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A B S T R A C T   

Identifying and ranking influential nodes in complex networks is a critical aspect to study the survival and 
robustness of networks. Many ongoing researches have proposed centrality metrics to address this problem, so 
that the performance of each is attributed to specific scenarios. For example, metrics based on local structure 
have low ranking accuracy due to the use of limited information, and metrics based on global structure suffer 
from high complexity. Meanwhile, metrics based on semi-local structure are amazingly well, but an efficient 
centrality for identifying influential nodes is still not available due to differences in the structure and scale of 
networks. In addition, most semi-local centrality metrics only consider one aspect of each node’s information, 
and their development still faces serious challenges. This paper develops a Weighted Semi-Local Centrality 
(WSLC) to identify influential nodes in complex networks based on extended neighborhood concept. Here, 
several different weights are investigated to find the best performance on WSLC. We use the extended neigh
borhood concept to select the nearest neighbors, which considers the global information of the network in a 
limited and efficient way to calculate the ranks. Here, a distributed approach is presented that can cut a subgraph 
of the entire network for each node with low complexity. This subgraph contains neighbors with different hops, 
which are used to maintain high efficiency when facing large-scale networks. In addition to the importance of the 
node itself, WSLC also combines the importance of the node’s nearest neighbors with different hops for ranking. 
Therefore, defining semi-local structure with a distributed approach as well as using an efficient edge weighting 
policy differentiates WSLC from other existing centrality metrics. The evaluation of WSLC has been done through 
several real-world networks using Kendall’s correlation. The effectiveness of WSLC under the SIR infection 
spreading model has been verified by extensive simulations compared to state-of-the-art centrality metrics.   

1. Introduction 

In recent decades, the emergence of social relationships has moved 
towards becoming more complex and forming institutions with complex 
relations. Nowadays, these institutions are considered as complex net
works that have some common properties such as small-world, clus
tering coefficient, and scale-independent (Berahmand et al., 2022). 
Every complex network contains some nodes and complex relationships 
between them. The heterogeneity of the structure of complex networks 
leads to the appearance of different roles of nodes (Zhao et al., 2023d, 
2023e). Hence, some nodes can affect the performance and structure of 
the network to a greater extent. These nodes are known as seed/in
fluential nodes in complex networks and have significant effectiveness 

in controlling or diffusion of information. 
In the process of spreading information, network structure and re

lationships between users are very important. Also, spreading mecha
nisms are influenced by a small group of users. Therefore, the selection 
of primary nodes for spreading a specific behavior can be different (Zhao 
et al., 2022). In order to achieve the maximum influence, a small group 
of nodes can be selected and influence the opinion of other nodes 
through them. Identifying such nodes is one of the challenging topics in 
the field of network analysis (Li et al., 2019). The problem of identifying 
influential nodes in complex networks has great theoretical and prac
tical importance, which has been understood by the research society 
(Cao et al., 2023; Wang et al., 2023). In general, the influential nodes in 
the field of network information mining are known as an open problem 
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because it has many applications in the real world. The most important 
of these applications include information propagation, online adver
tising, rumor control, time series, marketing, advertising, and opinion 
monitoring (Rezaeipanah et al., 2020). 

Effective node identification approaches are divided into two general 
categories: activity-based techniques and centrality-based techniques 
(Salavati et al., 2019). Activity-based techniques such as heat diffusion 
and similarity measure depend on the type of activity of nodes in a 
network (Mohammadian et al., 2022; Zhang et al., 2022). Centrality- 
based techniques such as degree, closeness, and betweenness are 
defined based on the unique characteristics of each node in a network 
(Berahmand et al., 2018). In the last few decades, many centrality 
metrics have been proposed considering the topological structure and 
dynamics of complex networks (Jannesari et al., 2023; Xue et al., 2023). 
In general, each centrality metric measures the rank of each node in the 
entire network as influential. For example, the degree centrality metric 
shows the rank of each node with that node’s degree, so that the 
importance of a node with a higher degree is greater than other nodes. 

Considering the neighborhood level, centrality metrics are divided 
into local, semi-local, and global categories (Yue et al., 2023; Zhao et al., 
2023a). Local metrics only use the information of first-level neighbors, 
while global metrics consider the information of the entire network to 
calculate influence. Meanwhile, semi-local metrics use the information 
of neighbors with different levels to compromise between complexity 
and performance (Rostami et al., 2023). Basically, semi-local centralities 
are defined based on fixed-length nearest neighbor information and 
perform better for large-scale networks (Yang et al., 2022). However, 
most of the centrality metrics in the semi-local category only use the 
information of neighbors of the first and second levels to estimate in
fluence and do not apply topological connections. 

In recent years, several centrality metrics have been proposed that 
use the information of neighbors with higher levels (Liu et al., 2016; 
Zhang et al., 2023). However, the information of neighbors with higher 
levels to calculate influence improves the accuracy but increases the 
complexity. Therefore, approaches to extract more information from the 
network with low complexity can overcome this problem. Considering 
the extended neighborhood concept, this paper tries to present a 
distributed approach for extracting nearest neighbors’ information with 
different levels. Here, each node can independently identify a subgraph 
of the network with nearest neighbors. This subgraph is used to calculate 
the influence of each node, which can significantly reduce the 
complexity. Moreover, the insight in the literature shows that edge in
formation is also involved in centrality. Hence, in addition to node in
formation, we use edge information to identify influential nodes. Here, 
the edges in the extracted subgraph are weighted and the weight in
formation is applied to calculate influence. Since how the weights are 
calculated is so important, we will examine several different weights. 
According to the stated concepts, this paper proposes a Weighted Semi- 
Local Centrality (WSLC) based on extended neighborhood concept to 
identify influential nodes in complex networks. 

The main contribution of this paper is as follows:  

• Each node independently finds the nearest neighbors with different 
levels based on the extended neighborhood concept. The nearest 
neighbors are extracted as a subgraph from the network and applied 
to calculate the influence. 

• In addition to node information, edge information is used to calcu
late the influence. The edge information contains an edge weight 
assignment policy that is applied to the extracted subgraph. 

• A weighted semi-local centrality based on the extended neighbor
hood concept is developed, which simultaneously uses the informa
tion of the node itself and the nearest neighbors to calculate the 
influence. 

The following is the structure of this paper. The research literature 
and related works for identifying the influential nodes is given in Section 

2. Section 3 focuses into proposed WSLC centrality metric in depth. The 
experimental setup, along with the test outcomes are specified in Section 
4. Finally, Section 5 concludes the paper. 

2. Literature review 

In this section, we describe some well-known centrality metrics and 
then review some state-of-the-art centralities from the semi-local 
category. 

2.1. Preliminaries 

A complex network can be imagined with a graph G = (V,E), where 
v ∈ V is the set of nodes and eu,v ∈ E is the set of edges. Let eu,v be the link 
between nodes u and v in an undirected network such as G. According to 
this definition, N = |V| is the total number of network nodes, and M =

|E| is the total number of network edges. Meanwhile, consider G = (V,E,
W) as a graph for a weighted network, where W is the set of edge 
weights. Here, wu,v ∈ W represents the weight associated with the edge 
eu,v. 

The neighborhood of the first level in the graph G is defined by the 
adjacency matrix A, where each au,v ∈ A represents the connection status 
between nodes u and v. For example, au,v = 1 indicates a link between 
nodes u and v, and au,v = 0 indicates the absence of any link. Also, Γ(v) is 
defined as the set of all neighbors of the first level with node v, and kv =

|Γ(v)| refers to the number of these neighbors. In addition, the number of 
hops (or distance) between nodes u and v via the shortest path is defined 
by δu,v. 

2.2. Centrality metrics 

To identify influential nodes in different networks, many techniques 
have been introduced so far (Guo et al., 2023; Huang et al., 2023). Each 
of these methods have been developed by considering different aspects 
of the network structure, such as the type of communication, the type of 
target, and the characteristics of the network. These methods are known 
as centrality metrics in complex networks. According to the network 
information used to measure the rank of nodes, centrality metrics are 
divided into three general categories: local centralities, semi-local cen
tralities and global centralities (Cao et al., 2022; Zhao et al., 2023b). As 
shown in Table 1, various centrality metrics of each category have been 
proposed so far. 

Local centralities ignore the global structure of the topology and are 
often less relevant to real-world networks. However, these metrics are 
simple and have little complexity because they only apply the degree of 
a node’s neighbors to calculate its rank (Forouzandeh et al., 2021). 
Global centralities provide better results than local centralities, because 

Table 1 
Different types of centrality metrics.  

Local centralities Semi-local centralities Global centralities 

Degree (Freeman, 
2002) 

NCvoteRankcentrality (Kumar 
and Panda, 2020) 

Betweenness (Freeman, 
1977) 

Cluster coefficient ( 
Serrano and 
Boguna, 2006) 

k-shell (Kitsak et al., 2010) Closeness (Sabidussi, 
1966) 

PageRank (Brin and 
Page, 1998) 

k-shell decomposition (Sheng 
et al., 2020b) 

Eigenvector (Bonacich, 
2007) 

Trust-PageRank ( 
Sheng et al., 
2020b) 

Semi-local centrality (Chen 
et al., 2012) 

Relative change of 
average shortest path ( 
Lv et al., 2019) 

Local neighbor 
contribution (Dai 
et al., 2019) 

Mixed degree decomposition ( 
Zeng and Zhang, 2013) 

Global and local 
structure (Sheng et al., 
2020a) 

Normalized local 
centrality (Zhao 
et al., 2018) 

Local structural centrality ( 
Gao et al., 2014) 

Global importance of a 
node (Zhao et al., 2020)  

X. Wang et al.                                                                                                                                                                                                                                   

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com



Journal of King Saud University - Computer and Information Sciences 36 (2024) 101906

3

they use the information of holistic network for ranking. However, these 
metrics are inefficient for large-scale networks due to high time 
complexity (Fan et al., 2020). 

In recent years, the scale of online social platforms is growing to 
billions of users. Hence, local centralities will be unusable due to limited 
information utilization and global centralities due to high complexity. 
Recently, some metrics focus on mixed local and global structures as 
semi-local centralities (Yang et al., 2020). Semi-local centralities 
simultaneously consider first-level neighbors and next-nearest neigh
bors to measure influence. Chen et al. (2012) showed that these metrics 
provide a good ability to rank nodes by balancing accuracy and 
complexity. 

One of the most famous local centrality metrics is Degree Centrality 
(DC), which considers the degree of the node as influence (Freeman, 
2002). PageRank (PR) and Trust-PageRank (TPR) are other local cen
trality metrics. By focusing on the ranking of web pages, PR can calcu
late the influence of nodes in complex networks (Brin and Page, 1998). 
TPR is the same as PR except that trust is applied to neighbors while 
ranking nodes (Sheng et al., 2020b). Local centrality metrics are simple 
and fast, but have low accuracy due to access to limited information. 

Betweenness Centrality (BC), Closeness Centrality (CC), and Eigen
vector Centrality (EC) are among the most famous global centrality 
metrics. BC considers the number of observations of a node in all the 
shortest paths in the network for its influence (Freeman, 1977). CC 
considers the lowest average distance to other nodes as the influence of a 
node (Sabidussi, 1966). EC measures the influence of a node in the 
network by the normalized eigenvector belonging to the largest eigen
value (Bonacich, 2007). Lv et al. (2019) proposed a global centrality 
metric based on Average Shortest Path (ASP) theory, known as Relative 
change of ASP (RASP). RASP includes changes in the average shortest 
path after removing a node from the network. Global centrality metrics 
are highly accurate, but suffer from high complexity due to the use of 
information from the entire network. 

Semi-local centrality metrics have attracted more attention to iden
tify influential nodes in complex networks because they strike a balance 
between complexity and accuracy. Semi-local Centrality (SC) and Mixed 
Degree Decomposition (MDD) are the most common metrics of semi- 
local centrality. SC calculates the influence of a node by simulta
neously considering the degree of neighbors in the first and second levels 
(Chen et al., 2012). MDD uses K-Shell (KS) index to identify influential 
nodes, where exhausted degree and residual degree are simultaneously 

applied (Zeng and Zhang, 2013). 
Table 2 summarizes more details of the investigated metrics. 

2.3. Related works 

So far, many centrality metrics have been devised to find influential 
nodes in complex networks (Kang et al., 2016; Ullah et al., 2022; Zhang 
et al., 2023). Each of these metrics has some shortcomings and own 
points. In fact, the type of influence in a network does not appear as a 
“natural” concept and can be different from one network to another. 
Therefore, each of the centrality metrics may interpret influence to rank 
nodes with different viewpoints. For example, the BC metric defines 
influence as an index of bridging between nodes, whereas the CC metric 
highlights the minimum distance to connect to other nodes (Zhou et al., 
2021; Wu et al., 2023). This shows that in the analysis of complex net
works, “semantic profiles” are different from centrality methods. 

In recent years, semi-local centrality metrics have received the 
attention of the research society due to the balance between accuracy 
and complexity (Torabi et al., 2022). These metrics consider both local 
and global information from the network structure and use multiple 
characteristics of nodes to measure influence as much as possible (Ni 
et al., 2021; Wang et al., 2022). Due to the large amount of literature on 
semi-local centrality metrics, we limit this section to reviewing only 
these works. A summary of the investigated semi-local centralities along 
with their formula is given in Table 3. For a better understanding of the 
proposed centrality metric, we have also included the details of the 
WSLC in this table. 

The Degree and Importance of Lines (DIL) centrality semi-local 
metric was proposed by Liu et al. (2016) where the influence of nodes 
and edges is applied in the influence calculation. DIL calculates the 
importance of edges by considering the characteristics of the nodes that 
are linked to them. The authors measure the weight of each edge in DIL 
based on fungibility and connectivity. This metric identifies bridge 
nodes with high accuracy and has an acceptable complexity for pro
cessing large-scale networks. However, DIL is inefficient for identifying 
influential nodes with the same degrees. 

Kang et al. (2016) proposed a Weighted Semi-Local Centrality Cri
terion (WSLCC) to identify influential nodes in complex networks. 
WSLCC tries to reflect the violation of local centrality metrics by 
simultaneously considering semi-local information and weighted degree 
as the influence strength of the node. WSLCC is inspired by evidence 

Table 2 
Details of centrality metrics.  

Reference Metric Category Formula Description of parameters 

Freeman (2002) 
DC Local DC(v) = kv – 

Brin and Page 
(1998) 

PR Local 
PR(v) =

1 − α
N

+ α
∑

u∈Γ(v)
PR(u)

kv 

α is the jump probability. 

Sheng et al., 
(2020b) 

TPR Local TPR(v) =
1 − α

N
+ α

∑
u∈Γ(v)T(u, v).

TPR(u)

T(u, v) is the trust value between nodes u and v. 

Freeman (1977) 
BC Global 

BC(v) =
∑

u∕=w∕=v∈V
δu,w(v)

δu,w 

– 

Sabidussi 
(1966) 

CC Global CC(v) =
1

∑
u∕=v∈Vδu,v 

– 

Bonacich (2007) 
EC Global EC(v) = μ

∑
u∈Γ(v)xu μ is a constant value based on the largest eigenvalue of A, and xu is the influence of node u 

according to the normalized eigenvector belonging to the largest eigenvalue of A. Let x =
[
x1 , x2,⋯, x|V|

]T be an eigenvector associated with the eigenvalue μ− 1 of A. 

Lv et al. (2019) 
RASP Global 

RASP(v) =
|ASP[G] − ASP[Gv] |

ASP[G]
ASP[G] is the average number of steps along with shortest paths for all possible pairs of nodes in G. 
Also, Gv is the network G after node v is removed. 

Chen et al. 
(2012) 

SC Semi- 
local 

SC(v) =
∑

u∈Γ(v)
∑

w∈Γ(u)kw – 

Zeng and Zhang 
(2013) 

MDD Semi- 
local 

MDD(v) = Kr + λ.Ke λ is a tunable balance parameter, Kr is the residual degree, and Ke is the exhausted degree.  
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theory and semi-local centrality presented by Gao et al. (2013), with the 
difference that WSLCC is developed on a weighted network and con
siders the connections of multiple layer neighbors. 

Shao et al. (2019) presented a semi-local centrality method based on 
DIL based on Neighbors and the importance of Links (NL). NL applies the 
importance of all second-level neighbors to rank nodes. In addition, the 
authors use the unsubstitutability and connectivity of edges to apply the 
topological position of nodes in influencing estimation. Therefore, NL 
considers both topological position and semi-local structure for ranking. 

Ullah et al. (2021) addressed the disadvantages of local and global 
metrics by simultaneously considering local and global topological as
pects. The authors developed the Local-and-Global-Centrality (LGC) 
metric, which includes three definitions: local-influence, global-influ
ence, and total influence. In local-influence, the ratio of node degree to 
all network nodes is considered. Global-influence includes the impor
tance of neighboring nodes as well as shortest distances. Finally, LGC is a 
combination of local-influence and global-influence definitions. 

Local RASP (LRASP) as a semi-local centrality metric was presented 
by Hajarathaiah et al. (2022). LRASP considers part of the network to 
calculate RASP. Here, all neighbors of a node up to a fixed level are cut 
as an induced subgraph of the entire network and considered as input for 
the RASP metric. The results show that LRASP improves the balance 
between complexity and accuracy compared to RASP. 

Ullah et al. (2022) used the escape velocity formula to identify 

influential nodes and introduced the Escape Velocity Centrality (EVC) 
metric. EVC considers both local and global information and measures 
the rank of each node by combining shortest distance and degree. Since 
degree alone is not able to show the influence of nodes, the authors 
proposed EVC+ as an extended version of EVC. EVC+ increases per
formance by simultaneously including degree and KS in EVC. 

A semi-local centrality metric combining the LRASP index, the 
importance of the node itself, and the importance of the node’s neigh
bors was proposed by Zhang et al. (2023). Let INASP be the symbol to 
denote this metric. The importance of the node itself in INASP is applied 
by degree. The influence of the nearest neighbors is measured using the 
influence of the connected nodes and the hop-count between them. 
Here, the nearest neighbors are defined by first, second and third level 
neighbors. Here, instead of the entire network, a small subgraph is 
extracted for use by LRASP. 

Weighted Hybrid Centrality (WHC) is another semi-local metric that 
applies information from both nodes and edges to calculate influence 
(Shetty and Bhattacharjee, 2022). Since the importance of all edges is 
considered the same in unweighted networks, WHC develops an edge 
weighting approach to apply the frequency of interactions between each 
pair of nodes during ranking. In addition, WHC includes several well- 
known centrality methods such as degree, KS, and EC. 

3. Proposed centrality metric 

Semi-local centralities are more effective compared to local cen
tralities such as degree and PageRank, as well as global centralities such 
as betweenness and closeness in dealing with large-scale networks. 
Recent works have shown that centrality in a semi-local structure de
pends not only on the node itself but also on its nearest neighbors 
(Hajarathaiah et al., 2022). However, most local centrality metrics are 
defined only based on the number of first- and second-level neighbors 
and ignore the topological connections between neighbors (Masdari 
et al., 2020). Meanwhile, metrics that consider both topological con
nectivity and the number of neighbors to identify influential nodes are 
still under development (Zhao et al., 2023c). Topological communica
tion refers to the position of nodes and connections between them in the 
network, which can be applied by considering neighborhood informa
tion at different levels. Considering the entire network structure requires 
considering all levels of neighborhood and is inefficient for large-scale 
networks. Therefore, neighborhood levels should be applied in a 
limited way in ranking nodes. Also, the identification of neighbors with 
different levels should be done with low computational complexity to 
maintain performance in the face of large-scale networks. 

Insights in the literature show that the influence of a node depends 
not only on itself but also on its nearest neighbors. Also, the importance 
of edges in measuring influence should not be assumed to be equal, as 
this is an unrealistic assumption of social interactions. With this moti
vation, we propose WSLC as a weighted centrality metric based on the 
extended neighborhood concept. WSLC includes three features to mea
sure the influence of each node: 1) the importance of the node itself in 
the network (i.e., Node-Influence), 2) the importance of that node’s 
direct neighbors in the network (i.e., Local-Influence), and 3) the 
importance of the nearest neighbors of that node with different levels in 
the network (i.e., Semi-Local-Influence). The combination of these three 
features by WSLC can apply network structure, connections between 
neighbors and topology heterogeneity to rank nodes. 

Let INode(v) denote the importance of node v in terms of Node- 
Influence. Also, let ILocal(v) and ISemi Local(v) be the importance of node 
v in terms of Local-Influence and Semi-Local-Influence, respectively. By 
combining these three features, WSLC calculates the total influence of 
node v in the network, as defined by Eq. (1). 

WSLC(v) = a1.INode(v)+ a2.ILocal(v)+ a3.ISemi Local(v) (1)  

where a1, a2 and a3 are tunable influence coefficients for Node- 

Table 3 
Summary of recent semi-local centralities.  

Reference Metric Formula Description of 
parameters 

Kang et al. 
(2016) 

WSLCC WSLCC(v) =
∑

u∈Γ(v)
∑

w∈Γ(u)(Nw(w)+k′w ) +

k′v 

Nw(w) is the sum of 
the weighted degree 
of node w as well as 
its 2-hop and 3-hop 
neighbors. Also, 
k′v =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
kv
∑

u∈Γ(v)wu,v

√
. 

Shao et al. 
(2019) 

NL NL(v) =

∑
u∈Γ(v)

(
φ(u)+Iau,v .

kv − 1
kv + ku − 2

)
φ(u) is the number of 
neighbors with path- 
length equal to 2 of u. 

Ullah 
et al. 
(2021) 

LGC 
LGC(v) =

kv

N
.
∑

u∈Γ(v)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ku + α

√

δu,v 

α is a tunable 
parameter that 
controls the effect of 
degree. 

Ullah 
et al. 
(2022) 

EVC+
EVC+(v) =

∑
u∈Γ(v)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2α(kv(ksv + ksu) )

δu,v

√

ksv is KS of node v, 
and α is a tunable 
parameter to control 
the degree effect. 

Zhang 
et al. 
(2023) 

INASP INASP(v) =

a1.kv + a2.
∑L

l=1
∑

u∈V+l(v)
ku

l
L.Nv

+ a3.

ÂSP[Ĝv]

L is the maximum 
hop for the 
neighborhood, 
V+l(v) is the 
neighbors of node v 
in the l-hop, and 
ÂSP[Ĝv ] is the LRASP 
index for node v. The 
coefficients of each 
section are defined 
by parameters a1, a2, 
and a3. 

Proposed 
metric 

WSLC WSLC(v) = a1.INode(v) +
a2.ILocal(v) + a3.ISemi Local(v)

INode is the 
importance of the 
node itself, ILocal is 
the importance of the 
local node, and 
ISemi Local is the 
importance of the 
semi-local node. 
Also, ai are the 
tunable influence 
coefficients.  
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Influence, Local-Influence and Semi-Local-Influence features, 
respectively. 

All three features defined in WSLC are normalized between 0 and 1 
before combining so that the effect of all of them is the same in the total 
influence measurement. The details of the three features used in WSLC 
are as follows. 

3.1. Node-influence 

The degree of a node is one of the most important factors to deter
mine its centrality in complex networks. Hence, we define Node- 
Influence in WSLC based on the node degree. However, the density of 
the network can affect the degree of the node as a centrality factor. 
Suppose the degree of node v is equal to x. Obviously, the importance of 
node v with degree x is higher in a network with low connections than in 
a network with high connections. Hence, we define Node-Influence for 
node v based on both degree and density, as shown in Eq. (2). 

INode(v) =
kv

kmax + DG
(2)  

where kmax is the largest degree of the network. Also, DG denotes the 
density for network G, which is defined by Eq. (3) for undirected simple 
networks. 

DG =
2M

N(N − 1)
(3)  

3.2. Local-influence 

The insight in the literature shows that the greater the influence of a 
node compared to its neighbors, the more likely that node will be 
influential in the network. However, the number of neighbors should not 
be neglected because it is directly proportional to the influence of the 
node. Therefore, the importance of a node depends not only on itself but 
also on its neighbors. On the other hand, the contribution of each 
neighbor in the influence measurement should not be neglected. Ac
cording to these definitions, we calculate ILocal(v) by Eq. (4). 

ILocal(v) =
1
kv
.
∑

u∈Γ(v)

̅̅̅̅̅̅̅̅̅̅̅̅̅
wu,v.kv

√

ku + kv
(4)  

where wu,v is the weight associated with the edge eu,v, which represents 
the connection contribution between nodes v and u. 

The research society has strong evidence of the significant impact of 
the heterogeneity of connection structures and diverse patterns on the 
understanding of influence dynamics in complex networks. Therefore, 
heterogeneity of topologies is a crucial aspect of centrality. Although 
some state-of-the-art metrics have been developed considering the 
connection strength between nodes as weights, recent studies show that 
there is no reliable and consistent metric in facing different networks. 
This weakness has been reduced in recent works by combining different 
centrality metrics and simultaneously considering the weight of the 
edges. However, most of these works have ignored the heterogeneity of 
connectivity structures in complex networks. With this motivation, we 
apply the effectiveness of edges through a weight in the penetration 
measure. Since the influence of a node depends on how the weight is 
calculated, we introduce several different weight policies. In the 
following, six weighting policies are defined to calculate wu,v as the 
weight between nodes v and u.  

• Common Neighbors (CN): CN refers to the number of common nodes 
between two nodes, as defined in Eq. (5) (Lorrain and White, 1971). 

CNu,v = |Γ(u) ∩ Γ(v)| (5)   

• Jaccard Coefficient (JC): JC refers to the number of common neigh
bors relative to the total number of neighbors between two nodes, as 
defined in Eq. (6) (Jaccard, 1901). 

JCu,v =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

(6)    

• Average Degree (AD): This policy is defined based on the average 
degree of nodes u and v, as shown in Eq. (7). 

ADu,v =
ku + kv

2
(7)    

• Neighbors Degree (ND): This policy defines the weight between nodes 
u and v based on the sum of the average degrees of the neighbors of 
each of these nodes, as shown in Eq. (8). 

NDu,v =

∑
w∈Γ(u)kw

ku
+

∑
w∈Γ(v)kw

kv
(8)    

• Reputation-Optimism (RO): The weighting policy of RO includes the 
factors ‘Reputation’ and ‘Optimism’, which refer to the popularity of 
a user in the network and the following of more users, respectively. 
Let the weighted RO policy be calculated through Eq. (9). 

ROu,v =
2.ku.kv

ku + kv
(9)    

• Katz Index (KI): KI contains all paths with a given maximum length 
between two nodes. This policy is calculated based on the path fre
quency and the path length factor, as defined in Eq. (10) (Katz, 
1953). 

KIu,v =
∑L

l=1
βl.

⃒
⃒
⃒P

<l>
i,j

⃒
⃒
⃒ (10)  

where 
⃒
⃒
⃒P

<l>
i,j

⃒
⃒
⃒ represents the number of paths between u and v with 

l-hop, and β is a damping coefficient to reduce the effect of long paths. 
Setting β to 0.05 is recommended by researchers (Shao et al., 2019). It is 

worth noting that 
⃒
⃒
⃒P

<l>
i,j

⃒
⃒
⃒ can be calculated by raising the adjacency 

matrix A to the power of l. Also, L is the maximum neighborhood level, 
which is always set equal to 2 for the Local-Influence feature. 

3.3. Semi-local-influence 

The analysis of complex networks shows that the information of the 
nearest neighbors is effective in the ranking of nodes. However, different 
definitions of nearest neighbors have been proposed by researchers. For 
example, Chen et al. (2012) uses first-degree neighbors to calculate in
fluence. Zhang et al. (2023) proved that the nearest neighbors of a node 
with fixed and limited hops contain more effective information for 
calculating influence. Obviously, considering all neighbor levels results 
in a global centrality metric, which is inefficient for large-scale net
works. Accordingly, WSLC limits the neighbor levels to a maximum of L 
so that the information of 1-hop, 2-hop, …, and L-hop neighbors can be 
applied to calculate the influence. Eq. (11) shows how to calculate 
ISemi Local(v) in WSLC. 
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ISemi Local(v) =
1

SZ
[
G<L>

v

].
∑L

l=2

(

βl.
∑

u∈Γl(v)

̅̅̅̅̅̅̅̅̅̅̅̅̅
ŵu,v.kv

√

δu,v.(ku + kv)

)

(11)  

where G<L>
v is a subgraph of G containing all neighbors up to level L of 

node v. SZ is a function that returns the total number of nodes in the 
subgraph G<L>

v . Γl(v) is the set of neighbors for node v with l-hop, and β is 
a damping coefficient to reduce the effect of long paths. Setting β to 0.05 
is recommended by researchers (Gao et al., 2013). Furthermore, ŵu,v is 
the weight between nodes u and v with a reliable path. 

It is worth noting that Semi-Local-Influence also includes distance to 
neighbors, as it is inversely proportional to influence. In general, the 
nodes u and v in ISemi Local(v) may be connected through some paths, so 
the edge contribution must be applied through the path. Here, ŵu,v 

contains the weight multiplication of edges between nodes u and v via 
the shortest available path. Since the weights of the edges depict the 
strength of the connections, the multiplication of the weights of the 
edges affects the path length and provides the reliability of the path. 

An important challenge in ISemi Local(v) is to obtain Γl(v) in large-scale 
graphs. The set of neighbors in the first level is available through the 
adjacency matrix. Obtaining Γ2(v) as neighbors of the second level has 
negligible complexity, although it depends on the degree of the node v 
and the neighbors. However, finding Γl(v) for larger values of l imposes a 
higher computational complexity on the centrality metric. To address 
this challenge, WSLC identifies the nearest neighbors at different levels 
by considering the extended neighborhood concept. Zhang et al. (2023) 
introduced a distributed strategy based on the extended neighborhood 
concept, in which a semi-local subgraph of the entire network is 
extracted for each node. In this strategy, each node independently cre
ates a neighbor table that contains all neighbors up to the maximum 
level L. According to this idea, we use this semi-local subgraph to obtain 
Γl(v). 

The identification of the nearest neighbors for a node v is done by 
considering the extended neighborhood concept through two control 
packets ‘P1’ and ‘P2’. Node v broadcasts the control packet ‘P1’ with a 
“Max.HopCount” equal to L in the network. Hence, packet ‘P1’ is 
received by all neighbors with maximum level L from node v. After that, 
all the nodes that received the ‘P1’ packet send their properties 
including NodeID, degree and distance/hop to node v through the ‘P2’ 
control packet. 

Algorithm 1 shows a pseudo-code of the proposed distributed 
approach based on the extended neighborhood concept to identify near 
neighbor nodes. We assume that the graph is accessible using an adja
cency matrix and each node has the set of all its adjacent edges. 
Therefore, each node can discover all its neighbors through the adja
cency matrix in linear time. Algorithm 1 is executed recursively similar 
to Depth First Search (DFS) algorithm. The complexity of DFS is 
O(N+M) with the adjacency matrix available. However, our algorithm 
imposes a depth limit up to a maximum level of L. Hence, similar to a 
Depth-Limited Search (DLS) algorithm, Algorithm 1 traverses the graph 
only up to a maximum depth L. Therefore, the time complexity of our 
algorithm similar to DLS is O(bL), where b is the branching coefficient. 

Algorithm 1. Pseudocode of identifying neighboring nodes based on 
extended neighborhood   

Input: Maximum neighborhood level L, node v.  
Output: ΓL(v) as neighboring nodes v to the maximum level L. 

(continued on next column) 

Algorithm 1. Pseudocode of identifying neighboring nodes based on 
extended neighborhood (continued ) 

1: ΓL(v)← Add node v to the list of discovered nodes; 
2: if Max.HopCount (v) = 0 then 
3: Return ΓL(v); 
4: end 
5: foreachu ∈ Γ(v) do 
6: if u ∕∈ ΓL(v) then 
7: L = L − 1; 
8: Create packet ‘P1’ with “NodeID = v”, “SourceID = u”, and “Max. 

HopCount = L”; 
9: Send packet ‘P1’ to node u; 
10: Create packet ‘P2’ with “NodeID = u”, “SourceID = v”, and “Information 

(u)”; 
11: Send packet ‘P2’ to node v; 
12: Running Algorithm 1 (L, u, ΓL) as a recursive algorithm; 
13: end 
14: end  

3.4. Example of WSLC 

To better understand the proposed centrality metric, we describe a 
numerical example of WSLC. Consider Fig. 1, where there is a simple 
unweighted graph with 16 nodes and 18 edges. Here, WSLC is calculated 
for node 1, assuming L = 3, wu,v = NDu,v, and β = 0.5. According to Eq. 
(2), INode(1) is calculated as follows: 

DG =
2*18

16*(16 − 1)
= 0.15  

INode(1) =
5

6 + 0.15
= 0.81 

According to Eq. (4), ILocal(1) is calculated as follows: 

w1,2 =
12
5
+

5
1
= 7.4  

w1,3 =
12
5
+

8
2
= 6.4  

w1,5 =
12
5
+

11
3

= 6.07  

w1,8 =
12
5
+

14
3

= 7.07  

w1,9 =
12
5
+

9
3
= 5.4  

ILocal(1) =
1
5

*
( ̅̅̅̅̅̅̅̅̅̅̅

7.4*5
√

1 + 5
+

̅̅̅̅̅̅̅̅̅̅̅
6.4*5

√

2 + 5
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
6.07*5

√

3 + 5
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
7.07*5

√

3 + 5
+

̅̅̅̅̅̅̅̅̅̅̅
5.4*5

√

3 + 5

)

= 0.78 

To calculate ISemi Local(1), first the subgraph associated with node 1 is 
extracted considering the maximum level of neighborhood equal to 3. 
Let G<3>

1 be the extracted subgraph. According to Eq. (11), ISemi Local(1)
can be calculated as follows: 

where Γ2(1) includes nodes 4, 6, 10, and 11, and Γ3(1) includes nodes 7, 
12, 13, 14, 15, and 16. 

Finally, WSLC(1) is calculated according to Eq. (1) as follows: 

WSLC(1) = (0.25*0.81)+ (0.3*0.78)+ (0.45*0.26) = 0.5556  

ISemiLocal (1) =
1
16

*
(

0.52*
[

14.6
16

+
13.5
16

+
12.7
12

+
14.6
22

]

l=2
+ 0.53*

[
31.2
18

+
39.4
18

+
39.4
18

+
39.4
18

+
39.4
18

+
39.4
18

]

l=3

)

= 0.26   
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Here, a1 = 0.25, a2 = 0.3, and a3 = 0.45 are assumed. The WSLC values 
for other nodes in Fig. 1 are reported in Table 4. For better under
standing, the reader can download the MATLAB source code for this 
example from https://github.com/WSLCCentrality/InfluentialNodes. 

3.5. Pseudo-code 

Algorithm 2 shows the pseudo-code of proposed WSLC centrality 
metric which is developed based on the extended neighborhood 
concept. This algorithm returns the importance of node v in graph G 
based on the WSLC metric. 

Algorithm 2 is designed to calculate the importance of node v in 
graph G. Lines 1 and 2 define the details of the graph, including the 
number of nodes, the number of edges, and the adjacency matrix. Line 3 
sets the weight of each edge of G. Line 4 calculates the density of the 
graph G. Line 5 calculates local-influence. Line 6 finds the set of all first- 
level neighbors of node v based on the adjacency matrix. Line 7 sets 
ILocal(v) to an initial value of zero. Lines 8–11 calculate the value of 
ILocal(v) according to the definition of Local-Influence. Line 12 sets 
ISemi Local(v) to an initial value of zero. The subgraph associated with 
G<L>

v is created in line 13. Line 14 repeats up to a maximum of L as the 
neighborhood level. In line 15, the set of all neighbors up to the 
maximum level l of v according to extended neighborhood concept are 
identified. Line 16 is for iteration per neighbor of Γl(v). The shortest path 
between v and any u ∈ Γl(v) on G<L>

v is found in line 17. Lines 18–21 
calculate the weights between u and v based on the reliable paths. Line 
22 finds the length of the shortest path between u and v. Lines 23 and 25 
calculate the value of ISemi Local(v) according to the definition of Semi- 
Local-Influence. Line 25 calculates the final semi-local-influence. Line 
28 calculates total-influence. Finally, the algorithm returns WSLC(v) as 
output in line 29. 

4. Results and discussions 

To evaluate the performance of the proposed centrality metric, we 
use the SIR model as the basis for calculating Kendall’s τ coefficient. 
Simulations are performed with a wide variety of real complex networks 
in different dimensions. In addition to traditional centrality metrics, we 
use several state-of-the-art centrality metrics to compare with WSLC. 
The rest of this section includes details related to experimental setup, 
evaluation criteria, benchmark metrics and simulation results. 

4.1. Experimental setup 

All simulations were performed on a Lenovo laptop with Intel® 
Core™ i5 Processor (2.40 GHz), 8 GB of Memory, and Windows 11 
Home. MATLAB R2023a software is used to implement centrality met
rics. Each centrality metric is tested on eight real complex networks, 
where we select TopK nodes with the highest rank from each network as 
influential nodes. Inspired by Lv et al. (2019), we set TopK equal to 10 in 
the simulations. 

Algorithm 2. Pseudocode of WSLC centrality metric   

Input: G = (V,E), L, β, a1, a2, a3, node v.  
Output: WSLC(v) as the influence of node v. 

1: N = |V|, M = |E|; 
2: A← Adjacency matrix of graph G; 
3: 

{
wi,j
}

N×N← Adjusting the weight between each pair of nodes i and j according 
to a weighted policy;  
// Definition of Node-Influence 

4: DG = 2M/(N(N − 1)); 
5: INode(v) = kv/(kmax + DG);  

// Definition of Local-Influence 
6: Γ(v)← Find the set of all first-level neighbors of v based on A; 
7: ILocal(v) = 0; 
8: foreach u ∈ Γ(v) do 
9: ILocal(v) = ILocal(v) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
wu,v*kv

√
/(ku + kv); 

10: end 
11: ILocal(v) = ILocal(v)/kv;  

// Definition of Semi-Local-Influence 
12: ISemi Local(v) = 0; 
13: G<L>

v ← Extracting the semi-local subgraph associated with v at level l 
according to extended neighborhood concept; 

14: for l = 2 to L do 
15: Γl(v)← Find the set of all neighbors up to the maximum level l of v 

according to extended neighborhood concept; 
16: foreach u ∈ Γl(v) do 
17: Pathu,v←shortestpath(G<L>

v ,u,v); 
18: ŵu,v = 1; tmp = 0; 
19: foreach ei,j ∈ Pathu,v do 
20: ŵu,v = ŵu,v*wi,j; 
21: end 
22: δu,v =

⃒
⃒Pathu,v

⃒
⃒; 

23: tmp = tmp +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ŵu,v*kv

√
/
(
δu,v*(ku + kv)

)
; 

24: end 
25: ISemi Local(v) = ISemi Local(v) + (βl*tmp)
26: end 
27: ISemi Local(v) = ISemiLocal (v)/SZ[G<L>

v ];  
// Definition of Total-Influence 

28: WSLC(v) = a1*INode(v) + a2*ILocal(v) + a2*ISemi Local(v); 
29: Return WSLC(v);  

In addition to the edge weight policy, a1, a2, a3, and L are tunable pa
rameters in the proposed metric. We examine several weighting policies 
to find the best performance. Also, we analyze the parameter L through 
simulation with different values. Parameters a1, a2, and a3, which are 
applied as influence coefficients in the proposed metric, are set in the 
optimal mode using Taguchi design approach (Liu et al., 2022). This 
approach seeks to maximize the S/N ratio (signal-to-noise) by consid
ering the influence score. We found the optimal values for parameters 
a1, a2, and a3 with Taguchi approach 0.25, 0.3 and 0.45, respectively. 

Table 4 
WSLC metric results for all nodes in Fig. 1.  

Nodes INode ILocal ISemi Local WSLC Ranks 

1  0.8130  0.7806  0.2627  0.5556 1 
2  0.1626  0.4534  0.1139  0.2279 10 
3  0.3252  0.6207  0.0955  0.3105 8 
4  0.4878  0.7555  0.0436  0.3682 5 
5  0.4878  0.6556  0.0629  0.3469 6 
6  0.4878  0.7842  0.0290  0.3703 4 
7  0.1626  0.5774  0.0164  0.2213 11 
8  0.4878  0.6154  0.0851  0.3449 7 
9  0.4878  0.7877  0.0494  0.3805 3 
10  0.1626  0.6124  0.0166  0.2318 9 
11  0.9756  0.9008  0.0184  0.5224 2 
12  0.1626  0.3869  0.0379  0.1738 12 
13  0.1626  0.3869  0.0352  0.1725 13 
14  0.1626  0.3869  0.0328  0.1715 14 
15  0.1626  0.3869  0.0307  0.1705 15 
16  0.1626  0.3869  0.0288  0.1697 16  

Fig. 1. A simple unweighted graph with 16 nodes and 18 edges.  
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4.2. Description of complex networks 

In total, eight real complex networks are used in the experiments: 
Karate-Club, Dolphins, C-elegans, Airlines, Infect-Dub, Email, Grid, and 
Ca-Astroph. We assume all these networks are undirected and un
weighted. Also, these networks are selected based on different sizes to 
evaluate the performance of centrality metrics in different conditions. 
Topological properties of all selected networks are available via htt 
ps://networkrepository.com/networks.php. Table 5 provides details 
about the topological properties of these networks. 

4.3. Evaluation criteria 

Models such as Susceptible-Infected-Recovered (SIR) are widely used 
to investigate the way of spreading information in the entire network by 
nodes with high ranking (Liu et al., 2016). Each centrality metric selects 
a number of nodes that have the highest influence score as top nodes. 
These nodes are considered as initial infected nodes in the SIR model. 
The process of spreading information is applied by the SIR model ac
cording to the probability of infection λ and the probability of recovery μ 
as well as initial infected nodes. Here, each infected node can infect its 
susceptible neighbors at rate λ. Meanwhile, infected nodes can recover at 
rate μ. The process of spreading information in SIR is performed at each 
step t until there are no infected nodes in the network. 

At the beginning of the simulation, all nodes except initial infected 
nodes are selected as susceptible nodes. At each time step t, each 
infected node randomly selects only one of its susceptible neighbors and 
then infects it with probability λ. According to Zhang et al. (2023), we 
analyze the probability of infection λ in the range of 0.01 to 0.1 while μ is 
set to 1. Let F(t) be the set of infected and recovered nodes at step t. As 
shown in Eq. (12), F(t) can be considered as an index to evaluate the 
influence of nodes in step t. 

F(t) =
NI(t) + NR(t)

N
(12)  

where NI(t) is the number of infected nodes and NR(t) is the number of 
recovered nodes. 

Kendall’s τ coefficient has been used as a measure for correlation 
analysis of ranking lists in extensive studies (Liu et al., 2016). In the 
problem of identifying influential nodes, Kendall’s τ coefficient can be 
applied to evaluate the correlation between different centrality metrics. 
Let R = {r1, r2,⋯, rN} be the ranking list provided for N nodes by a 
centrality metric. Also, let R′ = {r′

1, r′
2,⋯, r′

N} be the ranking list gener
ated for N nodes by the SIR model. If (ri < rj) and (r′

i < r′
j) or (ri > rj) and 

(r′
i > r′

j) then pair (ri < r′
i) and (rj < r′

j) said to be concordant. Also, if 

(ri < rj) and (r′
i > r′

j) or (ri > rj) and (r′
i < r′

j) then pair (ri < r′
i) and 

(rj < r′
j) said to be discordant. In Kendall’s coefficient, τ is defined by Eq. 

(13), where its higher value indicates the similar behavior of two lists R 
and R′. 

τ =
Nc − Nd

0.5N(N − 1)
(13)  

where Nc is the number of concordant pairs and Nd is the number of 
discordant pairs. 

4.4. Benchmark metrics 

We use different centrality metrics from all three categories of local, 
semi-local, and global to compare with the proposed metric. In the local 
category, we compare WSLC with DC (Freeman, 2002), PR (Brin and 
Page, 1998), and TPR (Sheng et al., 2020b). In the global category, we 
use BC (Freeman, 1977), CC (Sabidussi, 1966), EC (Bonacich, 2007), and 
RASP (Lv et al., 2019) to validate the proposed centrality metric. Also, 
several state-of-the-art and equivalent centrality metrics from the semi- 
local category such as SC (Chen et al., 2012), WSLCC (Kang et al., 2016), 
LGC (Ullah et al., 2021), and INASP (Zhang et al., 2023) are used to 
compare with WSLC. For fair comparisons, we implement all available 
centrality metrics by the same experimental setup. 

4.5. Simulation results 

In this section, we prove with numerical simulations and various 
comparisons that WSLC performs much better than traditional and state- 
of-the-art centrality metrics. 

The most important tunable parameter in WSLC is L, which de
termines the nearest neighbor level. Here, L = 1 indicates that WSLC 
uses only first-level neighbors to calculate the influence of each node in 
the network. Setting L to 2 means that the information of all first and 
second level nodes are considered for ranking. Likewise, an increase in L 
will lead to an increase in the level of neighborhood and an increase in 
the information available to measure influence. However, configuring 
WSLC with high neighborhood levels leads to increased complexity, as 
information for more nodes must be processed. On the other hand, the 
information of nodes with higher neighborhood levels has less value in 
ranking. It is obvious that using too high neighborhood levels leads to 
the addition of useless information and thus to the performance reduc
tion. Hence, setting the parameter L plays an important role in identi
fying the influential nodes. In a comparative experiment, we examined 
values of L from 1 to 5. The results of this comparison for all complex 
networks are reported in Fig. 2. The average results show that WSLC 
with a neighborhood level of 4 has the best performance. As illustrated, 
L = 2 has led to much better results than L = 1. Meanwhile, increasing L 
up to 4 improves the WSLC results, while the performance of WSLC is 
degraded for L > 4. These results confirm the effectiveness of the 
extended neighborhood concept for identifying neighboring nodes, 
because considering neighbors with different and limited levels has led 
to improved results. This simulation is done with λ = 0.1, μ = 1, and 
wu,v = NDu,v. 

Another important parameter in WSLC is the edge weighting policy, 
which applies the contribution of connections between nodes to the 
ranking. We argued that considering the equal contribution of edges in 
measuring influence is an unrealistic assumption of social interactions. 
Hence, we prove this claim by a numerical experiment. In this experi
ment, we apply several different weights as an edge weighting policy on 
WSLC. Also, we set the WSLC for each pair of nodes u and v with wu,v =

1, which leads to applying the same contribution of edges in the node 
ranking process. The results of this experiment can show the effect of 
weighting the edges as well as the policy of choosing the optimal weight. 

Table 6 shows the results related to Kendall’s τ coefficient for six 
defined weighting policies. Each row shows the results for a complex 
network and the last row is dedicated to the average results. Each col
umn is a weighting policy in WSLC, and the column associated with 
‘wu,v = 1’ is the results of the unweighted version of WSLC. This simu
lation is done with L = 4, λ = 0.1, and μ = 1. As depicted, the WSLC 
setting with wu,v = 1 provides little performance in ranking, and this 
confirms our claim about the different contribution of edges in 
measuring influence. Meanwhile, the results clearly show that NDu,v 

Table 5 
Properties of the real complex networks.  

Networks No. of nodes No. of edges Avg. degree Max. degree 

Karate-Club 34 78  4.6 17 
Dolphins 62 159  5.1 12 
C-elegans 297 2148  15.2 83 
Airlines 235 1297  11.0 130 
Infect-Dub 410 2765  13.5 50 
Email 1133 5451  9.62 71 
Grid 4941 6594  2.7 19 
Ca-Astroph 18,771 198,050  22.0 504  
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Fig. 2. Analysis of the parameter L in the proposed WSLC metric.  

Table 6 
Performance of WSLC with different edge weighting policies.  

Networks wu,v = 1 CNu,v JCu,v ADu,v NDu,v ROu,v KIu,v 

Karate-Club  0.7649  0.7756  0.7695  0.7592  0.7676  0.7416  0.7701 
Dolphins  0.6829  0.6971  0.6967  0.6871  0.6993  0.6789  0.6941 
C-elegans  0.6796  0.7018  0.7015  0.7166  0.7354  0.7008  0.6964 
Airlines  0.775  0.7888  0.7877  0.7826  0.7838  0.7817  0.7863 
Infect-Dub  0.7392  0.7553  0.7583  0.7458  0.7533  0.7368  0.7511 
Email  0.5565  0.5632  0.5641  0.5602  0.5614  0.5524  0.5587 
Grid  0.7323  0.7556  0.7595  0.7394  0.7536  0.7540  0.7558 
Ca-Astroph  0.7732  0.7892  0.7927  0.7795  0.7902  0.7687  0.7873 
Average  0.7130  0.7283  0.7288  0.7213  0.7306  0.7144  0.7250  

Fig. 3. Comparison of WSLC with local centrality metrics (i.e., DC, PR and TPR) based on Kendall’s τ coefficient.  

X. Wang et al.                                                                                                                                                                                                                                   

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com



Journal of King Saud University - Computer and Information Sciences 36 (2024) 101906

10

provides the best weighting policy for WSLC. 
The performance of WSLC compared to local centrality metrics (i.e., 

DC, PR and TPR) is presented in Fig. 3 for all complex networks. In this 
comparison, Kendall’s τ coefficient is reported for each metric based on 
different rates of λ (0.01 to 0.1). Each probability of λ expresses the 
relationship between centrality metrics and F(t). In this figure, rank 
correlation represents τ in Kendall’s coefficient, where it depicts the 
correlation associated with cumulative infected nodes for centrality 
metrics. Comparison of WSLC with global centrality metrics (i.e., BC, 
CC, EC and RASP) based on Kendall’s τ coefficient is given in Fig. 4. Also, 
Fig. 5 evaluates the performance of WSLC against semi-local centrality 
metrics (i.e., SC, WSLCC, LGC, and INASP). For better clarity of com
parisons, the average Kendall’s τ coefficient of each metric was calcu
lated on all complex networks and reported in Fig. 6. Fig. 6(a) shows the 
average results of Kendall’s τ coefficient for WSLC as well as DC, PR and 

TPR metrics. Fig. 6(b) shows the average results for WSLC as well as 
other global metrics such as BC, CC, EC and RASP. In addition, Fig. 6(c) 
shows the average results related to Kendall’s τ coefficient for SC, 
WSLCC, LGC, INASP and WSLC. 

As illustrated, WSLC significantly identifies influential nodes more 
accurately compared to local centrality metrics, as it results in F(t) with 
higher correlation than other metrics. Actually, WSLC as a semi-local 
metric uses more information than local metrics and its higher perfor
mance is expected. However, WSLC produces competitive results in 
almost all cases compared to global centrality metrics. As we can 
observe, the average results of WSLC are not decisively superior 
compared to other global metrics, because global metrics use all network 
information to measure influence. However, these metrics have signif
icantly higher time complexity. On the other hand, in some cases, the 
use of all network information may lead to weakening the performance 

Fig. 4. Comparison of WSLC with global centrality metrics (i.e., BC, CC, EC and RASP) based on Kendall’s τ coefficient.  

Fig. 5. Comparison of WSLC with semi-local centrality metrics (i.e., SC, WSLCC, LGC, and INASP) based on Kendall’s τ coefficient.  
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of a centrality metric. For example, BC and CC perform worse than the 
proposed metric in some networks. In addition, WSLC provides better 
results as networks scale up compared to other metrics, because WSLC 
only considers a subgraph of the network for ranking nodes. Therefore, 
increasing the scale of the network does not have a significant effect on 
the results provided by WSLC. It is worth noting that WSLC uses the 
extended neighborhood concept based on a distributed approach to 
extract subgraphs, which imposes little complexity on the ranking pro
cess. As we can observe in most of the networks, WSLC as a semi-local 
metric provides better results compared to its equivalent metrics. The 
reason for this superiority is the use of neighborhood information with 
different levels and also considering the importance of both nodes and 
edges. On average, WSLC outperforms SC, WSLCC, LGC, and INASP by 
12.8 %, 4.6 %, 7.3 %, and 2.2 %, respectively. 

Time complexity is one of the effective factors in evaluating cen
trality metrics. The runtime results as one of the time complexity in
dicators for the centrality metrics are given in Table 7. The results of this 
simulation are reported based on wu,v = NDu,v, L = 4, λ = 0.1, and μ =

1. These results include the running time to identify 10 influential 
nodes, where we do not consider the loading time of the dataset in the 
simulation. DC has the lowest running time compared to other metrics 
with an average of 0.12 s. DC only needs the degree information of the 
nodes and is a local metric. Since the degree of the nodes is available 
through the adjacency matrix, DC does not depend on the network size 
and has very low running time. Similarly, PR and TPR are based only on 
the information of first-level neighbors and therefore have a short run
time. Instead, BC, CC, EC, and RASP as global metrics have a very high 
runtime. Since these metrics need to process the information of the 
entire network to measure the influence of a node, their running time 
increases with the increase of the network size. 

Other metrics available as semi-local metrics have different run
times. LGC and WSLCC have similar performance in runtime results 
because they use practically the same information to calculate 

centrality. Meanwhile, the average runtime results in SC are also similar. 
However, the running time in SC has little change with increasing 
network size, because this metric only uses first and second level 
neighbors. The runtime results in SC, INASP and WSLC are highly 
competitive. SC requires only the degree of first and second level 
neighbors and is therefore less complex than other metrics. WSLC is less 
complex than INASP because it uses a distributed approach to extract 
local subgraphs. On average, WSLC requires 4.1 s and 15.6 s less runtime 
compared to SC and INASP, respectively. 

5. Conclusions 

The purpose of this paper is to identify influential nodes in complex 
networks and understand the theoretical and practical importance of 
centrality metrics. So far, various centrality metrics have been proposed 
to solve this problem, so that the performance of each depends on spe
cific scenarios. For example, metrics based on local structure have low 
ranking accuracy due to the use of limited information, and metrics 
based on global structure suffer from high complexity. Meanwhile, 
metrics based on semi-local structure are amazingly well, but an effi
cient centrality for identifying influential nodes is still not available due 
to differences in the structure and scale of networks. In addition, most 
semi-local centrality metrics only consider one aspect of each node’s 
information, and their development still faces serious challenges. It is 
obvious that the importance of the edge and its stability play a signifi
cant role in the ranking of nodes. In addition, the effectiveness of the 
extended neighborhood concept has been confirmed by many re
searchers to consider different neighborhood levels in the influence 
calculation. Considering all these issues, we proposed a weighted semi- 
local centrality metric called WSLC to improve the identification of 
influential nodes in complex networks. WSLC considers the importance 
of both nodes and edges simultaneously to calculate influence. The 
importance of edge is covered by studying different number of weights. 

Fig. 6. Average results of Kendall’s τ coefficient on all complex networks. (a) Comparison of WSLC with local metrics, (b) Comparison of WSLC with global metrics, 
and (c) Comparison of WSLC with semi-local metrics. 

Table 7 
Runtime results (seconds) for WSLC and other centrality metrics.  

Centrality metrics Metric type Karate-Club Dolphins C-elegans Airlines Infect-Dub Email Grid Ca-Astroph Average 

DC Local  0.02  0.06  0.07  0.11  0.12  0.14  0.16  0.26  0.12 
PR Local  0.46  0.84  1.10  1.26  1.33  1.65  1.88  3.44  1.50 
TPR Local  0.70  1.03  1.43  1.50  1.67  2.00  2.16  4.26  1.84 
BC Global  3.05  14.15  17.52  17.86  19.05  24.07  77.34  154.2  40.91 
CC Global  2.98  13.69  17.26  18.25  18.67  23.68  80.13  155.7  41.30 
EC Global  2.30  8.75  13.04  14.11  15.26  18.85  66.00  118.5  32.10 
RASP Global  2.84  9.15  11.76  13.48  15.56  21.34  55.72  124.3  31.77 
SC Semi-local  0.87  3.30  3.84  3.87  4.23  7.12  21.46  34.82  9.94 
LGC Semi-local  2.65  5.38  6.03  6.35  6.99  10.33  48.27  77.08  20.39 
WSLCC Semi-local  3.34  6.64  9.00  10.41  11.37  15.68  44.13  76.21  22.10 
INASP Semi-local  1.26  5.11  5.97  5.68  6.06  8.21  22.16  33.83  11.04 
WSLC Semi-local  0.66  2.73  4.05  5.45  5.74  6.32  20.30  31.17  9.55  
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Also, WSLC uses the extended neighborhood concept to be efficient 
when dealing with large-scale networks. Here, a subgraph of the 
network is extracted with a distributed approach to determine nearest 
neighbors with different hops. According to the considered information, 
WSLC combines the topological position with the semi-local structure to 
perform better to identify the influential nodes. 

A comparative analysis of WSLC with several classical and equivalent 
centrality metrics has been performed on eight real-world complex 
networks. The insight of using the extended neighborhood concept to 
determine nearest neighbors has resulted in higher accuracy and lower 
complexity simultaneously. WSLC reports better results in terms of 
Kendall’s correlation coefficient and is more efficient in dealing with 
large-scale networks. We compared the cumulative infected nodes ob
tained from the SIR model with WSLC and other state-of-the-art metrics. 
The simulation results showed that the proposed WSLC metric is not 
correlated with the existing centrality metrics. Also, our metric provides 
better results compared to DC, PR, TPR, BC, CC, EC, RASP, SC, WSLCC, 
LGC, and INASP. To summarize, the reasons for the superiority of the 
proposed method can be listed as follows: 1) Simultaneously considering 
the importance of the node itself and its nearest neighbors to calculate 
the influence; 2) Identifying nearest neighbors with a low-complexity 
distributed approach; 3) Using nearest neighbors with different levels 
to rank nodes; 4) Using a damping coefficient to apply a higher effect of 
closer neighbors; 5) Applying the importance of each edge in the 
calculation of influence by assigning weight to the edges. 

In addition to theoretical significance, the identification of influen
tial nodes also has practical applications. Considering the acceptable 
performance of the proposed metric for identifying influential nodes in 
complex networks, WSLC can be considered for real-world networks. For 
example, WSLC can be used for optimal ranking of search engine results. 
Influential nodes selected by WSLC can be used as centers to detect 
communities in social networks. The ranking of nodes by WSLC can be 
used for the purpose of targeted backup according to the importance of 
server nodes in computer networks, where this leads to ensuring the 
robustness of the network. To improve the proposed metric, there are 
some potential issues that can be considered as future work. For 
example, other features such as interactions between nodes can be 
considered as edge weights. Also, WSLC can be extended and adapted to 
dynamic and directed networks. Developing parallel approaches to 
identify influential nodes is another future direction. Considering the 
relative change in average shortest path theory with extended neigh
borhood concept is clearly neglected in the existing literature. 
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