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Intelligent Fault Detection Scheme for Microgrids
With Wavelet-Based Deep Neural Networks
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Abstract—Fault detection is essential in microgrid control and
operation, as it enables the system to perform fast fault isolation
and recovery. The adoption of inverter-interfaced distributed gen-
eration in microgrids makes traditional fault detection schemes
inappropriate due to their dependence on significant fault cur-
rents. In this paper, we devise an intelligent fault detection
scheme for microgrid based on wavelet transform and deep neu-
ral networks. The proposed scheme aims to provide fast fault
type, phase, and location information for microgrid protection
and service recovery. In the scheme, branch current measure-
ments sampled by protective relays are pre-processed by discrete
wavelet transform to extract statistical features. Then all avail-
able data is input into deep neural networks to develop fault
information. Compared with previous work, the proposed scheme
can provide significantly better fault type classification accuracy.
Moreover, the scheme can also detect the locations of faults, which
are unavailable in previous work. To evaluate the performance of
the proposed fault detection scheme, we conduct a comprehen-
sive evaluation study on the CERTS microgrid and IEEE 34-bus
system. The simulation results demonstrate the efficacy of the
proposed scheme in terms of detection accuracy, computation
time, and robustness against measurement uncertainty.

Index Terms—TFault detection, fault location, microgrid pro-
tection, wavelet transform, deep neural network.

I. INTRODUCTION

ICROGRIDS are gathering attention from the industry
M and research community, due to advances in distributed
generation (DG) development [1]. They are expected to bring
benefits to the modern power system control thanks to the
improved power efficiency, reliability, and quality. Microgrids
can operate either in grid-connected mode, where the external
grid supports part of the power consumption, or in islanded
mode in case the external grid suffers from disturbances
such as frequency deviations and voltage fluctuations, etc.
Contributed by load-side DGs, critical loads in microgrids can
be supplied in islanded mode without the external grid.
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Meanwhile, the protection of microgrids is one of the major
and critical operational challenges [1]-[3]. With the grad-
ual adoption of renewable energy sources in modern power
systems, microgrids are commonly integrated with inverter-
interfaced DGs (IIDG), such as photovoltaic DGs (PVDG)
and battery energy storage systems (BESS). Traditional pro-
tective relays for distribution system fault detection depend
on large fault currents. However, IIDGs can only contribute
insignificant fault currents such that the protection schemes
are not activated [4]. Thus these relays may fail to protect
microgrids. [5] provides a thorough analysis on the current
and voltage dynamics in such microgrids.

Fault detection in microgrid generally has three objectives.
If there is a fault in the system, a fault detection scheme should
determine the fault type (e.g., single-phase-to-ground, three-
phase-short-circuit, etc.), fault phase in unbalanced faults, and
fault location. The former two enable subsequent fault isola-
tion operations, while the latter can benefit service restoration.
According to [5], modern microgrids should maintain the oper-
ation of sound phases in unbalanced short-circuit faults, which
advocates the integration of single-phase protective devices.
Given accurate fault type and fault phase information, selec-
tive phase tripping can be achieved [6]. As a result, system
reliability can be significantly improved [7], and utilities are
gradually adopting this protection scheme [8]. Moreover, accu-
rate detection of fault location can remarkably reduce the
effort in service restoration operations [9], and this becomes
increasingly essential if the restoration involves underground
operations.

In recent years, a growing body of research employs data-
driven and digital signal processing approaches for microgrid
fault type and/or phase detection. For instance, decision tree
and random forest are widely employed to detect faults in both
grid-connected and islanded microgrids (see [4], [10]-[12]).
Other machine learning techniques, e.g., support vector
machine and k-nearest neighbors algorithm, have also been
utilized for fault detection in [3] and [12]. Thanks to the high
computation speed of these data-driven approaches, satisfac-
tory fault classification can be developed in near real-time.
In addition, digital signal processing approaches such as dis-
crete Fourier transform and discrete wavelet transform (DWT)
are widely adopted to “pre-process” the input signals to
better extract the time-frequency characteristics for analy-
sis [3], [4], [12]. Interested readers may refer to [1] and [4]
for surveys on microgrid fault detection schemes in the
literature.
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However, there remains a research gap in the develop-
ment of microgrid fault detection schemes. Some exist-
ing investigations cannot provide fault type information,
thus cannot be properly adopted in the single-phase trip-
ping paradigm (see [12], [13]). Moreover, existing work
in fault location detection focuses on low-voltage DC
microgrids, e.g., [14] and [15]. Fault location detection
in AC distribution networks can typically be achieved
through traveling-wave or injection-based algorithms [9], [16].
However, traveling-wave algorithms suffer from reflected
wave detection and discrimination issues [14], [17], and
some of them require synchronized data over communication
links [18]. None of them demonstrated fault location detec-
tion performance on islanded microgrids or loop/ring-topology
networks. Meanwhile, injection-based algorithms are limited
to phase-to-ground faults and are only applicable in radial
networks [14].

To bridge the research gap in fault detection for IIDG-
enabled microgrids, in this paper we present an intelligent
fault detection scheme based on DWT and recent devel-
opment of deep neural networks (DNN), which is a class
of data-driven machine learning techniques. While DWT is
prone to noise and power disturbances, DNN is introduced
to enhance its robustness thanks to DNN’s outstanding capa-
bility of handling data with noise [19], [20]. Fig. 1 presents
a schematic diagram of the proposed fault detection scheme.
The scheme takes branch current magnitudes of three phases
in one cycle sampled by protective relays as input data. The
measurements are processed by DWT to extract the time-
frequency domain features. Afterwards, the features, together
with the measurements, are input into three DNNs for fault
type classification, fault phase identification, and fault loca-
tion detection. Eventually, the fault information is developed,
which can be employed in later protective and remedial control
actions.

The contributions of this work are summarized as follows:

o We propose a fault detection mechanism for AC
microgrids that can provide accurate and timely fault
type, phase, and location information;

o DNN is combined with DWT to solve the microgrid fault
detection problem from the data-driven viewpoint;

o We perform comprehensive case studies to analyze the
performance of the proposed mechanism and compare the
results with the state-of-the-art.

Compared with existing fault detection mechanisms, the
proposed one can develop accurate and fast fault detection
result (type, phase, and location) without communications. It
can adapt to different operating modes and network topologies,
i.e., grid-connected and islanded mode, and radial and loop
topology. In addition, power dynamics with both conventional
synchronous generators and IIDG can be handled.

The rest of this paper is organized as follows. In Section II
we describe the microgrid system employed to analyze the
proposed scheme. Section III introduces the DWT technique,
and Section IV elaborates on the formulation of the proposed
fault detection scheme. We perform a series of simulations to
demonstrate the efficacy of the proposed scheme in Section V.
Finally, this paper is concluded in Section VI.
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Fig. 2. Modified CERTS microgrid system diagram.

II. INVESTIGATED MICROGRID SYSTEM

In this paper, we focus on a modified microgrid system
based on the CERTS microgrid [21], which has been employed
in many previous investigations on microgrid fault detection,
see [3], [5]. As shown in Fig. 2, the employed microgrid
operates at 0.48 kV, 60 Hz and can support loads in either
grid-connected or islanded mode, controlled by the state of
Point of Common Coupling (PCC) switch. In addition, the
loop switch enables the system to be operated in radial or loop
topology. To test the performance of the proposed scheme on
various types of DGs in microgrids, we employ three DGs
in the system, namely, a battery-energy storage system (DG-
BESS in Fig. 2), a photovoltaic power source (DG-PV), and
a typical diesel synchronous generator (DG-SG). DG-BESS is
interfaced to the system by a current controlled voltage source
inverter, whose control strategy is switched to frequency con-
trolled inverter in islanded mode. DG-PV is interfaced through
a current controlled voltage source converter, which maintains
its control strategy on grid-connected and islanded modes.

We follow [3] to set the parameters for the loads, transform-
ers, and transmission lines, as shown in Fig. 2. Specifically,
four loads are distributed with the system, whose load values
are (90 kW, 45 kVAr) for L-3 and L-4, (90 kW, -40 kVAr) for
L-5, and (90 kW, -20 kVAr) for L-6 under the nominal operat-
ing condition. Line 12, 34, 56 are of AWG2 type with lengths
equal to 68.58 meters. Line 23 is of AWGO00 type, whose
length is 22.86 meters. Other parameters are set according to
the record in [3, Table I].
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Similar to previous work [3], [5], we focus on four power
lines in the system, i.e., Line 12, 23, 34, and 56 as shown in
Fig. 2. Since multiple DGs are deployed in the system, and
the microgrid can operate in a loop topology, digital protective
relays are installed on both ends of the power lines. With the
assistance of attached current transformers, these relays sample
the branch current magnitudes at 3.84 kHz rate, which accords
with the configurations (see [22], [23]). This microgrid system
is modelled in DIgSILENT PowerFactory [24]. The software
package simulates the current measurements in the fault detec-
tion process. The data is employed in the proposed fault
detection scheme to detect the fault type and location.

III. DISCRETE WAVELET TRANSFORM ANALYSIS

DWT is a digital signal processing technique which trans-
forms a time-series into mutually orthogonal set of data. It
can extract the hidden time-frequency domain characteristics
of the fault current. In the proposed fault detection scheme,
DWT serves an important role in pre-processing the input data
for DNNs in the scheme. In this section, we first briefly intro-
duce DWT and its properties. Then we discuss the DWT-based
time-frequency domain features to be computed, which will be
later utilized in DNNG.

A. Continuous and Discrete Wavelet Transform

Wavelets are zero-mean functions over time. A wavelet
Ya,b(t) can be derived from its mother wavelet v/ (¢) by scaling
and shifting as follows:

1 —b
Vab(t) = — (f ) (0

lal a

where a and b are scaling and shifting parameters, respectively.
Utilizing this relation, the continuous wavelet transform of a
signal s(f) with scale a and shift b is defined as

400

sV, (0dt = (s(t), Yap(1)),
(2

where W;,b(t) is the complex conjugate of v, ;(f), and (-, -) is
the inner product. With different values of a and b, a family
of wavelet coefficients C(a, b, s(f), ¥ (¢)) can be developed.

DWT is performed over the continuous wavelet transform
by discretizing a and b. Typically, these parameters are set to
powers of two: a = 2. b=2%xk, J, k € Z. Substituting the
discrete values into (1), we have

1 t
k() = —=Y|l=—k 3
and DWT is derived by

Cla, b, s(0), ¥ (1)) = /

—00

400
dix = / SOV @t = (560), ¥3.60), )

where d; ;. is known as the wavelet detail coefficient at level j
and location k [25].

For most signals s(7), however, the analytical solution can-
not be solved [26], [27]. Meanwhile, Mallet developed a
technique to decompose the multi-resolution signal in [26],
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which is widely recognized as a standard method to calcu-
late DWT. Given an arbitrary signal s(¢), its multi-resolution
decomposition at level M is defined by

s(t) = Zk aM,k\/%(P(ZLM - k)
M 1 t
DIPWIEHER
£ Au(0 + ) D), )

where ayy i are the approximation coefficients at level M such
that ayx = (s(t), om.x()), and @(f) is a companion scal-
ing function [26]. By this transformation, s(f) is decomposed
into an approximation coefficient Ay/(f) and a sequence of
detail coefficients D;(r) at level M. Interested readers can refer
to [26] for the detailed algorithm.

Following (5), DWT represents input signals in the time-
frequency domain [4]. It is widely adopted in fault detection
schemes since it can provide features with the optimal time-
frequency resolution in all frequency ranges, which results
in a better feature extraction ability [28]. Comparing with
Fourier transform and its variants (e.g., fast Fourier trans-
form, short-time Fourier transform, etc.), wavelet transform
can reveal the time support of frequencies efficiently, and is
more computationally efficient [29].

B. Mother Wavelet and Decomposition Level

Different wavelets have unique time-frequency domain char-
acteristics, which can influence the feature extraction ability
of DWT [26]. Many wavelet families have been adopted in
previous work (see [3], [4]) for DWT in microgrid fault
detection, e.g., coif (coiflets), db (daubechies), dmey (dis-
crete meyer), haar, bior (biorthogonal), and sym (symlets).
While there must exist an optimal set of wavelet members in
these families that will lead to the optimal performance for
fault detection, it is impractical to test all combinations of
wavelets. They should be selected strategically according to
the properties of the sampled data. Specifically, this selection
is based on the characteristics of the analyzed data. When
the data contains sufficient samples, the db and sym families
are generally preferred thanks to their robustness regardless of
data properties [27], e.g., length and number of samples. In
such cases, the level of decomposition M has more impact on
the system performance than the choice of mother wavelets.
Comparing with db and sym, other mother wavelets may suf-
fer from their longer filter lengths, resulting in low levels of
decomposition [27]. This can potentially lead to bad feature
extraction capability. Therefore, in this work we employ nine
wavelet members in the two wavelet families db and sym as
the mother wavelets to transform the input signal, i.e., branch
current measurements.

Besides the mother wavelets, decomposition level is another
important parameter that may impact the signal decomposi-
tion performance. A larger level can provide more detailed
description on the input signal, but the computational cost will
increase. There is a maximum level of decomposition in the-
ory for each wavelet member, which is jointly determined by
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TABLE I
MOTHER WAVELETS AND DECOMPOSITION LEVELS USED

Wavelet F | M=L Wavelet F | M=1L
db2/sym2 4 4 db4/symé 8 3
db6/symé6 | 12 2 db8/sym8 | 16 2

dbl0 20 1

the size of input signal and mother wavelet:

N
thlong—lJ’ (6)

where L is the maximum decomposition level, N is the length
of the input signal, and F is the filter size of the mother
wavelet [26]. According to the heuristic in [27], the decompo-
sition level M should be set to its maximum value L to handle
branch current measurements. The length of the input signal is
the number of measurements in one cycle, i.e., 3840/60 = 64.
Hence the decomposition levels for the mother wavelets can be
calculated using (6), which are listed in Table I. For a mother
wavelet with decomposition level M, the input signal can be
decomposed into one approximation coefficient and M detail
coefficients according to (5). Consequently, 32 coefficients can
be calculated from one input signal sequence using the listed
mother wavelets.

C. Feature Selection and Extraction

Using each of the mother wavelets, DWT can decompose
a sequence of input signal into a series of coefficients aps
and dj ;. Choosing suitable features to represent the charac-
teristics of the input signal is critical for fault detection [4].
In the proposed scheme, we select a series of statistical fea-
tures of the coefficients to construct the input feature vector
for DNN, which contains vital information of the investi-
gated fault. Specifically, we calculate the following features
of each decomposed coefficient (here we use s to represent
the coefficient ap x or d y):

e The maximum value of the coefficient: max{s};

e The minimum value of the coefficient: min{s};

o The mean value of the coefficient: uy; = E[s];

o The standard deviation of the coefficient: oy, = E[(s —

291/2.
w1

o The skewness of the coefficient: E[((s — 1) /as)3];

o The energy of the coefficient: 3 s°.

These features have demonstrated their efficacy in the
previous literature which employs DWT for classification tasks
(see [4], [27)).

Consequently, for each cycle in the microgrid system,
32(coefficients) x 6(features) x 3(phases) = 576 features can
be calculated, which constitute a feature vector representing
the power dynamics in the cycle. This feature vector is later
input into DNN to develop the fault detection results, which
will be introduced next.

IV. DEEP NEURAL NETWORK-BASED FAULT DETECTION

DNN is a type of artificial neural networks (ANN) with
multiple hidden layers of neurons between the input and out-
put. It is widely adopted to model complex non-linear systems
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in engineering research [19]. In addition, the computation
of DNN only involves simple algebraic equations, render-
ing a fast computation speed. This characteristic makes DNN
capable of handling problems in real-time.

The proposed DNN-based fault detection scheme is based
on the hypothesis that the branch current measurements can
immediately indicate fault occurrence in the system. This
hypothesis is widely recognized in [2]-[5]. In addition, the
temporal data dependency in sampled current magnitudes can
also help identify the fault. Utilizing the time-series branch
current measurements and the extracted wavelet features intro-
duced in Section III, we construct an intelligent fault detection
scheme in this section.

The fault detection problem is divided into three sub-
problems, namely, fault type classification, fault phase iden-
tification, and fault location detection. Each sub-problem is
handled by a standalone DNN. The flow chart of the proposed
fault detection scheme is depicted in Fig. 3. At an arbitrary
time, a protective relay in the microgrid samples the 3-phase
branch current magnitudes, which are input into the proposed
fault detection scheme. The measurements are first processed
by DWT to extract the features. Then the features and mea-
surements are input into a fault type classification DNN. If a
fault is detected, the fault location detection DNN is employed
to determine the location of the fault. At the same time, if
the fault is classified as an unbalanced one, the fault phase
identification DNN is used to develop the fault phase. Finally,
the generated information can be employed in later control
operation decision-making processes, e.g., fault isolation and
recovery.

In the remainder of this section, we first introduce the
technique employed to construct the three DNNs. Then we
present the structures of these DNNSs, training data preparation
method, and training optimization configuration.

A. Gated Recurrent Unit and Dense Layer

In this work we mainly use gated recurrent unit (GRU)
to construct DNNs to handle the three sub-problems in
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the microgrid fault detection problem. GRU [30] is a
modern variant of ANN, which is among the most com-
monly used data-mining and machine learning techniques.
ANN has been employed in many disciplines [31] due to
its model-independent and computationally efficient proper-
ties [31], [32]. ANN tries to simulate the model of con-
trol systems by learning from the mathematical relationship
between system input and output.

However, a typical ANN overlooks the input data correla-
tion in the time domain. GRU, along with some other neural
networks, is designed to overcome this drawback. By introduc-
ing additional recurrent connections in the hidden layers of a
neural network, GRU is capable of maintaining previous infor-
mation for later use and capturing the temporal dependencies
in the input data [30].

Given a time series X = [Xy, X2, ..., X7], GRU can develop
a sequence of output values H = [hy, hy, ..., hr] where each
output value h; is calculated using all input values from x;
to x;. This is achieved by its internal structure, which can be
expressed as follows:

hy =z +«h_1 + (1 —12z) % ﬁtﬂ (7a)
z; = sigm(wWy,x, + wish, | +b,), (7b)
h; = tanh(wW.,X; + Wi (ry % hy—1) +by), (7¢)

r; = sigm(wyX; + wph_1 +b,), (7d)

where * is the element-wise product, and all w and b matri-
ces are the learning parameters of GRU. From (7) it can be
observed that GRU simulates the relationship between output
h, and input xq, ..., X; using the learning parameters, whose
values are initially unknown. In practice, we use known input
and output data to tune these parameters to reflect the relation-
ship. This process is called training, and is typically performed
off-line. After training, the value of the learning parameters
can be used to calculate the predicted output values given a
new set of input, even if the actual output is unknown.

Besides GRU, another important neural network layer
employed in the structure is the fully connected layer, or Dense
layer. Dense layers are composed of multiple artificial neu-
rons, each of which calculates its output using the input data
as follows:

Y = actv(Wdense * X + Ddense), (8

where x and y are the input and output, respectively, Wqense
and bgense are the learning parameters of the Dense layer, and
actv(-) is the activation function [20].

B. Deep Neural Networks Structures

In the proposed intelligent fault detection scheme, three
DNNs are employed to classify the fault type, identify the
fault phase, and locate the fault position, respectively. All these
networks are constructed using GRU as well as standard fully-
connected neuron layers in ANN. Meanwhile, as their outputs
are different, their schemata vary slightly.

We first construct the fault type classification DNN. This
networks accepts the 3-phase time-series current measure-
ments and the DWT-extracted features as input, aiming to
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Fig. 4. Schema of fault type classification DNN.

tell if a given sequence of dynamics indicates a fault and its
type. Similar to previous work [3]-[5], we consider four types
of faults: 1) single-phase-to-ground (LG), 2) double-phase
(LL), 3) double-phase-to-ground (LLG), and 4) three-phase-
to-ground (LLLG). The constructed DNN have four O0-1
indicators in the output, each of which represents one fault
type. In addition, as this DNN should distinguish faults from
no-fault cases, an extra no-fault indicator is introduced in the
output, making it of length five.

The schema of fault type classification DNN is depicted in
Fig. 4. In this DNN, we employ four GRU layers and three
Dense layers to process the current measurements and DWT
features. Specifically, the first GRU layer is used to map the
time-series into a higher dimension space, and the next two
GRU layers are utilized to extract the temporal dependency of
input data. The last GRU layer expresses the dependency in a
1-D vector, which is combined with the extracted DWT fea-
tures as the input of subsequent dense neuron layers. Finally,
the fault type characteristics are abstracted in the first two
Dense layers, and the last one transforms the abstracted fea-
tures into a human-readable form, i.e., fault type. Since the
activation function for the last layer is sigmoid, values in the
output 1 x 5 vector are in (0, 1). The fault type is determined
by the maximum value in the vector. Suppose that the third
element is the largest in the output vector, then we can tell
that a fault of the type represented by the third output, e.g.,
LLG, occurred in the system.

The schemata for fault phase identification and fault location
detection DNNs are similar to that presented in Fig. 4, except
for the last dense layer. If the fault is classified as unbalanced
(LG, LL, or LLG), the second fault phase identification DNN
is utilized to detect the fault phase. This DNN has an output
vector of length three, in which each element represents the
fault state of a phase. For an LG fault, the phase whose corre-
sponding value is the largest in the output vector is considered
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Fig. 5. The last dense neuron layers of the fault phase identification and
fault location detection DNNs.

as the fault phase. For LL or LLG faults, the phases with the
two largest values are the fault phases.

Finally, the fault location detection DNN only outputs one
value from the last dense layer, which indicates the rela-
tive (percentage) position on the transmission line from the
sampling protective relay. The last layers of the fault phase
identification and fault location detection DNNs are presented
in Fig. 5.

Note that the proposed DNN only takes the local three-phase
current magnitudes as the input. In some real-world applica-
tions, it is possible that extra information, e.g., fault resistance
values, is available before the detection is executed. In such
cases, such information can be considered as new input of the
first dense layer in Fig. 4, and thus the model can be further
enhanced by learning from the additional information. In this
work, we present a generalized model as depicted in Fig. 4.
Variants of the model incorporated with additional information
may lead to better system performance, which will be further
studied in future work.

C. Time-Series Simulation and Training

In order to use the constructed DNNs for fault detection,
their learning parameters need to be trained offline. The train-
ing data, composed of input current magnitude measurements
and output fault information, can be obtained from either
historical data or time-series simulation of different opera-
tional events. The input current magnitude measurements are
arranged in the form of

Iy Lo I3 Ia,64
X= |y Iy I3 Ipes | )
Ieqn Iep e Ic 64

where 1,;, Ip;, and I.; are the f-th current magnitude mea-
surements on phase a, b, and c in the cycle, respectively. As
the fault information will be revealed in three DNNs, differ-
ent output ytype — (y?ype) c les’ yphase _ (yg)hase) c B1X3,
and Y'°° € (0, 1) should be constructed for the three DNNGs,
respectively:

type ) 1 if fault type is represented by i (10a)
i 7 )10 otherwise ’
phase | 1 if phase i is short circuited
Yi - { 0 otherwise ’ (10b)
Y'°¢ = relative fault location on the line. (10c)

type ,phase
Yo Yo

Yl(%}lf:l, many gradient descent algorithms can be employed

Given a collection of R training data {X,),
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TABLE 11
CONFIGURATIONS FOR FAULT CASES SIMULATION
Parameter Possible Configuration Count
Topology Radial or loop 2
Operating mode Grid-connected or islanded 2
(A/B/C)G, AB, AC, BC, (AB/AC/BC)G,
Fault type or ABCG 10
Fault resistance (€2) | 0.01, 1, 10, or 100 4
Fault line Line 12, 23, 34, or 56 4
Fault location 10%, 20%, - - -, or 90% on fault line 9
L-3 and L-4 Load (90 kW, 45 kVAr) or (45 kW, 25 kVAr) 2
L-5 Load (90 kW, -40 kVAr) or (45 kW, -20 kVAr) | 2
L-6 Load (90 kW, -20 kVAr) or (45 kW, -10 kVAr) | 2
TABLE III
CONFIGURATIONS FOR NON-FAULT CASES SIMULATION
Parameter Possible Configuration Count
Topology Radial or loop

Grid-connected or islanded

2

Operating mode 2
(90 kW, 45 kVAr) or (45 kW, 25 kVAr) 2
2

2

L-3 and L-4 Load

L-5 Load (90 kW, -40 kVAr) or (45 kW, -20 kVAr)

L-6 Load (90 kW, -20 kVAr) or (45 kW, -10 kVAr)
Topology change, operating mode change,

Event L-3, L-4, L-5, or L-6 load change by 34

+5%, £10%, £15%, or £20%

to train the learning parameters in DNNs [19], [32]. In this
paper, we use the Adam optimizer [33] to find the optimal
values for these parameters. Since the fault type classification
is a multinomial classification problem, we use the multino-
mial cross entropy loss function as the optimization objective.
Similarly, the binary cross entropy loss function is assigned
to the fault phase identification DNN due to its multi-label
classification nature. The loss function for the fault location
DNN is mean squared error loss function. Interested readers
may refer to [20] for the detailed implementation and theory
of these loss functions.

In our DNN model, there are hundreds of thousands of
learning parameters to be trained. It is impractical to simulta-
neously adjust their values without overfitting [34]. Instead, an
effective technique, called “dropout”, is employed to address
this issue [35]. This technique randomly sets the output
value(s) of a neuron to zero at a user-defined probability (30%
in this work). Therefore, the dropped neurons do not contribute
to the result calculation, which can effectively prevent the
network from heavily relying on specific neurons to develop
output. Thus more robust features can be extracted in the
learning process [34], [36]. This “dropout” scheme is only
employed in the training process. When the trained parame-
ters are used to develop testing results, all neurons contribute
to generate the network output [35].

D. Discussion

In this work, we employ DWT and DNN to construct an AC
microgrid fault detection mechanism. An advantage for DNN
over other conventional computation techniques is that the
time-consuming parameter tuning process can be conducted
offline. The online testing process involves minimal linear
algebraic calculations, which are computationally efficient. In
the meantime, the DWT employed in this work does not have
a pre-processing step to reduce the testing time. As will be
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TABLE IV
FAULT DETECTION ACCURACY ON CERTS MICROGRID SYSTEM

Rela Fault vs. Non-fault Accuracy | Fault Type Accuracy | Fault Phase Accuracy Location Error
Y Training Testing Training Testing Training Testing Training  Testing
R-12 99.50% 99.56% 98.38% 97.88% 98.39% 97.37% 2.49% 5.63%
R-21 99.99% 99.31% 99.28% 97.46% 97.84% 98.13% 2.09% 4.17%
R-23 99.26% 99.24% 97.96% 98.28% 98.08% 99.03% 8.33% 10.59%
R-32 99.54% 99.70% 97.93% 96.34% 96.87% 96.75% 8.64% 8.70%
R-34 99.21% 99.06% 95.50% 97.32% 96.75% 98.86% 5.68% 4.42%
R-43 99.46% 99.11% 97.27% 97.73% 98.68% 97.39% 6.80% 5.94%
R-56 99.99% 99.20% 97.61% 97.11% 96.83% 97.23% 4.39% 1.93%
R-65 99.76% 99.31% 97.61% 98.67% 97.74% 98.59% 4.50% 5.85%
Average | 99.60% 99.31% 97.70% 97.60% 97.64% 97.92% 5.24% 5.90%
. . . . . TABLE V
illustrated in Section V-A, in normal settings, the employed SUMMARY OF COMPUTATION TIME
DWT can be computed fast enough to keep the overall system
response time satisfactory. With the recent rapid development Process | DNN training DWT & features  DNN classification
of signal processing techniques, there may also exist wavelet ~—Ave Time | 42394 SDNN 0.1 ms/wavelet 0.35 ms/DNN
transform algorithms which are re-constructed in an online
manner to further reduce the computational time. Such online TABLE VI
DWT algorithms can be easily incorporated into our proposed COMPARISON WITH OTHER FAULT DETECTION SCHEMES
fault df:tectlon mechanism and the resulting detectlf)n accuracy P Accuracy Error
is not influenced as long as the DWT results remain identical. Fault Type Phase | Location
Proposed Scheme 99.31% 97.60%  97.92% 5.90 %
Decision Tree [3] 90.40%+  90.40%+  90.40% -
K-nearest Neighbors [3] 95.63%+  95.63%+  95.63% -
V. Support Vector Machine [3] | 93.30%+ 93.30%+  93.30% -
. CASE STUDIES Naive Bayes [3] 9424%+  9424%+  94.24% .
. . : Decision Tree [4] 97.00% 85.00% - -
We. perform a series of simulations to assess the fault Random Forest [4] 09.00%  91.00% i i
detection performance of the proposed scheme. We first eval- Over-current relay (in [4]) | 56.00% - . .
uate the fault type/phase classification and location detection Differential relay (in [4) | 96.00% - - -

accuracy, and compare the results with the state-of-the-art
schemes in the literature. Then we investigate the impact
of noisy measurements on the fault detection performance.
Finally, we test the proposed scheme on another microgrid
system besides the CERTS system to assess the generaliza-
tion of the proposed scheme. All time-series simulations and
numerical calculations are conducted on a computer with an
Intel Core i7-7700 CPU and an nVidia GTX 1080 GPU.
The time-series simulations are performed using DIgSILENT
PowerFactory [24], and the DNNs are constructed with
TensorFlow [37].

To train the learning parameters in DNN with supervised
learning, sufficient previous knowledge that represents post-
fault/event power dynamics is critical. The training data should
include adequate information to lead the tuning of these
parameters approximating the system behavior, subject to
different operating conditions and events. In this work, we
generate the training data using CERTS microgrid system
with time-series simulations under different network topolo-
gies, grid-connected modes, types of balanced and unbalanced
faults, fault resistances, fault lines, locations on the line, and
loads. Details of these configurations are listed in Table II.
In total, 46,080 fault cases are generated and simulated.
Moreover, multiple non-fault cases are constructed to train the
parameters. Details of such cases are listed in Table III, and
1088 non-fault cases are generated and simulated. In each gen-
erated case, the simulated branch currents are employed as the
measurements sampled by the protective relays. In practice, it
is also feasible for utilities to use the historical operation data
for training.

For cross validation and prevention of the over-fitting
problem, we randomly divide the generated fault and non-
fault cases into training and testing sets by the ratio of 3:1,
which accords with the common practice, see [4], [38]. The
training cases are employed to train the learning parameters of
DNN, and the testing cases are used to assess the fault detec-
tion accuracy of the trained scheme. Thus, over-fitting problem
(machine learning models learn from both data characteristics
and random noise, rendering poor generalization performance
over new unknown data) can be avoided.

A. Fault Detection Accuracy and Computation Time

Table IV presents the fault detection performance of the
proposed scheme. We summarize the accuracy of fault type
classification and fault phase identification, which can be
directly obtained from the DNNs in the scheme. In addi-
tion, we further present the accuracy on distinguishing fault
cases from the non-fault ones, and the error of predicted fault
locations.

From the simulation results, we can see that the proposed
intelligent fault detection scheme can successfully develop the
correct information in most training and testing cases. For the
typical fault/non-fault detection performance, each relay can
achieve more than 99% accuracy, rendering an overall 99.60%
accuracy for training cases, and 99.31% for testing ones. For
the fault type and phase classification, the performance is
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TABLE VII
FAULT TYPE DETECTION ACCURACY AT R-43 WITH DIFFERENT NUMBERS OF NEURAL NETWORK LAYERS

Number of GRU Layers
Number of 1 2 3 4 5
Dense Layers | Training Testing | Training Testing | Training Testing | Training Testing | Training  Testing
1 95.02%  94.92% | 96.57%  95.35% | 96.33%  9621% | 97.71%  96.05% | 98.06%  96.19%
9577%  95.89% | 96.08%  9594% | 97.53%  97.50% | 97.27%  97.73% | 98.29%  96.17%
3 95.15%  95.37% | 96.01%  95.86% | 96.82%  96.75% | 97.20%  97.33% | 97.43%  95.61%
TABLE VIII

slightly worse. Despite this, the proposed scheme can still pro-
vide satisfactory 97.60% and 97.92% classification accuracies
in these tests using testing cases.

The errors of predicted fault locations can lead to some
interesting observations. In general, most relays (except R-23
and R-32) can achieve quite accurate prediction on fault loca-
tions, resulting in 4.32% and 4.65% error for training and
testing cases, respectively. However, the prediction accuracies
of R-23 and R-32 are relatively worse. This is because Line
23 (22.86 m) is significantly shorter than the others (68.58 m).
In such case, if the fault resistance is large enough, the power
dynamics for different fault locations on Line 23 are simi-
lar. Meanwhile, the proposed scheme can still locate the fault
position with an error of around two meters. This is accept-
able when the fault recovery involves underground operations,
which is quite common in microgrid systems.

Last but not least, we record the computational time for
the proposed scheme in Table V. It can be concluded that the
proposed scheme can be executed in real time. With proper
parallelization, the scheme can develop fault information in
around 0.35 millisecond after the sampling time.! Even in the
worst case scenario where all calculations are sequential, the
fault detection time is around 1.34 ms (non-fault cases) or
1.69 ms (fault cases).

B. Comparison With Other Fault Detection Schemes

We compare the performance of the proposed scheme with
existing state-of-the-art schemes for microgrid fault detec-
tion. The results are summarized in Table VI, and the best
performing items are bolded. Note that [3] only provided
fault classification accuracy including fault phase information.
Hence it can be inferred that the performance for fault vs. non-
fault and fault type classification should be superior than the
value presented. These inferred accuracy values are appended
with a “+” sign in the table.

From the comparison it can be concluded that the proposed
scheme can outperform existing state-of-the-art microgrid fault
detection schemes. In addition, the proposed scheme can pro-
vide predicted fault locations, which are unavailable in the
compared schemes.

C. Deep Neural Network Structure

In this work we adopt a DNN structure as shown in Fig. 1,
which contains four GRU layers and two Dense layers.”?

I Assume that DWT feature extraction for nine wavelets is calculated in
parallel, which happens when DNN is executing the calculation for the first
few GRU layers. DNNs also calculate their output values in parallel.

2Here the last Dense layer in Fig. 1 is excluded, since it is compulsory and
fixed-size.

IMPACT OF MEASUREMENT UNCERTAINTY ON FAULT
DETECTION PERFORMANCE

Accuracy Error

SNR Fault Type Phase Location
Perfect | 99.31%  97.60%  97.92% 5.90%
40dB | 99.29% 97.64%  97.78% 5.93%
35dB | 99.24% 97.55%  97.86% 5.99%
30dB | 99.20% 97.57%  97.69% 6.01%

The number of layers is one of the most critical hyper-
parameters that significantly influence the system performance.
In this section, we perform a test on the number of lay-
ers in the mechanism to investigate the relationship between
fault detection accuracy and DNN structure. Specifically, we
test different DNN structures with one to five GRU layers
and one to three Dense layers and compare their fault type
detection accuracy. All structures are trained with the same
training data, and all other simulation configurations are iden-
tical. The fault type detection accuracy values at a randomly
selected relay (R-43) are presented in Table VII. From the
results, it is clear that four GRU layers with two Dense
layers yield the most accurate fault type detection informa-
tion on the testing data. While more GRU layers may lead
to better training accuracy, the extra layers also potentially
introduce over-fitting issue to the model, rendering a worse
testing performance. Note that it is possible to develop more
complex DNN structures for even better results. How to con-
figure the structure for microgrid fault detection to further
improve the accuracy performance is out of the scope of
this work.

D. Measurement Uncertainty

We investigate the impact of noisy branch current measure-
ments on the fault detection accuracy of the proposed scheme.
Similar to previous work [3], [12], the current time-series data
is distorted with white Gaussian noise. We conduct simulations
on three test cases, namely, (i) 40 dB signal-to-noise ratio
(SNR), (ii) 35 dB SNR, and (iii) 30 db SNR, which accord
with the configuration in [12]. DNNs in these test cases are
trained with the distorted data. The performance on testing set
cases is summarized in Table VIIIL

From the simulation results we have the following obser-
vation. While the noise in current measurements does have
an impact on the performance, the influence is insignificant.
In the worse case scenario (30 dB), the accuracy decrease is
only around 0.1% compared with perfect measurements. To
conclude, the proposed scheme can achieve almost the same
performance considering measurement uncertainties.
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TABLE IX
PERFORMANCE ON MODIFIED IEEE 34-BUS MICROGRID SYSTEM

Accuracy Error
Fault Type Phase Location
99.06%  98.02%  97.71% 6.43%

E. Performance on Modified IEEE 34-Bus Microgrid System

All previous analyses and simulations are conducted on the
CERTS microgrid system. It is of interest to assess the gen-
eralization of the proposed scheme. In this sub-section, we
employ a modified IEEE 34-bus system and test the fault
detection performance of our scheme. The system is con-
structed according to the descriptions in [39], and we assume
that protective relays are installed on transmission lines 808-
812, 816-824, 834-842, and 846-848. Using a similar approach
as we conducted on CERTS microgrid system, we develop
11,792 cases for training and testing the proposed scheme.
The simulation results are illustrated in Table IX. It can be
observed that the performance deviation of this modified IEEE
34-bus system from CERTS system is quite trivial, despite the
much larger test system. This result leads us to conclude that
the proposed fault detection scheme can be generalized and
applied to microgrid systems with various sizes.

VI. CONCLUSION

In this paper, we propose a new intelligent fault detection
scheme for microgrid systems based on wavelet transform
and deep learning approaches. The branch current magni-
tude measurements sampled by protective relays are input
into the scheme, which can develop the detailed information
of the fault type, phase, and location for microgrid pro-
tection and service recovery. Specifically, the measurement
data are pre-processed using DWT and statistical features
are extracted from the result. Then the measurements and
features are input into tailor-made DNNs to develop fault
information. Different from previous work, the proposed
scheme can provide a predicted fault location along the trans-
mission line, besides accurately classifying the fault type.
In addition, due to the computationally efficient nature of
DNN, the whole fault detection process can be conducted in
real-time.

To assess the performance of our proposed scheme, we
conducted a series of simulations. We first test the fault detec-
tion accuracy on a CERTS microgrid system, and compare
it with state-of-the-art fault detection schemes in the litera-
ture. The results demonstrate that the proposed scheme can
provide more accurate fault type classification results, and
can discover the fault locations which are unavailable in
other approaches. In addition, we evaluate the influence of
noisy measurements on the fault detection performance. The
simulation shows that measurement uncertainty has a triv-
ial impact on the performance of the scheme. Last but not
least, we also test the proposed scheme on a modified IEEE
34-bus system and the fault detection result remains satis-
factory. This indicates that the proposed scheme is practical
to be adopted in real-world microgrids of different sizes and
topologies.
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TABLE X
COMPARING DB AND syM WAVELETS WITH COIF AND BIOR

Accuracy Error
Wavelets Fault Type Phase Location
db and sym 99.31%  97.60%  97.92% 5.90%
coif and bior | 99.04% 97.53%  97.48% 6.11%
APPENDIX

WAVELET FAMILY SELECTION TEST

In this Appendix, we present the fault detection results
on the proposed mechanism with coif and bior families
instead of db and sym. Specifically, the three-phase current
magnitude measurements are processed by wavelets coifl
(M =3),coif2 (M =2),coif3 (M =1),coifd M =1),
coif5 M = 1), biorl.1 (M = 6), biorl.3 (M = 3),
biorl.5 (M = 2), bior2.2 (M = 3), and bior2.4
(M = 2). The simulation results are demonstrated in Table X.
The presented accuracy values accord with our previous anal-
ysis in Section III-B. Therefore, in our design, db and sym
wavelets are employed.
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