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H I G H L I G H T S

• A residential energy management model is presented for two-stage energy trading.

• Stochastic bi-level optimization minimizes cost and inconveniences under uncertainty.

• Building thermal model presented for thermal comfort reservation for the user.

• Battery degradations are incorporated for actual cost minimization.

• Better cost savings than state-of-the-art methods providing up to 51% reductions.
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A B S T R A C T

Bi-directional electricity trading of demand response (DR) and transactive energy (TE) frameworks allows the
traditionally passive end-users of electricity to play an active role in the local power balance of the grid.
Appropriate building energy management systems (BEMSs), coupled with an optimized bidding strategy, can
provide significant cost savings for prosumers (consumers with on-site power generation and/or storage facility)
when they participate in such bi-directional trading. This paper presents a BEMS with an optimization-based
scheduling and bidding strategy for small-scale residential prosumers to determine optimal day-ahead energy-
quantity bids considering the expected cost of real-time imbalance trading under uncertainty. The proposed
scheduling and bidding strategy is formulated as a stochastic bi-level minimization problem that determines the
day-ahead energy-quantity bids by minimizing the energy cost in the upper level considering expected cost of
uncertainty, whereas a number of lower-level sub-problems ensure optimal operation of building loads and
distributed energy resources (DERs) for comfort reservation, minimization of consumers’ inconveniences and
degradation of residential storage units. A modified decomposition method is used to reformulate the nonlinear
bi-level problem as a mixed-integer linear programming (MILP) problem and solved using ‘of the shelf’ com-
mercial software. The effectiveness of the proposed BEMS model is verified via case studies for a residential
prosumer in Sydney, Australia with real measurement data for building energy demand. The efficacy of the
proposed method for overall financial savings is also validated by comparing its performance with state-of-the-
art day-ahead scheduling strategies. Case studies indicate that the proposed method can provide up to 51% and
22% cost savings compared to inflexible non-optimal scheduling strategies and deterministic optimization-based
methods respectively. Results also indicate that the proposed method offers better economic performance than
standard cost minimization models and multi-objective methods for simultaneous minimization of energy cost
and user inconveniences.

1. Introduction

Residential prosumers, i.e. consumers with on-site distributed gen-
eration (DG) and distributed energy resources (DER), are increasing in
numbers due to advances in affordable electrical storage and generation

technologies, favorable regulations, and attractive incentive programs.
Besides, the evolving electricity market structures allow prosumers to
participate in different market-based schemes for cost reduction in-
cluding demand response (DR) and transactive energy (TE) framework.
In addition to that, modern residential buildings are now coupled with
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various controllable electrical loads, such as electric vehicles (EV) with
the vehicle to grid (V2G) and vehicle to building (V2B) functionalities,
heat pumps, electric heating, ventilation, and air-conditioning (HVAC)
systems, etc. As a result, building energy management systems (BEMS),
with appropriate load scheduling and resource optimization strategy,
offer significant cost savings to the prosumers by utilizing the flex-
ibilities of these controllable residential loads and DER units for bi-di-
rectional electricity trading of DR and TE frameworks [1,2].

Traditional DR programs influence responsive consumers and pro-
sumers to alter their consumption profile according to the need of
utility companies using price or incentive signals. It allows them to
utilize the demand-side flexibilities for peak load reduction, which in
return reduces the power generation and operation cost [3]. On the
other hand, TE is an advanced variant of DR, where consumers and
prosumers can actively negotiate the energy to be consumed or supplied
for each market interval [4]. In addition to peak-load reduction, TE
offers several grid-assistance services including grid-congestion man-
agement [5,6] and local voltage regulation [7]. Moreover, the local
peer-to-peer (P2P) electricity trading of the TE framework reduces the
stress on grid supply [8] and offer significant profits to prosumers [9].
However, TE is still in the infancy phase without any established
standards, and most TE markets do not allow small-scale prosumers to
actively negotiate the tariff for energy transactions, rather they are
aggregated via a local transactive aggregator thereby limiting their
cost-reduction potential [4,10,11].

Significant research efforts have been made towards developing

efficient BEMS for bi-directional electricity trading of DR and TE fra-
meworks. For example, the bi-directional DR trading-based energy
management methodologies in [12–15] optimally schedule and manage
controllable building loads and energy resources to reduce electricity
bills for the consumer, whereas the methodologies in [2,16,17] also
incorporated user inconveniences and discomfort while minimizing
energy cost for the consumers. Several studies proposed BEMS meth-
odologies for energy trading or sharing in the TE framework. For ex-
ample, the energy management methodologies in [11,18,19] reported
significant cost savings for participating consumers in a local TE
trading, where consumers trade demand flexibility and excess energy
from building resources during grid-congestion periods. The BEMS
presented in [20] trades the flexibilities of the HVAC system in a local
transactive market for peak-load reduction, demand shifting, and con-
servation of HVAC demand of a commercial building. The flexibilities of
thermostat-controlled building loads are also used in [21] to trade de-
mand-flexibility in the real-time transactive market and reduce elec-
tricity costs for the consumer. The authors in [8,22,23] proposed
methods to manage residential storage units for P2P energy trading or
sharing in a local community with a focus on electricity bill reduction
for the prosumers. Local P2P sharing is also adopted in the energy
management methodologies in [9,24]. The energy exchanges between
neighbors are optimized in [9] based on their demand, battery state of
charge and excess generation from on-site solar photo-voltaic (PV)
systems. On the other hand, the BEMS in [24] schedules the building
resources in the neighborhood resulting in reduced electricity bills for

Nomenclature

Indices and Sets

i T Time periods
j M Flexible devices
k N Power levels of flexible devices
h H Set of thermal loads
p P Building surfaces (walls and roof)
q Q Windows and doors of the building
L D M, Set of time-shfitable flexible loads and flexible DER units
L Lni Set of non-interruptible loads
T Tts Desired operating window for time-shiftable flexible loads
s S Set of scenarios

Parameters

T Duration of 1 time period [hour]
Ej

req Energy consumption requirement of load j [kWh]
int Penanlty cost coefficient for interruption["$"/interruptio

n]
j Coefficient of performance (CoP) of thermal load j

Qint Internal heat gain of the building [kW]
R, Heat transfer coefficient [W/m2K] and radiation heat re-

sistance [m2K/W] of building surfaces
A Surface area [m2]

out Outdoor temperature [°C]
, Radiation absorption and transmission coefficient of the

building surfaces
I Solar radiation on the building surfaces/windows/doors

[KW/m2]
V C, , b Density [kg/m3], volume [m3] and specific heat capacity

[J/kg°C] of the air in the building
P P,c d Charging and discharging power for storage [kW]

,c d Charging and discharging efficiencies for storage [kW]
Em Maximum storage capacity [kWh]
SoC SoC,j j Maximum and minumum state of charge (SoC)

DoD DoD,j j Maximum and minumum depth of discharge (DoD)
c d Penanlty cost coefficient for frequent charge-discharge

cycles
CB Battery replacement cost

dcm Thermal discomfort coefficient
set Thermostat set-point temperature

Pfl Fixed-load demand [kW]
Pg Solar PV generation [kW]
Pth Maximum power demand of thermal load [kW]

Variables

x y, Binary decision variable {0, 1}
Cint Penalty cost for interruption
Qgen Heating/cooling power generation by thermal loads [kW]
Qcon Heat exchanges in conduction [kW]
Qrad Heat exchanges in radiation [kW]
Qcs Heat exchanges due to thermal conduction via external

surfaces of the building [kW]
Qcw Heat exchanges due to thermal conduction via windows

and doors [kW]
Indoor temperature [°C]

Qrs Heat contribution of solar radiation on the opaque sur-
faces of the building [kW]

Qrw Heat contribution due to solar radiation transmitted
through windows and doors [kW]

,i j i j, , State of charge (SoC) and depth of discharge (DoD) of
storage units

i j, Marginal cycle aging degradation of storage units
C C,DoD c d Battery degradation cost for non-optimal DoD and fre-

quent charge-discharge cycles
P P/th th Power demand of thermal load with/without VESS
P P,thc thd Charging and discharging power of VESS
Cdcm Thermal discomfort cost

+P P, Day-ahead bids (demand and supply) [kW]
Prt Real-time imbalance bids [kW]
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the consumers, efficient utilization of neighborhood PV generation and
reduced peak to average ratio (PAR) on the aggregated demand profile.
Local TE trading is explored for microgrids in several research studies
[22,25,26]. The responsive building loads and generators of the mi-
crogrid participate in a local market in [25] to procure or sell energy for
the cost minimization of the consumers. On the other hand, P2P trading
is used in [26] for the local power balance of the microgrid, which
reduces energy export from the utility grid and facilitates higher pe-
netration of renewable energy resources.

However, cost minimization approaches of
[8,9,12–15,18,21,22,24,25] can often result in user inconveniences
when demand flexibility is leveraged to maximize profits out of bi-di-
rectional energy exchange of DR and TE schemes. For example, flexible
operation of thermostat-controlled appliances can cause thermal dis-
comfort for the user as such approaches stretch the indoor temperature
to maximum or minimum thresholds most of the time to reduce heating
and cooling demand (as seen in [13,14]). Such thermal discomfort is
not considered in [11–14,17,20,21] when a flexible operation of ther-
mostat-controlled building appliances is utilized for reducing electricity
cost. On the other hand, the methodologies in [15,16,25] involve cur-
tailment or deferral of flexible loads, which can cause user dis-
satisfaction, hence need to be incorporated into the BEMS models for
actual welfare maximization of the consumer. On top of that, the
models in [8,9,12–18,22,24] utilizes the flexibility of battery storage
units to minimize electricity bills when participating in bi-directional
trading-based DR or TE framework. However, such approaches often
lead to irregular and frequent charge-discharge cycles for the storage
units thereby causing their lifetime degradation [27], which needs to be
incorporated into the BEMS model. The user dissatisfaction for load
curtailment or interruptions are considered in [17] by imposing a
constraint to limit it within the desired level, however, such measure
may not lead to most optimum operation. On the other hand, the in-
terruptions of flexible loads are penalized in [16,19], which are mini-
mized along with the energy cost for the consumer. Similar approaches
are taken for thermal discomfort reduction in [19,26] and minimization
of storage degradation in [19,23]. However, such a single-objective-
based approach by adding completely different cost terms may not
provide the most optimal electricity cost scenario as it reduces com-
bined cost (including penalty cost for interruptions and thermal dis-
comfort) instead of minimizing actual electricity cost. On the other
hand, the multi-objective optimization-based model of [2] for si-
multaneous minimization of electricity cost, thermal discomfort, user
inconveniences, and storage degradation is highly dependent on the
weighting coefficient used for different objectives [28]. In addition to
that, most bi-directional energy markets include a day-ahead market
and a real-time imbalance market, where the participants commit to
energy consumption and supply schedule for the next day in day-ahead
stages, and trades any imbalances in the real-time [29,30]. In this re-
gard, deterministic approaches can often expose prosumers to higher
tariff fluctuations in real-time imbalance market. Several studies pro-
posed stochastic and robust optimization models to incorporate un-
certainty in the day-ahead setting [29–31], however, these methodol-
ogies aggregate the demand-side flexibilities of small-scale prosumers
and active consumers via an aggregator, who trades energy on behalf of
the prosumers and control their building loads and resources. Such
methodologies can often raise privacy concerns and prosumers are not
provided with full-decision making authority, thus discouraging their
active engagement and often fail to utilize their full flexibility
[19,20,32].

This paper focuses on addressing the research gaps found in the
literature by developing a comprehensive BEMS model for bi-direc-
tional energy trading that determines optimal day-ahead bids by
minimizing the electricity cost while considering user inconveniences in
terms of dissatisfaction for load interruptions, thermal discomfort for
thermostat-controlled loads, and degradation of storage units. It is
considered that the prosumer participates in a day-ahead energy

market, and trades real-time imbalances from day-ahead market com-
mitment in a local transactive market that operates in real-time [19]. A
BEMS model is presented in this paper for small-scale residential pro-
sumer with day-ahead scheduling and bidding strategy that determines
the day-ahead energy-quantity bids while considering the expected
imbalance cost for the uncertainties. Contrary to most BEMS for bi-di-
rectional trading, the bidding model is formulated as a two-stage sto-
chastic bi-level optimization problem where the electricity cost is
minimized in the upper level to determine the day-ahead energy bids of
the building for each market interval considering uncertainty in de-
mand, generation, and market prices. The inconveniences and thermal
discomfort of the consumer have been modeled as optimization sub-
problems in the lower level along with storage degradations. The use of
bi-level optimization allows incorporating discomfort, inconvenience
and degradation cost as lower-level subproblems compared to treating
them as equivalent objectives as in single-level formulations. As a re-
sult, the proposed methodology can minimize the actual energy cost
subject to minimum inconveniences, discomfort and storage degrada-
tion. Therefore, it diminishes the need for adding different cost terms
into a single objective as in [16,19,23] or use of multi-objective opti-
mization as in [2]. The key contribution of this paper can be sum-
marized as:

• An improved BEMS model is developed for small-scale residential
prosumers to trade energy in a day-ahead energy market con-
sidering the expected cost of imbalance-trading in a real-time
market.

• A novel transactive bidding model is proposed based on two-stage
stochastic bi-level optimization that minimizes the energy cost
subject to minimum consumer inconvenience and discomfort while
determining energy bids.

• A comprehensive thermal model is developed for the building with a
virtual energy storage system (VESS) to represent consumer’s flex-
ibility and thermal discomfort for the operation of thermal loads.

• The cycle-aging degradation of the storage units are incorporated
into the BEMS considering different stress factor on battery life to
minimize the actual cost for the consumer including battery de-
gradation costs.

The remainder of the paper is organized as follows - the mathe-
matical model of the proposed BEMS is discussed in Section 2, the
proposed day-ahead scheduling, and bidding optimization model is
presented in Section 3, case studies, and numerical results are discussed
in Section 4 to evaluate the effectiveness of the proposed BEMS meth-
odology, which is followed by the conclusion of the paper as given in
Section 5.

2. The BEMS model

A comprehensive building energy management system (BEMS) is
proposed in this paper that coordinates and manages the operation of
all the electrical loads and DERs of the building.

The power demand of non-flexible electrical appliances is con-
sidered non-controllable and such loads are termed as fixed loads that
include basic lighting loads, television, fridge, cooking appliances,
steam iron, etc. The BEMS model ensures uninterrupted operation of
the fixed loads whenever the user switches them on, therefore, the
power demand for the fixed load is considered constant for the BEMS.
The power generation from on-site distributed generation (DG) units
(e.g. rooftop solar photovoltaic system) is also uncontrollable as it de-
pends on external factors such as weather condition, temperatures, etc.
The BEMS aims at maximum utilization of DG power, which is also
considered fixed for energy management system similar to fixed load
demand.

However, the power consumption of some building loads can be
shifted in time without affecting the user comfort such as washing
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machine, dishwasher, pool pumps, etc. These building loads are cate-
gorized as flexible loads in this paper. In addition to that, the charging
and discharging of electrical storage units of the building can be con-
trolled without violating their operational constraints. The term “flex-
ible device” is used in the remainder of this paper to indicate flexible
loads and controllable DERs (e.g. electrical storage units) of the
building. On the other hand, the thermostat-controlled building loads
are considered as thermal loads and a thermal model of the building is
proposed with a virtual energy storage system (VESS) for flexible op-
eration of thermal loads.

2.1. Binary decision variable and operating states of flexible devices

Two operating states are considered for flexible devices- ON and
OFF (or idle) and a binary decision variable, x is used to indicate the
operating states of the devices. Here, =x 1i j

k
, if the device j M is

operating (ON) with power level k N during period i T and =x 0i j
k
,

means that the device j is switched OFF or at idle state at time i for any
value of k. A device can only operate in one power level at a time. This
is represented in the BEMS model by setting decision variable con-
straint as follows:

x i jT M1 ,
k N

i j
k
,

(1)

Another binary decision variable, y is used to indicate the change in
operation states for flexible devices. Here, =y 1i j

k
, only when flexible

load j L changes its operating states from OFF to ON for =k 1 as it
indicates that load j switches ON from OFF state in period i and starts its
first power cycle with first power level. On the other hand, =y 1i j

k
, if

flexible DER unit j D changes operating status from idle to charging
(for =k 1) or discharging (for =k 2). Therefore, the condition for y can
be written as follows:

= = = =

= = =
=

y x x i k j

x x i k j

L

D

1; if 0 & 1 , 1,

1; if 0 & 1 , {1, 2},
0; Otherwise

i j
k

i j
k

i j
k

i j
k

i j
k

, 1, ,

1, ,

(2)

2.2. Time-shiftability of flexible loads

The operation of flexible loads can be shifted in time. For example,
washing machines, cloth dryers, dishwashers, pool pumps, etc, can be
shifted to different time-periods within their desired operation window
for cost reduction. The BEMS model schedules the operation of such
flexible loads in the desired window of operation specified by the user
and total energy demand requirements of such loads need to be sup-
plied to satisfy their operational constraints. These can be represented
as:

=
x i j kT L N1 ; , ,

0; Otherwise
i j
k

ts,

(3)

=x E jP L
i

i j
k

T j
req

T
ts,

(4)

here, ×P j k
ts represents the nominal power ratings in each power

level for time-shiftable flexible loads.
Flexible loads can be further sub-categorized into interruptible and

non-interruptible loads. For example, pool pumps are interruptible and
time-shiftable as their operation can be shifted in time and their total
operating time can be distributed into several short cycles. On the other
hand, washing machine, cloth dryer, and dishwasher are time-shiftable
flexible loads, however, they are non-interruptible loads. Typical op-
erating cycles for such loads are shown in Fig. 1 and it is evident that
economic losses may incur if such appliances are interrupted before
completing their full operating cycle as they need to go over power
extensive cycles. Therefore, a non-interrupted operation is desirable for
such appliances and a penalty has been imposed for each interruption of
non-interruptible loads, which is represented as follows:

= =C y 1int
j

j
int

i
i j
k

L T
,

1

ni (5)

here, =k 1 represents first power level in the operating cycles and
penalty cost, Cint will be 0 if ==y 1i j

k
,

1 only once in T. However, if
==y 1i j

k
,

1 for multiple values of i T indicates that time-shiftable load j
is turned ON from OFF states more than once in a day, which represents
an interrupted operation and penalty cost will be aggregated for all
subsequent interruptions.

2.3. Storage model

Typically, residential battery energy storage system (BESS) units are
used to complement the intermittent renewable-based power genera-
tion from DG units such as rooftop photovoltaic (PV) systems. In typical
PV-BESS systems, BESS units are charged with PV generated power
during the day and this stored energy is used to supply higher re-
sidential load demand at the evening or night when grid supply is
usually more expensive. On the other hand, the battery storage units of
EV are charged when EV arrives home in the evening and continue
charging up to maximum storage capacity, which is consumed by the
EV for the daily commute in the following day. However, the proposed
BEMS schedules the charge-discharge of both BESS and EV battery unit
to offer maximum financial benefits for the prosumer while satisfying
operational constraints and user preferences. The storage model also
incorporates cycle-aging degradation of storage units to represents the
actual financial benefits for the prosumer. The most notable stress
factors on cycle-aging or lifetime degradation of the storage units in-
clude C-rate, over-current, non-optimal state of charge (SoC) & depth of
discharge (DoD), frequent charge-discharge cycles, over-charge & over-
discharge, temperature and humidity [27]. The proposed BEMS charges
and discharges the storage units at nominal power rating specified by
the manufacturer thereby mitigating over-current situations. In addi-
tion to that, it also maintains the desired C-rate by considering manu-
facturer specified discharge power for optimal C-rate. On the other

Fig. 1. Typical operating cycles of time-shiftable and non-interruptible loads.
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hand, external stress factors such as ambient temperature and humidity
are not considered in the BEMS model as it is out of the scope of this
paper. Therefore, effect of SoC, DoD and frequent charge-discharge
cycles are only considered for cycle-aging degradation of the storage
units which are discussed in following sections.

2.3.1. State of charge (SoC)
State of charge (SoC) represents the current storage level compared

to maximum storage capacity. Therefore, SoC of a storage unit j at time
i can be written as:

= +
+= =x P x P

E
T i jT D,i j i j

j
c

i j
k c

i j
k

j
d

j
m, 1,

,
1 1

,
2j

j
d

(6)

Over charging the storage units can lead to internal wear in battery
cell. Therefore, over charging is prevented by limiting daily SoC within
a maximum allowed threshold level as in Eq. (7), which represents
maximum usable storage capacity.

SoC i jT D,i j j, (7)

2.3.2. Depth of discharge (DoD)
Depth of discharge (DoD) of a storage unit represents the degree to

which the unit is discharged compared to its maximum storage capa-
city. Therefore, DoD can be written in terms of SoC as:

= i jT D1 ,i j i j, , (8)

Over discharging also leads to battery wear, hence, DoD is limited to
a maximum threshold in the storage model, which represents minimum
SoC value of the storage for optimal operation, and given as:

DoD SoC i jT D,i j j i j j, , (9)

If storage units are discharged at lower DoD, it reduces their life-
cycle throughput. The marginal cycle aging degradation for each dis-
charge cycle can be estimated as:

= =

=

=x i jT D; 1 ,

0; otherwise

i j P i j
k

, ,
2i j

i j
i j

i j
dis

,
,

,

,

(10)

here, ==x 1i j
k
,

2 represents discharging of storage unit j during i and near
quadratic DoD stress function for cycle degradation is used as shown in
Eq. (11). The discharging power Pi j

dis
, is estimated as in Eq. (12)

= E( ) (5.24 4) 2.03 (11)

= =P x P i jT D,i j
dis

i j
k

j
d

, ,
2 (12)

Therefore, the cost for marginal degradation of discharge cycles can be
calculated by factoring in battery replacement cost as follows:

=C C PDoD
deg

j
j
B

i
i j i j

dis

D T
, ,

(13)

2.3.3. Frequent charge-discharge
Market driven operation of storage units can often lead to frequent

and irregular charge-discharge cycles over a short span of time thereby
reducing life-cycle expectancy of the storage units [27]. Therefore, a
penalty cost is imposed for each subsequent charge-discharge cycles as:

= = = = =C y x y x& & &c d
j

j
c d

i
i j
k

i j
k

discharge charge

i j
k

i j
k

charge discharge
D T

,
1

1,
2

,
2

1,
1

(14)

here, the first part of the boolean expression in Eq. (14) is TRUE when a
storage unit j switches to charging state from discharging state at time i
and the second part is TRUE in reverse situation. Hence, penalty cost is

aggregated for such charge-discharge cycles over the operation window
T.

2.4. Thermal model of the building with virtual energy storage systems
(VESS)

Thermal loads of a building include heat pumps (HP), heating
ventilation and air conditioning (HVAC) systems, etc. Thermal loads
generate heat to provide heating demand in winter and cooling demand
in summer. The heat generated by thermal load can be written as:

=Q P i Ti
gen

h
h h

th

H (15)

where Ph
th is the power demand of the thermal load h H.

Heat also generated internally from inhabitants, lightings and other
electrical or mechanical appliances of the building. On the other hand,
heat is exchanged between the building and external environment in
thermal conduction at the boundary between two mediums as they are
at different temperature. Heat exchange due to conduction can occur
via the external surfaces of the building (walls and roof) and the
building openings (windows and doors). Therefore, conduction heat
exchanges can be written as:

= +Q Q Qi
con

i
cs

i
cw (16)

=Q Ai
cs

p
p p i

out
i

P (17a)

=Q Ai
cw

q
q q i

out
i

Q (17b)

A fraction of the radiated heat is transmitted through the building
openings (windows and doors) that depends on the solar radiation and
heat transfer coefficients of the building openings. Some solar heat
radiation is also absorbed by the surfaces of the building, which de-
pends on the solar radiation, absorption coefficient and heat resistance
of the external surfaces. Therefore radiation heat exchanges can be
written as:

= +Q Q Qi
rad

i
rs

i
rw (18)

=Q R A Ii
rs

p
p p p i p

P
,

(19a)

=Q A Ii
rw

q
q q i q

Q
,

(19b)

Therefore, the power demand of the thermal loads to maintain the
indoor temperature at the user specific temperature can be estimated
as:

= +Q Q Q Q ii
gen

i
con

i
rad

i
int (20)

Thermal loads are usually operated to provide a desired indoor
thermal comfort level according to temperature set points specified by
the user. However, a virtual energy storage system (VESS) is in-
corporated in this paper that utilizes the thermal mass of the building
for a flexible operation of the thermal loads, whereby the building is
considered as an isothermal mass of air volume and a flexible temperate
range is used for indoor temperature instead of a fixed user specific
temperature set-points. The use of thermal mass and flexible tempera-
ture range allows the thermal loads to precool or preheat the isothermal
air volume during lower price periods (by prolonging operation time)
and store the thermal energy to be used in higher price periods via the
thermal mass of the air volume (by switching them off for certain
periods) [33]. For such flexible operations, the thermal equilibrium
equation for the building can be written as:
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Therefore, it can be argued from Eqs. (20) and (21) that the VESS is
charging when >P Pi

th
i
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= >
= <

P P P P P
P P P P P

[charging]
[discharging]

i
thc

i
th

i
th

i
th

i
th

i
thd

i
th

i
th

i
th

i
th (22)

However, such flexible operation can often forces the indoor tem-
perature to deviate further from the user specific temperature set-point
thereby causing thermal discomfort for the consumer. Therefore, pen-
alty is imposed for such thermal discomfort, which is modeled for the
BEMS as follows:

=Cdcm
dcm

i
i
set

i
T (23)

3. Day-ahead scheduling and bidding model

3.1. Market framework

In this paper, it is considered that the prosumer participates in a
two-stage bi-directional market that includes a day-ahead (DA)
wholesale energy market and a real-time (RT) local transactive market.
In the DA market, the prosumer submits demand and supply quantity
bids for each market interval of the 24 h of the next day. Depending on
the market arrangement, the tariff for demand and supply can be the
same or different. The DA market is cleared before the gate closure of
each day and tariffs are determined by the market coordinator. The
market-clearing process is considered out of the scope of this paper,
therefore, forecast of wholesale tariffs ( ) are considered for the DA
market. Any imbalances from the DA market commitments are con-
sidered to be traded in the local RT market, which is coordinated by a
local transactive aggregator. The full description of the local market is
presented in [19].

In this paper, the prosumer is considered to be a price taker i.e. it
submits non-priced quantity bids of demand and supply for each market
interval. The trading tariffs are considered to be determined by the
market-clearing mechanism, which can be coordinated by a market
coordinator (for the wholesale market) or transactive aggregator (for
the local transactive market). As the market-clearing mechanisms are
considered to be out of the scope, this paper only focuses on de-
termining the optimal demand and supply quantity bids for the pro-
sumer. The uncertainty in the RT market tariff is incorporated into the
day-ahead scheduling model while determining DA energy bids. A
maximum limit has been imposed on both demand and supply quantity
bids for each market interval of DA and RT markets, which can re-
present the power transfer capacity of the residential LV networks.

3.2. Uncertainty modeling

The proposed BEMS schedules the building loads and DER units in
day-ahead stages and determines the demand and supply quantity bids
for the DA market to minimize energy cost. As the scheduling is de-
termined in the day-ahead stage, different sources can contribute to-
wards uncertainty including inflexible load demand, on-site DG gen-
eration, market prices (for both DA and RT markets), outdoor
temperature, appliance usage, and EV availability. In this paper, it is
considered that the prosumer provides the desired operation window
for flexible appliance usages. In addition to that, tentative EV departure
and arrival time is also considered to be known. Besides, the forecast
prices for the DA wholesale energy market and outdoor temperature
forecasts are considered to be fairly accurate. On the other hand, we
consider inflexible load demand, on-site DG generation and RT market

prices as the sources for uncertainty. The Monte Carlo Simulation
(MCS)-based scenario generation and reduction technique of [31] is
used in this paper to represent the uncertainties. Historical time-series
data is used for forecasts, then the probability distribution function of
the forecast errors are used to generate a large set of scenarios for all
uncertain datasets. However, this makes the scheduling and bidding
model a large-scale combinatorial optimization problem, therefore, the
scenarios with comparatively lower probabilities are excluded and re-
lated scenarios in terms of statistical metrics are combined together
according to [31] for reducing the problem size without losing the key
statistical attributes of the historical datasets.

3.3. Mathematical formulation

The primary objective of the BEMS is to minimize the energy cost
for the prosumer, therefore, the bidding problem can be formulated as a
minimization problem to determine the optimal demand and supply
quantity bids for the DA market that minimizes the electricity bills for
the prosumer. However, a mere cost minimization model can also lead
to non-optimal operation of building loads or DER units and can often
affect user comfort. Therefore, the bidding model is formulated as a bi-
level optimization problem that minimizes the energy cost in the upper
level and a number of lower-level subproblems have been incorporated
to ensure optimal operation for flexible building devices and maintain
an optimal comfort level for the user. In addition to that, as the demand
and supply quantity bids are optimized in the day-ahead stage, the
uncertainties are incorporated by using a two-stage stochastic model for
bidding optimization that includes a set of scenarios of power genera-
tion form DG units, non-flexible load demand, and RT market prices.
The optimization model is represented as follows:
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Here, the actual energy cost is formulated as the upper-level ob-
jective and other user inconveniences cost (thermal discomfort, inter-
ruption penalty, and storage degradation) are formulated as sub-pro-
blems in the lower-level as follows:
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• Upper-level problem (Eqs. (24a)–(24f) and (24j)): The first part of
the upper-level objective is the energy cost for the DA market,
whereas the second part is the expected cost for real-time im-
balances from the DA commitments over the set of uncertain sce-
narios. Here, indicates the forecast of variable , whereas s is
the value of in a particular scenario, s S, and s indicates the
probability of that scenario. Therefore, the upper-level problem
determines the demand and supply quantity bids for each market
interval of the DA market that leads to minimum energy cost in-
cluding all the scenarios of real-time realization for uncertainties.
The demand bids represent the power demanded to supply building
loads whereas the supply bids are the amount of power to be sold
back to the grid. The power balance constraint in Eq. (24b) prevents
over-bidding in the DA market, whereas the constraints in Eq. (24c)
ensures the supply-demand matching for the building over the set of
scenarios in real-time. The constraints for the power-transfer capa-
cities for the DA and RT markets are shown in Eq. (24d), (24e),
where and indicates the minimum and maximum limits of
respectively with the superscript ‘DA’ and ‘RT’ indicating the DA and
RT market respectively. The constraints for the binary decision
variables are shown in Eq. (24f), and the bounds of the optimization
variables are represented in Eq. (24j).

• Lower-level Problem 1 (Eq. (24g)): The first sub-problem in the
lower-level minimizes the interruption cost for non-interruptible
flexible building loads subject to optimization constraints specified
in Eq. (24g). The first constraint of Eq. (24g) ensures that the value
of binary variable y is 1 only when associated load switches its state
from OFF to ON, and it is 0 otherwise.

• Lower-level Problem 2 (Eq. (24h)): The second lower-level sub-
problem minimizes the overall degradation cost of the storage units
subject to their operational and optimization constraints for binary
variables as indicated in Eq. (24h). Here, =y 1i j,

1 indicates the start
of a charging cycle, and means that a discharging cycle has started
at time, i for storage unit, j.

• Lower-level Problem 3 (Eq. (24i)): The third subproblem minimizes
the thermal discomfort for flexible operation of thermal loads in the
building subject to temperature constraints and operational con-
straints of the thermal loads.

Contrary to single-level (single-objective or multi-objective) for-
mulations, proposed bi-level formulation allows minimizing the actual
energy cost and determine the demand and supply quantity bids from
the feasible set defined by the lower-level subproblems. In case of
single-objective single-level formulation the different cost terms are
added together, which is not feasible. On the other hand, multi-objec-
tive single-level formulation would consider all four objectives equally
important, and provides a set of solutions (commonly known as Pareto
font), which is feasible for all the constraints. However, such formula-
tion does not reflect the actual objectives of the day-ahead scheduling
and bidding problem of this paper.

3.4. Solving algorithm

The optimization model in Eq. (24) is a mixed-integer nonlinear bi-
level problem, which is simplified in the following 3 steps to solve it
using ‘off the shelf’ commercial software within a reasonable time.

3.4.1. Step 1
The nonlinearity from the optimization problem Eq. (24) is removed

in this step. The nonlinearity is introduced into the problem due to the
inclusion of constraints in Eqs. (11) and (14). Linearization of these two
constraints are discussed below:

• Linearizing Eq. (11) The nonlinear DoD stress function in Eq. (11) is
replaced by equivalent piece-wise linear counterpart by including

following constraints instead of Eq. (11).
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Here, a and b are auxiliary optimization variables. The constraints
in Eqs. (25a)–(25c) indicate that the variable a captures the value
of DoD of a storage unit at any given time, i j, if the storage, j is
discharging at that time, i (as indicated by =xi j

k
,

2). On the other hand,
pw and are the optimization variables used to represent the active

DoD segment in the piece-wise linearized degradation stress func-
tion of , where d represents the linear line segments. When a
storage unit is discharging with a specific DoD, then the corre-
sponding linear line segment in the piece-wise linear model of
must be active, which is ensured by the constraint Eq. (25d) for
binary variable, . When the active line segment is identified, then
the identified DoD variable, pw must fall within that active seg-
ment, which is ensured by constraints in Eqs. (25e) and (25f). Here,

d
pw and d

pw are the initial and final value of the DoD levels in the
piece-wise linearized line segment, d. Finally, Eq. (25g) is the line-
arized counterpart of the non-linear constraint in Eq. (11).

• Linearizing Eq. (14) The nonlinearity in Eq. (14) is due to the
boolean AND operation in the form of , where both and are
binary variables. This non-linear part is replaced by a new binary
variable with following additional constraints:

(26a)

(26b)

+ 1 (26c)

{0, 1} (26d)

These constraints ensure that the value of is 1 only when both
and are 1, which the boolean AND operation required for Eq.
(14).

3.4.2. Step 2
Once the nonlinear constraints are replaced by equivalent linear

constraints, the optimization problem becomes a bi-level mixed-integer
linear problem. The traditional solutions of bi-level optimization pro-
blems include a reformulation of the problem into a single level pro-
blem where the lower level optimization problem is replaced by first-
order Karush-Kuhn-Tucker (KKT) optimality conditions [34]. In the
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proposed bidding optimization model, the variables controlled by a
particular subproblem are exogenous to others in the lower-level,
hence, the lower level sub-problems can be categorized as equilibrium
problems of Nash type. Therefore, the same principle of bi-level de-
composition applies here even though the bidding model contains
multiple sub-problems at the lower level. Therefore, bi-level decom-
position is applied to reformulate the problem as a Mathematical Pro-
gram with Equilibrium Constraints (MPEC) by replacing the lower-level
problems with their KKT conditions. The reformulated optimization
problem can be written as:

Eqmin . (24a) (27a)

Eqs to ands.t . (24b) (24f) (24j) (27b)

=L µ p( , , ) 0p p p m p n, ,p (27c)

=µ g p m( ) 0 ,m p m p p, , (27d)

=h p n( ) 0 ,n p n p p, , (27e)

µ p m0 ,m p, (27f)

where indices p indicate the lower-level subproblems and p re-
presents their variables. The equality and inequality constraints of
lower-level optimization problems are represented by h ( ) and g ( )
respectively with and being their sets respectively. The KKT
multipliers are represented by µ and . The Lagrangian function is
represented by L ( )p p for all the lower-level subproblems.

3.4.3. Step 3
However, the reformulation in step 2 introduces a new set of non-

linear constraints in Eqs. (27d) and (27e), which takes the form =C 0.
Fortuny-Amat McCarl linearization technique [34] is applied to replace
such non-linear constraints in the reformulated problem by following
linear constraints.

C Mu0 (28a)

M u0 (1 ) (28b)

where, M is a large number and u is a binary variable. For a large value
of M the constraints in Eq. (28) are the same as in Eqs. (27d) and (27e).

After the linearization and reformulation, the scheduling and bid-
ding optimization problem becomes a single-level mixed-integer linear
programming (MILP) problem, which can be solved reliably with
available commercial software within feasible time.

4. Results and discussion

The proposed methodology is evaluated via case studies for a re-
sidential prosumer in Sydney, Australia. The simulation is run for a
summer and winter week. The input parameters and simulation set-up
are discussed in Sections 4.1–4.3, then the simulation results and case
studies are discussed in Section 4.4, followed by a discussion in Section
4.5.

4.1. Description of the prosumer

The prosumer building is a two-story Australian townhouse with a
total floor area of 250 m2. The flexible loads of the building include a
washing machine, a dishwasher and a pool pump. A heat pump is used
in the building for space heating and cooling demand. The building is
equipped with a rooftop solar PV system of 6 kW maximum capacity
with a 14 kWh Tesla Powerwall 2 BESS unit. The building is considered
to be equipped with a BMW i3 electric vehicle with 94 Ah lithium-ion
battery.

4.1.1. Time-shiftable load parameters
The nominal ratings of the flexible loads that can be shifted in time

are listed in Table 1. No desired operation window is considered for the
pool pump, rather it’s operation is distributed in three periods of 2 h
and it is considered as non-interruptible during these 2 h. In addition to
that, for even distribution of the pool pump’s operation, a minimum
idle period of 6 h is considered between subsequent operations. A
penalty cost coefficient of $1 AUD/interruption is used for non-inter-
ruptible flexible loads. Even though a single interruption would not
yield such a high cost, a higher penalty cost ensures a non-interrupting
operation.

4.1.2. Storage parameters
The input parameters of storage units (BESS and EV battery) used

for the case studies are listed in Table 2. The same efficiency is con-
sidered for charging and discharging for both storage units with the
manufacturer specified round-trip efficiency (89% for BESS and 92%
for the EV battery). The nominal power demand for charging and dis-
charging is considered the same, and it is considered as 3.6 kW for EV
battery to prevent over-charge/discharge. The manufacturer re-
commended charge-discharge power is 3.3 kW for the BESS units for
optimal C-rate [35]. Therefore, a continuous and fixed charging/dis-
charging power of 3.3 kW is considered for the BESS unit even though
its rated maximum power is 5 kW. The usable energy of storage units is
18.8 kWh for EV battery and 13.4 kWh for BESS according to the
manufacturer, which translates to 85% and 90% maximum DoD for EV
battery and BESS respectively. Therefore, the minimum SoC limit of
15% (maximum DoD of 85%) and 10% (maximum DoD of 90%) are
considered for them respectively. On the other hand, the maximum
limit for SoC is considered 95% for both storage units. The penalty
coefficients for frequent charge-discharge cycles are considered as
1.26¢for BESS and 1.06¢for EV battery (considering a loss-of-life of

E
1
m -th of the energy-charged or discharged for each subsequent charge-

discharge or discharge-charge cycle). These coefficients are estimated

Table 1
Nominal ratings and user preferences of time-shiftable flexible loads.

Device name Nominal ratings Desired operation
window

Power Energy

Washing machine 2.2 kW (max) 1.35 kWh/load 10 AM–2 PM
Dishwasher 2.0 kW (max) 1.50 kWh/load 12 AM–6 AM
Pool pump 2.14 kW

(9.3 A)
12.84 kWh/day –

Table 2
Nominal ratings and parameters of the storage units.

Parameters EV battery BESS

Rated Power (charge/discharge) Level 2 charging (3.3–6 kW) 5 kW (max)
Maximum storage capacity 22 kWh (18.8 kWh usable) 14 kWh (13.4 kWh usable)
Charging and discharging efficiencies ( ,c d) 96% 94.5%

Charging and discharging power (P P,c d) 3.6 kW 3.3 kW

SoC limits (SoC SoC, ) 15%, 95% 10%, 95%
Replacement cost (AUD) $13000 $9000
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from manufacturer specified life cycles of 3200 for BESS and 4000 for
EV battery.

4.1.3. Thermal load parameters
The prosumer building is considered to be equipped with a reverse-

cycle heat pump for heating and cooling demand. A thermal model of
the building is proposed in this paper with a VESS for the flexible op-
eration of the heat pump. The input parameters of the heat pump and
building parameters used in the case studies are presented in Tables 3
and 4. The forecast outdoor temperatures used for the operation of the
heat-pump are shown in Fig. 2 for the summer and winter weeks.

4.1.4. Fixed-load and solar PV forecasts and scenarios
One year’s time-series meter-measurement data for fixed-load con-

sumptions and PV generation of the prosumer is used to forecast the
fixed-load demand and PV generation for a summer and winter week.
The forecasting is done using Matlab Artificial Neural Network (ANN)
toolbox. Based on the distribution of forecast errors, the scenarios are
generated and reduced to 20 scenarios according to the methodology
presented in [31]. The input data used for forecasting fixed-load de-
mand are the time-series datasets for fixed-load demand and outdoor
temperature, whereas annual time-series datasets of PV generation and
temperature are used as input for forecasting PV generation. The
forecast profiles and scenarios of the fixed-load demand and PV gen-
eration used for simulations are shown in Figs. 3 and 4 along with their
actual profiles for both summer and winter week.

4.2. Market tariff

Based on the historical wholesale market data, the tariff for the DA
energy market is forecast for the summer and winter week according to
the methodology presented in [36], which is shown in Fig. 5a. The DA
demand and supply tariff are considered the same (i.e. =+ ). De-
termining the RT market tariff for the local RT market would require a
complete simulation of the local TE market clearing mechanism and
power flow studies of the local LV network, which is considered out of
the scope of this paper. The local market presented in [19] is simulated
for one year and based on that the scenarios for RT market tariffs are
generated according to [31], which are shown in Fig. 5b and c.

4.3. Optimization set-up

For the piecewise linearization of step 1 in Section 3.4, 10 linear line
segments are considered, which gives a root-mean-squared error
(RMSE) of less than 0.009%. For the step 3 in Section 3.4, the value of
M is considered as 105. The simulation periods of 5 min are considered
in line with the Australian wholesale market bidding period. The case
studies are run one day at a time for the summer and winter week data,
and the SoC of the storage units found at the end of the day is con-
sidered as the initial SoC for the next day. The storage degradation is
considered for discharging only, assuming that the storage units go
through the same number of charging cycles as the discharging cycles.
Therefore, the final SoC at the end of the week is considered the same as
the initial SoC at the beginning of the week. The reformulated MILP
optimization problem is formulated in General Algebraic Modeling
System (GAMS) language and solved using CPLEX solver [37] in a
computer with Intel Core i7, 3.4 GHz processor and 16 GB of RAM. The
absolute and relative optimality gap is set at 0 for all simulation studies,
and the computation time is found to be within 3 s for all simulation
studies.

4.4. Simulation and results analysis

Based on the simulation parameters discussed in the previous sec-
tions, the scheduling and bidding optimization model is simulated for a
summer and winter week. The demand and supply quantity bids for the

summer and winter weeks are discussed in Section 4.4.1, followed by
the discussion on the results in terms of device scheduling in Section
4.4.2. The effect of scheduling and bidding strategies on the cost of the
prosumer is discussed in Section 4.4.3, where a few ‘state-of-the-art’
strategies are compared with the proposed methodology to evaluate its
performance in terms of cost savings for the prosumer.

4.4.1. DA demand and supply quantity bids
The bidding optimization model determines energy bids in day-

ahead stages to minimize electricity costs subject to minimum storage
degradation, thermal discomfort, and user inconveniences. Contrary to
deterministic approaches, the proposed stochastic method weighs the
expected cost for real-time imbalance trading for the uncertain sets of
fixed-load demand, PV generation, and RT market tariff scenarios. The
demand and supply quantity bids for the first day of both summer and
winter weeks are shown in Fig. 6, along with the RT imbalance bids for
all the scenarios. The forecasts of PV generation and DA tariffs for that
day are also shown in the figure, along with their scenarios. The ne-
gative bids in the figure indicate supply bids. The demand bids are
found to be comparatively higher when the market tariff is lower to
minimize energy consumption cost for the prosumer. On the other
hand, comparatively higher supply bids are noticed during the peak
tariff periods or when PV generation is higher. Due to the inclusion of
the stochastic term in the upper-level objective, the proposed method
submits conservative DA demand and supply quantity bids when un-
certainty is higher, especially during the mid-day due to higher un-
certainties in PV generation. The effect of scheduling and bidding
strategies on energy bids and costs are further discussed in Section
4.4.3.

4.4.2. Device scheduling
The proposed method schedules the building devices according to

user-specified preferences and operational constraints of the devices
explained in Section 2. The schedules of building devices for some se-
lected days are explained in the following sections.

4.4.2.1. Time-shiftable flexible loads. The schedules of time-shiftable
flexible loads for two subsequent days are shown in Fig. 7. It can be
seen that the BEMS schedules all three time-shiftable loads within their
desired operational windows specified by the user and according to the
constraints discussed in Section 4.1. In addition to that, the sequences
of power-level for these loads are also ensured, and the minimum
duration of 6 h is maintained between subsequent operations of pool-
pump.

4.4.2.2. Storage units. Based on these input parameters discussed in
Section 4.1, the BEMS schedules the charging and discharging of
storage units that lead to minimum energy cost subject to minimum
degradation of storage units. The schedules for the BESS unit is shown
in Fig. 8 for two subsequent days. It can be seen that the BESS unit is
mostly charged during higher PV generation or when electricity is
cheaper. Besides, the SoC constraints of the BESS unit are also satisfied,
and subsequent charge-discharge or discharge-charge cycles are
minimized to reduce the frequent charge-discharge penalty cost as
discussed in Section 2.3.

The EV availability, SoC level at arrival and the energy consumption

Table 3
Heat pump parameters.

Parameters Summer Winter

Thermostat set-point 21 °C 25 °C
Temperature range 19 °C–23 °C 23 °C–27 °C
CoP of heat pump 2.5

dcm (¢/°C) 5
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for daily commute are forecasted form the Australian ”Smart Grid
Smart City” EV trial data [38], which provides EV trip data of 20 EVs
for two years. For the EV battery, it is also considered that the user
wants the EV battery to be charged at least a certain level before leaving
home in the morning. The SoC requirements in departure are arbitrarily
considered between 70% - 90% (excepts for the weekend) in line with
the EV travel pattern in [38]. The SoC levels of the EV for a week are
shown in Fig. 9. The periods when EV is away from home are high-
lighted in the figure along with the arrival time. It can be seen that the
scheduling model satisfies all the SoC constraints.

4.4.2.3. Thermal loads. The BEMS schedules the operation of the heat
pump to maintain the indoor temperature within a flexible range
subject to minimum deviation from thermostat set-point temperatures
(as the bidding model penalizes such deviations) and determines
schedules of heat pump that corresponds to minimum thermal
discomfort for the user. The schedules of heat pump for a simulated
winter day is shown in Fig. 10, with associated indoor and outdoor
temperature profiles. The heat pump power demand without VESS (Pth)
is also indicated in the figure along with the demand with VESS (Pth ).

It can be seen that the heat pump is operated to maintain indoor
temperature stays within user-specified limits throughout the day. The
thermal model of the BEMS incorporates a VESS that utilizes the
thermal mass of the building to economically schedule the heat pump

subject to minimum thermal discomfort for the building inhabitants.
The use of thermal mass and flexible temperature range allow the BEMS
to achieve a heat pump energy demand reduction of 15–22% in summer
and 10–12% in winter. Due to the use of the thermal mass of the
building, it can be seen from Fig. 10 that there are few instances when
the heat pump is not consuming any energy, still, the indoor tem-
perature increases as the VESS is discharging its stored energy during
these instances.

As discussed in Section 2.4 the VESS is charging when >P Pi
th

i
th and

discharging when <P Pi
th

i
th. It can be seen in Fig. 10 that, VESS mostly

discharges during peak tariff periods to reduce overall demand bids for
the prosumer. It also allows the BEMS to pre-heat or pre-cool the
building when electricity is cheaper or when DERs are available using
the VESS, which can be later used to provide thermal demand during
peak-tariff periods by discharging VESS.

However, as the primary objective is cost minimization, the indoor
temperature in Fig. 10 is found to have deviated from set-point tem-
peratures when cost reduction for such flexible operation is higher
compared to discomfort cost. The heat-pump power demand of the
proposed methodology is compared with the estimated power demand
of the building simulated in EnergyPlus. EnergyPlus is a building en-
ergy simulation program capable of calculating electric power demand
for space heating and cooling to maintain a specific indoor temperature
[33,39]. It is widely used as a building energy benchmarking tool

Table 4
Building parameters.

V Cb Area (m2) (W/m2 K) Rs s w

(kg/m3) (m3) ( °J/kg C) surface windows & doors surface Windows & doors (m2 K/W)

1.2 625 1000 420 80 1.7 2.75 3.2 0.4 0.08

Fig. 2. Outdoor temperature for the summer and winter week.

Fig. 3. PV generation for the summer and winter week.
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[33,40,41]. A residential building is simulated in the EnergyPlus soft-
ware with the parameters specified in Tables 3 and 4, and the power
demand for space heating and cooling are estimated to maintain the
same indoor temperature profiles found for the simulated summer and
winter week. The HP power demand of the proposed BEMS is then
compared with the EnergyPlus-simulated power demand and associated
percentage error in estimated for all simulation cases of summer and
winter. The percentage error is found to be less than 4% for all simu-
lation instances with a mean percentage error found to be 1.83%.
Therefore, it can be argued that the proposed methodology is capable of
estimating the electric power demand of the heat pump for space
heating and cooling with acceptable accuracy.

4.4.3. Case studies
Case studies have been conducted to analyze the total cost for the

prosumer for different scheduling strategies, and the proposed two-
stage stochastic bi-level optimization-based scheduling and bidding
strategy is compared with these strategies to evaluate its effectiveness
in terms of actual cost savings for the prosumers.

4.4.3.1. Description of strategies. Four strategies are considered to
determine the day-ahead scheduling and DA demand-supply quantity
bids for the prosumer with the same input data and parameters
discussed in Sections 4.1 and 4.2. The strategies are as follows:

1. Strategy 1 (Inflexible scheduling):
The inflexible strategy represents the scenario when building ap-
pliances are operated without any flexibility. For this strategy, it is
considered that the washing machine and dishwasher are operated
during the evening on weekdays, and they are operated at night on
weekends. The prosumer usually runs the pool pumps overnight for
6 straight hours, which is considered in the inflexible strategy. For
this strategy, it is considered that the EV battery starts charging
upon arrival until it is up to the same level as the proposed method.
On the other hand, the BESS unit is considered to be charged with
power generated from the PV system to be used during peak tariff
periods (i.e. evenings). The excess energy injection to the grid is not
considered in the scheduling strategy. The heat pump is operated to
maintain the indoor temperature the same as the thermostat set-
points. The power demand of the heat pump for the base case is

estimated according to Eq. (20). In conclusion, the inflexible
strategy indicates the non-optimal worst-case scenario of scheduling
and place most demand quantity bids during the evening (after
utilizing the storage BESS energy), when electricity is expensive.

2. Strategy 2 (Deterministic bi-level optimization):
This strategy is the deterministic day-ahead schedule. Therefore, the
second part of the upper-level objective in Eq. (24a) is removed
along with the uncertain scenarios. As a result, it minimizes the
energy cost based on forecast information. The lower-level sub-
problems are kept the same as the proposed method. The optimi-
zation model for this strategy can be expressed as:

+ +min P P
i T

i i i i T
(29a)
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Eqs and to. (24d) (24f) (24j) (29c)

This scheduling problem is formulated as a bi-level deterministic
optimization, which is reformulated as a MILP problem according to
the methodology discussed in Section 3.4 and solved similarly to the
proposed method with the same input parameters and optimization
setup.

3. Strategy 3 (Single-level two-stage stochastic optimization mini-
mizing energy cost only):
In the strategy, the uncertainty is considered, however, the sche-
duling and bidding model is formulated as an optimization problem
that only minimizes the energy cost. As the storage degradation cost,
thermal discomfort cost and interruption cost of flexible loads are
not considered in this strategy, the scheduling and bidding problem
for this case can be formulated as a single-level two-stage stochastic
problem to minimize energy cost considering the expected cost for
uncertainties. Therefore, the optimization problem for this strategy
can be written as:

Fig. 4. Fixed-load demand for the summer and winter week.

Fig. 5. Market tariffs for the summer and winter week.
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This non-linear problem is linearized according to the first step in
Section 3.4, and then solved in GAMS using the same solver and
optimality conditions as the proposed method.

4. Strategy 4 (Single-level multi-objective two-stage stochastic opti-
mization):
In the strategy, scheduling and bidding model is formulated as a
single-level optimization problem that minimizes the energy cost,
storage degradation cost, thermal discomfort cost and the inter-
ruption cost for the flexible loads. As there are multiple objectives to
be minimized simultaneously, it can be formulated as a multi-ob-
jective model as follows:

min F F F F[ ]1 2 3 4 (31a)

= ++ +F P P P( )
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= +F C CDoD
deg
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=F Cdcm3 (31d)

=F Cint4 (31e)

Eqs to Eqs to Eqs to. (3) (14), . (16) (23), . (24b) (24j) (31f)

As the expected cost of the uncertainties is also included in the
objectives, the formulated problem is a stochastic multi-objective
minimization problem. The nonlinearity in the model is replaced by
equivalent linear counterparts according to step 1 in Section 3.4.
Traditional solution approaches of such multi-objective optimiza-
tion problems include the weighted-sum method, epsilon-constraint
method, weighted metric method, etc. [28,42], that provide a set of
solutions, called Pareto optimal solution sets. The Pareto optimal set
is a set of solutions that do not dominate each other, and different
points in the set indicate different trade-off combinations between
the objectives. Therefore, moving from one point in the Pareto set to
other(s) would mean sacrificing one objective(s) in favor of other(s).
To solve this multi-objective problem, the objectives are first nor-
malized by solving them individually as a maximization and mini-
mization problem. Then, the weighted-sum method is applied to get
the solutions of the equivalent single-objective problem. The ob-
jective function for the equivalent single-objective of Eq. (31a) can
be written as:

w
F F

F F
bmin

a
a b

a b a b
min

a
max

a
min,

, ,

(32)

Fig. 6. DA quantity bids for demand and supply.

Fig. 7. Schedule of time-shiftable flexible loads for 2 days.
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Fig. 8. Schedule of BESS for 2 days.

Fig. 9. EV SoC level for a week.

Fig. 10. Schedule of heat pump for a winter day.
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where, a {1, 2, 3, 4} indicates the objective number and Fa
max and

Fa
min are the maximum and minimum value of individual objectives.

The weights of the objectives are indicated by wa b, for a combina-
tion, b. The combinations for weights can be estimated by varying
the weights of each objective between 0 and 1. However, only the
combinations that sums to total weight of 1 are valid (i.e.

=w b1a a b, ). There can be thousands of combinations with a
smaller value of step size (for example, for 0.1 step-size there can be
as many as 10,000 possible combinations, out of which 72 satisfy
the condition, therefore, = …b {1, 2, 3, .,72}). This makes the pro-
blem a large-scale combinatorial optimization problem. The scope of
this case study is to compare the effect of such multi-objective
scheduling on the cost and compare it with the proposed method.
Therefore, instead of comparing all the combinations, the multi-
objective model is solved for equal weights (i.e. =b {1} and

=w a0.25a in Eq. (32). The input parameters and optimization
setup are kept the same as the proposed methodology.

4.4.3.2. Effect of scheduling strategies on cost. The cumulative results of
the scheduling and bidding strategies are listed in Tables 5 and 6 for the
summer and winter week respectively. The total energy consumption
and energy cost for the winter week are found to be comparatively
higher than that of summer due to lower PV generation and higher heat
pump demand in winter. In this section, the results of the strategies 1 to
4 are compared with the proposed method in terms of energy cost,
storage degradation cost, load interruption cost and thermal discomfort
cost.

1. Strategy 1 vs proposed method:
As discussed in Section 4.4.3.1, the first strategy is an inflexible
strategy, where the V2B and V2G functionalities of EV are not
considered. Besides, the PV generated power is considered to be
stored in the BESS and used in the evening. In addition to that, the
energy selling to the grid is also not considered in this strategy.
Moreover, the cost-saving flexibilities of the flexible building loads
and DER units are also not considered in this case. For example, the
heat pump is considered to be operated for maintaining a fixed in-
door temperature. Therefore, the energy consumption of the heat
pump is found to be at-least 12% more than any other strategy
despite considering the same operation time for the heat pump. In
addition, the time-shiftable loads are scheduled in the evening for
this strategy, which also contributes to higher energy costs for this
strategy as electricity is generally expensive during evening hours.
On top of that, in this strategy, the real-time market is not con-
sidered. As a result, from the cumulative results for summer and
winter week in Tables 5 and 6 it can be seen that the total energy
consumption and the energy cost for this strategy are expectedly the
highest compared to the proposed method (and all other scheduling
strategies). As the proposed method utilizes the flexibilities of
building loads and DER units to participate in both the DA and RT
markets, the total energy cost of the proposed method is 51.09%

lower in summer and 35.24% lower in winter than the inflexible
strategy. However, the interruption cost and discomfort cost is zero
for the inflexible strategy, as the flexibilities of time-shiftable and
thermal loads are not considered. On the other hand, even though
the interruption cost is zero for the proposed method as well, the
flexible operation of the heat pump in the proposed method leads to
some thermal discomfort for the user. Besides, the inflexible strategy
does not contribute to any additional storage degradation cost other
than standard calendar aging, whereas the proposed method’s sto-
rage degradation cost is 2–3 times more than the inflexible strategy.
However, the additional cost savings offered by the proposed
method is much higher than the additional thermal discomfort and
storage degradation cost.

2. Strategy 2 vs proposed method:
The main difference between the second strategy and the proposed
method is the additional cost-term added to the objective function of
the proposed method to incorporate the uncertainties. The de-
terministic approach of strategy 2 schedules the building loads and
DER units in day-ahead according to the forecast information of
fixed-load demand, PV generation and DA market prices. According
to this schedule, the day-ahead energy cost is found to be $93.61
AUD for the summer week and $165.70 AUD for the winter week. As
the imbalances from the day-ahead schedules are considered to be
traded in the RT market, the deviation from the forecasts would lead
to an RT trading cost of $1.26 AUD and $6.72 AUD for the summer
and winter week respectively. On the contrary, the net energy cost
according to the proposed method is 21.39% lower for the summer
and week and 8.01% lower for the winter week. The main reason
behind this is that the stochastic approach of the proposed method
considers the uncertainties and the expected cost of RT market
trading while determining the schedule in the day-ahead stages.
Therefore, it submits conservative DA demand and supply quantity
bids compared to the deterministic method when uncertainty is
higher, as shown in Fig. 11, which shows the demand-supply
quantity bids for a day according to the deterministic and stochastic
methods. On the other hand, the deterministic method completely
disregards the expected cost of RT trading and only considers the DA
trading, whereas the stochastic method utilizes the lower tariffs of
both DA and RT markets to schedule energy-extensive loads and
reduces energy cost. However, the forecast prices of the RT market
can also be considered for the day-ahead deterministic scheduling,
which would lead to additional cost reductions thereby making this
approach comparable to the proposed method. Besides, the de-
terministic schedule allows the prosumer to avoid higher price
fluctuations in the RT market. However, the proposed stochastic
method would outperform the deterministic method when un-
certainties are higher as seen from the results.

3. Strategy 3 vs proposed method:
The third strategy also incorporates the uncertainties while de-
termining the day-ahead schedules considering both the DA and RT
energy trading. However, the main difference between this strategy

Table 5
Cumulative results of scheduling and bidding strategies for summer week.

Scheduling and bidding strategy

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Proposed method

DA demand bids (kWh) 592.93 605.88 608.65 539.27 512.46
DA supply bids (kWh) – 120.46 396.46 273.47 260.40
Total DA energy cost ($) 148.43 93.61 −8.48 14.27 11.50
Expected RT bids (kWh) – 207.90 214.30 209.26
Expected imbalance cost ($) – 1.26 60.75 62.67 61.11
Net energy cost ($) 148.43 92.35 52.27 76.94 72.60
Storage degradation cost ($) 6.23 14.32 64.24 24.64 12.29
Thermal discomfort cost ($) 0 9.87 31.95 6.43 8.63
Interruption cost ($) 0 0 5 0 0
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and the proposed method is that the proposed method also mini-
mizes the storage degradation, thermal discomfort, and load inter-
ruptions. From the cumulating results in Tables 5 and 6, it can be
seen that the net energy cost is lower in strategy 3 compared to the
proposed method (and all other strategies as well). However, these
significant cost reductions come with additional thermal discomfort,
load interruptions, and storage degradation, which are highest for
this strategy compared to all other strategies. The penalty cost for
the interruption and thermal discomfort are virtual costs, not ne-
cessarily affect the actual financial savings of the prosumers. This is
also true for the frequent charge-discharge penalty cost for the
storage units. However, the cycle-aging degradation cost of the
storage units is the actual financial cost that leads to depreciation of
the storage units. From the simulation result, it is found that the
third strategy provides a total of $38.87 AUD additional energy cost
savings compared to the proposed method for the two weeks (one
summer and one winter week). However, it comes with an addi-
tional cycle-aging storage degradation of $62.73 AUD compared to
the proposed method. Therefore, such a scheduling strategy is not
feasible considering the overall cost.

4. Strategy 4 vs proposed method:
Contrary to the proposed method, the day-ahead scheduling model
is formulated as a multi-objective optimization problem in strategy
4 and solved using the weighted-sum method, where equal weights
are assigned for each objective after normalizing them with respect
to their maximum and minimum values. From the cumulative re-
sults in Tables 5 and 6 it can be seen that the net energy cost of this
strategy is almost similar to the proposed method for the summer
and winter week. The load interruption costs are 0 for both strategy

4 and the proposed method. However, the multi-objective for-
mulation of strategy 4 provides better results in terms of thermal
discomfort, whereas the proposed method outperforms this multi-
objective strategy in terms of storage degradation. As the storage
degradation and net energy cost are the main factors indicating
actual financial savings of the scheduling strategy, it can be argued
that the proposed method provides better overall savings compared
to the multi-objective method with equal weights. However, the
weighted-sum results shown in Tables 5 and 6 represent only one
optimal solution from the Pareto font. Any other point in the Pareto
font would indicate different results, which can provide worse sav-
ings with regards to one objective(s) compared to the proposed
method while outperforming the proposed method in terms of an-
other objective (s). Therefore, such multi-objective based formula-
tion is highly dependent on the weighing combinations used to get
an optimal solution from the Pareto font. On the other hand, the
proposed bi-level method offers overall better results (or similar for
some objective(s)) in terms of actual financial cost savings for the
prosumer as it provides only one global optimal solution that leads
to minimum energy cost subject to minimum storage degradation,
thermal discomfort, and load interruptions.

4.5. Discussion

A BEMS is presented in this paper with a bi-level optimization-based
day-ahead scheduling model. The proposed BEMS utilizes the flex-
ibilities of controllable building loads and DERs to schedule them in
day-ahead to minimize the electricity cost for the prosumer. The pro-
posed method is validated by simulation studies for a prosumer in

Table 6
Cumulative results of scheduling and bidding strategies for winter week.

Scheduling and bidding strategy

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Proposed method

DA demand bids (kWh) 901.53 795.49 331.44 620.13 701.09
DA supply bids (kWh) – 45.01 125.69 186.35 192.72
Total DA energy cost ($) 225.81 165.70 59.98 76.09 80.63
Expected RT bids (kWh) – 101.42 214.30 230.55
Expected imbalance cost ($) – 6.72 67.72 67.79 65.61
Net energy cost ($) 225.81 158.98 127.70 143.88 146.24
Storage degradation cost ($) 3.78 19.12 55.78 17.82 10.98
Thermal discomfort cost ($) 0 8.85 16.08 1.03 3.36
Interruption cost ($) 0 0 3 0 0

Fig. 11. Demand and supply quantity bids according to the deterministic method vs stochastic method.
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Sydney, Australia. The simulation is run for a warmer week in summer
and a colder week in winter. From the simulation results of device
schedules in Section 4.4.2, it can be noticed that the prosumers’ in-
conveniences and discomforts are also minimized while determining
their schedule. For example, the flexible loads are scheduled in such a
way that the user preferences in terms of desired operation windows are
satisfied. Besides, none of the flexible loads are interrupted to minimize
the interruption cost. This paper proposes a thermal model with VESS
for the operation of the heat pump for space heating and cooling. From
the schedule of the heat pump, it can be seen that the heat pump
schedules maintain the indoor temperature within a flexible range. The
VESS utilizes the thermal mass of the building to store energy virtually
by prolonging the operation of the heat pump during the periods when
electricity is cheaper or when DERs are available to supply the heat
pump demand. This stored energy is later used by discharging the VESS
to provide heating or cooling demand when electricity is expensive. The
accuracy of the proposed thermal model in terms of heat pump demand
estimation is verified by comparing the results of the proposed meth-
odology with the thermal load demand calculated using the EnergyPlus.
It is found that the heat pump demand does not deviate more than 4%
of the values obtained using EnergyPlus. This flexible operation of a
heat pump allows the BEMS to provide a significant reduction in heat
pump power demand (simulation indicates a 10–22% reduction). From
the cumulative results in Tables 5 and 6, it can be seen that the this cost
reduction introduces thermal discomfort for the user. With a discomfort
coefficient of 5 °¢/ C, the total thermal discomfort cost is found to be
$8.62 AUD and $3.36 AUD for the summer and winter week respec-
tively. However, simulation results indicate that even with such dis-
comfort the indoor temperature stays close to the desired set-point and
fluctuates within user-specified limits. Hence, it can be argued that
inconveniences and discomfort are minimized subject to user-specified
flexibility for the reduction of energy cost. Simulation results also in-
dicate that the schedule of storage units maintains the operational
constraints and user preferences. For example, the EV battery is charged
more than the user-specified SoC level before leaving home in the
morning. Besides, the subsequent and frequent charge-discharge cycles
are not completely prevented as this would reduce the cost savings for
the prosumer, rather it is optimally reduced so that maximum cost
savings can be achieved subject to minimum battery degradations.

The effectiveness of the proposed method is also compared with a
few state-of-the-art day-ahead scheduling strategies. Case studies in-
dicate that the proposed method can provide up to 51% cost savings for
the prosumer compared to a worst-case non-optimal inflexible strategy,
which does not optimize energy usage for cost minimization. The pro-
posed method formulates the day-ahead scheduling model as a sto-
chastic bi-level minimization problem that determines demand and
supply quantity bids for the day-ahead and real-time markets by
minimizing the day-ahead energy cost while factoring the expected cost
of real-time imbalance cost for different uncertain scenarios. The case
studies indicate that the proposed stochastic method is capable of
weighing in expected cost for real-time energy trading for uncertain
scenarios of fixed-load demand, PV generation, and real-time market
prices. Therefore, it submits more conservative day-ahead energy-
quantity bids compared to a deterministic scheduling strategy when the
uncertainty is higher and utilizes the price elasticity in both markets to
reduce energy costs. As a result, the proposed method provides up to
22% cost savings compared to deterministic scheduling strategy. The
cost minimization problem is formulated as a bi-level optimization
problem in the proposed method that minimizes the energy cost in the
upper-level and a number of lower-level subproblems minimize storage
degradation, load interruption, and thermal discomfort for the user.
Case studies indicate that when the scheduling strategy only considers
the energy cost it provides up to 28% additional energy cost savings for
the prosumer, however, this also degrades the storage units and causes
thermal discomfort for the user. From the cumulative results of the
summer and winter week, it is found that the additional storage

degradation caused by such scheduling strategy is more than the ad-
ditional cost savings this method offers. In addition to that, the cost
savings of the proposed method is also compared with a multi-objective
optimization-based scheduling strategy. The multi-objective method is
solved with equal weights for normalized objectives with respect to
their individual maximum and minimum value for the same set of
constraints. Even though it only provides one optimal solution (out of
many in Pareto font) of the multi-objective method, the obtained cu-
mulative energy cost, storage degradation, thermal discomfort, and
load interruptions are compared with the proposed bi-level method.
Case studies indicate that the proposed method performs better for
some objectives while providing similar or slightly lesser results for
other objectives. However, unlike the multi-objective method, the
proposed bi-level method does not need to be tuned to get optimal
results for each objective and can provide an optimal solution for
minimum energy cost subject to minimum storage degradation, load
interruption and thermal discomfort for the user.

However, the proposed method considers the prosumers as price-
taker and only the energy-quantity bids are determined by the proposed
scheduling methodology. To represent the actual transactive market
model, the cost-bidding is also needed to be incorporated into the
bidding model along with the quantity bids. Besides, the market com-
petitiveness of the local real-time market is not considered in this paper.
Another limitation of the proposed methodology is the simplification
and reformulation of the non-linear bi-level problem in Eq. (24) as a
MILP minimization problem in favor of reduced computation time.
However, results indicate that this solving approach provides a near
accurate solution with an RMSE of less than 0.009% for the piece-wise
linearization. In addition to that, this paper only considers three un-
certain sources and their scenarios are reduced to 20 for reducing the
computation time. Future researches should include other sources of
uncertainties with larger scenario set, such as EV availability, EV SoC at
arrival, wholesale market prices, temperature, etc. Nonetheless, simu-
lation and case studies indicate promising results of the proposed
method in terms of actual financial cost savings for the prosumer when
it participates in two-stage energy markets.

5. Conclusion

This paper proposes a BEMS model for residential prosumer that
schedules the building loads and DER units in the day-ahead stage by
minimizing day-ahead energy commitment costs while considering the
expected cost of real-time imbalance trading for uncertain scenarios of
fixed-load demand, PV generation, and market prices. The day-ahead
scheduling model is formulated as a stochastic bi-level minimization
problem that determines the energy quantity bids for the day-ahead and
real-time markets by minimizing the energy cost in the upper-level,
while a number of lower-level subproblems minimize inconveniences
for the prosumer. Three types of controllable building devices are
considered- flexible loads with time-shifting capabilities, storage units
and thermal loads. All controllable building devices are scheduled ac-
cording to user preferences and operational constraints. Comprehensive
models are presented for all controllable building loads and DER units,
where the user’s inconveniences are represented as interruption costs
for time-shiftable flexible loads, degradation costs for storage units, and
thermal discomfort costs for the thermal loads. The proposed metho-
dology is evaluated via simulation and case studies for a residential
prosumer in Syndey, Australia for a summer and winter week. Case
studies and simulation results indicate that the proposed BEMS can
effectively satisfy all the user preferences and constraints for scheduling
building loads and DERs. Results also indicate that the proposed
method provides up to 51% more energy cost savings compared to non-
optimal inflexible scheduling strategies, and can provide as high as 22%
more cost savings compared to deterministic scheduling method. On
the other hand, the proposed bi-level method offers better overall fi-
nancial savings compared to the equally-weighted-sum multi-objective
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method.
However, the proposed BEMS models the prosumer as price-taker

and does not consider the competitiveness of the local real-time market.
Therefore, a comprehensive market simulation is essential with an ap-
propriate market clearing mechanism and cost-bidding strategy to de-
termine the market competitiveness and dispatch, which will be con-
sidered by the authors in future researches. Further researches will also
be directed towards incorporating real-time local trading for power grid
support services.
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