10% for the testing sets. The
umber of training epochs is 200, and the learning rate is set to
.005. Parameter optimization is performed using an exhaustive
earch over set limits for each parameter, and the best results are
elected for each group.
The accuracy (Acc) and precision (Pre) are leveraged to assess

he performance of the trained GCN, while the average cost gap
s utilized to measure how close the MILP-SCUC and GCN-SCUC
olutions are. The formulas are referred to (Hasan et al., 2021).

cc =
T0 + T1

T0 + T1 + F0 + F1
× 100% (22)

re =
T1

T1 + F1
× 100% (23)

ost gap =

⏐⏐⏐⏐CGCN−SCUC − CMILP−SCUC

CMILP−SCUC

⏐⏐⏐⏐ × 100% (24)

where T0/F0 represent the number of units off is predicted true
or false, T1/F1 denote the number of units on is predicted true
or false. CGCN−SCUC is the cost of the GCN-SCUC method, while
CMILP−SCUC is the cost of the MILP-SCUC method.

3.2. Case 30

3.2.1. Comparison of predicted performance
GCN is used for predicting the state of units, taking CNN

and DNN as the benchmark. Three types of trained models with
different samples have been constructed to demonstrate the GCN
model can obtain higher accuracy with fewer samples. (1) Model
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Table 1
The performance of trained GCN, trained CNN and trained DNN.
Model Acc(%) Pre(%)

Method Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

GCN 80.2 86 86.7 78.0 88.2 85.4
CNN 67.7 68.9 69.7 73.5 74.5 71.3
DNN 53.5 66.39 72.2 11.3 40.9 52.3
Fig. 3. The confusion matrix of case 30 (Model 2). (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version
f this article.)

: 31 samples, including 2 samples to test the trained model; (2)
odel 2: 100 samples, including 10 samples to test the trained
odel; (3) Model 3: 500 samples, including 30 samples to test

he trained model.
Table 1 displays the prediction results of trained GCN, trained

NN, and trained DNN among different samples. It can be ob-
erved that the trained GCN achieves the best performance among
thers. Compared to the trained CNN, the Acc difference is nearly
0%, while the Pre difference is more than 10%. Compared to the
rained DNN, in the three trained models, the Acc difference is
ore than 20%, while the Pre difference is as high as 40%. More-
ver, the trained GCN model can obtain higher accuracy with
ewer samples. That is to say, considering power grid typology
n the learning process can extract more information with fewer
amples.
Synthesize the performance of the Acc and Pre indices, Model
has been selected and constructed a confusion matrix shown

n Fig. 3 for a detail describe the formulation of Acc and Pre
ndices. Since each test sample contains 144 binary variables, for
0 test samples, the actual and predicted units’ status of 10 × 144
inary variables are observed to calculate the indices, as shown
n Fig. 3. The dark blue block in the second row of Fig. 3. shows
hat 88.24% of units’ states are correctly predicted to be on. In the
irst row, the dark blue block depicts that 83.01% of units’ states
re correctly predicted to be off.

.2.2. Cost and computation time-saving comparison between MILP-
CUC and GCN-SCUC
Based on the prediction result of GCN in Model 2, the total

ost of GCN-SCUC and MILP-SCUC are compared and are shown
n Fig. 4. The performance of GCN-SCUC is investigated based on
he gap from the optimal solution obtained by the MILP-SCUC
ethod in Fig. 4. The smaller the cost gap is, the more accurate

he resolution of the GCN-SCUC will be. According to Fig. 4, the
ost of testing samples by GCN-SCUC is generally higher than
hose of MILP-SCUC. Compared with MILP-SCUC, the percentage
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Table 2
The computation time of GCN-SCUC in case 30.
Item Avg(s)

GCN-SCUC GCN 0.03 0.92Convex problem 0.89
MILP-SCUC 15.78
Time-saving 94.17%

optimality gap is relatively small. The maximization gap is 8.91%,
while the minimization gap is 0.91%. The dashed line with the
red arrow shows the average gap is only 3.42% for the MILP-
SCUC and GCN-SCUC methods. That is to say, the solution of the
proposed GCN-SCUC method is very close to the global optimal
solution. Thereby, the result of GCN can be interpreted as one of
the multi-solution of the SCUC problem.

Fig. 5 shows the computation time of MILP-SCUC and GCN-
SCUC for each testing sample. Moreover, the percentage of time-
saving is also displayed in Fig. 5, and the dashed line with the
red arrow shows the average time-saving rate. Note that the
computation time of GCN-SCUC refers to the sum between GCN
prediction time and the convex optimization problem calculating
time. Table 2 shows the average time of 10 testing samples. The
average time of MILP-SCUC is 15.78 s, and the average time of
GCN-SCUC is 0.92 s. Compared with MILP-SCUC, the computa-
tional efficiency of the GCN-SCUC method achieves speedups of
about 17x. Therefore, the time-saving by up to 94.17%. This is
because, reducing the equivalent number of binary variables ben-
efits SCUC more since this directly decreases the higher number
of constraints compared with MILP-SCUC.

3.2.3. Unit states and voltage values displayed
Table 3 shows the unit states results of GCN-SCUC and MILP-

SCUC on one day, while the voltage magnitude of the GCN-SCUC
method is displayed in Fig. 6. The numbers in Table 3 represent
the state of the unit at that time is turned on. We found that the
unit decisions predicted by GCN are one of the multi-solution of
the SCUC problem, and the solution is very close to the global
optimal solution.

3.3. Case 118

To validate the proposed algorithm, a relatively large security-
constrained unit commitment problem of 54 units is tested. 270
samples are used to train the model, 30 samples are selected as
testing samples. The system contains 1296 binary variables pre-
dicted by GCN. With respect to case 118, the Acc performs better
since the increasing number of units shows more regularity. The
results for computation time and the operation cost gap are also
displayed in Table 3. They achieve speedups of between 13.5x
and 14x, an average optimality error of 1.25% for the case 118
system. This indicates that the proposed algorithm is scalable for
a large-scale power system of the SCUC problem (see Table 4).

4. Conclusion and future work

In this work, the SCUC model with AC power flow constraints
is formulated as a MILP problem. The proposed learning-based
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Fig. 4. The total cost and cost gap between GCN-SCUC and MILP-SCUC.
Fig. 5. The computation time of MILP-SCUC and GCN-SCUC.
Table 3
The unit states of GCN-SCUC and MILP-SCUC in case 30 (one day).
Method GCN-SCUC MILP-SCUC
Unit state Unit-on Unit-on

Unit 1 / 2, 10
Unit 2 2–3, 5, 8, 11–12, 14, 17–18, 20–21, 23 4–5, 7–10, 14, 16, 19–20, 23
Unit 3 1–24 1–24
Unit 4 1–24 1–24
Unit 5 1–24 1–3, 5–6, 8–9, 11–15, 17–18, 20–24
Unit 6 / /
GCN-SCUC method is utilized to solve the SCUC problem. First,
we present the application of GCN to obtain the unit on/off
status. With the generator on/off status results, the continuous
variables corresponding to the voltage magnitudes and generator
power outputs can be solved by a convex optimization problem.
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The results validate that GCN, which takes system topology into
account, can achieve high accuracy with fewer samples compared
with other learning methods. Additionally, the proposed GCN-
SCUC method achieves near-optimal SCUC solutions with a mean
deviation from the optimal solution of 3.42%. Moreover, for case
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Fig. 6. Voltage magnitude of GCN-SCUC method in case 30 (one day).

Table 4
Performance of GCN-SCUC in case 118.
Method MILP-SCUC GCN-SCUC

Avg(s) 39.39 2.82
Time-saving 92.84%
Cost gap 1.25%

30 with 6 units, the computation time is significantly reduced
from 15.78 s to 0.92 s. While in case 118 with 54 units, the
computation time can be decreased from 39.39 s to 2.82 s.

However, some limits to this first investigation are left for fu-
ure research. The topology of power systems is invariant, which
eans the fixed adjacency matrix. In practice, the features of
odes and adjacency matrix change over time. Moreover, there is
till room for improving the accuracy of prediction. Further inves-
igation regarding architecture improvements of GCN or alterna-
ive variants of GNN approaches may be considered; meanwhile,
he new method can adapt to network changes and uncertainty
n the generation side.
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