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ABSTRACT

Identifying and ranking influential nodes in complex networks is a critical aspect to study the survival and
robustness of networks. Many ongoing researches have proposed centrality metrics to address this problem, so
that the performance of each is attributed to specific scenarios. For example, metrics based on local structure
have low ranking accuracy due to the use of limited information, and metrics based on global structure suffer
from high complexity. Meanwhile, metrics based on semi-local structure are amazingly well, but an efficient
centrality for identifying influential nodes is still not available due to differences in the structure and scale of
networks. In addition, most semi-local centrality metrics only consider one aspect of each node’s information,
and their development still faces serious challenges. This paper develops a Weighted Semi-Local Centrality
(WSLQ) to identify influential nodes in complex networks based on extended neighborhood concept. Here,
several different weights are investigated to find the best performance on WSLC. We use the extended neigh-
borhood concept to select the nearest neighbors, which considers the global information of the network in a
limited and efficient way to calculate the ranks. Here, a distributed approach is presented that can cut a subgraph
of the entire network for each node with low complexity. This subgraph contains neighbors with different hops,
which are used to maintain high efficiency when facing large-scale networks. In addition to the importance of the
node itself, WSLC also combines the importance of the node’s nearest neighbors with different hops for ranking.
Therefore, defining semi-local structure with a distributed approach as well as using an efficient edge weighting
policy differentiates WSLC from other existing centrality metrics. The evaluation of WSLC has been done through
several real-world networks using Kendall’s correlation. The effectiveness of WSLC under the SIR infection
spreading model has been verified by extensive simulations compared to state-of-the-art centrality metrics.

1. Introduction

in controlling or diffusion of information.
In the process of spreading information, network structure and re-

In recent decades, the emergence of social relationships has moved
towards becoming more complex and forming institutions with complex
relations. Nowadays, these institutions are considered as complex net-
works that have some common properties such as small-world, clus-
tering coefficient, and scale-independent (Berahmand et al., 2022).
Every complex network contains some nodes and complex relationships
between them. The heterogeneity of the structure of complex networks
leads to the appearance of different roles of nodes (Zhao et al., 2023d,
2023e). Hence, some nodes can affect the performance and structure of
the network to a greater extent. These nodes are known as seed/in-
fluential nodes in complex networks and have significant effectiveness

lationships between users are very important. Also, spreading mecha-
nisms are influenced by a small group of users. Therefore, the selection
of primary nodes for spreading a specific behavior can be different (Zhao
et al., 2022). In order to achieve the maximum influence, a small group
of nodes can be selected and influence the opinion of other nodes
through them. Identifying such nodes is one of the challenging topics in
the field of network analysis (Li et al., 2019). The problem of identifying
influential nodes in complex networks has great theoretical and prac-
tical importance, which has been understood by the research society
(Cao et al., 2023; Wang et al., 2023). In general, the influential nodes in
the field of network information mining are known as an open problem
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because it has many applications in the real world. The most important
of these applications include information propagation, online adver-
tising, rumor control, time series, marketing, advertising, and opinion
monitoring (Rezaeipanah et al., 2020).

Effective node identification approaches are divided into two general
categories: activity-based techniques and centrality-based techniques
(Salavati et al., 2019). Activity-based techniques such as heat diffusion
and similarity measure depend on the type of activity of nodes in a
network (Mohammadian et al., 2022; Zhang et al., 2022). Centrality-
based techniques such as degree, closeness, and betweenness are
defined based on the unique characteristics of each node in a network
(Berahmand et al., 2018). In the last few decades, many centrality
metrics have been proposed considering the topological structure and
dynamics of complex networks (Jannesari et al., 2023; Xue et al., 2023).
In general, each centrality metric measures the rank of each node in the
entire network as influential. For example, the degree centrality metric
shows the rank of each node with that node’s degree, so that the
importance of a node with a higher degree is greater than other nodes.

Considering the neighborhood level, centrality metrics are divided
into local, semi-local, and global categories (Yue et al., 2023; Zhao et al.,
2023a). Local metrics only use the information of first-level neighbors,
while global metrics consider the information of the entire network to
calculate influence. Meanwhile, semi-local metrics use the information
of neighbors with different levels to compromise between complexity
and performance (Rostami et al., 2023). Basically, semi-local centralities
are defined based on fixed-length nearest neighbor information and
perform better for large-scale networks (Yang et al., 2022). However,
most of the centrality metrics in the semi-local category only use the
information of neighbors of the first and second levels to estimate in-
fluence and do not apply topological connections.

In recent years, several centrality metrics have been proposed that
use the information of neighbors with higher levels (Liu et al., 2016;
Zhang et al., 2023). However, the information of neighbors with higher
levels to calculate influence improves the accuracy but increases the
complexity. Therefore, approaches to extract more information from the
network with low complexity can overcome this problem. Considering
the extended neighborhood concept, this paper tries to present a
distributed approach for extracting nearest neighbors’ information with
different levels. Here, each node can independently identify a subgraph
of the network with nearest neighbors. This subgraph is used to calculate
the influence of each node, which can significantly reduce the
complexity. Moreover, the insight in the literature shows that edge in-
formation is also involved in centrality. Hence, in addition to node in-
formation, we use edge information to identify influential nodes. Here,
the edges in the extracted subgraph are weighted and the weight in-
formation is applied to calculate influence. Since how the weights are
calculated is so important, we will examine several different weights.
According to the stated concepts, this paper proposes a Weighted Semi-
Local Centrality (WSLC) based on extended neighborhood concept to
identify influential nodes in complex networks.

The main contribution of this paper is as follows:

Each node independently finds the nearest neighbors with different
levels based on the extended neighborhood concept. The nearest
neighbors are extracted as a subgraph from the network and applied
to calculate the influence.

In addition to node information, edge information is used to calcu-
late the influence. The edge information contains an edge weight
assignment policy that is applied to the extracted subgraph.

e A weighted semi-local centrality based on the extended neighbor-
hood concept is developed, which simultaneously uses the informa-
tion of the node itself and the nearest neighbors to calculate the
influence.

The following is the structure of this paper. The research literature
and related works for identifying the influential nodes is given in Section

2. Section 3 focuses into proposed WSLC centrality metric in depth. The
experimental setup, along with the test outcomes are specified in Section
4. Finally, Section 5 concludes the paper.

2. Literature review

In this section, we describe some well-known centrality metrics and
then review some state-of-the-art centralities from the semi-local
category.

2.1. Preliminaries

A complex network can be imagined with a graph G = (V,E), where
y € Visthe set of nodes and e,, € E is the set of edges. Let e,,, be the link
between nodes u and v in an undirected network such as G. According to
this definition, N = |V| is the total number of network nodes, and M =
|E| is the total number of network edges. Meanwhile, consider G = (V. E,
W) as a graph for a weighted network, where W is the set of edge
weights. Here, w,, € W represents the weight associated with the edge
euy-

The neighborhood of the first level in the graph G is defined by the
adjacency matrix A, where each a,,, € A represents the connection status
between nodes u and v. For example, a,, = 1 indicates a link between
nodes u and v, and a,,, = 0 indicates the absence of any link. Also, I'(v) is
defined as the set of all neighbors of the first level with node v, and k, =
|C(v)| refers to the number of these neighbors. In addition, the number of
hops (or distance) between nodes u and v via the shortest path is defined
by Suy-

2.2. Centrality metrics

To identify influential nodes in different networks, many techniques
have been introduced so far (Guo et al., 2023; Huang et al., 2023). Each
of these methods have been developed by considering different aspects
of the network structure, such as the type of communication, the type of
target, and the characteristics of the network. These methods are known
as centrality metrics in complex networks. According to the network
information used to measure the rank of nodes, centrality metrics are
divided into three general categories: local centralities, semi-local cen-
tralities and global centralities (Cao et al., 2022; Zhao et al., 2023b). As
shown in Table 1, various centrality metrics of each category have been
proposed so far.

Local centralities ignore the global structure of the topology and are
often less relevant to real-world networks. However, these metrics are
simple and have little complexity because they only apply the degree of
a node’s neighbors to calculate its rank (Forouzandeh et al., 2021).
Global centralities provide better results than local centralities, because

Table 1
Different types of centrality metrics.

Local centralities Semi-local centralities Global centralities

Degree (Freeman, NCvoteRankcentrality (Kumar Betweenness (Freeman,

2002) and Panda, 2020) 1977)

Cluster coefficient ( k-shell (Kitsak et al., 2010) Closeness (Sabidussi,
Serrano and 1966)
Boguna, 2006)

PageRank (Brin and k-shell decomposition (Sheng Eigenvector (Bonacich,
Page, 1998) et al., 2020b) 2007)

Trust-PageRank ( Semi-local centrality (Chen Relative change of
Sheng et al., et al., 2012) average shortest path (
2020b) Lv et al., 2019)

Global and local
structure (Sheng et al.,
2020a)

Global importance of a
node (Zhao et al., 2020)

Local neighbor
contribution (Dai
et al., 2019)

Normalized local
centrality (Zhao
et al., 2018)

Mixed degree decomposition (
Zeng and Zhang, 2013)

Local structural centrality (
Gao et al., 2014)




they use the information of holistic network for ranking. However, these
metrics are inefficient for large-scale networks due to high time
complexity (Fan et al., 2020).

In recent years, the scale of online social platforms is growing to
billions of users. Hence, local centralities will be unusable due to limited
information utilization and global centralities due to high complexity.
Recently, some metrics focus on mixed local and global structures as
semi-local centralities (Yang et al., 2020). Semi-local centralities
simultaneously consider first-level neighbors and next-nearest neigh-
bors to measure influence. Chen et al. (2012) showed that these metrics
provide a good ability to rank nodes by balancing accuracy and
complexity.

One of the most famous local centrality metrics is Degree Centrality
(DC), which considers the degree of the node as influence (Freeman,
2002). PageRank (PR) and Trust-PageRank (TPR) are other local cen-
trality metrics. By focusing on the ranking of web pages, PR can calcu-
late the influence of nodes in complex networks (Brin and Page, 1998).
TPR is the same as PR except that trust is applied to neighbors while
ranking nodes (Sheng et al., 2020b). Local centrality metrics are simple
and fast, but have low accuracy due to access to limited information.

Betweenness Centrality (BC), Closeness Centrality (CC), and Eigen-
vector Centrality (EC) are among the most famous global centrality
metrics. BC considers the number of observations of a node in all the
shortest paths in the network for its influence (Freeman, 1977). CC
considers the lowest average distance to other nodes as the influence of a
node (Sabidussi, 1966). EC measures the influence of a node in the
network by the normalized eigenvector belonging to the largest eigen-
value (Bonacich, 2007). Lv et al. (2019) proposed a global centrality
metric based on Average Shortest Path (ASP) theory, known as Relative
change of ASP (RASP). RASP includes changes in the average shortest
path after removing a node from the network. Global centrality metrics
are highly accurate, but suffer from high complexity due to the use of
information from the entire network.

Semi-local centrality metrics have attracted more attention to iden-
tify influential nodes in complex networks because they strike a balance
between complexity and accuracy. Semi-local Centrality (SC) and Mixed
Degree Decomposition (MDD) are the most common metrics of semi-
local centrality. SC calculates the influence of a node by simulta-
neously considering the degree of neighbors in the first and second levels
(Chen et al., 2012). MDD uses K-Shell (KS) index to identify influential
nodes, where exhausted degree and residual degree are simultaneously

Table 2
Details of centrality metrics.

applied (Zeng and Zhang, 2013).
Table 2 summarizes more details of the investigated metrics.

2.3. Related works

So far, many centrality metrics have been devised to find influential
nodes in complex networks (Kang et al., 2016; Ullah et al., 2022; Zhang
et al., 2023). Each of these metrics has some shortcomings and own
points. In fact, the type of influence in a network does not appear as a
“natural” concept and can be different from one network to another.
Therefore, each of the centrality metrics may interpret influence to rank
nodes with different viewpoints. For example, the BC metric defines
influence as an index of bridging between nodes, whereas the CC metric
highlights the minimum distance to connect to other nodes (Zhou et al.,
2021; Wu et al., 2023). This shows that in the analysis of complex net-
works, “semantic profiles” are different from centrality methods.

In recent years, semi-local centrality metrics have received the
attention of the research society due to the balance between accuracy
and complexity (Torabi et al., 2022). These metrics consider both local
and global information from the network structure and use multiple
characteristics of nodes to measure influence as much as possible (INi
etal., 2021; Wang et al., 2022). Due to the large amount of literature on
semi-local centrality metrics, we limit this section to reviewing only
these works. A summary of the investigated semi-local centralities along
with their formula is given in Table 3. For a better understanding of the
proposed centrality metric, we have also included the details of the
WSLC in this table.

The Degree and Importance of Lines (DIL) centrality semi-local
metric was proposed by Liu et al. (2016) where the influence of nodes
and edges is applied in the influence calculation. DIL calculates the
importance of edges by considering the characteristics of the nodes that
are linked to them. The authors measure the weight of each edge in DIL
based on fungibility and connectivity. This metric identifies bridge
nodes with high accuracy and has an acceptable complexity for pro-
cessing large-scale networks. However, DIL is inefficient for identifying
influential nodes with the same degrees.

Kang et al. (2016) proposed a Weighted Semi-Local Centrality Cri-
terion (WSLCC) to identify influential nodes in complex networks.
WSLCC tries to reflect the violation of local centrality metrics by
simultaneously considering semi-local information and weighted degree
as the influence strength of the node. WSLCC is inspired by evidence

Reference Metric ~ Category Formula Description of parameters
. DC Local DC(v) =k, -
Freeman (2002)
PR Local 1- PR(u is the jump probability.
Brin and Page PR(v) = L azu&r(v]% “ Jump p ty
(1998) Y
TPR Local 1-a T(u,v) is the trust value between nodes u and v.
Sheng et al., TPR(v) = N + @ yerp T, v). @) v
(2020b) TPR(u)
BC Global Suw(V -
Freeman (1977) BC(v) = Zu#w#ve‘,gw—()
uw
CcC Global 1 -
Sabidussi CCY) ==———
DutvevOuy
(1966)
EC Global EC(v) = p3 yermXu u is a constant value based on the largest eigenvalue of A, and x, is the influence of node u

Bonacich (2007)

according to the normalized eigenvector belonging to the largest eigenvalue of A. Let x =

[x1, %2, . Xy }T be an eigenvector associated with the eigenvalue y~! of A.

RASP  Global __|ASP[G] — ASP[G,]|

Lv et al. (2019) RASPUY) == 5p(G]

Chen et al. s¢ IS:cHalli- SC(v) = Zugr(v) Zwer(u) K -
(2012)
MDD  Semi- MDD(v) =K, + 1K,
Zeng and Zhang local

(2013)

ASP|G] is the average number of steps along with shortest paths for all possible pairs of nodes in G.
Also, G, is the network G after node v is removed.

A is a tunable balance parameter, K. is the residual degree, and K, is the exhausted degree.




Table 3
Summary of recent semi-local centralities.

Reference Metric Formula Description of
parameters
K al WSLCC  WSLCC(v) = N"(w) is the sum of
ang et al. , i
‘E» Zue]"(v) Zwem) (N"(w) +Ky ) + the weighted degree
(2016) K, of node w as well as
its 2-hop and 3-hop
neighbors. Also,
Ky, =
A/ kVZueF(v) Wuy-
§ NL NL(v) = ¢(u) is the number of
Shao et al. : ;
(W) +1, k-1 neighbors with path-
(2019) Duerw) (‘/’ e kg — 2 length equal to 2 of u.
- LGC ky Vka +a a is a tunable
Ullah LGC() = N'Zm T0) Gy parameter that
et al. controls the effect of
(2021) degree.
Ullat EVC+ ks, is KS of node v,
ah EVC*(v) = and a is a tunable
et al. parameter to control
(2022) T 2a(ky (ksy + ksu) ) the degree effect.
uel'(v) Suy
‘ INASP INASP(v) = L is the maximum
Zhang k hop for the
L U
et a‘l: avky + 23501 Y uevi) ] 4as,  neighborhood,
(2023) LN VH () is the
ASP[G,] neighbors of node v

in the l-hop, and
/@[av] is the LRASP
index for node v. The
coefficients of each
section are defined
by parameters a, ax,
and as.

Inoge is the
importance of the
node itself, I;cq is
the importance of the
local node, and
Isemi_Local i the
importance of the
semi-local node.
Also, a; are the
tunable influence
coefficients.

Proposed ~ WSLC WSLC(v) = a1 Inoae(v) +
metric a2 J1ocal(V) + @3-Isemi_tocat (V)

theory and semi-local centrality presented by Gao et al. (2013), with the
difference that WSLCC is developed on a weighted network and con-
siders the connections of multiple layer neighbors.

Shao et al. (2019) presented a semi-local centrality method based on
DIL based on Neighbors and the importance of Links (NL). NL applies the
importance of all second-level neighbors to rank nodes. In addition, the
authors use the unsubstitutability and connectivity of edges to apply the
topological position of nodes in influencing estimation. Therefore, NL
considers both topological position and semi-local structure for ranking.

Ullah et al. (2021) addressed the disadvantages of local and global
metrics by simultaneously considering local and global topological as-
pects. The authors developed the Local-and-Global-Centrality (LGC)
metric, which includes three definitions: local-influence, global-influ-
ence, and total influence. In local-influence, the ratio of node degree to
all network nodes is considered. Global-influence includes the impor-
tance of neighboring nodes as well as shortest distances. Finally, LGCis a
combination of local-influence and global-influence definitions.

Local RASP (LRASP) as a semi-local centrality metric was presented
by Hajarathaiah et al. (2022). LRASP considers part of the network to
calculate RASP. Here, all neighbors of a node up to a fixed level are cut
as an induced subgraph of the entire network and considered as input for
the RASP metric. The results show that LRASP improves the balance
between complexity and accuracy compared to RASP.

Ullah et al. (2022) used the escape velocity formula to identify

influential nodes and introduced the Escape Velocity Centrality (EVC)
metric. EVC considers both local and global information and measures
the rank of each node by combining shortest distance and degree. Since
degree alone is not able to show the influence of nodes, the authors
proposed EVC+ as an extended version of EVC. EVC+ increases per-
formance by simultaneously including degree and KS in EVC.

A semi-local centrality metric combining the LRASP index, the
importance of the node itself, and the importance of the node’s neigh-
bors was proposed by Zhang et al. (2023). Let INASP be the symbol to
denote this metric. The importance of the node itself in INASP is applied
by degree. The influence of the nearest neighbors is measured using the
influence of the connected nodes and the hop-count between them.
Here, the nearest neighbors are defined by first, second and third level
neighbors. Here, instead of the entire network, a small subgraph is
extracted for use by LRASP.

Weighted Hybrid Centrality (WHC) is another semi-local metric that
applies information from both nodes and edges to calculate influence
(Shetty and Bhattacharjee, 2022). Since the importance of all edges is
considered the same in unweighted networks, WHC develops an edge
weighting approach to apply the frequency of interactions between each
pair of nodes during ranking. In addition, WHC includes several well-
known centrality methods such as degree, KS, and EC.

3. Proposed centrality metric

Semi-local centralities are more effective compared to local cen-
tralities such as degree and PageRank, as well as global centralities such
as betweenness and closeness in dealing with large-scale networks.
Recent works have shown that centrality in a semi-local structure de-
pends not only on the node itself but also on its nearest neighbors
(Hajarathaiah et al., 2022). However, most local centrality metrics are
defined only based on the number of first- and second-level neighbors
and ignore the topological connections between neighbors (Masdari
et al., 2020). Meanwhile, metrics that consider both topological con-
nectivity and the number of neighbors to identify influential nodes are
still under development (Zhao et al., 2023c). Topological communica-
tion refers to the position of nodes and connections between them in the
network, which can be applied by considering neighborhood informa-
tion at different levels. Considering the entire network structure requires
considering all levels of neighborhood and is inefficient for large-scale
networks. Therefore, neighborhood levels should be applied in a
limited way in ranking nodes. Also, the identification of neighbors with
different levels should be done with low computational complexity to
maintain performance in the face of large-scale networks.

Insights in the literature show that the influence of a node depends
not only on itself but also on its nearest neighbors. Also, the importance
of edges in measuring influence should not be assumed to be equal, as
this is an unrealistic assumption of social interactions. With this moti-
vation, we propose WSLC as a weighted centrality metric based on the
extended neighborhood concept. WSLC includes three features to mea-
sure the influence of each node: 1) the importance of the node itself in
the network (i.e., Node-Influence), 2) the importance of that node’s
direct neighbors in the network (i.e., Local-Influence), and 3) the
importance of the nearest neighbors of that node with different levels in
the network (i.e., Semi-Local-Influence). The combination of these three
features by WSLC can apply network structure, connections between
neighbors and topology heterogeneity to rank nodes.

Let Inoge(v) denote the importance of node v in terms of Node-
Influence. Also, let I1ocq(v) and Isemi_rocar(v) be the importance of node
v in terms of Local-Influence and Semi-Local-Influence, respectively. By
combining these three features, WSLC calculates the total influence of
node v in the network, as defined by Eq. (1).

WSLC(v) = ay Inode(v) + @2 Trocat (V) + a3 Tsemi_rocat (V) 1)

where a;, a; and a; are tunable influence coefficients for Node-



Influence, Local-Influence and Semi-Local-Influence features,
respectively.

All three features defined in WSLC are normalized between 0 and 1
before combining so that the effect of all of them is the same in the total
influence measurement. The details of the three features used in WSLC

are as follows.

3.1. Node-influence

The degree of a node is one of the most important factors to deter-
mine its centrality in complex networks. Hence, we define Node-
Influence in WSLC based on the node degree. However, the density of
the network can affect the degree of the node as a centrality factor.
Suppose the degree of node v is equal to x. Obviously, the importance of
node v with degree x is higher in a network with low connections than in
a network with high connections. Hence, we define Node-Influence for
node v based on both degree and density, as shown in Eq. (2).

k,

Inoae (V) = ko + Do 2

where kpqc is the largest degree of the network. Also, Dg denotes the
density for network G, which is defined by Eq. (3) for undirected simple
networks.

2M

Po=Nv—1)

3

3.2. Local-influence

The insight in the literature shows that the greater the influence of a
node compared to its neighbors, the more likely that node will be
influential in the network. However, the number of neighbors should not
be neglected because it is directly proportional to the influence of the
node. Therefore, the importance of a node depends not only on itself but
also on its neighbors. On the other hand, the contribution of each
neighbor in the influence measurement should not be neglected. Ac-
cording to these definitions, we calculate I}, (v) by Eq. (4).

1 Wik,

- 4
kv ) ku + kv ( )

ILoml(v) =

uer'(v

where w,, is the weight associated with the edge e, ,, which represents
the connection contribution between nodes v and u.

The research society has strong evidence of the significant impact of
the heterogeneity of connection structures and diverse patterns on the
understanding of influence dynamics in complex networks. Therefore,
heterogeneity of topologies is a crucial aspect of centrality. Although
some state-of-the-art metrics have been developed considering the
connection strength between nodes as weights, recent studies show that
there is no reliable and consistent metric in facing different networks.
This weakness has been reduced in recent works by combining different
centrality metrics and simultaneously considering the weight of the
edges. However, most of these works have ignored the heterogeneity of
connectivity structures in complex networks. With this motivation, we
apply the effectiveness of edges through a weight in the penetration
measure. Since the influence of a node depends on how the weight is
calculated, we introduce several different weight policies. In the
following, six weighting policies are defined to calculate w,, as the
weight between nodes v and u.

e Common Neighbors (CN): CN refers to the number of common nodes
between two nodes, as defined in Eq. (5) (Lorrain and White, 1971).

CN,, = [P(u) NT()| (5)

e Jaccard Coefficient (JC): JC refers to the number of common neigh-
bors relative to the total number of neighbors between two nodes, as
defined in Eq. (6) (Jaccard, 1901).

IC(w) NT())

" T IR ure)l

©

e Average Degree (AD): This policy is defined based on the average
degree of nodes u and v, as shown in Eq. (7).

k, +k,
ADI( v =
' 2

@)

e Neighbors Degree (ND): This policy defines the weight between nodes
u and v based on the sum of the average degrees of the neighbors of
each of these nodes, as shown in Eq. (8).

Zwel"(u)kw Zwel"(v) kw

ND,, = 8
: [ — ®)

e Reputation-Optimism (RO): The weighting policy of RO includes the
factors ‘Reputation’ and ‘Optimism’, which refer to the popularity of
a user in the network and the following of more users, respectively.
Let the weighted RO policy be calculated through Eq. (9).

2.k, .k,
RO,, =
T ket ks

)

e Katz Index (KI): KI contains all paths with a given maximum length
between two nodes. This policy is calculated based on the path fre-
quency and the path length factor, as defined in Eq. (10) (Katz,
1953).

Klu,v = iﬂ]
=1

(10

<>
Ji-.f

where ‘yafjb

represents the number of paths between u and v with

I-hop, and g is a damping coefficient to reduce the effect of long paths.
Setting f to 0.05 is recommended by researchers (Shao et al., 2019). It is

P>
P
matrix A to the power of L. Also, L is the maximum neighborhood level,
which is always set equal to 2 for the Local-Influence feature.

worth noting that can be calculated by raising the adjacency

3.3. Semi-local-influence

The analysis of complex networks shows that the information of the
nearest neighbors is effective in the ranking of nodes. However, different
definitions of nearest neighbors have been proposed by researchers. For
example, Chen et al. (2012) uses first-degree neighbors to calculate in-
fluence. Zhang et al. (2023) proved that the nearest neighbors of a node
with fixed and limited hops contain more effective information for
calculating influence. Obviously, considering all neighbor levels results
in a global centrality metric, which is inefficient for large-scale net-
works. Accordingly, WSLC limits the neighbor levels to a maximum of L
so that the information of 1-hop, 2-hop, ..., and L-hop neighbors can be
applied to calculate the influence. Eq. (11) shows how to calculate
ISemi-Local(V) in WSLC.
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where G;L> is a subgraph of G containing all neighbors up to level L of
node v. SZ is a function that returns the total number of nodes in the
subgraph G;1>. I'y(v) is the set of neighbors for node v with I-hop, and g is
a damping coefficient to reduce the effect of long paths. Setting j to 0.05
is recommended by researchers (Gao et al., 2013). Furthermore, W, is
the weight between nodes u and v with a reliable path.

It is worth noting that Semi-Local-Influence also includes distance to
neighbors, as it is inversely proportional to influence. In general, the
nodes u and v in Isemi_rocqr(v) may be connected through some paths, so
the edge contribution must be applied through the path. Here, wy,
contains the weight multiplication of edges between nodes u and v via
the shortest available path. Since the weights of the edges depict the
strength of the connections, the multiplication of the weights of the
edges affects the path length and provides the reliability of the path.

An important challenge in Isem;_rocqi(v) is to obtain I'y(v) in large-scale
graphs. The set of neighbors in the first level is available through the
adjacency matrix. Obtaining I';(v) as neighbors of the second level has
negligible complexity, although it depends on the degree of the node v
and the neighbors. However, finding I';(v) for larger values of l imposes a
higher computational complexity on the centrality metric. To address
this challenge, WSLC identifies the nearest neighbors at different levels
by considering the extended neighborhood concept. Zhang et al. (2023)
introduced a distributed strategy based on the extended neighborhood
concept, in which a semi-local subgraph of the entire network is
extracted for each node. In this strategy, each node independently cre-
ates a neighbor table that contains all neighbors up to the maximum
level L. According to this idea, we use this semi-local subgraph to obtain
I (V)

The identification of the nearest neighbors for a node v is done by
considering the extended neighborhood concept through two control
packets ‘P1’ and ‘P2’. Node v broadcasts the control packet ‘P1” with a
“Max.HopCount” equal to L in the network. Hence, packet ‘P1’ is
received by all neighbors with maximum level L from node v. After that,
all the nodes that received the ‘P1’ packet send their properties
including NodelD, degree and distance/hop to node v through the ‘P2’
control packet.

Algorithm 1 shows a pseudo-code of the proposed distributed
approach based on the extended neighborhood concept to identify near
neighbor nodes. We assume that the graph is accessible using an adja-
cency matrix and each node has the set of all its adjacent edges.
Therefore, each node can discover all its neighbors through the adja-
cency matrix in linear time. Algorithm 1 is executed recursively similar
to Depth First Search (DFS) algorithm. The complexity of DFS is
O(N +M) with the adjacency matrix available. However, our algorithm
imposes a depth limit up to a maximum level of L. Hence, similar to a
Depth-Limited Search (DLS) algorithm, Algorithm 1 traverses the graph
only up to a maximum depth L. Therefore, the time complexity of our
algorithm similar to DLS is O(b"), where b is the branching coefficient.
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Algorithm 1. Pseudocode of identifying neighboring nodes based on
extended neighborhood

Input: Maximum neighborhood level L, node v.
Output: I';(v) as neighboring nodes v to the maximum level L.

(continued on next column)

Algorithm 1. Pseudocode of identifying neighboring nodes based on
extended neighborhood (continued)

1: ', (v)«< Add node v to the list of discovered nodes;

2: if Max.HopCount (v) = 0 then

3: Return I, (v);

4: end

5: foreachu € I'(v) do

6: ifu ¢ I'y(v) then

7: L=L-1;

8: Create packet ‘P1’ with “NodeID = v”, “SourcelD = u”, and “Max.
HopCount = L7

9: Send packet ‘P1’ to node u;

10: Create packet ‘P2’ with “NodelD = u”, “SourcelID = v”, and “Information
W

11: Send packet ‘P2’ to node v;

12: Running Algorithm 1 (L, u, I';) as a recursive algorithm;

13: end

14:  end

3.4. Example of WSLC

To better understand the proposed centrality metric, we describe a
numerical example of WSLC. Consider Fig. 1, where there is a simple
unweighted graph with 16 nodes and 18 edges. Here, WSLC is calculated
for node 1, assuming L = 3, w,, = ND,,,, and # = 0.5. According to Eq.
(2), Inoge(1) is calculated as follows:

2%18
=— -2 015
“T16%(16— 1)
5
Iyoae(1) = ———— =081
woae(1) = 627075 = 08

According to Eq. (4), I,ca(1) is calculated as follows:
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To calculate Isemi_rocar(1), first the subgraph associated with node 1 is
extracted considering the maximum level of neighborhood equal to 3.
Let G;*> be the extracted subgraph. According to Eq. (11), Isemi_rocar(1)
can be calculated as follows:

312 394 394 394 394 304) N\ _ oo
18 ' 18 18 18,/

where I';(1) includes nodes 4, 6, 10, and 11, and I'3(1) includes nodes 7,
12,13, 14, 15, and 16.
Finally, WSLC(1) is calculated according to Eq. (1) as follows:

WSLC(1) = (0.25%0.81) + (0.3%0.78) + (0.45%0.26) = 0.5556



Fig. 1. A simple unweighted graph with 16 nodes and 18 edges.

Here, a; =0.25,a, = 0.3, and a3 = 0.45 are assumed. The WSLC values
for other nodes in Fig. 1 are reported in Table 4. For better under-
standing, the reader can download the MATLAB source code for this
example from https://github.com/WSLCCentrality/InfluentialNodes.

3.5. Pseudo-code

Algorithm 2 shows the pseudo-code of proposed WSLC centrality
metric which is developed based on the extended neighborhood
concept. This algorithm returns the importance of node v in graph G
based on the WSLC metric.

Algorithm 2 is designed to calculate the importance of node v in
graph G. Lines 1 and 2 define the details of the graph, including the
number of nodes, the number of edges, and the adjacency matrix. Line 3
sets the weight of each edge of G. Line 4 calculates the density of the
graph G. Line 5 calculates local-influence. Line 6 finds the set of all first-
level neighbors of node v based on the adjacency matrix. Line 7 sets
Iocqr(v) to an initial value of zero. Lines 8-11 calculate the value of
Iocq(v) according to the definition of Local-Influence. Line 12 sets
Isemi_rocal(V) to an initial value of zero. The subgraph associated with
G;l> is created in line 13. Line 14 repeats up to a maximum of L as the
neighborhood level. In line 15, the set of all neighbors up to the
maximum level [ of v according to extended neighborhood concept are
identified. Line 16 is for iteration per neighbor of I';(v). The shortest path
between v and any u € I(v) on G;*> is found in line 17. Lines 18-21
calculate the weights between u and v based on the reliable paths. Line
22 finds the length of the shortest path between u and v. Lines 23 and 25
calculate the value of Isemi_rocat(v) according to the definition of Semi-
Local-Influence. Line 25 calculates the final semi-local-influence. Line
28 calculates total-influence. Finally, the algorithm returns WSLC(v) as
output in line 29.

Table 4

WSLC metric results for all nodes in Fig. 1.
Nodes Inode Tocal ISemi_Local WSLC Ranks
1 0.8130 0.7806 0.2627 0.5556 1
2 0.1626 0.4534 0.1139 0.2279 10
3 0.3252 0.6207 0.0955 0.3105 8
4 0.4878 0.7555 0.0436 0.3682 5
5 0.4878 0.6556 0.0629 0.3469 6
6 0.4878 0.7842 0.0290 0.3703 4
7 0.1626 0.5774 0.0164 0.2213 11
8 0.4878 0.6154 0.0851 0.3449 7
9 0.4878 0.7877 0.0494 0.3805 3
10 0.1626 0.6124 0.0166 0.2318 9
11 0.9756 0.9008 0.0184 0.5224 2
12 0.1626 0.3869 0.0379 0.1738 12
13 0.1626 0.3869 0.0352 0.1725 13
14 0.1626 0.3869 0.0328 0.1715 14
15 0.1626 0.3869 0.0307 0.1705 15
16 0.1626 0.3869 0.0288 0.1697 16

4. Results and discussions

To evaluate the performance of the proposed centrality metric, we
use the SIR model as the basis for calculating Kendall’s 7 coefficient.
Simulations are performed with a wide variety of real complex networks
in different dimensions. In addition to traditional centrality metrics, we
use several state-of-the-art centrality metrics to compare with WSLC.
The rest of this section includes details related to experimental setup,
evaluation criteria, benchmark metrics and simulation results.

4.1. Experimental setup

All simulations were performed on a Lenovo laptop with Intel®
Core™ i5 Processor (2.40 GHz), 8 GB of Memory, and Windows 11
Home. MATLAB R2023a software is used to implement centrality met-
rics. Each centrality metric is tested on eight real complex networks,
where we select TopK nodes with the highest rank from each network as
influential nodes. Inspired by Lv et al. (2019), we set TopK equal to 10 in
the simulations.

Algorithm 2. Pseudocode of WSLC centrality metric

Input: G = (V,E), L, §, a1, az, as, node v.
Output: WSLC(v) as the influence of node v.
1: N =|V|,M = |E|;
A« Adjacency matrix of graph G;
3: {wi i } nxn < Adjusting the weight between each pair of nodes i and j according
to a weighted policy;
// Definition of Node-Influence
4. Dg =2M/(N(N —1));
5: Inode (V) = kv/(kmax + Dg);
// Definition of Local-Influence
6 I'(v)«< Find the set of all first-level neighbors of v based on A;
7: Iocar(v) = 0;
8: foreach u € I'(v) do
9: Troca (V) = Inocat (V) + /Wuy*ky/(ku + ky);
10:  end
11: Troca (V) = ILocal(V>/kv;
// Definition of Semi-Local-Influence
12: Isemi_Locat (V) = 0;
13: G;1> < Extracting the semi-local subgraph associated with v at level 1
according to extended neighborhood concept;
14: forl=2toLdo

1

15: I'/(v)«< Find the set of all neighbors up to the maximum level [ of v
according to extended neighborhood concept;

16: foreach u € I'j(v) do

17: Pathy,, <shortestpath(G;1> ,u, v);

18: Wyy = 1; tmp = 0;

19: foreach e;; € Path,, do

20: Wuy = VAVu,v*Wi.j;

21: end

22: Ouy = ‘Pathu.v}§

23 tmp =tmp + +/ "’\Vuy*kv/((su.vk(ku + kv));

24: end

25 Tsemi_tocal (V) = Isemi_tocat(v) + (f*tmp)

26: end

27: Isemi_tocal(V) = Isemiyy (V)/SZIGS*7];

// Definition of Total-Influence
28: WSLC(V) = a1 *Inode(V) + @2 Tr0cat(V) + @2 *Isemi_1ocal (V);
29:  Return WSLC(v);

In addition to the edge weight policy, ai, az, as, and L are tunable pa-
rameters in the proposed metric. We examine several weighting policies
to find the best performance. Also, we analyze the parameter L through
simulation with different values. Parameters a;, a,, and az, which are
applied as influence coefficients in the proposed metric, are set in the
optimal mode using Taguchi design approach (Liu et al., 2022). This
approach seeks to maximize the S/N ratio (signal-to-noise) by consid-
ering the influence score. We found the optimal values for parameters
a;, as, and as with Taguchi approach 0.25, 0.3 and 0.45, respectively.


https://github.com/WSLCCentrality/InfluentialNodes

Table 5
Properties of the real complex networks.

Networks No. of nodes No. of edges Avg. degree Max. degree
Karate-Club 34 78 4.6 17

Dolphins 62 159 5.1 12
C-elegans 297 2148 15.2 83

Airlines 235 1297 11.0 130
Infect-Dub 410 2765 13.5 50

Email 1133 5451 9.62 71

Grid 4941 6594 2.7 19
Ca-Astroph 18,771 198,050 22.0 504

4.2. Description of complex networks

In total, eight real complex networks are used in the experiments:
Karate-Club, Dolphins, C-elegans, Airlines, Infect-Dub, Email, Grid, and
Ca-Astroph. We assume all these networks are undirected and un-
weighted. Also, these networks are selected based on different sizes to
evaluate the performance of centrality metrics in different conditions.
Topological properties of all selected networks are available via htt
ps://networkrepository.com/networks.php. Table 5 provides details
about the topological properties of these networks.

4.3. Evaluation criteria

Models such as Susceptible-Infected-Recovered (SIR) are widely used
to investigate the way of spreading information in the entire network by
nodes with high ranking (Liu et al., 2016). Each centrality metric selects
a number of nodes that have the highest influence score as top nodes.
These nodes are considered as initial infected nodes in the SIR model.
The process of spreading information is applied by the SIR model ac-
cording to the probability of infection /1 and the probability of recovery y
as well as initial infected nodes. Here, each infected node can infect its
susceptible neighbors at rate 4. Meanwhile, infected nodes can recover at
rate y. The process of spreading information in SIR is performed at each
step t until there are no infected nodes in the network.

At the beginning of the simulation, all nodes except initial infected
nodes are selected as susceptible nodes. At each time step t, each
infected node randomly selects only one of its susceptible neighbors and
then infects it with probability 1. According to Zhang et al. (2023), we
analyze the probability of infection 4 in the range of 0.01 to 0.1 while x is
set to 1. Let F(t) be the set of infected and recovered nodes at step t. As
shown in Eq. (12), F(t) can be considered as an index to evaluate the
influence of nodes in step t.

Nl(r) + NR(r)

N (12)

F(r) =
where Ny is the number of infected nodes and N, is the number of
recovered nodes.

Kendall’s 7 coefficient has been used as a measure for correlation
analysis of ranking lists in extensive studies (Liu et al., 2016). In the
problem of identifying influential nodes, Kendall’s 7 coefficient can be
applied to evaluate the correlation between different centrality metrics.
Let R = {r1,ra,---,ry} be the ranking list provided for N nodes by a
centrality metric. Also, let R = {r,,r,, --,ry} be the ranking list gener-
ated for N nodes by the SIR model. If (r; < r;) and (r; < r}) or (r; > r;) and
(r; > r]'») then pair (r; < r;) and (rj < r}) said to be concordant. Also, if
(ri <r) and (r;- > rJ'-) or (r; >r) and (r; < rJ/-) then pair (r; < r;) and
(r < r]'») said to be discordant. In Kendall’s coefficient, 7 is defined by Eq.
(13), where its higher value indicates the similar behavior of two lists R
and R.

chNd

2 a3

where N, is the number of concordant pairs and Ny is the number of
discordant pairs.

4.4. Benchmark metrics

We use different centrality metrics from all three categories of local,
semi-local, and global to compare with the proposed metric. In the local
category, we compare WSLC with DC (Freeman, 2002), PR (Brin and
Page, 1998), and TPR (Sheng et al., 2020b). In the global category, we
use BC (Freeman, 1977), CC (Sabidussi, 1966), EC (Bonacich, 2007), and
RASP (Lv et al., 2019) to validate the proposed centrality metric. Also,
several state-of-the-art and equivalent centrality metrics from the semi-
local category such as SC (Chen et al., 2012), WSLCC (Kang et al., 2016),
LGC (Ullah et al., 2021), and INASP (Zhang et al., 2023) are used to
compare with WSLC. For fair comparisons, we implement all available
centrality metrics by the same experimental setup.

4.5. Simulation results

In this section, we prove with numerical simulations and various
comparisons that WSLC performs much better than traditional and state-
of-the-art centrality metrics.

The most important tunable parameter in WSLC is L, which de-
termines the nearest neighbor level. Here, L =1 indicates that WSLC
uses only first-level neighbors to calculate the influence of each node in
the network. Setting L to 2 means that the information of all first and
second level nodes are considered for ranking. Likewise, an increase in L
will lead to an increase in the level of neighborhood and an increase in
the information available to measure influence. However, configuring
WSLC with high neighborhood levels leads to increased complexity, as
information for more nodes must be processed. On the other hand, the
information of nodes with higher neighborhood levels has less value in
ranking. It is obvious that using too high neighborhood levels leads to
the addition of useless information and thus to the performance reduc-
tion. Hence, setting the parameter L plays an important role in identi-
fying the influential nodes. In a comparative experiment, we examined
values of L from 1 to 5. The results of this comparison for all complex
networks are reported in Fig. 2. The average results show that WSLC
with a neighborhood level of 4 has the best performance. As illustrated,
L = 2 has led to much better results than L = 1. Meanwhile, increasing L
up to 4 improves the WSLC results, while the performance of WSLC is
degraded for L > 4. These results confirm the effectiveness of the
extended neighborhood concept for identifying neighboring nodes,
because considering neighbors with different and limited levels has led
to improved results. This simulation is done with A = 0.1, y = 1, and
Wuy = NDy,.

Another important parameter in WSLC is the edge weighting policy,
which applies the contribution of connections between nodes to the
ranking. We argued that considering the equal contribution of edges in
measuring influence is an unrealistic assumption of social interactions.
Hence, we prove this claim by a numerical experiment. In this experi-
ment, we apply several different weights as an edge weighting policy on
WSLC. Also, we set the WSLC for each pair of nodes u and v with w,,, =
1, which leads to applying the same contribution of edges in the node
ranking process. The results of this experiment can show the effect of
weighting the edges as well as the policy of choosing the optimal weight.

Table 6 shows the results related to Kendall’s 7z coefficient for six
defined weighting policies. Each row shows the results for a complex
network and the last row is dedicated to the average results. Each col-
umn is a weighting policy in WSLC, and the column associated with
‘wyy = 17 is the results of the unweighted version of WSLC. This simu-
lation is done with L = 4, A = 0.1, and y = 1. As depicted, the WSLC
setting with w,, = 1 provides little performance in ranking, and this
confirms our claim about the different contribution of edges in
measuring influence. Meanwhile, the results clearly show that ND,,
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Fig. 2. Analysis of the parameter L in the proposed WSLC metric.
Table 6
Performance of WSLC with different edge weighting policies.
Networks wyy =1 CNy,y JCuy AD,, ND,, RO, Kl
Karate-Club 0.7649 0.7756 0.7695 0.7592 0.7676 0.7416 0.7701
Dolphins 0.6829 0.6971 0.6967 0.6871 0.6993 0.6789 0.6941
C-elegans 0.6796 0.7018 0.7015 0.7166 0.7354 0.7008 0.6964
Airlines 0.775 0.7888 0.7877 0.7826 0.7838 0.7817 0.7863
Infect-Dub 0.7392 0.7553 0.7583 0.7458 0.7533 0.7368 0.7511
Email 0.5565 0.5632 0.5641 0.5602 0.5614 0.5524 0.5587
Grid 0.7323 0.7556 0.7595 0.7394 0.7536 0.7540 0.7558
Ca-Astroph 0.7732 0.7892 0.7927 0.7795 0.7902 0.7687 0.7873
Average 0.7130 0.7283 0.7288 0.7213 0.7306 0.7144 0.7250
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Fig. 3. Comparison of WSLC with local centrality metrics (i.e., DC, PR and TPR) based on Kendall’s 7 coefficient.
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Fig. 5. Comparison of WSLC with semi-local centrality metrics (i.e., SC, WSLCC, LGC, and INASP) based on Kendall’s 7 coefficient.

provides the best weighting policy for WSLC.

The performance of WSLC compared to local centrality metrics (i.e.,
DC, PR and TPR) is presented in Fig. 3 for all complex networks. In this
comparison, Kendall’s 7 coefficient is reported for each metric based on
different rates of 4 (0.01 to 0.1). Each probability of 1 expresses the
relationship between centrality metrics and F(t). In this figure, rank
correlation represents 7 in Kendall’s coefficient, where it depicts the
correlation associated with cumulative infected nodes for centrality
metrics. Comparison of WSLC with global centrality metrics (i.e., BC,
CC, EC and RASP) based on Kendall’s 7 coefficient is given in Fig. 4. Also,
Fig. 5 evaluates the performance of WSLC against semi-local centrality
metrics (i.e., SC, WSLCC, LGC, and INASP). For better clarity of com-
parisons, the average Kendall’s 7 coefficient of each metric was calcu-
lated on all complex networks and reported in Fig. 6. Fig. 6(a) shows the
average results of Kendall’s 7 coefficient for WSLC as well as DC, PR and

TPR metrics. Fig. 6(b) shows the average results for WSLC as well as
other global metrics such as BC, CC, EC and RASP. In addition, Fig. 6(c)
shows the average results related to Kendall’s 7 coefficient for SC,
WSLCC, LGC, INASP and WSLC.

As illustrated, WSLC significantly identifies influential nodes more
accurately compared to local centrality metrics, as it results in F(t) with
higher correlation than other metrics. Actually, WSLC as a semi-local
metric uses more information than local metrics and its higher perfor-
mance is expected. However, WSLC produces competitive results in
almost all cases compared to global centrality metrics. As we can
observe, the average results of WSLC are not decisively superior
compared to other global metrics, because global metrics use all network
information to measure influence. However, these metrics have signif-
icantly higher time complexity. On the other hand, in some cases, the
use of all network information may lead to weakening the performance
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Fig. 6. Average results of Kendall’s 7 coefficient on all complex networks. (a) Comparison of WSLC with local metrics, (b) Comparison of WSLC with global metrics,

and (c) Comparison of WSLC with semi-local metrics.

of a centrality metric. For example, BC and CC perform worse than the
proposed metric in some networks. In addition, WSLC provides better
results as networks scale up compared to other metrics, because WSLC
only considers a subgraph of the network for ranking nodes. Therefore,
increasing the scale of the network does not have a significant effect on
the results provided by WSLC. It is worth noting that WSLC uses the
extended neighborhood concept based on a distributed approach to
extract subgraphs, which imposes little complexity on the ranking pro-
cess. As we can observe in most of the networks, WSLC as a semi-local
metric provides better results compared to its equivalent metrics. The
reason for this superiority is the use of neighborhood information with
different levels and also considering the importance of both nodes and
edges. On average, WSLC outperforms SC, WSLCC, LGC, and INASP by
12.8 %, 4.6 %, 7.3 %, and 2.2 %, respectively.

Time complexity is one of the effective factors in evaluating cen-
trality metrics. The runtime results as one of the time complexity in-
dicators for the centrality metrics are given in Table 7. The results of this
simulation are reported based on w,,, =ND,,,L =4,12 = 0.1,and u =
1. These results include the running time to identify 10 influential
nodes, where we do not consider the loading time of the dataset in the
simulation. DC has the lowest running time compared to other metrics
with an average of 0.12 s. DC only needs the degree information of the
nodes and is a local metric. Since the degree of the nodes is available
through the adjacency matrix, DC does not depend on the network size
and has very low running time. Similarly, PR and TPR are based only on
the information of first-level neighbors and therefore have a short run-
time. Instead, BC, CC, EC, and RASP as global metrics have a very high
runtime. Since these metrics need to process the information of the
entire network to measure the influence of a node, their running time
increases with the increase of the network size.

Other metrics available as semi-local metrics have different run-
times. LGC and WSLCC have similar performance in runtime results
because they use practically the same information to calculate

centrality. Meanwhile, the average runtime results in SC are also similar.
However, the running time in SC has little change with increasing
network size, because this metric only uses first and second level
neighbors. The runtime results in SC, INASP and WSLC are highly
competitive. SC requires only the degree of first and second level
neighbors and is therefore less complex than other metrics. WSLC is less
complex than INASP because it uses a distributed approach to extract
local subgraphs. On average, WSLC requires 4.1 s and 15.6 s less runtime
compared to SC and INASP, respectively.

5. Conclusions

The purpose of this paper is to identify influential nodes in complex
networks and understand the theoretical and practical importance of
centrality metrics. So far, various centrality metrics have been proposed
to solve this problem, so that the performance of each depends on spe-
cific scenarios. For example, metrics based on local structure have low
ranking accuracy due to the use of limited information, and metrics
based on global structure suffer from high complexity. Meanwhile,
metrics based on semi-local structure are amazingly well, but an effi-
cient centrality for identifying influential nodes is still not available due
to differences in the structure and scale of networks. In addition, most
semi-local centrality metrics only consider one aspect of each node’s
information, and their development still faces serious challenges. It is
obvious that the importance of the edge and its stability play a signifi-
cant role in the ranking of nodes. In addition, the effectiveness of the
extended neighborhood concept has been confirmed by many re-
searchers to consider different neighborhood levels in the influence
calculation. Considering all these issues, we proposed a weighted semi-
local centrality metric called WSLC to improve the identification of
influential nodes in complex networks. WSLC considers the importance
of both nodes and edges simultaneously to calculate influence. The
importance of edge is covered by studying different number of weights.

Table 7

Runtime results (seconds) for WSLC and other centrality metrics.
Centrality metrics Metric type Karate-Club Dolphins C-elegans Airlines Infect-Dub Email Grid Ca-Astroph Average
DC Local 0.02 0.06 0.07 0.11 0.12 0.14 0.16 0.26 0.12
PR Local 0.46 0.84 1.10 1.26 1.33 1.65 1.88 3.44 1.50
TPR Local 0.70 1.03 1.43 1.50 1.67 2.00 2.16 4.26 1.84
BC Global 3.05 14.15 17.52 17.86 19.05 24.07 77.34 154.2 40.91
CC Global 2.98 13.69 17.26 18.25 18.67 23.68 80.13 155.7 41.30
EC Global 2.30 8.75 13.04 14.11 15.26 18.85 66.00 118.5 32.10
RASP Global 2.84 9.15 11.76 13.48 15.56 21.34 55.72 124.3 31.77
SC Semi-local 0.87 3.30 3.84 3.87 4.23 7.12 21.46 34.82 9.94
LGC Semi-local 2.65 5.38 6.03 6.35 6.99 10.33 48.27 77.08 20.39
WSLCC Semi-local 3.34 6.64 9.00 10.41 11.37 15.68 44.13 76.21 22.10
INASP Semi-local 1.26 5.11 5.97 5.68 6.06 8.21 22.16 33.83 11.04
WSLC Semi-local 0.66 2.73 4.05 5.45 5.74 6.32 20.30 31.17 9.55
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Also, WSLC uses the extended neighborhood concept to be efficient
when dealing with large-scale networks. Here, a subgraph of the
network is extracted with a distributed approach to determine nearest
neighbors with different hops. According to the considered information,
WSLC combines the topological position with the semi-local structure to
perform better to identify the influential nodes.

A comparative analysis of WSLC with several classical and equivalent
centrality metrics has been performed on eight real-world complex
networks. The insight of using the extended neighborhood concept to
determine nearest neighbors has resulted in higher accuracy and lower
complexity simultaneously. WSLC reports better results in terms of
Kendall’s correlation coefficient and is more efficient in dealing with
large-scale networks. We compared the cumulative infected nodes ob-
tained from the SIR model with WSLC and other state-of-the-art metrics.
The simulation results showed that the proposed WSLC metric is not
correlated with the existing centrality metrics. Also, our metric provides
better results compared to DC, PR, TPR, BC, CC, EC, RASP, SC, WSLCC,
LGC, and INASP. To summarize, the reasons for the superiority of the
proposed method can be listed as follows: 1) Simultaneously considering
the importance of the node itself and its nearest neighbors to calculate
the influence; 2) Identifying nearest neighbors with a low-complexity
distributed approach; 3) Using nearest neighbors with different levels
to rank nodes; 4) Using a damping coefficient to apply a higher effect of
closer neighbors; 5) Applying the importance of each edge in the
calculation of influence by assigning weight to the edges.

In addition to theoretical significance, the identification of influen-
tial nodes also has practical applications. Considering the acceptable
performance of the proposed metric for identifying influential nodes in
complex networks, WSLC can be considered for real-world networks. For
example, WSLC can be used for optimal ranking of search engine results.
Influential nodes selected by WSLC can be used as centers to detect
communities in social networks. The ranking of nodes by WSLC can be
used for the purpose of targeted backup according to the importance of
server nodes in computer networks, where this leads to ensuring the
robustness of the network. To improve the proposed metric, there are
some potential issues that can be considered as future work. For
example, other features such as interactions between nodes can be
considered as edge weights. Also, WSLC can be extended and adapted to
dynamic and directed networks. Developing parallel approaches to
identify influential nodes is another future direction. Considering the
relative change in average shortest path theory with extended neigh-
borhood concept is clearly neglected in the existing literature.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Berahmand, K., Bouyer, A., Vasighi, M., 2018. Community detection in complex
networks by detecting and expanding core nodes through extended local similarity
of nodes. IEEE Trans. Comput. Social Syst. 5 (4), 1021-1033.

Berahmand, K., Nasiri, E., Forouzandeh, S., Li, Y., 2022. A preference random walk
algorithm for link prediction through mutual influence nodes in complex networks.
J. King Saud Univ.-Comput. Inf. Sci. 34 (8), 5375-5387.

Bonacich, P., 2007. Some unique properties of eigenvector centrality. Soc. Networks 29
(4), 555-564.

Brin, S., Page, L., 1998. The anatomy of a large-scale hypertextual web search engine.
Comput. Networks ISDN Syst. 30 (1-7), 107-117.

Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., et al., 2022. webTWAS: a
resource for disease candidate susceptibility genes identified by transcriptome-wide
association study, Nucl. Acids Res. 50(D1), D1123-D1130.

Cao, Y., Xu, N., Wang, H., Zhao, X., Ahmad, A.M., 2023. Neural networks-based adaptive
tracking control for full-state constrained switched nonlinear systems with periodic
disturbances and actuator saturation. Int. J. Syst. Sci. 54 (14), 2689-2704.

Chen, D., Li, L., Shang, M.S., Zhang, Y.C., Zhou, T., 2012. Identifying influential nodes in
complex networks. Physica A 391 (4), 1777-1787.

12

Dai, J., Wang, B., Sheng, J., Sun, Z., Khawaja, F.R., Ullah, A., Duan, G., 2019. Identifying
influential nodes in complex networks based on local neighbor contribution. IEEE
Access 7, 131719-131731.

Fan, C., Zeng, L., Sun, Y., Liu, Y.Y., 2020. Finding key players in complex networks
through deep reinforcement learning. Nat. Mach. Intell. 2 (6), 317-324.

Forouzandeh, S., Rostami, M., Berahmand, K., 2021. Presentation a Trust Walker for
rating prediction in recommender system with Biased Random Walk: effects of H-
index centrality, similarity in items and friends. Eng. Appl. Artif. Intel. 104, 104325.

Freeman, L.C., 1977. A set of measures of centrality based on betweenness. Sociometry
35-41.

Freeman, L.C., 2002. Centrality in social networks: conceptual clarification. In: Social
network: critical concepts in sociology. Routledge, Londres, pp. 238-263.

Gao, S., Ma, J., Chen, Z., Wang, G., Xing, C., 2014. Ranking the spreading ability of nodes
in complex networks based on local structure. Physica A 403, 130-147.

Gao, C., Wei, D., Hu, Y., Mahadevan, S., Deng, Y., 2013. A modified evidential
methodology of identifying influential nodes in weighted networks. Physica A 392
(21), 5490-5500.

Guo, S., Zhao, X., Wang, H., Xu, N., 2023. Distributed consensus of heterogeneous
switched nonlinear multiagent systems with input quantization and DoS attacks.
Appl. Math Comput. 456, 128127.

Hajarathaiah, K., Enduri, M.K., Anamalamudi, S., 2022. Efficient algorithm for finding
the influential nodes using local relative change of average shortest path. Physica A
591, 126708.

Huang, S., Zong, G., Wang, H., Zhao, X., Alharbi, K.H., 2023. Command filter-based
adaptive fuzzy self-triggered control for MIMO nonlinear systems with time-varying
full-state constraints. Int. J. Fuzzy Syst. https://doi.org/10.1007/540815-02.3-
01560-8.

Jaccard, P., 1901. Etude comparative de la distribution florale dans une portion des
Alpes et des Jura. Bull. Soc. Vaudoise Sci. Nat. 37, 547-579.

Jannesari, V., Keshvari, M., Berahmand, K., 2023. A novel nonnegative matrix
factorization-based model for attributed graph clustering by incorporating
complementary information. Expert Syst. Appl. 242, 122799.

Kang, W., Tang, G., Sun, Y., Wang, S., 2016. Identifying influential nodes in complex
network based on weighted semi-local centrality. In: 2016 2nd IEEE International
Conference on Computer and Communications (ICCC). IEEE, pp. 2467-2471.

Katz, L., 1953. A new status index derived from sociometric analysis. Psychometrika 18
(1), 39-43.

Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.,
2010. Identification of influential spreaders in complex networks. Nat. Phys. 6 (11),
888-893.

Kumar, S., Panda, B.S., 2020. Identifying influential nodes in Social Networks:
neighborhood coreness based voting approach. Physica A 553, 124215.

Li, Z., Ren, T., Ma, X., Liu, S., Zhang, Y., Zhou, T., 2019. Identifying influential spreaders
by gravity model. Sci. Rep. 9 (1), 8387.

Liu, C., Wang, J., Zhou, L., Rezaeipanah, A., 2022. Solving the multi-objective problem of
IoT service placement in fog computing using cuckoo search algorithm. Neural
Process. Lett. 54 (3), 1823-1854.

Liu, J., Xiong, Q., Shi, W., Shi, X., Wang, K., 2016. Evaluating the importance of nodes in
complex networks. Physica A 452, 209-219.

Lorrain, F., White, H.C., 1971. Structural equivalence of individuals in social networks.
J. Math. Sociol. 1 (1), 49-80.

Lv, Z., Zhao, N., Xiong, F., Chen, N., 2019. A novel measure of identifying influential
nodes in complex networks. Physica A 523, 488-497.

Masdari, M., Gharehpasha, S., Ghobaei-Arani, M., Ghasemi, V., 2020. Bio-inspired virtual
machine placement schemes in cloud computing environment: taxonomy, review,
and future research directions. Clust. Comput. 23 (4), 2533-2563.

Mohammadian, E., Dastgerdi, M.E., Manshad, A.K., Mohammadi, A.H., Liu, B.,

Iglauer, S., Keshavarz, A., 2022. Application of underbalanced tubing conveyed
perforation in horizontal wells: a case study of perforation optimization in a giant oil
field in Southwest Iran. Adv. Geo-Energy Res. 6, 296-305.

Ni, Q., Guo, J., Wu, W., Wang, H., Wu, J., 2021. Continuous influence-based community
partition for social networks. IEEE Trans. Network Sci. Eng. 9 (3), 1187-1197.
Rezaeipanah, A., Ahmadi, G., Sechin Matoori, S., 2020. A classification approach to link

prediction in multiplex online ego-social networks. Soc. Netw. Anal. Min. 10 (1), 27.

Rostami, M., Oussalah, M., Berahmand, K., Farrahi, V., 2023. Community detection
algorithms in healthcare applications: a systematic review. IEEE Access 11,
30247-30272.

Sabidussi, G., 1966. The centrality index of a graph. Psychometrika 31 (4), 581-603.

Salavati, C., Abdollahpouri, A., Manbari, Z., 2019. Ranking nodes in complex networks
based on local structure and improving closeness centrality. Neurocomputing 336,
36-45.

Serrano, M.A., Boguna, M., 2006. Clustering in complex networks. I. General formalism.
Phys. Rev. E 74 (5), 056114.

Shao, Z., Liu, S., Zhao, Y., Liu, Y., 2019. Identifying influential nodes in complex
networks based on Neighbours and edges. Peer-to-Peer Netw. Appl. 12, 1528-1537.

Sheng, J., Dai, J., Wang, B., Duan, G., Long, J., Zhang, J., Guan, W., 2020a. Identifying
influential nodes in complex networks based on global and local structure. Physica A
541, 123262.

Sheng, J., Zhu, J., Wang, Y., Wang, B., Hou, Z.A., 2020b. Identifying influential nodes of
complex networks based on trust-value. Algorithms 13 (11), 280.

Shetty, R.D., Bhattacharjee, S., 2022. A Weighted Hybrid Centrality for Identifying
Influential Individuals in Contact Networks. In: 2022 IEEE International Conference
on Electronics, Computing and Communication Technologies (CONECCT). IEEE,
pp. 1-6.

Torabi, E., Ghobaei-Arani, M., Shahidinejad, A., 2022. Data replica placement
approaches in fog computing: a review. Clust. Comput. 25 (5), 3561-3589.


http://refhub.elsevier.com/S1319-1578(23)00460-3/h0005
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0005
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0005
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0010
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0010
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0010
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0015
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0015
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0020
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0020
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0030
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0030
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0030
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0035
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0035
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0040
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0040
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0040
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0045
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0045
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0050
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0050
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0050
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0055
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0055
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0060
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0060
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0065
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0065
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0070
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0070
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0070
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0075
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0075
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0075
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0080
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0080
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0080
https://doi.org/10.1007/s40815-023-01560-8
https://doi.org/10.1007/s40815-023-01560-8
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0090
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0090
http://refhub.elsevier.com/S1319-1578(23)00460-3/optqKIuxzJKzc
http://refhub.elsevier.com/S1319-1578(23)00460-3/optqKIuxzJKzc
http://refhub.elsevier.com/S1319-1578(23)00460-3/optqKIuxzJKzc
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0095
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0095
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0095
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0100
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0100
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0105
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0105
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0105
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0110
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0110
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0115
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0115
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0120
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0120
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0120
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0125
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0125
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0130
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0130
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0135
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0135
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0140
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0140
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0140
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0145
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0145
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0145
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0145
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0150
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0150
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0155
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0155
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0160
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0160
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0160
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0165
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0170
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0170
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0170
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0175
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0175
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0180
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0180
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0185
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0185
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0185
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0190
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0190
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0195
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0195
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0195
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0195
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0200
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0200

Ullah, A., Wang, B., Sheng, J., Long, J., Khan, N., Sun, Z., 2021. Identifying vital nodes
from local and global perspectives in complex networks. Expert Syst. Appl. 186,
115778.

Ullah, A., Wang, B., Sheng, J., Khan, N., 2022. Escape velocity centrality: escape
influence-based key nodes identification in complex networks. Appl. Intell. 52 (14),
16586-16604.

Wang, S., Sheng, H., Yang, D., Zhang, Y., Wu, Y., Wang, S., 2022. Extendable multiple
nodes recurrent tracking framework with RTU++. IEEE Trans. Image Process. 31,
5257-5271.

Wang, T., Zhang, L., Xu, N., Alharbi, K.H., 2023. Adaptive critic learning for approximate
optimal event-triggered tracking control of nonlinear systems with prescribed
performances. Int. J. Control. https://doi.org/10.1080,/00207179.2023.2250880.

Wu, W., Xu, N., Niu, B., Zhao, X., Ahmad, A.M., 2023. Low-computation adaptive
saturated self-triggered tracking control of uncertain networked systems. Electronics
12 (13), 2771.

Xue, B., Yang, Q., Jin, Y., Zhu, Q., Lan, J., Lin, Y., Tan, J., Liu, L., Zhang, T., Chirwa, E.M.
N., Zhou, X., 2023. Genotoxicity Assessment of Haloacetaldehyde Disinfection
Byproducts via a Simplified Yeast-Based Toxicogenomics Assay. Environ. Sci.
Technol. 57 (44), 16823-16833.

Yang, R., Jia, A., Hu, Q., Guo, X., Sun, M., 2020. Particle size effect on water vapor
sorption measurement of organic shale: one example from Dongyuemiao Member of
Lower Jurassic Ziliujing Formation in Jiannan Area of China. Adv. Geo-Energy Res. 4
(2), 207-218.

Yang, R., Yang, C., Peng, X., Rezaeipanah, A., 2022. A novel similarity measure of link
prediction in multi-layer social networks based on reliable paths. Concurrency
Comput.: Practice Exp. 34 (10), e6829.

Yue, S., Niu, B., Wang, H., Zhang, L., Ahmad, A.M., 2023. Hierarchical sliding mode-
based adaptive fuzzy control for uncertain switched under-actuated nonlinear
systems with input saturation and dead-zone. Robotic Intell. Autom. 43 (5),
523-536.

Zeng, A., Zhang, C.J., 2013. Ranking spreaders by decomposing complex networks. Phys.
Lett. A 377 (14), 1031-1035.

13

Zhang, K., Zhou, Y., Long, H., Wang, C., Hong, H., Armaghan, S.M., 2023. Towards
identifying influential nodes in complex networks using semi-local centrality
metrics. J. King Saud Univ.-Comput. Inf. Sci. 35 (10), 101798.

Zhang, H., Zou, Q., Ju, Y., Song, C., Chen, D., 2022. Distance-based support vector
machine to predict DNA N6-methyladenine modification. Curr. Bioinform. 17 (5),
473-482.

Zhao, Y., Liang, H., Zong, G., Wang, H., 2023c. Event-Based Distributed Finite-Horizon
HooConsensus Control for Constrained Nonlinear Multiagent Systems. IEEE Syst. J.
17 (4), 5369-5380.

Zhao, Y., Niu, B., Zong, G., Zhao, X., Alharbi, K.H., 2023b. Neural network-based
adaptive optimal containment control for non-affine nonlinear multi-agent systems
within an identifier-actor-critic framework. J. Franklin Inst. 360 (12), 8118-8143.

Zhao, J., Wang, Y., Deng, Y., 2020. Identifying influential nodes in complex networks
from global perspective. Chaos Solitons Fractals 133, 109637.

Zhao, H., Wang, H., Xu, N., Zhao, X., Sharaf, S., 2023a. Fuzzy approximation-based
optimal consensus control for nonlinear multiagent systems via adaptive dynamic
programming. Neurocomputing 553, 126529.

Zhao, J., Wen, T., Jahanshahi, H., Cheong, K.H., 2022. The random walk-based gravity
model to identify influential nodes in complex networks. Inf. Sci. 609, 1706-1720.

Zhao, X., Xing, S., Wang, Q., 2018. Identifying influential spreaders in social networks
via normalized local structure attributes. IEEE Access 6, 66095-66104.

Zhao, H., Zong, G., Wang, H., Zhao, X., Xu, N., 2023d. Zero-Sum Game-Based
Hierarchical Sliding-Mode Fault-Tolerant Tracking Control for Interconnected
Nonlinear Systems via Adaptive Critic Design. IEEE Trans. Autom. Sci. Eng. https://
doi.org/10.1109/TASE.2023.3317902.

Zhao, H., Zong, G., Zhao, X., Wang, H., Xu, N., Zhao, N., 2023e. Hierarchical Sliding-
Mode Surface-Based Adaptive Critic Tracking Control for Nonlinear Multiplayer
Zero-Sum Games Via Generalized Fuzzy Hyperbolic Models. IEEE Trans. Fuzzy Syst.
31 (11), 4010-4023.

Zhou, G., Deng, R., Zhou, X., Long, S., Li, W., Lin, G., Li, X., 2021. Gaussian inflection
point selection for LiDAR hidden echo signal decomposition. IEEE Geosci. Remote
Sens. Lett. 19, 1-5.


http://refhub.elsevier.com/S1319-1578(23)00460-3/h0205
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0205
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0205
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0210
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0210
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0210
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0215
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0215
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0215
https://doi.org/10.1080/00207179.2023.2250880
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0225
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0225
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0225
http://refhub.elsevier.com/S1319-1578(23)00460-3/opte9muABWw08
http://refhub.elsevier.com/S1319-1578(23)00460-3/opte9muABWw08
http://refhub.elsevier.com/S1319-1578(23)00460-3/opte9muABWw08
http://refhub.elsevier.com/S1319-1578(23)00460-3/opte9muABWw08
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0230
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0230
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0230
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0230
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0235
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0235
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0235
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0240
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0240
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0240
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0240
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0245
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0245
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0250
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0250
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0250
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0255
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0255
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0255
http://refhub.elsevier.com/S1319-1578(23)00460-3/optRYcDviySS1
http://refhub.elsevier.com/S1319-1578(23)00460-3/optRYcDviySS1
http://refhub.elsevier.com/S1319-1578(23)00460-3/optRYcDviySS1
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0260
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0260
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0260
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0265
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0265
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0270
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0270
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0270
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0275
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0275
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0280
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0280
https://doi.org/10.1109/TASE.2023.3317902
https://doi.org/10.1109/TASE.2023.3317902
http://refhub.elsevier.com/S1319-1578(23)00460-3/optJmVVtNEGZd
http://refhub.elsevier.com/S1319-1578(23)00460-3/optJmVVtNEGZd
http://refhub.elsevier.com/S1319-1578(23)00460-3/optJmVVtNEGZd
http://refhub.elsevier.com/S1319-1578(23)00460-3/optJmVVtNEGZd
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0285
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0285
http://refhub.elsevier.com/S1319-1578(23)00460-3/h0285

	WSLC: Weighted semi-local centrality to identify influential nodes in complex networks
	1 Introduction
	2 Literature review
	2.1 Preliminaries
	2.2 Centrality metrics
	2.3 Related works

	3 Proposed centrality metric
	3.1 Node-influence
	3.2 Local-influence
	3.3 Semi-local-influence
	3.4 Example of WSLC
	3.5 Pseudo-code

	4 Results and discussions
	4.1 Experimental setup
	4.2 Description of complex networks
	4.3 Evaluation criteria
	4.4 Benchmark metrics
	4.5 Simulation results

	5 Conclusions
	Declaration of competing interest
	References


