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Memristive systems offer biomimetic functions that are being actively 
explored for energy-efficient neuromorphic circuits. In addition to providing 
ultimate geometric scaling limits, 2D semiconductors enable unique gate-
tunable responses including the recent realization of hybrid memristor and 
transistor devices known as memtransistors. In particular, monolayer MoS2 
memtransistors exhibit nonvolatile memristive switching where the resist-
ance of each state is modulated by a gate terminal. Here, further control 
over the memtransistor neuromorphic response through the introduction 
of a second gate terminal is gained. The resulting dual-gated memtransis-
tors allow tunability over the learning rate for non-Hebbian training where 
the long-term potentiation and depression synaptic behavior is dictated 
by gate biases during the reading and writing processes. Furthermore, the 
electrostatic control provided by dual gates provides a compact solution to 
the sneak current problem in traditional memristor crossbar arrays. In this 
manner, dual gating facilitates the full utilization and integration of memtran-
sistor functionality in highly scaled crossbar circuits. Furthermore, the tun-
ability of long-term potentiation yields improved linearity and symmetry of 
weight update rules that are utilized in simulated artificial neural networks to 
achieve a 94% recognition rate of hand-written digits.
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as neuromorphic computing.[1] In turn, 
novel devices beyond complementary 
metal-oxide-semiconductor field-effect 
transistors are being pursued for hard-
ware implementation of neuromorphic 
computing.[2] Among the most promising 
base elements of artificial neural networks 
(ANNs) are memristive devices and syn-
aptic transistors.[1c,3] With large resistive 
switching ratios, these devices are not only 
useful as nonvolatile memory elements 
but also as neuromorphic systems that can 
store synaptic weights in ANNs with rapid 
updating (i.e., learning) and efficient clas-
sification (i.e., inference) functionality.[4] 
While a significant advantage of memris-
tors is their scalability via crossbar arrays, 
this same architecture also imposes two 
major challenges.[3a,5] First, the learning 
rule (i.e., weight update scheme) is set in 
the material processing step with no fur-
ther control during computation. Second, 
reliable access to individual nodes in a 
crossbar architecture requires a nonlinear 
(i.e., diode) or active (i.e., transistor) com-

ponent at each node, limiting scaling to the same level as con-
ventional dynamic random access memory.

To overcome these challenges, novel memristive systems are 
being investigated, such as complementary resistive switching 
and the integration of synaptic transistors with diffusive 
memristors.[3d,6] However, synaptic transistors do not offer 
control over learning rate and require an additional element 
at each node for individual device access in a crossbar archi-
tecture since their nonvolatile resistance states are written by a 
gate bias and read by a drain current.[3d,7] Thus, despite being a 
three-terminal device, the gate terminal in a synaptic transistor 
is not available for additional tunability over the current–voltage 
characteristics. In contrast, an emerging candidate for neuro-
morphic hardware is the three-terminal memtransistor, where 
resistance states are controlled by resistive switching near the 
contacts via drain voltage pulses (i.e., nonvolatile operation) 
while the channel conductivity can be further modulated by a 
gate bias during reading (i.e., volatile operation).[8] This device 
is enabled by the weak electrostatic screening in 2D materials 
and van der Waals heterojunctions, which is a property that 
has been recently explored for tunable and biomimetic neu-
romorphic responses.[8a,b,9] In particular, monolayer MoS2 has 
been specifically identified as a promising semiconductor by 
the International Technology Roadmap for Semiconductors due 
to a variety of attributes including favorable device metrics, sta-
bility, and scaling potential.[10]

1. Introduction

The increasing demand for digital data processing and com-
munication is pushing conventional computer architectures 
to their power consumption limits, resulting in the active 
development of energy-efficient alternative paradigms, such 
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Initial implementations of monolayer MoS2 memtransistors 
showed a variety of unique functionalities including multiter-
minal heterosynaptic responses that are enabled by its planar 
architecture.[8b] However, integration of these memtransistors 
into scalable crossbar array architectures has not been achieved. 
In addition, previous implementations of memtransistors have 
only utilized single gate electrodes and thus have not taken full 
advantage of the opportunities for dual gating that have been 
exploited in other devices based on 2D semiconductors.[11] Fur-
thermore, current approaches to achieve linear and symmetric 
weight update rules that allow higher accuracy in neural net-
works[12] have relied on modifications to materials composi-
tion or complex voltage pulsing schemes, both of which limit 
overall performance and speed.[13] Recognizing these unfulfilled 
opportunities, we report here the fabrication, characterization, 
and integration of dual-gated monolayer MoS2 memtransistors 
into crossbar arrays. Dual-gated memtransistors provide facile 
control over a range of neuromorphic responses including mul-
tiple intermediate resistance states and gate-tunable long-term 
potentiation and depression synaptic behavior. This gate tun-
ability enables improved linearity and symmetry of the synaptic 
response, which achieves efficient classification of hand-written 
digits using an ANN. In addition, dual gating allows for address-
ability of individual nodes in crossbar arrays without the sneak 
current and crosstalk issues that plague traditional memristor 
crossbar architectures. Since the two gate lines reside in sepa-
rate processing layers, the dual-gate design possesses the same 
footprint and scaling limits of single-gated memtransistors. 
Overall, this work demonstrates that four-terminal dual-gated 

memtransistors enable unique neuromorphic functionality and 
crossbar array integration advantages compared to two-terminal 
memristors and three-terminal single-gated memtransistors.

2. Dual-Gated MoS2 Memtransistor 
Characteristics
The two gates in dual-gated memtransistors can be con-
ceptualized as modulatory terminals in biological neurons 
(Figure  1a,b), which provide non-Hebbian learning function-
ality, such as heterosynaptic plasticity and homeostatic plas-
ticity.[14] These complex learning protocols are desired in ANNs 
to mitigate overshooting of individual synaptic weights and 
to achieve greater network stability during the training stage. 
Toward this end, dual-gated MoS2 memtransistors were fabri-
cated on polycrystalline monolayer MoS2 grown by chemical 
vapor deposition (CVD). The devices use a global bottom gate 
and local top gate as shown in Figure 1c. Specifically, polycrys-
talline monolayer MoS2 was grown by CVD on doped Si sub-
strates coated with 300 nm thick thermal oxide serving as the 
bottom gate dielectric. The quality of the monolayer MoS2 was 
confirmed by atomic force microscopy, Raman microscopy, 
photoluminescence spectroscopy, and X-ray photoelectron 
spectroscopy (see Figures S1 and S2, Supporting Informa-
tion). Source and drain electrodes were then patterned on the 
continuous MoS2 film by electron-beam lithography, followed 
by etching of the MoS2 into memtransistor channels via reac-
tive ion etching. Atomic layer deposition (ALD) of Al2O3 was 

Figure 1. Architecture and characteristics of the dual-gated MoS2 memtransistor. a) Schematic of synaptic connections between neurons with two 
modulatory terminals for controlled release of neurotransmitters. b) Electrical symbol of a dual-gated memtransistor where the two gates act as 
modulatory terminals. c) Schematic of the dual-gated MoS2 memtransistor structure. The Si substrate acts as a global bottom gate and patterned Au 
acts as a local top gate. d) Gate-tunable memristive switching (VD = ± 30 V) at various bottom gate biases (VBG) from −60 to 60 V with the top gate 
floating (L = 0.9 µm, W = 0.7 µm). The black arrow and number indicate the bias sweep sequence (clockwise switching). e) Transfer curve (VD = 1 V) 
as a function of VBG for the low resistance state (LRS) and high resistance state (HRS) of the memtransistor. The arrows indicate the gate bias sweep 
sequence. f) Nonmonotonic tunability of the switching ratio (VD = 1 V) with respect to the top gate bias VTG (VBG = −60 V). The error bars represent 
the standard deviation of 20 memtransistor devices.
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used to deposit a top gate dielectric of 30  nm in thickness,  
followed by patterning of local top gate contacts (see Figure S3,  
Supporting Information).

Figure  1d shows the bipolar resistive switching characteristics 
of the dual-gated MoS2 memtransistor at different bottom gate 
biases (VBG) with a floating top gate. The device channel dimen-
sions of all individual and crossbar devices are identical (channel 
length, L  = 0.9  µm; channel width, W  = 0.7  µm). The device is  
initially in a low resistance state (LRS) and switches to a high 
resistance state (HRS) at forward bias (drain voltage VD > 0). This 
RESET process (i.e., switching from LRS to HRS) occurs during 
both sweeps 1 and 2 in Figure 1d. In contrast, the device undergoes 
a SET process (i.e., switching from HRS to LRS) at reverse bias 
(VD < 0). It should be noted that SET and RESET do not require  
an electroforming process. As a result, dual-gated memtransis-
tors show a pinched hysteresis loop in the clockwise direction at 
forward bias, in contrast to the counter-clockwise loops for single-
gated MoS2 memtransistors (bottom gate or top gate).[8b,9c] It 
should be noted that the large memristive loop (Figure  1d) with 
minimal bottom gate bias hysteresis (Figure  1e; and Figure S4, 
Supporting Information) also distinguishes a memtransistor from 
a synaptic transistor.[7c,9g] Both the direction of switching and the 
rectification polarity suggest that the dominant resistive switching 
is occurring at the forward-biased Schottky diode (for VD >  0 V) 
near the drain contact as opposed to the reverse-biased Schottky 
diode near the source contact that was observed in single-gated 
memtransistors.[8b] The opposite switching direction between 
single-gated and dual-gated memtransistors likely originates from 
resistive switching occurring at opposite electrodes (source vs 
drain) as will be discussed in more detail below.

The low-bias transconductance and threshold voltage (VTH) 
undergo substantial changes between HRS and LRS. In 
LRS, the dual-gated memtransistor does not turn off even at 
VBG = −60 V, while no measurable current was observed in HRS 
up to VBG  = 40  V. The RESET and SET operations were also 
achieved with lower operating voltages (VD = ± 30 V) than previ-
ously reported single-gated memtransistors (VD = ± 50 V),[8b] as 
would be expected for the smaller L (<1  µm) and thinner top 
gate dielectrics compared to previous single-gated memtransis-
tors (L = 5–15  µm).[8b] The top gate voltage (VTG) further con-
trols the resistive switching ratio in a nonmonotonic fashion 
(Figure  1f). On the other hand, the resistive switching ratio 
increases with VBG, which is the opposite of the gate-tunability 
observed in single-gated memtransistors (Figure S5, Sup-
porting Information).[8b] This opposite behavior is explained by 
a different switching mechanism as discussed below. The hys-
teresis is maximum at VTG = 4 V and decreases for VTG < 4 V 
due to the overall smaller drain current in the subthreshold 
regime. The hysteresis decreases for VTG  >  4  V because an 
overall decreased Schottky barrier height in the accumula-
tion regime also results in a smaller modulation of the barrier 
height during memristive switching.

Scaling to smaller L (and lower VD) in these memtransis-
tors is enabled by the smaller average grain size (≈1 µm) in this 
case (see the Supporting Information). However, the operating 
voltage is not expected to scale linearly with L due to the domi-
nance of thermionic emission and space-charge effects near the 
Schottky contacts. Further scaling could be achieved by growing 
even smaller grains or patterning postgrowth lattice defects as 

has been shown with focused ion-beam irradiation for MoS2 
memtransistors on single-crystal flakes.[15] Point defects are 
also known to play a critical role in vertical memristors based 
on monolayer, bilayer, and few-layer MoS2.[16] The detailed role 
of lattice point defects in the memristive I–V characteristics of 
MoS2 devices can likely be revealed by atomically resolved in 
situ scanning tunneling microscopy[17] or scanning transmis-
sion electron microscopy.[8a,18]

The dual-gated MoS2 memtransistors show excellent cycle-to-
cycle endurance, as shown by the tight distribution of switching 
characteristics for 250 bias sweeps (Figure 2a) and stable resist-
ance values in HRS and LRS (Figure  2b). The I–V character-
istics do not pass through VD  = ID  = 0 in Figures  1d and  2a, 
which is a result of a mem-capacitive effect that is known to 
induce a pinched hysteresis loop in the charge–voltage plot as 
opposed to the current–voltage plot.[19] This mem-capacitive 
effect is expected near the metal contacts as has been previ-
ously observed in MoS2 memristors[20] and single-gated MoS2 
memtransistors.[8b] Figure S6 (Supporting Information) shows 
the endurance of a dual-gated MoS2 memtransistor through 
its final breakdown event. In this case, the endurance is lim-
ited by the large applied biases (±30  V) chosen to maximize 
the switching ratio but also approach the breakdown voltage 
of the top-gate. In practice, the bias range would be limited to 
improve endurance while still maintaining a switching ratio 
within an acceptable range for neuromorphic applications. Char-
acterization of 54 memtransistors showed qualitatively similar 
behavior with low variability in switching ratio among the tested 
devices (discussed in Figure  5). The endurance of the same 
memtransistor at different VBG values ranging from 60 to −60 V 
further shows minimal deviation for the intermediate resistance 
states that are accessible through bottom gate bias modulation 
(Figure S7, Supporting Information). Both the HRS and LRS 
states show long retention with extrapolated switching ratios 
over 102 on the timescale of years (Figure 2c; and Figure S8, Sup-
porting Information). Intermediate resistance states between 
HRS and LRS can also be achieved through voltage pulsing 
with similarly stable retention behavior (Figure 2d). Further esti-
mates of the intrinsic timescale of memory states can be made 
by long-term temperature-dependent retention measurements, 
as has been done for metal-oxide memristors.[21] It should 
be noted that the utility of intermediate states in networks of 
memtransistors also relies on low device-to-device variability.[3d] 
However, dual-gated MoS2 memtransistors have the advantage 
of fine-tuning the resistance states via gate bias pulses to offset 
variability in the long-term memory.

Next, we discuss the potential switching mechanisms. As 
previously mentioned, the clockwise switching direction and 
its inverted rectification polarity are consistent with dominant 
resistive switching at the drain electrode. Since the devices do 
not show gate leakage current (<0.2 nA) for HRS or LRS while 
sweeping either VBG or VTG after high-bias memtransistor 
measurements (Figure S9, Supporting Information), dielectric 
breakdown and direct tunneling between the channel and gate 
electrodes can be ruled out during switching. However, a drain 
bias of 30 V could potentially produce a sufficiently high electric 
field to inject electrons into the mid-gap states of the Al2O3 top 
dielectric that are just above the MoS2 conduction band edge.[22] 
To further elucidate the switching mechanism, we note that 
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the dual-gated devices show distinct charge transport regimes 
(Figure  3) in contrast to the gradual changes in ID observed 
during switching of single-gated MoS2 memtransistors.[8b] 
The distinct segments of the I–V curves exhibit well-defined 
power-law behavior (i.e., I  ∝ Vm) with clear transition points 
(i.e., kinks) reminiscent of complex oxide memristors.[23] 
Here, the absence of low-bias ohmic behavior (where m  ≈ 1) 
is explained by the nonzero-crossing behavior resulting from 
mem-capacitive effects near the contacts. An exponent m  = 2 
can be explained by both space-charge-limited current (SCLC) 
without any traps or with a single shallow trap state, whereas 
an exponent m  >  2 corresponds to an exponential density of 
trap states as observed in MoS2 transistors.[24] Thus, the I ∝ V2 
behavior transitions to a trap-filled limit (TFL) of I ∝ V12.5 at a 
high bias (VD ≈ 10 V at HRS during both SET and RESET pro-
cesses), where the field is large enough to access deeper traps 
within MoS2 or Al2O3 (Figure 3).[23a] Once most of the traps are 
filled, the transport resembles the trap-free case of Child’s law 
such that the I–V characteristic reverts to a smaller value of 
m = 4–6 at higher biases (VD > 15 V). This high bias asymmetry 
(I ∝ V4 in forward vs I ∝ V6 in reverse bias) suggests different 

kinetics of trap filling and emptying that is ultimately respon-
sible for the memristive loop.[23a]

Clockwise switching results from resistive switching occur-
ring at forward-biased Schottky contacts in the dual-gated 
memtransistor. Growth of high-κ metal-oxide dielectrics is 
known to increase electron doping of MoS2 (and other transi-
tion metal dichalcogenides)[22,25] resulting in doping-induced 
lowering of the Schottky barrier height.[26] Thus, devices 
start in LRS and gradually switch to HRS through revers-
ible changes near the drain contact for VD  >  0  V and source 
contact for VD  <  0  V. Indeed, SCLC and TFL currents during 
resistive switching in symmetric Pt/TiO2/Pt memristors are 
correlated with filamentary switching near the anode electrode 
(i.e., the drain electrode in memtransistor).[23b] The polarity of 
rectification (overall higher currents for VD > 0 V compared to 
VD  <  0  V) contrasts that of a conventional Schottky transistor 
and single-gated memtransistor, suggesting current bottlenecks 
occurring at the forward-biased contacts.[8b] Two additional 
pieces of evidence corroborate this mechanism: 1) nonzero-
crossing in ID–VD characteristics occurs at VD  >  0  V in dual-
gated memtransistors as opposed to VD  <  0  V in single-gated 

Figure 2. Endurance and retention characteristics of dual-gated MoS2 memtransistors. a) A plot of 250 full switching cycles at VBG = 0 V and VTG = 0 V. 
b) Corresponding LRS and HRS values for the 250 full switching cycles of part a). ID values were extracted at VD = −2 V to avoid the nonzero crossing 
at VD = 2 V that resulted in negative ID. c) Retention behavior of the LRS and HRS states for 24 h where the device was measured at VD = 2 V every  
10 s (see Figure S8 for retention time extrapolation, Supporting Information). d) Retention behavior of ten distinct resistance states during the long-
term depression (LTD) of a dual-gated memtransistor. The data labeled as “1” and “10” in the legend are the LRS and HRS states, respectively. The 
current, ID, was measured at VD = 2 V. All subsequent current levels (2–10) were measured at the same VD bias after writing with 1 ms wide pulses of 
VD = 20 V. VTG = VBG = 0 V during reading and writing operations.

Adv. Funct. Mater. 2020, 30, 2003683
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memtransistors (Figures 1d and 2a);[8b] 2) memristive switching 
ratio increases (decreases) with VBG in dual-gated (single-gated) 
memtransistors (Figure S5, Supporting Information).

Physically, the reversible changes near the drain contact 
could include defect migration within MoS2 or charge trap-
ping in MoS2 or Al2O3 as they all could contribute to the TFL 
transport regimes. Indeed, ALD-grown amorphous AlxOy has 
been shown to have mid-gap states slightly above the MoS2 
conduction band and is accessible for trapping at relatively low 
biases.[22] Thermally assisted charge trapping in the oxide has 
also been shown to induce nonvolatile memory effects.[27] On 
the other hand, recent computational work on MoS2 memtran-
sistors also predicts that the diffusion barrier of sulfur vacan-
cies in MoS2 can be as low as 0.68 eV, resulting in a significant 
hopping rate (>102 s−1) that increases rapidly with increasing 
temperature.[9c] Similarly, local Auger electron spectroscopy of 
MoS2 memristors demonstrated decreased sulfur content near 
contacts during switching.[9d] The net outcome is a significant 
space-charge region near the drain contact that induces band-
bending in MoS2 at zero drain bias, ultimately resulting in non-
volatile memristive switching (Figure 3).

3. Gate-Tunable Plasticity

In biological systems, the synaptic connections between neu-
rons are strengthened through repeated firing, and similar 
concepts are used to train spiking neural networks. However, it 
is also understood that modulatory terminals in biological sys-
tems further control the synaptic connections.[14a,b,28] Similarly, 

the two gate terminals in dual-gated memtransistors provide 
electrostatic control over synaptic learning behavior. As shown 
in Figure  4, tunable learning is achieved in long-term poten-
tiation (LTP) and long-term depression (LTD) for dual-gated 
memtransistors, where VD pulses of 1  ms period are applied 
and the postsynaptic current (IPSC  = ID) is measured between 
pulses. For simplicity, the top gate is grounded in all measure-
ments, while the bottom gate voltage is controlled during the 
reading and writing operations (in principle, these roles of 
the bottom and top gates can be reversed). As expected from 
the direction of switching (Figure 1d), positive VD pulses induce 
LTD and negative VD pulses induce LTP. For LTD, the memtran-
sistor is subjected to VD pulses (20 V) at different VBG writing 
voltages VW

BG, and the changed resistance states are probed at 
a low bias (VD  = 1  V) at different VBG reading voltages VR

BG 
(Figure 4a). Figure 4b,c shows two writing operations at VW

BG = 
60 and −60  V, respectively, where each state was further read 
at a different VR

BG ranging from 60 to 0 V. For VW
BG = VR

BG = 
60 V, IPSC is reduced by 100-fold in just 10 pulses (Figure 4b). In 
contrast, for VW

BG = −60 V and VR
BG = 60 V, IPSC decreases only 

by a factor of two for the same number of pulses (Figure 4c). It 
should be noted that a slower learning rate for negative VW

BG in 
Figure 4c is opposite to what would be expected from previous 
single-gated memtransistors that show a larger switching ratio 
at negative VBG values.[8b] In particular, dual-gated memtran-
sistors show the opposite trend with a smaller switching ratio 
at negative VBG values (Figure  1d; and Figure S5, Supporting 
Information), and overall ON and OFF currents that are lower 
for negative VBG values. A smaller current and limited resistive 
switching during negative VW

BG pulses are expected to induce a 

Figure 3. a) Top: Schematic diagram showing a Schottky contact and MoS2 band-bending near the drain electrode in LRS. Ef is the Fermi energy level. 
Bottom: Log–log plot of ID–VD characteristics of a dual-gated MoS2 memtransistor in forward bias (VD > 0) showing different transport regimes during 
resistive switching between LRS and HRS (VBG = 0 V and VTG = 0 V). The power-law behavior (I–Vm) is shown at different segments of the curves.  
b) Top: Schematic diagram showing the increased space-charge region near the drain electrode in HRS. Bottom: Log–log plot of absolute values of ID 
and VD of the same device in reverse bias (VD < 0) showing different transport regimes during resistive switching between HRS and LRS.

Adv. Funct. Mater. 2020, 30, 2003683
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smaller degree of defect rearrangement near the drain contact, 
resulting in a slower learning behavior. Thus, the initial cur-
rent values are comparable in Figure 4b,c due to the same VR

BG 
values, but they evolve differently with pulsing due to different 
VW

BG values.
Similar tunable learning is achieved in LTP using 10 pulses 

of VD = −10 V (Figure 4d). The devices show a ≈100-fold increase 
in IPSC for VW

BG = VR
BG = 60 V, and only a twofold increase for 

VW
BG = −60 V and VR

BG = 60 V. Thus, LTP effectively regains 
the original synaptic strength before LTD operation for a com-
parable number of pulses. The learning rate changes mono-
tonically with decreasing VW

BG as shown by the intermediate 
cases with VW

BG = 0 V (Figure S10a,b, Supporting Information). 
Reading at different VR

BG changes the absolute IPSC values, 
but the overall learning rates are not affected significantly as 
shown by the exponential fits in Figure S10c,d (Supporting 
Information), where the characteristic decay and growth rates 
remain approximately constant. A smaller magnitude VD pulse 
is needed for writing in LTP (−10  V) than LTD (20  V) due to 
the asymmetric ID–VD characteristics of memtransistors 
(Figure 1d).

We emphasize that reading the resistance state at different 
VR

BG values does not change the intrinsic nonvolatile resist-
ance of the device, as expected from the lack of hysteresis in the 

ID–VBG characteristics (Figure  1e). This decoupling of reading 
and writing operations is one of the key advantages of dual-
gated memtransistors since the nonvolatile memristive states 
remain unperturbed by VR

BG during the reading operations. 
However, the total device current can still be modulated by the 
gate biases during reading by modulating the resistance of the 
transistor response of the memtransistor. The energy consump-
tion for learning steps in Figure 4 is in the range of 2 pJ to 2 nJ  
per operation for VW

BG from −60 to 60 V. In conventional 
crossbar arrays, the energy consumption scales with crossbar 
array size due to sneak current issues. In contrast, dual-gated 
memtransistor crossbar arrays are expected to minimize this 
excess energy consumption by minimizing sneak currents, pro-
viding another key advantage over conventional architectures. A  
multilevel memory effect is also demonstrated by the retention 
behavior of 10 distinct intermediate resistance states during an 
LTD operation (Figure  2d), which show qualitatively similar 
retention behavior as the LRS and HRS states in Figure  2c. 
All learning demonstrations were performed with 1 ms pulses 
since the speed of the memtransistors is expected to be limited 
by the parasitic capacitance from the global bottom gate and 
large metal pads used for probing (RC time constant > 10 µs). 
Here, global bottom gates are readily obtained from direct 
growth of MoS2 on oxidized Si wafers, but the bottom gates 

Figure 4. Tunable long-term potentiation and depression of MoS2 dual-gated memtransistors. a) Pulsing scheme for long-term depression (LTD) at 
various VBG values during the writing operation (VW

BG). The device was read at VD = 1 V and various VBG values during the reading operation (VR
BG). 

b,c) VR
BG-dependent LTD behavior at VW

BG = 60 and −60 V, respectively. d) Pulsing scheme for long-term potentiation (LTP) at VW
BG during the writing 

operation. e,f) VR
BG-dependent LTP behavior at VW

BG = 60 and −60 V, respectively. The legend to the right of (e) corresponds to all plots in this figure. 
VTG was grounded throughout the LTD and LTP measurements. Exponential fits to the LTD and LTP curves in (b) and (e) are provided in Figure S10 
(Supporting Information).

Adv. Funct. Mater. 2020, 30, 2003683
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could also be prepatterned by exploiting transfer methods for 
MoS2, thus providing a pathway to higher operating speeds.

4. Minimizing Sneak Currents

Compared to the lateral geometry of memtransistors, an 
apparent advantage of conventional vertical memristors is their 
small footprint in crossbar arrays.[5] However, accessing indi-
vidual nodes in memristor-based crossbars is a challenging 
task due to sneak currents, and thus the small footprint is typi-
cally compromised by at least one additional circuit element at 
each node.[3a] The integration of a Schottky diode or a threshold 
switch directly with a memristor (i.e., the one-selector-one-
memristor 1S1M approach) can achieve sufficiently high non-
linearity at low biases for effective addressing in small crossbar 
arrays through customized reduced-voltage pulsing schemes 
(e.g., V/2 or V/3 schemes).[29] However, regardless of nonlin-
earity quality, the sneak current through neighboring nodes 
increases with increasing crossbar size for the 1S1M approach, 
compromising the energy efficiency and access time.[30] Con-
sequently, one-transistor-one-memristor (1T1M) structures are 
preferred since the sneak current is much lower and does not 
scale with crossbar size.[12c,30c,31] Nevertheless, since memristive 

components in 1T1M are still limited to two terminals, tunable 
learning response has not yet been achieved,[32] thus motivating 
efforts to integrate dual-gated memtransistors into crossbar 
arrays.

For dual-gated memtransistor crossbar fabrication, drain 
bit and source lines (electrode width ≈3  µm, interline gap 
≈0.9 µm) were patterned on MoS2 followed by etching of MoS2 
channels (L ≈ 0.9 µm, W ≈ 0.7 µm) (see Figure S3, Supporting 
Information). A 30  nm thick Al2O3 dielectric layer was then 
grown by ALD. The top gate word lines (width ≈1.3 µm) were 
fabricated in the transverse direction to overlap the MoS2 chan-
nels that define the nodes in a 10 × 9 (column, row) crossbar 
array (Figure  5a–d) with the underlying Si substrate serving 
as a global bottom gate. Additionally, we also fabricated 1 × 9 
crossbar arrays for the rapid testing of dual-gated memristors  
with the same channel dimensions of 0.9 × 0.7 µm2 (Figure S3, 
Supporting Information). A histogram from 34 memtransis-
tors shows a mean switching ratio exceeding 103 with more 
than 90% of the devices showing a switching ratio larger than 
500 (Figure  5e). While thickness variation in the CVD MoS2 
film (Figure S2b, Supporting Information) can contribute to 
device-to-device variability, its effect can be mitigated through 
further optimization of uniformity in MoS2 monolayer 
growth.[33]

Figure 5. Architecture of the dual-gated MoS2 memtransistor crossbar array. a) Schematic illustration of a dual-gated MoS2 memtransistor crossbar 
array with global silicon bottom gate (word line 1, WL1) and local top gate electrodes (word line 2, WL2) running perpendicular to the drain and source 
electrodes (bit line B and source line S). b) Diagram of the dual-gated memtransistor crossbar array. The optional local bottom gate electrodes (WL1) 
are shown to further reduce parasitic capacitance during reading and writing operations. Mux stands for multiplexer. c) False-colored scanning elec-
tron microscopy (SEM) image of a 10 × 9 crossbar array. The horizontal electrodes (source and drain) are the alternating B line and S line, and the 
vertical electrodes (top gate) are WL2. The blue color region indicates the Al2O3 oxide layer as the top gate dielectric. d) Zoomed-in SEM image of the 
active area indicated by the red rectangle in (c). e) Histogram of the switching ratio of 34 MoS2 memtransistors in 1 × 9 arrays (Figure S3f, Supporting 
Information) at VD = 1 and VBG = VTG = 0 V.

Adv. Funct. Mater. 2020, 30, 2003683
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A disturbance test of the crossbar array was conducted at 
VBG = −60 V, which minimizes the read currents in all of the 
memtransistors (<10 pA, instrument noise floor) except for 
devices under the selected top gate line (VTG  = 10  V). During 
this test, all other top gate word lines are kept floating. A VD 
pulse of 20 or −20 V is then applied to the selected drain bit line 
to switch the device labeled as “device 1” in Figure 6 into HRS 
or LRS, respectively (Figure  6a,b). Even though all memtran-
sistors in the selected bit line receive the same VD pulse, only 
device 1 experiences the learning response at VBG = −60 V. This 
result is confirmed in a subsequent disturbance test where the 
device labeled as “device 2” in Figure 6 was selected by the top 
gate word line 2, and HRS and LRS switching was performed by 
VD pulses. Following fourfold LRS switching of device 2, HRS 
of device 1 was again read at a low drain bias (VD = 1 V), which 
revealed that the current in HRS was essentially unchanged 
other than a small initial change in resistance after the first test 
(Figure  6c). Similarly, LRS of device 1 was also unaffected by 
HRS switching of device 2 (Figure 6d). The test can be extended 
to next nearest neighbor devices, which shows a similar rela-
tive change in the device current after disturbance pulses even 

though absolute current values differ from device to device 
(Figure S11, Supporting Information) Together, these two tests 
verify that device 1 and device 2 can be written and read inde-
pendently, and thus dual-gated memtransistors circumvent the 
sneak current issue of conventional memristor-based crossbar 
arrays. In summary, the application of VBG = −60 V suppresses 
the read currents through the field-effect transistor response 
of the memtransistor without changing the nonvolatile mem-
ristive resistance states of the memtransistors in the crossbar 
array. This isolation of nonvolatile states and read currents 
without additional elements at each node is the enabling advan-
tage of dual-gated memtransistors for crossbar operation in 
contrast to conventional memristors or synaptic transistors.[3d]

To highlight broader implications, we compare dual-gated 
memtransistor crossbar arrays with conventional 1T1M archi-
tectures, as outlined in Figure S12 (Supporting Information). 
The simplest 1T1M architecture has dedicated source lines, 
bit lines, and word lines for each node (Figure S12a, Sup-
porting Information).[12c] The conventional 1T1M architec-
ture is different from ReRAM passive crossbar arrays (with 
or without selectors) where voltage and current lines fan-out 

Figure 6. Disturbance test and sneak current characteristics of the dual-gated MoS2 memtransistor crossbar array. a) Writing operation of device 1 in 
the crossbar using VD pulses (1 ms) of 20 and −20 V for switching to HRS and LRS, respectively. All top gate lines except TG1 (VTG1 = 10 V) are floating 
during writing. For the disturbance test, TG2 was biased at 10 V and all other TG lines were kept floating. b) False-color SEM image of device 1 and 
device 2 used in the disturbance test. c,d) Resistance changes of HRS and LRS of the selected device 1 with respect to time (reading conditions, VD = 
1 V, VTG1 = 5 V), respectively, after 1st, 2nd, 3rd, and 4th switching events at device 2 (VTG2 = 10 V).

Adv. Funct. Mater. 2020, 30, 2003683
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orthogonally.[6b] Alternatively, bit lines can be rotated by 90° 
to minimize the sneak current in pseudocrossbar arrays 
(Figure S12b, Supporting Information).[12c] The bit lines can 
also be shared by neighboring 1T1M nodes to increase areal 
density (Figure S12c, Supporting Information).[30c] On the other 
hand, in a M × N dual-gated memtransistor crossbar array, the 
source line (Si) and bit line (drain electrode, Di) can be shared 
by the neighboring memtransistors in columns i/i+1 and 
i+1/i+2, respectively, (except when i = 1, m), since neighboring 
columns can be further isolated by the bottom gate (word line 
2) that runs orthogonal to the top gate (word line 1) (Figure 6b; 
and Figure S12d, Supporting Information). The key novelty 
is that monolayer MoS2 memtransistors allow dual gates that 
can be fabricated on both sides, resulting in the overall bit and 
source line density being reduced by approximately a factor of 
two compared to the 1T1M architecture in Figure S12a (Sup-
porting Information).[31b,34]

The scaling argument for conventional two-terminal mem-
ristors relies on the nanometer-scale thickness of the vertical 
channel. In contrast, lateral channels are commonly considered 
antithetical to similar scaling lengths. However, atomically thin 
channels allow better electrostatic control compared to bulk sem-
iconductors and in principle nanometer-scale gate lengths are 
possible.[35] In addition, since the two additional gate lines occupy 
space in different layers, dual-gating itself is not expected to com-
promise the scaling limits of 2D materials.[10] Furthermore, dual 
gates are essential to concurrently achieving tunable learning 
and low sneak currents. Previous single-gated memtransistors 
could not achieve both of these functions in crossbar arrays.[8b] 
Moreover, monolayer MoS2 can achieve extremely low OFF cur-
rents below the instrumentation noise floor, which intrinsically 
minimizes parasitic power consumption in large crossbar arrays. 
By employing other best practices from MoS2 transistors, such 
as the replacement of metal lines with van der Waals metals 
or graphene,[10] additional improvements in dual-gated MoS2 
memtransistor performance can be expected as these devices 
are pushed to their scaling limits. Finally, since the gate lines 
completely overlap the source and drain electrodes, the leakage 
current may increase in larger crossbar arrays. However, this 
issue can be avoided by a simple variation in processing steps. 
For example, an additional metal-oxide insulation layer can be 
deposited on top of the source/drain electrodes after the metal-
lization step but before the liftoff step, as has been shown previ-
ously in self-aligned heterojunction transistors.[11,36]

5. Artificial Neural Network Demonstration

Finally, we utilize gate tunability to achieve a linear and sym-
metric synaptic response, which provides clear benefits in 
the training of ANNs. Training of neural networks based on 
memristive synapses can be limited by nonlinear and asym-
metric learning behaviors despite their relative roles in dif-
ferent learning algorithms.[12,37] In conventional neuromorphic 
learning algorithms, linear and symmetric weight update rules 
not only enable higher accuracy in classification tasks, but can 
also simplify the training process by enabling blind update 
protocols.[12b,13a,b] Several approaches have been previously 
employed to improve the linearity and symmetry of two-ter-

minal memristors, including modifying pulse writing schemes 
in organic electrochemical transistors,[13c] designing multilayer 
floating gates in MoS2 synaptic transistors,[38] controlling fila-
ment saturation in epitaxial SiGe memristors,[39] and using an 
additional tunnel barrier or different contact metals in metal-
oxide memristors.[13a,b] Broadly, these approaches either modify 
the device materials in a manner that introduces other device 
performance tradeoffs or require changes to the pulsing protocol 
that complicates time-domain multiplexing during training.

In contrast, dual-gated memtransistors improve linearity 
and symmetry in long-term plasticity via independent access 
of the gate and drain electrodes during writing and reading 
operations. To gauge the performance of these devices in net-
work computation, we simulated the supervised learning of a 
multilayer perceptron (MLP) ANN trained in the recognition 
of handwritten digits using the MNIST dataset (Figure 7a).[40] 
The first layer of the MLP is composed of an input layer with 
28  ×  28 (784) input neurons, where each input neuron corre-
sponds to a pixel in the input images. These input neurons are 
fully connected to the subsequent hidden layer of 300 neurons 
that utilize a bias neuron and the ReLU activation function. 
The final layer of ten output neurons (fully connected to this 
hidden layer) is used to classify each of the ten possible digits 
in the MNIST data set during training and testing. Training is 
performed using all 60  000 training images from the MNIST 
data set for 100 epochs (i.e., 6 million training images) in a ran-
domized order using backpropagation with gradient descent.[41] 
The recognition rate (i.e., accuracy of classification) is cal-
culated after every epoch of training using all 10  000 testing 
images from the MNIST data set to assess the performance of 
the ANN.

In the simulated ANN, the long-term plasticity of dual-
gated MoS2 memtransistors is used to store trained synaptic 
weights for each layer. The linearity and symmetry of LTP and 
LTD behavior are improved by dynamic tunability of different 
learning rates using different VW

BG and VR
BG pulses (Figure 7b). 

For example, by writing with VD = −15 V pulses at VW
BG = −20 V 

during LTP and with VD  = 15  V pulses at VW
BG  = 0  V during 

LTD, plasticity behavior becomes closer to an ideal linear and 
symmetric learning rule desired in ANNs (Figure 7b). It should 
be noted that this linear learning behavior is obtained by tuning 
only the bottom gate bias, thereby leaving the top gate lines 
available for node selection during hardware operation. The 
proposed hardware implementation of the ANN from Figure 7a 
is outlined in Figure  7c.[39,42] Drain and source electrodes of 
the memtransistors are used as bit and source lines, forming 
a crossbar architecture to read the resistance state at each 
node (via MUX and using VR

BG pulse at word line 1). Then, 
the desired increment in the weight is calculated at each step 
of training (Figure  7c; and Figure S12d, Supporting Informa-
tion), and the weight is updated using concurrent VD and VW

BG 
pulses. Importantly, word line 2 (top gate) allows individual 
access to memtransistors by minimizing the sneak current. The 
present MLP uses two memtransistors on neighboring columns 
in order to achieve positive and negative weight values, similar 
to previously reported schemes used in conventional mem-
ristor crossbars.[37,43] In an ideal case, synaptic weights would 
be stored and read with complete accuracy. However, practical 
devices for hardware implementation of synaptic weight storage 

Adv. Funct. Mater. 2020, 30, 2003683
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present a finite number of conductance states, limiting the pre-
cision of stored weight values. A nonideal memtransistor read 
noise of 10% (Figure  2d) is also simulated during training. 
Figure 7d shows the performance of an MLP ANN for the ideal 
case and compares it with the dual-gated MoS2 memtransistor 
implementation. The MLP ANN using memtransistors achieves 
an average recognition rate of 94%, which is only 3% lower than 
the ideal case. Additionally, our trained MLP ANN using dual-
gated MoS2 memtransistors achieves a recognition rate com-
parable with the current state-of-the-art, highlighting that the 
improvements in crossbar architecture do not compromise neu-
romorphic learning performance.[39]

6. Conclusion

In conclusion, we have introduced dual-gated MoS2 memtransis-
tors as four-terminal neuromorphic devices that enable gate-tun-
able learning and efficient integration into crossbar architectures. 
Small grains in CVD-grown MoS2 allowed memtransistors with 
active channel dimensions less than 1 µm and energy consump-
tion per switching cycle as low as 2 pJ. Further reduction in 
power can likely be achieved with thinner bottom and top gate 
dielectrics and smaller channel geometries (using smaller grain 
sizes or patterned lattice defects). The clockwise bipolar resis-
tive switching cycle is explained by the space-charge region near 

Figure 7. Application of the linear and symmetric synaptic response of dual-gated MoS2 memtransistors in a simulated ANN. a) The ANN is trained 
to perform the classification of MNIST handwritten digits using backpropagation. Each input neuron corresponds to a unique pixel in the image.  
A pair of dual-gated MoS2 memtransistors was used to represent each synaptic weight (w) between fully connected neurons in the input, hidden, and 
output layers. b) Circuit block diagram of the hardware implementation of the ANN in a) using dual-gated memtransistor crossbar synapses. The 
device resistance is read via source lines. Weight updates are accomplished by pulsing bit lines (drain) and word line 1 (bottom gate). Word line 2  
(top gate) is used to minimize the sneak current. MUX = multiplexer; ADC = analog-to-digital converter. Two neighboring memtransistors in the dashed 
box, with conductance levels wp and wm, are used to store a synaptic weight, w = wp–wm. c) Linearity of the LTP and LTD characteristics of a dual-gated 
memtransistor synapse. The LTP pulsing scheme is VD = −15 V pulses for 1 ms at VW

BG = −20 V. The LTD pulsing scheme is VD = 15 V pulses for 1 ms 
at VW

BG = 0 V. The device conductance (G) is read at VD = 1 V and VR
BG = 0 V. Solid lines represent ideal linear and symmetric synaptic responses.  

d) Recognition rate of the simulated ANN using experimental data from (c) achieves an accuracy of 94% in 100 epochs, which is within 3% of the ideal 
case. The inset shows zoomed in data from the main plot in (d).

Adv. Funct. Mater. 2020, 30, 2003683
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the forward-biased contact, as opposed to the reverse-biased 
Schottky contact that is dominant in single-gated memtran-
sistors. In addition to conventional synaptic transistors,[9d,44] 
single-gated memtransistors and dual-gated neuristors have 
also been recently reported in several van der Waals semicon-
ductors and heterojunctions.[9a,c,g,15,45] However, monolayer 
materials or self-aligned van der Waals heterojunctions would 
achieve better electrostatic control in dual-gated memtransis-
tors.[11,35,36] As a consequence of this stronger electrostatic con-
trol, both LTD and LTP can be modulated as a function of the 
gate bias during writing, while the output read current can be 
further controlled by the gate bias without affecting the intrinsic 
nonvolatile state of the device. This latter effect provides a direct 
pathway for suppressing sneak currents and crosstalk between 
nodes in crossbar arrays since all devices except the one being 
specifically addressed can be placed into an OFF current state 
without changing their intrinsic memory states. Gate tunability 
of the learning rate is also exploited to achieve improved lin-
earity and symmetry of the weight update rules, resulting in 
efficient classification in simulated ANNs. Overall, by providing 
tunable learning that closely mimics complex biological systems 
in a manner that is amenable to integration into dense crossbar 
arrays, dual-gated memtransistors are likely to have broad impli-
cations for next-generation neuromorphic computing.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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