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Modern thermal processes in the power industry involve ever increasing heat fluxes and rapid transients. Simulating such 
processes requires accurate thermodynamic properties and correlations that encompass stable as well as metastable states. 
Here we review the development of cubic equations of state that can be made to yield very accurate thermodynamic 
properties of liquids in saturation and metastable (superheated) states. These cubic equations enable us to develop 
predictions and correlations for a number of other quantities which are either useful in themselves or for application to 
boiling and two-phase flow. Examples of such results include predictions of the saturation pressure, the limiting liquid 
superheat, the destructive energy available to a superheated liquid, the surface tension of a saturated fluid and the approach 
of the specific heat at constant pressure to infinity at the spinodal point. These topics are described and discussed, and it 
emerges that these seemingly separate topics can be unified by the use of cubic equations of state. We pay particular 
attention to the issue of a possible connection between the limit of liquid superheat and the liquid spinodal line. 

1. Scope 

Thermal  systems are rapidly pushing toward more 
intense heat  fluxes in more compact  equipment.  One  
result of these changes is that we shall have to operate  
in new regimes where our experience and accumulated 
data will fall us, and it becomes necessary to anticipate 
the performance of thermal systems on the basis of 
scientific theory. One  of these regimes is that of 
metastable liquids, that is, liquids at a temperature  
higher than the local saturation temperature  or, equiv- 
alently, at a pressure below the local saturation pres- 
sure. Such a superheated liquid state poses the threat 
of a serious thermohydraulic  explosion following a 
break in a nuclear reactor coolant line, and in other  
accidental equipment  failures. Similar problems arise 
when a nuclear reactor core gets rewetted, or  when a 
liquid metal  coolant leaks from a reactor and contacts 
other  liquids. On  a more benign note, a knowledge of 
superheated liquid properties is often needed in pre- 
dicting boiling behavior. 

The present  review is similar to an earlier review 
[1], but includes important  developments subsequent to 
it. Specifically, our new position is that a correct equa- 
tion of  state (EOS) is the gateway to obtaining spinodal 
and other  derived properties,  which are then used to 

develop corresponding states correlations (CSC), as 
opposed to developing CSCs by various methods and 
then using these correlations in building the EOS. We 
also argue that it is sufficient to consider the p - v - T  
EOS rather than a " fundamenta l"  (see below) EOS.  

Experimental  results are meager  and quite hard to 
obtain, particularly in the neighborhood of the spin- 
odal limit. Rapid  depressurization using very clean 
fluids is one technique for obtaining such data, and we 
may cite [2], [3], [4] and [5] for some available results. 
Most of the available experimental  data pertain to 
states much closer to the saturated liquid state than 
the spinodal limit. This review concentrates on analyti- 
cal and computational techniques that do not have this 
limitation. 

2. Continuous equations of state 

2.1. Physical behavior of  a hot fluid when depressurized 

Let us establish the nomenclature  for the rest of the 
paper  with reference to fig. 1. This figure shows the 
isotherms of a real fluid on p - v  coordinates. Between 
the saturated liquid state, f ,  and the saturated vapor 
state, g, the pressure varies non-monotonically. The 

0 0 2 9 - 5 4 9 3 / 9 3 / $ 0 6 . 0 0  © 1993 - E l s e v i e r  S c i e n c e  P u b l i s h e r s  B.V.  A l l  r ights  r e s e r v e d  



270 N. Shamsundar, J.H. Lienhard / Equations of state and spinodal lines 

horizonta l  dashed  line connec t ing  f and  g is what  we 
usually see, bu t  this line merely represen t s  mixtures of 
sa tu ra ted  liquid and  sa tu ra ted  vapor.  The  locat ion of 
an in t e rmed ia t e  point  on the  dashed  line represen t s  
the composi t ion  of the  mixture  r a the r  than  a separa te  
state. On the  t rue  i so therm joining f and  g, pressure  
and  volume vary continuously.  As we move down from 
a compressed  liquid state, the  pressure  falls rapidly 

and  reaches  a min imum at point  /, the liquid spinodal 
point .  Beyond this point ,  the pressure  increases,  reach-  
ing a maximum at the  vapor  spinodal  point ,  z'. af ter  
which it falls steadily towards the ideal gas regime. The  
regions we have so far t raversed are, in order ,  com- 
pressed  liquid unti l  f ,  metas tab le  or supe rhea t ed  liq- 
uid f rom f to l, uns table  fluid from l to c, metas tab lc  
or supercooled  vapor,  and  supe rhea t ed  vapor.  The  loci 
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Fig. l. Sketch of p -  v diagram showing real-gas isotherms and spinodal lines. 
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of spinodal states, shown by short dashes, are the 
liquid spinodal line and the vapor spinodal line, which 
join with the saturated liquid and saturated vapor lines 
at the critical point. 

Every state on the isotherm is an equilibrium state, 
although we often encounter the incorrect adjective 
"nonequilibrium", in the literature, for the states lying 
between l and u, and sometimes even for the 
metastable states. The spinodal curves are loci of 

( Op /O~' ),r = O. 
Let us next use this figure to see what happens 

when we depressurize a liquid, starting with an initial 
state a in the compressed liquid region. Depending on 
the rate of depressurization, the fluid follows a process 
that is bounded by the isothermal and the isentropic 
curves, which correspond to infinitely slow and in- 
finitely fast depressurization, respectively. Very often, 
these curves differ little from each other, as we can 
infer from the thermodynarnic relations 

(Op/oL,)~ c, 
( O p / / O U ) T  Ct, ' 

Cp - -  C¢~ = T U / 3 2 / K T  = - -  T - -  
(op/oV)~ 

(0p/0v)T' 

(1) 

If the liquid has v and/3 small enough to overcome the 
effect of K T being small, cp = cL.. (These remarks do 
not hold at temperatures comparable to the critical 
temperature or deep within the metastable liquid re- 
gion, as detailed later). 

The state point of a fluid being depressurized under 
isothermal conditions thus moves along the segment 
a- f - l ,  and how close to the spinodal point it gets 
depends on two competing factors: the rate of depres- 
surization, and the extent of the disturbances that tend 
to make the liquid flash into vapor. The faster the 
depressurization and the fewer the sources of hetero- 
geneous nucleation, the closer can the state of the 
liquid come to the spinodal limit I. But the reader 
should bear in mind that fast isothermal processes are 
hard to achieve because we may be unable to supply 
the heat needed to maintain constant temperature in a 
fast process. At the other extreme, a slow process with 
an industrial quality liquid will vaporize very close to 
the saturation point f. 

An isentropic depressurization process will follow 
the slightly different process a - f ' - l ' ,  but the remarks 
made in the preceding paragraph still apply. The isen- 
tropic process is a better approximation than an 
isothermal process to a fast depressurization process. 
The points f '  and l '  are intersections of the isentropic 

line through a with the liquid saturation line and the 
liquid spinodal line, respectively. It is important to 
note that the isentropic curve does not have zero slope 
at the spinodal state l ' ,  but does so somewhere in the 
unstable region. 

2.2. The need for continuous equations of state 

By continuous equation of state (CEOS) we mean 
p - e - T  EOSs (the reasons for restricting ourselves to 
p - u - T  equations are discussed below under "Funda- 
mental versus p - t , - T  equations of state") that repre- 
sent thermodynamic data over a wide range of pres- 
sures and temperatures in the liquid state, the vapor 
state, the metastable states and even the unstable 
state. Such equations should not use any sub-regions 
because of the inevitable discontinuities at sub-region 
boundaries. This may seem too much to ask, and it is 
logical to question why we should look for such equa- 
tions. Why should we look for an EOS that works in 
the unstable region, which has no practical interest? Is 
it not reasonable to expect that a less-constrained 
equation or equations might fit experimental data more 
accurately? 

The unstable region is normally inaccessible to ex- 
periments, and the closer we wish to approach the 
spinodal line starting from the stable regions, the 
harder it is to obtain data. One of our central objec- 
tives is to obviate such experiments and to describe 
how metastable-state properties can be obtained by 
analytical methods, using only stable-state data. There- 
fore, the best we can hope to do in predicting 
metastable states in design work is to use the ample 
stable-state data and paltry metastable-state data, and 
perform extrapolation. For this extrapolation to suc- 
ceed, it is essential that the equation of state should be 
constrained in such a way that it shows correct behav- 
ior everywhere. It should not have a form that gives it 
the freedom to go astray. 

Continuous EOSs are not newcomers. The first 
equations of state were, in fact, continuous. In the 
1950's and 1960's however, CEOSs were abandoned 
because of difficulties in applying them to common 
substances. The vast literature on modern equations of 
state (see the comprehensive books [6], [7]) contains 
many equations of state, some valid only for liquids, 
some only for vapors, and we find separate correlations 
for different thermodynamic properties. Such separate 
correlations, while convenient to use, are often incon- 
sistent with one another (i.e., they do not satisfy the 
relevant thermodynamic relations). More recently, in- 
terest has returned to CEOSs. 
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The Keenan-Keyes-Hil l -Moore equation for water 
[8] and the quite similar Haar equation for ammonia 
[9] were among the first CEOSs, but neither of them 
represented the unstable region correctly, and neither 
was accurate in the metastable region. These equations 
have the form 

p = RT/c' + p l ( T ,  c) (2) 

that is, the pressure is the sum of an ideal gas term and 
a correction function Pl. This requires the correction 
function not only to impart accuracy to the equation. It 
must also impart real fluid behavior, as well. Specifi- 
cally, it must characterize the change of phase. This 
double duty is rather onerous, and these equations fail 
to achieve correct behavior in the unstable region as a 
result. 

The more recent Haar-Gallagher-Kell  equation for 
water [10] and other equations for hydrocarbon and 
cryogenic fluids [11] show significantly better behavior 
in the near metastable region although they were not 
constrained to make them more accurate there. The 
Haar-Gallagher-Kell  equation is of the form 

p =p0(~ r, ~,) +pl (T ,  L,), (31) 

where the so-called base function, P0, represents real 
fluid behavior, and the correction function Px has only 
to improve the accuracy of the equation. The NBS-NRC 
Steam Tables [12] based on the Haar-Gallagher-Kell  
equation represent the state of the art in thermody- 
namic property tables, and even include corrections to 
the global equations of state to account for anomalous 
behavior in the neighborhood of the critical point. 
Despite this, the Haar-Gallagher-Kell  equation is not 
correct in the unstable region, as we shall illustrate in 
Section 4.2. 

What, then, is the nature of a correctly behaved 
EOS? It should be cubic in nature, that is, it should 
have the form shown in fig. 1; qualitatively, it should 
resemble the original cubic equation of van der Waals. 
We say that an EOS is cubic if, when values are 
substituted for temperature and pressure into it, we 
have a cubic (algebraic) equation for volume. We say 
that an EOS is cubic-like, if, with values substituted for 
temperature and pressure, it gives only three positive 
roots for volume. Complicated equations such as the 
Haar-Gallagher-Kell  equation are of such form that it 
is almost impossible to establish whether they are 
cubic-like by actually finding and counting the roots. 

Such equations should meet the test of the Van der 
Waals theory of surface tension [13]. We shall show the 
results of applying this theory later, but we note here 

that the Haar-Gallagher-Kell  equation is not cubic- 
like at some temperatures, and we may establish this to 
be the case either by using the surface-tension theory 
or by examining plotted isotherms. We shall insist that 
any EOSs that we use should be cubic-like. Violating 
this requirement would give us equations that display 
additional stable regions surrounded by unstable re- 
gions, and this is not physically plausible (see details in 
Sections 4.2 and 4.8). 

2.3. Fundamental equations cersus p - c - T  equations o] 
state 

So far, we have considered only p - c - T  equations, 
but a p - c - T  equation does not furnish a complete 
thermodynamic description of a substance. Equations 
from which all thermodynamic properties can be calcu- 
lated by arithmetical operations and partial differentia- 
tion are called "fundamental" or "canonical" EOSs. 
Four common fundamental EOSs for a pure substance 
take the forms s =s(u, t,,), h = h(s, p), f = f ( T ,  c), and 
g = g(T, p). To see how other equations of state are 
obtained from a fundamental equation, consider, for 
example, the s = s(u, c) EOS. From this, we obtain the 
p - c - T  EOS by using the relations 

p/T=(Os/~u)~, and 1/T=(~s/Ou) , .  (4) 

The most commonly used fundamental equations 
today are written in the f = f ( T ,  c) form, which is the 
Helmholtz form. This fundamental EOS can be con- 
structed by combining a p - v - T  equation and a low 
pressure specific heat equation cp-'°-cp(T) (this is 
sometimes called the "caloric equation") to obtain 

f (u ,  T) =fref + fRr/~e~p dr' 

+ ",rffc~(T')(T/T'~- -- l) d T ' - R ( T -  Tref), 

(5) 

where (Pref, Zref) is a reference state at which the 
substance behaves as an ideal gas and the entropy is 
taken as zero, and primes indicate dummy variables in 
the integrals. The cp(T) equations are well established 
for many substances and pose no problem. Because of 
these facts, we shall focus attention on p-t ) -T equa- 
tions alone, but the reader should remember that, if hc 
desires, he can always construct a fundamental EOS by 
using eq. (5). Most of the popular p - v - T  equations 
give p as an explicit function of T and c, and the 
integrations in this equation can be carried out analyti- 
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cally. Although p and T are the most easily measured 
quantities, continuous equations explicit in these vari- 
ables are impossible to develop, since we shall need 
multiple valued expressions. (The International Formu- 
lation Committee equations [14] did have p and T as 
the independent variables, but these equations were 
not CEOSs, and apply only to the stable regions.) 

3. A strategy for obtaining accurate cubic equations of 
state 

The preceding considerations have led us, along 
with other investigators, to the conclusion that predict- 
ing metastable-state properties requires the use of an 
EOS with cubic-like behavior. The choice then is be- 
tween true cubics and cubic-like complex expressions. 
Although cubic EOSs are able to depict all features of 
real-fluid behavior qualitatively, they do not have a 
good record in representing data with high accuracy. 
Indeed, this is the case if cubic equations are fitted to 
data in the usual way, in which the forms of the 
temperature dependence of the coefficients are set a 
priori, and the values of the coefficients are then found 
by regression. 

We choose to fit the cubics in a completely different 
way, a way that our intuition tells us should fail. The 
method succeeds beyond our expectations, and most of 
our objectives can be met without moving on to more 
complex equations. 

The method applies only to subcritical tempera- 
tures, and is as follows. 
(1) We fit the cubic equation isotherm by isotherm. 

This feature is what sets our cubic apart from 
others, and we shall call an equation so fitted as a 
T-cubic. 

(2) At each subcritical temperature, we use a mini- 
mum number of stable-state data, enforce thermo- 
dynamic constraints, and find the coefficients of 
the cubic in a deterministic way rather than by 
statistical methods. 

(3) We now have tables of the coefficients of the cubic 
as functions of T. We consider the T-cubic equa- 
tion to have coefficients represented as tables, and 
calculate other derived properties. Some of these 
are available independently and, therefore, serve to 
examine the accuracy of the cubic equation, 
whereas the rest constitute predicted properties for 
use elsewhere. 

Let us now display the cubic equation and the 
method for calculating its coefficients. The very form 
of the equation is suggested by considering the curve 

f - l - m - v - g  in fig. 1. This curve intersects the horizon- 
tal line p =Psat at the points f,  m and g, m beingthe 
intermediate point in the unstable region, to which we 
attach no other physical significance. The shape of the 
figure tells us that a cubic-like equation must be of the 
form 

- - P  = 1 -- (U -- / ) f ) ( U -  Um)(U --Ug) (6)  

Psat F(V) 

For the equation to be cubic-like, F(v) should have 
no poles or roots in the physical range of v, which is 
from the smallest specific volume for compressed liq- 
uid out to infinity. For the equation to be a true cubic, 
F(c) should at the most be cubic in v, but satisfying the 
ideal-gas limit correctly requires that F(v) indeed be 
cubic, and have c '3 as the leading term. The final form 
of the cubic equation is 

p (~' - ~ r ) ( ~ '  - v m ) ( ~  - , '~ )  
= 1 - ( 7 )  

Psat (t~'-b')(U2 + zc ' t '+d')  

The quadratic expression in the denominator may have 
real or complex factors. In the former case, we need to 
verify that no pole lies in the physical range of r. 

The cubic equation contains seven parameters, all 
of which are functions of temperature. Among these, 
Psat, Uf and t,g are obtained either directly from data 
or, more commonly, from complex EOSs such as the 
Haar-Gallagher-Kell  equation. In addition, there are 
two thermodynamic constraints to be satisfied. The 
first is the ideal-gas limit, which requires that 
lim . . . .  p c / R T =  1. It yields 

- b '  + 2c'  + uf + L' m + cg = RT/psa t. ( 8 )  

The second condition is the Gibbs-Maxwell condition, 

~*'~p dv r =Psat( Vg - vf ) ,  
'f 

(9) 

which makes the Gibbs function g = h -  Ts the same 
for vapor and liquid in equilibrium. 

We now have two degrees of freedom left in choos- 
ing the coefficients of the cubic equation. Since the 
metastable liquid is of great interest to us, we shall 
impose both the two needed constraints on the liquid 
side. One of these is the isothermal compressibility K. I, 
of saturated liquid, and the other is a single com- 
pressed-liquid point a at a rather high pressure, Pa. If 
we think of bending an elastic strip into the shape of 
the isotherm on p - v  coordinates, we see that choosing 
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more constraints on the liquid side is equivalent to 
using greater leverage on that side. 

The integral in the Gibbs-Maxwell condition (9) 
can be evaluated analytically, and the resulting set of 
equations for the coefficients b' ,  c', d '  and t;,, are 
nonlinear. However, it is not necessary to solve for 
these coefficients simultaneously. For an assumed value 
of b', the other coefficients can be computed explicitly, 
and the Gibbs-Maxwell condition becomes the test for 
the correctness of b'. Therefore, a simple one-variable 
root finding method such as the secant method is 
adequate for finding b '  and the remaining coefficients. 

3.1. Reduced variables and property preserving uolume 
transformations 

In proceeding further with the cubic equation, we 
work with a nondimensional form of it in which we 
employ the usual reduced variables Pr =--P/Pc, Tr =- 
T / T  c and an unconventional  volume variable 
r =- ( v / c  c - 1)Z,.. As shown by Shamsundar and Reddy 
[15], the use of r instead of the conventional t,~ has the 
following advantages. The critical point corresponds to 
r = 0, any equation of state must asymptotically behave 
as the equation r 3= 0, and using the critical point as 
the origin is logical from the physical point of view. 
Next, the equations used to represent the ideal gas 
limit, the critical point conditions, the Gibbs-Maxwell 
condition and the spinodal state become independent 
of Z~ (however, the surface tension equation does not 
show the same independence). The cubic equation (7) 
in these new variables is 

Pr ( r - t ~ r ) ( r - r m ) ( r - r g )  
- 1 - ( 1 0 )  

p,,~t (r  + b ) ( r z  + 2cr + d )  

where b, c and d are obtained from b', c', d' by 
equating the right hand sides of equations (7) and (10). 

Shamsundar and Reddy showed that if a cubic or 
other equation of state is transformed from its usual 
pr -G-T ,  form to the p~-r-T~ form and then back to 
the p~-v~-T~ form with a different Z,:, then the result- 
ing equation has the same reduced vapor-pressure as 
the original equation. They used this invariance prop- 
erty to show how the well-known Soave-Redlich-Kwong 
equation [16], which has Z~ = 1/3, can be made to 
yield good values for the saturated liquid volumes of 
water (Z~ = 0.233) and ammonia (Z c = 0.246) - polar 
fluids for which this equation is not considered suitable 
and modifications have been advanced [17]. They also 
presented corresponding-states plots of rg against the 
Pitzer factor, w. (This factor has been established to be 
a better choice than the critical compressibility factor, 

Z,,  in obtaining corresponding-states correlations o~ 
the properties of fluids [18].) These plots showed con- 
siderably better correlation than plots of V,.g against ,~. 
In general, if most of the predicted properties are 
accurate but the predicted volumes are inaccurate. 
these predicted volumes can be improved by using the 
volume transformation. 

4. S o m e  resu l t s  of  f i t t ing the  cub ic  equat i on  of  s tate  to 
c o m m o n  f luids  

4.1. The coefficients o f  the cubic for water 

Murali [20], Biney [21], Vandermarliere [22] and 
Reddy [23] generated input data for the cubic equation 
(10) for about 20 substances using the best available 
complex equations of state ([11,12] and the compilation 
of Reynolds [19]), at about 50 reduced temperatures 
ranging from 0.46 to 0.99. The resulting coefficients 
were plotted against T r and against 1 / T  r - 1. It quickly 
became clear that the coefficients varied in a compli- 
cated and sometimes non-monotonic way, and there- 
fore there is no hope of fitting simple explicit expres- 
sions in terms of T r for the coefficients b, c, d and r m. 
As an example, we show plots of b, c, d, and r m in fig. 
2. 

4.2. Comparison o f  the cubic to other cubics and com- 
plex equations 

Murali [20] worked with a simpler form of eq. (10). 
He assumed that he could set d = c 2 and he did not 
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Fig.  2. T e m p e r a t u r e - d e p e n d e n c e  o f  coe f f i c i en t s  o f  T - C u b i c  
for  wa t e r .  
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Fig. 3. Comparison of isotherms for liquid water at T r = 0.9. 

use any compressed liquid data in fitting the equation. 
He made extensive comparisons with existing cubic 
equations, and concluded that the T-cubic was far 
superior to other cubic equations in representing com- 
pressed liquid and metastable states. 

Biney [21] extended Murali 's work by using the full 
form of the T-cubic equation. He used the Haar -Ga l -  

lagher-Kell  equation to generate the input data for the 
T-cubic equation, and computed various secondary 
properties such as saturation and spinodal pressures, 
speed of sound and surface tension with the cubic 
equation. He used all this information to refit the 
Haar -Gal lagher -Kel l  equation so as to obtain im- 
proved behavior in the metastable and unstable re- 
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Fig. 4. Compar i son  of  i so therms  for s t e a m  at T r, = 0.9. 
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gions, but found that this was as the expense of re- 
duced accuracy at supercritical temperatures. In this 
last respect Biney's work parallels a similar effort madc 
earlier by Karimi [24] to make such improvements to 
the Keenan-Keyes-Hi l l -Moore  equation. 

Biney compared the predictions of the cubic to the 
IFC skeleton tables for steam for temperatures ranging 
from 0°C to 350°C and pressures up to 1000 MPa, and 
concluded that the deviations were of the same order 
as the tolerance of the skeleton tables. A comparison 
of the cubic equation to data and a conventional cubic 
equation on a pr--Vr diagram is shown in figs. 3 and 4. 
In these figures we show the isotherms of water at 
Tr = 0.9 and, for reference, the saturation line. In addi- 
tion to the data from the Haar-Gallagher-Kell  equa- 
tion and the predictions of the T-cubic equation fitted 
to the same data, we show one of the best three- 
parameter (these parameters are Pc, T,, and the Pitzer 
factor, w) cubic equations available, namely, that of 
Harmens and Knapp [25]. 

The T-cubic is remarkably better on the liquid side, 
but it does have a flaw on the vapor side - a flaw that 
is a direct consequence of our imposing more con- 
straints on the liquid side than the vapor side. This 
flaw is the price we pay for the excellent performance 
of the T-cubic in the stable liquid region and the 

metastable liquid regions. In the vapor region, the 
T-cubic isotherm is consistently below the data, al- 
though the difference is barely noticeable. But other 
properties such as u, h, s must be computed by inte- 
gration from the ideal-gas limit towards decreasing 
volumes, and this can result in unacceptably large 
cumulative errors in u, h, s on the liquid side. Such 
use of the T-cubic should be avoided. If u. h. s arc 
needed for the liquid, it is far better to use the liquid 
at the triple point as the reference state rather than 
the ideal gas limit. 

Another useful comparison of the T-cubic can be 
made to the Haar-Gal lagher-Kel l  equation tk)r water. 
The complete isotherm of water al T = 400°C, as given 
by the Haar-Gal lagher-Kel l  equation and by the T- 
cubic derived from the same equation, are displayed in 
the p--v diagram of fig. 5. The Haar-Gallagher-Kcll  
equation displays two maxima and two minima be- 
tween the saturated liquid and saturated vapor states. 
and reaches extremely large positive pressures in this 
region. Of course, we should remember that the 
Haar-Gal lagher-Kel l  equation was neither con- 
strained nor claimed to behave correctly inside the 
vapor dome. In the stable and the near-metastablc 
regions, the T-cubic and the Haar-Gallagher--Kell 
equation agree very well. 
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4.3. A global cubic equation of state 

Vandermarliere [22] succeeded in using high-order 
rational functions in T r to represent the temperature 
dependence of the T-cubics. He rewrote eq.(10) in the 
equivalent form 

T r - a  a(r +c)  +e 

Pr r +b + r2 + 2cr +d (11) 

and fitted rational functions in T r to the coefficients a, 
b, c, d and e. He then performed a series of computa- 
tionally expensive regressions to slightly improve the 
agreement of the resulting p - v - T  equation with the 
data. This improvement results because, in the first 

step, the deviation of the rational function fitted to the 
coefficients was minimized. Doing so is not quite the 
same as minimizing the deviation of the predicted 
properties. The second step closes this gap. Vander- 
marliere's final p - v - T  equations contain 50 to 90 
coefficients, and he provides values of the coefficients 
for seventeen different fluids. The advantages of using 
this form are that the equation is analytic, and at a 
fixed temperature the equation is a simple cubic. The 
results calculated from the equation usually deviate 
from the input data by an order of magnitude less than 
the tolerance in the data themselves, and this is a 
property shared by Vandermarliere's equations with 
the T-cubics. The disadvantage is the large number of 
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coefficients. We feel that computing and storing a 
table of coefficients at the beginning of some complex 
computation that needs metastable state properties 
and directly interpolating in this table at a desired 
temperature, on the fly, is a better approach, since 
such equations will be used in a computer program 
anyway. 

Vandermarliere showed that Murali's assumption 
that c 2= d is satisfied very closely by the coefficients 
he calculated, but that allowing even a small difference 
between c 2 and d significantly improves the accuracy 
of the predicted pressures in the compressed liquid 
and metastable liquid regions. 

Vandermarliere's work is also restricted to the sub- 
critical region. 

4.4. A generalized cubic equation of  state 

Reddy [23] extended Vandermarliere's work into 
the supercritical region. In fitting T-cubics to supercrit- 

400 

p -  5 0 0  bar 

\ \., 

3 0 0  

/ 
/ 

ical isotherms, of course, he could not use the same 
method as for subcritical isotherms, since there are ~> 
saturation states. He tried out a statistical method, btH 
found that the least-squares problem was degenerate 
because the properties in this region often deviate little 
from ideal-gas behavior. The resulting coefficients var- 
ied with temperature in an unacceptably erratic way. 
Reddy therefore decided to require supercritical T- 
cubics to satisfy three constraints: 
- The specific volume and KT. should match data at a 

selected high pressure (he chose 5 times the critical 
pressure). 

- The specific volume should match data at the critical 
pressure. 

In addition, the T-cubic should satisfy the ideal gas 
limit exactly, but this is already built into eq. (11). This 
leaves two free coefficients in eq. (1l). Reddy tkmnd 
these by using a locally-developed nonlinear least- 
squares method. 
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After fitting T-cubics to supercritical and subcritical 
isotherms, Reddy fitted rational functions in 1 / T  r -  1 
to the coefficients a, b, c, d and e, but found it 
mandatory to use separate fits for the subcritical and 
the supercritical regions. This will, doubtless, cause 
some discontinuities in properties at the critical tem- 
perature, but this is a problem for resolution in the 
future. 

Reddy found that the resulting global cubic equa- 
tion showed deviations from data that were compara- 
ble to the tolerances in the input data, although the 
deviations were much higher than those achieved by 
Vandermarliere. Thus, it appears that the price to be 
paid for extending the equation to supercritical tem- 
peratures is bearable. 

Reddy went further and developed a generalized 
cubic equation, using data for 20 substances. He fitted 
the T-cubic coefficients using the equation 

i = 1  j - - 0  

C ( r ,  oJ) = c o + Clio + 1 + dot  ' (12) 

where C is one of the coefficients a, b, c, d and e, and 
r = 1 / T  r - 1. The upper limit in the first summation in 
this equation, n, is 4 for subcritical temperatures, and 3 

for supercritical temperatures. Reddy was able to fit 
the data by fixing d o at 40 for subcritical temperatures 
and zero for supercritical temperatures. In addition, he 
required the equation to satisfy the critical point con- 
straints. 

The resulting generalized cubic equation has 104 
coefficients in the subcritical region and 79 coefficients 
in the supercritical region. These are higher numbers 
than for existing generalized cubic equations, but they 
increase the accuracy. In contrast to most generalized 
cubics, Reddy's equation applies to polar and to non- 
polar substances without change. 

4.5. A new fundamental equation of  state for water 

Some of the important results obtained by Biney 
from his fundamental equation are the modified p - ~ , - T  
and T - s - p  diagrams in fig. 6 and fig. 7. Note that all of 
the properties can be seen in these diagrams to change 
continuously from the liquid region to the vapor re- 
gion, and the conventional straight-line representations 
in the "two-phase" region are not shown. The first of 
these figures should be compared to fig. 1. The second, 
the T - s - p  diagram, does not show the discontinuities 
that were were reported in the earlier review paper [1] 
and observed in the neighborhood of 200°C by Karimi 
[24]. This figure shows the spinodal lines and the 
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metastable regions in a view that complements fig. 1. 
However, we suspect some inaccuracy on the unstable 
liquid side in fig. 7 since the isobars in this region lack 
the smoothness we expect to find in nature. 

4.6. A modified compressibility chart for water and other 
substances 

Dong and Lienhard [27] used the cubic equation 
(10) to generate plots of spinodal lines and various 
isotherms in compressibility charts. Figure 8 is a sketch 
which should help in understanding the next three 
figures, Figs. 9, 10, and 11, which are all taken from 
their paper. Note that in figs. 9 and 11 all the data 
points, except perhaps those of water, are quite close 
to one another (the reason for the water data deviating 
is that water has ~o much higher than most of the other 
fluids shown). Therefore, fig. l 1 can be used to locate 
the spinodal point on a p - v  diagram quite accurately. 
The spread in Z is much less over all states than the 
spread in either oJ or Z,.. 

4. 7. A corresponding-states correlation for vapor pressure 

In their paper [27], Dong and Lienhard also give a 
corresponding-states correlation for saturation pres- 
sure that, while simpler than the well-known Lee-  
Kesler correlation [28], agrees better with the data'for 
many substances at lower temperatures and is signifi- 
cantly better for liquid metals, which have large, nega- 
tive values of m. This new correlation, which fits 634 
data points obtained from reported data or equations 
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in [6, 19, 29] with an r.m.s, accuracy of +0.42 percent 
in 7 r, is 

In Pr.s~t = 5.37270(1 - l / T r )  

+ ~o(7.49408 - 11.18177Tr 3 + 3.68769Tr" 

+ 17.92998 in Tr). (13) 

We display in fig. 12 a comparison of the data used to 
develop eq. (13) with the values computed from this 
equation and from the Lee-Kesler equation. 

4.8. Surface tension of  saturated fluids 

The exact relation between the surface tension of a 
saturated fluid and the p - v - T  equation was derived in 
1894 by Van der Waals [13] based on theoretical con- 
siderations. This relation is 

~ = ~ v  dr. (14) 

Both the integrals in this equation are carried out 
along an isotherm. The factor ~0 is an unknown quan- 
tity which can, in principle, be obtained from a knowl- 
edge of the molecular structure. But, for all practical 
purposes, it has to be found by matching this 'equation 
to data. As we stated earlier, this equation is a very 
stringent test of an equation being cubic-like. If an 
equation is not cubic-like, the subexpression f [  (Psat - 

f . 
p) d r '  will become negative at some values of v m the 
unstable region and the evaluation will fail. Even if an 
equation is cubic-like, the calculated temperature-de- 
pendence of surface tension will not be accurate if the 
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equation is not itself accurate in the unstable region. 
And there is no other way to examine this accuracy. 

Biney, Dong and Lienhard [30] applied this equa- 
tion, using T-cubics (which were fitted using data from 
the complex equations cited earlier) to evaluate the 
integrals. Using the calculated table of ~ /~0 ,  they 
performed a regression to find the value of ~0 that 
best matched surface tension-temperature data. Figure 
13 shows a plot of ~ / ~ 0  against T~ for water. The 
authors conjectured that the disagreement at tempera- 
tures below T~ = 0.5 (T = 50°C) could be an indication 
of the T-cubic equation being inaccurate at such tem- 

peratures - temperatures where water displays many 
anomalies. Similar plots for three hydrocarbon fluids 
and a CSC for ~r 0 are given in their paper. 

5. The spinodal point compared to the homogeneous 
nucleation limit - The approach of cp to infinity at the 
spinodal point 

Lienhard and Karimi [31] argued that the highest 
attainable homogeneous nucleation temperature for a 
liquid at a given pressure, T~, is extremely close to the 
liquid spinodal temperature, T,. They did this by com- 
paring the thermodynamic availability of the spinodal 
liquid (referred to the homogeneous nucleation point 
at the same pressure) with the disturbance energy of 
molecular fluctuations at the spinodal temperature. 
This availability, a, is given by 

a= f/d(h- T.s)p= f/(T- T.) dsp 

~o ~ T)  d~r" (15) 

There was a problem with their comparison, because 
Cp tends to infinity as the spinodal points are ap- 
proached, as we can see from eq. (1) by noting that 
(~p/av) T = 0 at the spinodal point. They did not know 
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how cp approaches infinity, and assumed a variation of 
the type 

A(p) 
Cp (T  t - T)"  (16) 

where D is a number larger than unity. In this section, 
we shall replace these conjectures by precise state- 
ments, and then infer the relation between T,, and T t. 

5.1. The temperature dependence of  cp along an isobar 

with the coefficient n such that 0 < n < 1. Lienhard 
and Karimi guessed the exponent n to be almost equal 
to 1, and estimated the integral in eq. (15). Thus they 
concluded that a was given by 

The first task is to find out exactly how cp tends to 
infinity as the spinodal point is approached. To do so, 
we write eq. (1) in the equivalent form in reduced 
variables 

(Tt -  Tn) ~ 
a < D c p ( T . )  Tt , (17) 
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Next, we perform Taylor series expansions of the quan- 
tities in this equation about the liquid spinodal point. 
First, holding Pr fixed, we expand T r to get 

Z r - Tr, l = (OZr//OVr)l(Vr -- Ur,l) 

-[- l(02rr//OU2r ) l ( U  r - -  U r , l )  2 - [ - . . .  ( 1 9 )  

Next, we hold T r fixed and expand (0pr/0v ,) to obtain 

( Opr/i)Ur ) = ( ~pr/i~Vr ) l + ( 732pr/(3V2 ) l( Ur - Ur,l ) + . . .  

(20) 

At the spinodal point, the first order derivatives on the 
right-hand sides of the last two equations vanish. From 
the first of this pair equations, we note that (v r - Vr, t) 
varies as the square root of (Tr, t - Tr). We then solve 
for (v r - vr, t) from it and substitute the result into the 
second equation and solve for (apr/SVr). This result, 
when substituted into the denominator of eq. (18), 
gives 

cp-c,: (OPr/OTr)~(- (~ZT,/av2), 
R - ZcTrs  (02pr/OvZ)z¢2(T, . ,  __ Tr) (21) 

We then note that c v remains finite everywhere, 
whereas cp is far greater in the near-spinodal region. 
Thus, we get the asymptotic formula 

Cp A ( P r )  
(22) 

R (Tr, l - Tr) 1/2 

with the function A ( P r )  given by (after transforming 
some of the derivatives in eq. (21) into a more conve- 
nient form for use with a pressure-explicit EOS) 

( ~pr//OTr ) 3l/2 

A ( p , )  = Tr, ̀  (202pr /Or2) l t /2  . (23) 

The partial derivatives in this expression are all evalu- 
ated at the liquid spinodal point. 

We have evaluated A ( P r )  for a number of fluids 
over the full range of pressures, by fitting T-cubics as 
in the preceding section and evaluating the derivatives 
with the T-cubics. The derivative (02pJOr2)  t is evalu- 
ated analytically from the T-cubic, but (Opr/OTr) l must 
be computed numerically. At liquid spinodal pressures 
below Pr = 0.1, we found that A ( p  r) changed insignifi- 
cantly with Pr" For our purposes, we deem it sufficient 
to take A ( p f l  to be constant and evaluate it at Pr =Pt  
= 0. We shall call this value A o. The computed values 
of A o are plotted against 0) for a number of substances 
in fig. 14. For comparison purposes, we show the curve 
for the Soave equation [16], and the point for the 
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0.4 

remarkable van der Waals equation falls on this curve, 
too. There is fairly good correlation between A 0 and 
w, and A 0 lies between 1.5 and 3 for most substances. 
A least-squares linear fit is 

A 0 = 1.69 + 2.540). (24) 

An exploratory calculation made directly with com- 
plex equations of state produced far greater scatter, 
but even those values of A 0 lay between 1 and 2. Thus 
eq. (24) serves us quite well in the order of magnitude 
estimates below. 

5.2. Prediction o f  the m i n i m u m  value o f  T t - 7", 

Equations (22) and (24) make it possible to obtain 
an improved estimate of the limiting value of T t - T n. 
The strategy for doing this is to compare the availabil- 
ity, a, given in eq. (15) with the critical work or 
"potential barrier" required to create a nucleus bub- 
ble, zig (see, e.g. [32]). If a times the mass of the 
molecules participating in the nucleation event is less 
than ziG, any homogeneous disturbance large enough 
to trigger nucleation will first put the liquid past the 
spinodal limit. We therefore look for the value of 
T 1 - T, for which these quantities are just equal. 

First, we calculate the availability a by using eqs. 
(22) and (24) in eq. (15). The integral can be computed 
exactly, and we obtain 

R T  c = Ao  2 r~,l - Tr, n 

In Tr, 1 __ ~ Tr,, . (25) 
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We may simplify this result for the case T~, t - T,.,, << 1 
to obtain 

a (  rn)3J2 
RT C =4A0 1 -  ~r,/  " (26) 

Next, we draw upon nucleation theory (see [32] or 
[5]) to find ,4G. The theory tells us that the ratio, j, of 
the number nucleation events to the number of molec- 
ular collisions, is given as j" = e -aa/kr, , .  Consider N 
molecules, each of mass m, taking part in a nucleation 
event. The availability of these molecules is aNm. This 
availability should equal AG for nucleation. Using eq. 
(26) for a, we conclude that 

Tr,n ~ 3 / 2  

4RTcAoNm 1 - ~ )  = - k T  n In j. (27) 

Now, mR, the gas constant per molecule, is equal to k 
and, on average, we must have N = 1/j. Thus, we can 
simplify this equation to get the final result 

{  r°t 'j2 43AoU 1 - Tr.l ] = Tr, . In U. (28) 

We are now able to calculate the nucleation tempera- 
ture limit for water at low pressures. From fig. 14 we 
get A 0 = 2.23 for water. The work of Dong and Lien- 
hard [27] clearly shows that the limiting value of j for 
homogeneous nucleation is consistently on the order of 
10 -5 . This value is consistent with the experimental 
results of Skripov and his co-workers [5]. 

From the T-cubic equation fitted to water, we com- 
pute the spinodal temperature at 1 atm as T t = 602.3 
K. After substituting these quantities and the value for 
T C in the preceding equation, we solve for T n to get its 
value as 601.6 K. Thus, the nucleation temperature in 
water at moderate pressures is lower than the liquid 
spinodal temperature by tess than 1 K. At higher 
pressures or higher values of N, A and T t both in- 
crease, and this temperature difference becomes still 
smaller. 

Thus, we may conclude that on the liquid side, the 
limit of homogeneous nucleation is very close to the 
liquid spinodal line. For practical purposes, the two 
may be considered one-and-the-same. 

On the vapor side, however, the available energy 
required to hurdle the potential barrier must be sup- 
plied by a far smaller set of particles, since a dense 
droplet is being created out of dispersed molecules. 
Nucleation must therefore occur much farther from 

the spinodal limit. Lienhard and Karimi [33] showed 
this to be true by empirical correlation, and they made 
a similar analysis to the present one but without thc 
help of eq. (22) in a subsequent paper [31]. 

5.3. Depressurization o f  hot liquids and their damage-. 
potential 

Correlations were given in the earlier review [1] for 
the pressure undershoot (below saturation) of rapidly 
depressurized hot water and the rate of depressuriza- 
tion. Plots of the undershoot for various depressuriza- 
tion rates and initial temperatures may be found there. 

The available energy of water at the point of nucle- 
ation, with respect to saturated liquid at 1 atm and 
100°C, was also reported in the earlier review. These 
results were computed using Karimi's equation of state, 
which we now know to be questionable below 150°C. 
For the present paper, we repeated Karimi's calcula- 
tion with Vandermarliere's T-cubics [22], supple- 
mented with the c°p(T) correlation of Wooley [26]. 

To obtain the extreme limits of the damage poten- 
tial, we consider two cases. In the first case, we assume 
that nucleation takes place at the saturated liquid 
state. In the second, we assume that the depressuriza- 
tion follows the isentropic curve drawn through the 
saturated liquid states, and that nucleation takes place 
at the intersection of this curve with the liquid spinodal 
line. In practice, the actual point of nucleation lies 
somewhere between these limits, and the pressure un- 
dershoot below the saturation pressure can be com- 
puted as a function of the saturation state and the 
depressurization rate using the correlation of Alamgir, 
Kan and Lienhard [2], which applies in the range 
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0.62 < T r < 0.93 and depressurization rates between 400 
MPa/s  and 0.15 × 106 MPa/s.  

The results of the calculation are shown in fig. 15, 
which shows the damage potential as a function of the 
saturation temperature. The results of the recalcula- 
tion agree with the older results of Karimi. They show 
that even though the pressure may fall considerably 
below saturation before nucleation occurs, the avail- 
able energy at the nucleation point is only slightly less 
than that at the saturation point at which the depres- 
surization began, even at depressurization rates as high 
as 0.15 MPa/s.  Furthermore, this destructive availabil- 
ity can be as high as 300 kJ/kg. Thus the drop in 
pressure from saturation to nucleation does little to 
diminish the available energy. Rather, it is the initial 
temperature of the liquid that is the key factor affect- 
ing the available energy. This calculation confirms our 
worst fears that thermohydraulic explosions can cause 
enormous damage. 

6. Summary 

We need thermodynamic data in ranges of tempera- 
ture and pressure which we can expect fluids to reach 
in engineering equipment, but these ranges can be 
inaccessible to measurement. Obtaining design infor- 
mation for such purposes entails application of ther- 
modynamic principles and computational techniques to 
create such data. The important points that emerge 
from our discussion are: 
• The key to obtaining derived thermodynamic proper- 

ties is the availability of a cubic-like, accurate, p - v - T  
equation of state. The key to accuracy in such an 
equation is to impose no restriction on the tempera- 
ture-dependence of its coefficients. 

• Remarkably high accuracy is possible from the use of 
simple cubic equations. Such T-cubic equations can 
be developed using few but accurate stable-state 
properties, and the coefficients of the cubic are 
obtained without time-consuming regression calcula- 
tions involving massive data. Our equation shows 
high accuracy everywhere except for superheated 
vapor, and even there it is tolerable. 

o • No data other than p - v - T  and Cp are needed to 
develop T-cubic equations. However, if such addi- 
tional data are available, they serve as a check on the 
fitting procedure and on the accuracy of the input 
p - v - T  data. 

• The coefficients of the T-cubic vary with tempera- 
ture in a way that is hard to correlate accurately. 
This explains why older cubic equations, with their 

temperature-dependence preconceived, have earned 
a reputation for inaccuracy. It is extremely difficult 
to write a global cubic that is accurate. 

• The Van der Waals surface tension equation is a 
very stringent test of the correctness of an equation 
of state. T-cubic equations pass this test consistently. 
The equation thus enables us to obtain the surface 
tension data for a saturated fluid from a single 
experimental measurement, if available, or from a 
corresponding states correlation. 

• A volume transformation rule has been described. 
With the help of this rule, existing equations of state 
can be transformed to give more accurate density 
values without affecting their vapor-liquid equilib- 
rium predictions. 

• Global cubic equations can be developed success- 
fully by fitting the T-cubic coefficients as functions of 
temperature, but the computational effort is not 
justified by the result. Computing a table of coeffi- 
cients over a range of temperatures, as a preliminary 
step in a calculation that needs thermodynamic 
property input, is more convenient and efficient. 

• The T-cubic equation can be applied to create pre- 
dictions and corresponding-states correlations of 
compressibility factor, spinodal curves, surface ten- 
sion and other such derived properties. 

• The specific heat at constant pressure, cp, ap- 
proaches infinity along an isobar in inverse propor- 
tion to the square root of the temperature deviation 
from the spinodal state. The proportionality factor in 
this relation is nearly constant at moderate and low 
pressures, and correlates well with the Pitzer factor, 
0 9 .  

• Knowledge of the approach of cp to infinity allows 
us to calculate the difference between the spinodal 
point and the homogeneous nucleation limit. This 
calculation shows that the two differ by less than I°C 
for water, so that we may accept the spinodal line as 
a stand-in for the absolute limit of homogeneous 
nucleation. 
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Nomenclature 

/'1 

r 

sat 
U 

0 

homogeneous nucleation limit, 
reduced variable, 
saturation, 
vapor spinodal point, 
reference value; value in ideal gas stale. 

Symbols Superscripts 

a 

A 

Ao 
Cp, C~. 

b , c , d  
e 

f 
g 
h 

J 

k 
m 

n 

N 

P 
Po, Pl 

r 

R 
S 

T 
U 

l' 

Z 

f i t  

ziG 
O" 

Subscripts 

a 

c 

f 
g 
1 
m 

available energy, = - h -  T~s or h -  Tos; 
coefficient in eq. (11), 
coefficient in eq. (22), 
low pressure value of A, 
specific heats at constant pressure, con -  
stant volume, 
coefficients in cubic equation,  eq. (10), 
coefficient in eq. (11), 
Helmhol tz  function, -= u - Ts, 
Gibbs free energy, 
specific enthalpy, 
number  of nucleation e v e n t s / n u m b e r  of 
molecular  collisions, 
Boltzmann's  constant, 
mass of a molecule,  
exponent  in eq. (16), 
number  of  molecules in a nucleation event, 
pressure, 
auxiliary pressure functions, eq. (2) and 
eq. (3), 
volume variable, section 3.1, 
ideal gas constant, 
specific entropy, 
temperature,  
specific internal energy, 
specific volume, 
compressibility factor, -= p v / R T ,  
coefficient of volume expansion at con- 
stant pressure, 
coefficient of  isothermal compressibility, 
critical work to create a nucleus bubble, 
surface tension, 
Pitzer's acentric factor, 

=- - 1 - loglo( Pr.sat)Tr_O. 7. 

compressed liquid at high pressure, 
critical state, 
saturated liquid, 
saturated vapor, 
liquid spinodal point, 
state in unstable region with same T and 
p as states f and g, 

dummy variables in integrals; dimensional 
coefficients, 
ideal gas state, typically p = 1 atm. 

Abbreviations 

CEOS 
CSC 
EOS 
F E O S  
r . m . s .  

T-cubic 

continuous EOS,  
corresponding-states correlation, 
equation of state (usually p - v - T ) ,  
fundamental  EOS,  
root mean square, 
cubic fitted isotherm by isotherm. 
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