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A B S T R A C T

A hybrid inexact optimization model is developed for food-water-energy nexus system management with the
consideration of complex uncertainties and decision makers’ risk tolerance. A multi-stage stochastic fuzzy
random programming (MSFRP) model is tailored to tackle variables with deeper uncertainties, a mixture of fuzzy
and random fuzzy characteristics. Allowing to reflect decision makers’ subjective opinion and risk preference, it
can provide decision makers the tradeoff information between system benefit and risk attitude. The proposed
model was applied to an agricultural area Shandong Province, China with the aim of maximum total system
benefits. The valuable managerial insights on optimal cultivated land distribution, water resource allocation, and
energy supply strategies are provided for decision makers under uncertainties. Meanwhile, the pesticide and
fertilizer consumption for crop planting, and the carbon emission embodied in per unit crop supply are also
quantitatively estimated. Moreover, by setting different water resource availability scenarios, the impacts of
future water resource conditions on optimal management strategies under climate change are evaluated and
discussed. The results suggested that rice would be the critical crop with the largest planting area for food
security during the planning horizon. Under scarcer water resource conditions, the system benefits would reduce
due to more desalination water consumption and planting strategy adjustment. However, it would lead to less
carbon emission embodied in per unit crop supply and relieve local carbon emission control pressure. Compared
to the conventional multi-stage stochastic programming, the developed MSFRP can be more effective to reflect
the optimistic and pessimistic attitude of decision makers and deal with future scenario information with deeper
uncertainties.

1. Introduction

Food, energy, and water resources are the basic necessaries for
human survival and development. Due to climate change, population
growth, and urbanization process, the sustainable development of
human society faces enormous pressure from food safety, energy se-
curity, and water resource protection (Zhang et al., 2019a,b; Arthur
et al., 2019). However, there are close and complex relationships
among food-water-energy (FWE), which brings great challenges for
policymakers to achieve sustainable goals. For example, food produc-
tion requires sufficient irrigation; electricity is consumed in the col-
lection, treatment, and transmission of irrigation water, and food pro-
cessing; electricity generation also requires water withdrawals and
consumption for cooling purpose (Ren et al., 2018; Zhang et al., 2018).

Management on a single subsystem in an isolated way would lead to
conflicts among different objectives and low efficiency. Therefore, in-
tegrated planning and management from the FWE nexus perspective is
desired to formulate water resource allocation, energy consumption,
and cultivated land use in a joint and efficient way.

Recently, a number of studies on FWE nexus have been carried out
from different perspectives. Among them, a range of recent research
have focused on building an integrated analytical framework of FWE
nexus, quantifying the impacts of climate change and policies, and re-
vealing the correlations and feedback mechanism among them
(Salmoral and Yan, 2018; Nair et al., 2014), with wide practical ap-
plication at different scales from global (Sušnik, 2018), national (Xiao
et al., 2019), river basin (Basheer et al., 2018), region (Mroue et al.,
2019; Lin et al., 2019), to city (Sherwood et al., 2017). Furthermore,
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efforts have also been made in the simulation and optimization meth-
odologies of the FWE nexus system (Hang et al., 2016; Bergendahl
et al., 2018; Khan et al., 2018). Due to various components and conflicts
among economic, social, natural resources, and ecological environ-
ment, optimization for the FWE nexus system is even more complex
under such an integrated framework than a simple subsystem. Various
optimization models of FWE nexus have been conducted for different
goals, such as water security, food safety, minimizing system cost,
maximizing annual net incomes, and maximizing actual crop yield
(Karan et al., 2018; Mortada et al., 2018; Zhang et al., 2018; Si et al.,
2019; Zeng et al., 2019a). In addition, in a real FWE nexus system,
decision makers have to face numbers of uncertainties caused by var-
iations of natural conditions, social-economic environment, and in-
ternal relationships, such as fluctuations of water resource availability
(flood or drought), variations of crop yield, changes in land use, im-
provement in power generation technologies, and agriculture irrigation
types (Ethan Yang and Wi, 2018; Hussien et al., 2018; Walsh et al.,
2018). These uncertain factors in the FWE nexus system would bring
more risk in achieving optimal objectives and make considerable more
complicated in decision-making. So far, there are few studies focusing
on dealing with uncertainties in optimizing decision making for the
FWE nexus system (Li et al., 2019; Zeng et al., 2019b).

Although few studies on FWE nexus management under un-
certainties have been proposed, uncertain optimization methods have
been extensively studied in energy system planning (Ji et al., 2018),
water resources management (Chen et al., 2019), and many other fields
(Tan et al., 2017). Various methods have been developed to handle
uncertainties with various characteristics, such as stochastic mathe-
matical programming (Simic, 2016), fuzzy mathematical programming
(Yu et al., 2019), interval-parameter programming (Xie et al., 2018a),
robust optimization (Ji et al., 2014), and hybrid inexact programming
approaches (Xie et al., 2018b). Among them, multi-stage stochastic
fuzzy random programming (MSFRP) is an effective tool for decision
making under the integrated framework of multistage stochastic pro-
gramming and fuzzy theory (Abdelazi and Masri, 2009; Zahiri et al.,
2017). Inherent to the advantages of multi-stage stochastic program-
ming (MSP), MSFRP could model the future uncertain information
through a multi-layer scenario tree, and permit revised decisions at
each time stage with future sequential realized uncertain events, which
makes the decision-making process more flexible (Guan and Philpott,
2011). In addition, in traditional stochastic programming, the prob-
ability of scenarios is usually determined based on prediction model
and special expertise, and described as deterministic value, which is
relatively subjective and may change over the planning horizon (Vafa
Arani and Torabi, 2018). By incorporating fuzzy theory, MSFRP can
address deeper uncertainties with incomplete and imprecise informa-
tion, and reflect the risk attitude of decision makers.

Therefore, under the framework of the MSFRP approach, the aim of
this study is to develop a comprehensive agricultural food production
management model from a food-water-energy nexus perspective under
uncertainty. The FWE nexus concept adopted in this work mainly refers
to the irrigation water for crop production, energy requirements for
irrigation water supply and treatment, energy used in crop production
activities. The main contributions of this study can be expressed as
follows:

(a) A hybrid uncertain optimization model with the consideration of
decision maker’s risk attitude is proposed for FWE nexus manage-
ment under uncertainties.

(b) The proposed MSFRP model can handle uncertainties with different
information accuracy and subjective risk attitude by expressing
them as probability and possibility distribution. Meanwhile, it also
can guarantee the robustness and reliability of decision making and
avoid system risk violations under a certain confidence level.

(c) The developed model is applied to a practical application of a
comprehensive agricultural issue with FWE nexus in Shandong

Province, China, which can provide reasonable allocation strategies
on water resources supply and land use with the purpose of max-
imizing system profits, ensuring food security, as well as allowing
decision makers to choose their own risk tolerance and risk pre-
ference.

(d) The impacts of fluctuating water resource conditions caused by
climate change on optimal strategies are estimated to provide more
managerial insight under uncertainties. Besides, the carbon emis-
sion embodied in crop production is quantitatively assessed for
environmental concern.

The rest of this paper is organized as follows. The overview of the
case study is described in Section 2. Model development with the
mathematical formulation and main assumptions are presented in
Section 3. The important results and discussion are provided in Section
4. The main conclusions are drawn in Section 5.

2. Overview of the study area

Shandong Province (34°22.9′-38°24.01′N, 114°47.5′-122°42.3′E) is
located on the eastern coast of China and belongs to the lower reaches
of the Yellow River. Shandong Province has the second-largest popu-
lation (98.47 million), which still keeps increasing with a 0.58 % an-
nual population growth rate. Such a massive population leads to nu-
merous food demand and natural resource consumption. Meanwhile, it
is one of the important agriculture production provinces in China.
Shandong Province contributes 7.57 % of the total grain production
with 1.63 % of land area, 6.17 % of cultivated land, and 0.54 % of water
resources in the country (Shandong Statistical Bureau, 2016). The main
food crops include cereals (i.e. rice, wheat, and corn), beans, and po-
tatoes. In recent years, with the variation in the natural conditions,
adjustment in national grain production policies, and fluctuation in
food demand at home and abroad, the planting structure in Shandong
Province is constantly changing. Especially, the proportion of wheat
and corn keeps increasing and accounted for 92.52 % of the total
production in 2014. Sustainable development of the agricultural sector
requires greater water consumption, and water resources demand was
14.33×109m3 in 2015, which was about 67.34 % of the total water
consumption (Shandong Statistical Bureau, 2016).

However, in fact, Shandong Province faces a serious water crisis.
The annual average water resource is only 30.00×109m3, and the
water resource per capita is 334m3, less than 1/6 of the national
average. Regional water resources are mainly dependent on atmo-
spheric precipitation, and the average precipitation in recent years is
680mm, with more than 61 % of annual precipitation concentrated in
summer (Shandong Statistical Bureau, 2016). In 2015, the total water
supply amount in Shandong Province was 21.28× 109 m³, where water
resources from surface water source were 12.20×109 m³, and
8.31×109 m³ were from groundwater. As a big agricultural province,
more than 67 % of the total water resources were consumed by the
agricultural sector, and the local water resource in 2015 was only
16.84×109 m³, which could not satisfy the total water demand
(Shandong Water Resources Department, 2016).

In the future, population increase and economy development will
exacerbate its water shortage problems and lead to serious ecological
degradation. Besides, the possible large variations in precipitation and
extreme situations in runoff would bring great uncertainties in water
resource supply, and become the main restriction and threat for social
development. Meanwhile, due to advanced agricultural machinery,
high-efficiency fertilization, and new food processing techniques, the
energy demand and greenhouse gas emission associated with modern
agriculture sector will also be considered in achieving sustainable de-
velopment. Therefore, efficient agricultural management with the
consideration of the interaction among crop planting, water, and en-
ergy resources under uncertainties to guarantee food security and al-
leviate the resource conflicts is of great importance for local decision
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makers.

3. Model development

3.1. Modeling formulation

Fig. 1 presents the framework of a hybrid FWE nexus management
model with the MSFRP method. In this study, the system boundary of
FWE nexus only focuses on irrigation water and energy consumption for
food production, and electricity for irrigation water treatment. The
main purpose of the FWE nexus system is to maximize the economic
benefits from food production under the constraints imposed by food
security with population growth, limited cultivated land, and water
resource, and the complex relationships among different subsystems.
Meanwhile, the uncertainties in the nexus system are considered and
addressed by the MSFRP method (the detail methodology seen in SI). In
specific, the uncertain population growth estimated by decision makers
can be addressed as fuzzy random numbers and its scenario probability
with subjective judgment expressed as fuzzy numbers. The impacts of
water resource availability under climate change are assessed by sen-
sitivity analysis. The hybrid optimization model could provide the op-
timal strategies for cultivated land planning, water resource allocation,
and electricity supply strategies with the consideration of different risk
preferences of decision makers. In addition, the associated fertilizer and
pesticide consumption, and carbon emission for optimal solutions could
also be evaluated.

In the agricultural system, the system profit is the primary concern
of decision makers, and the revenues are the benefit of food production,
which can be calculated as crop yield multiply market price. The total
costs mainly include the resource and supply cost of irrigation water,

the cost of electricity used in food production and irrigation water
processing, the cost of fertilizers and pesticides for food production. The
objective function of system profit can be expressed as:
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where, t is the index for the planning period (t=1, 2). i denotes the
types of water source (1 for underground water, 2 for surface water, 3
for recycle water, 4 for desalination water, 5 for imported water). j is
the index for renewable energy generation (1 for wind, 2 for solar). m
represents the type of crops (1 for wheat, 2 for rice, 3 for corn). p̃s is the
probability of scenario s (1 for low, 2 for medium, 3 for high) and ex-
pressed as the triangular fuzzy number p p p( , , )s

l
s
m

s
u . MPm t, represents the

market price of crop m ($/kg). FPm t s, , is the production of crop m in
period t (kg). WSRi t, and WSCi t, are the water resource cost and treat-
ment cost ($/ton), respectively. WSi t, is the amount of water supply
(m3). TFt is the electricity tariff ($/MWh). EPt represents electricity
supply from traditional thermal power generation (MWh). GEPj t, and
GECj t, are the power consumption amount (MWh) and electricity price
($/MWh) of purchased green certificates. FCt and PCt denote the cost of
fertilizer and pesticide utilization per unit area ($/m2). FAm t, and PAm t,

denote the amount of fertilizer and pesticide utilization per unit area for
crop m (kg/m2). AVLm t s, , represents the cultivated area of crop m (m2).

Fig. 1. Framework of a hybrid food-water-energy nexus management model with MSFRP method.
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The constraints of the food-water-energy nexus optimization model
can be divided into constraints from food, water, and energy three
subsystems. The constraints can be expressed as follows:

3.1.1. Food system
3.1.1.1. Food balance constraint. The crop yield should satisfy local
basic food requirements to guarantee food security. The local basic food
requirement is estimated as the product of per capita food demand
standard and population.

∑ ≥ ⋅ ∀FP FD P t s˜̃ , ,
m

m t s t s, , ,
(1b)

where, FD is per capital food demand standard (kg per capital), P̃̃t s,
denotes the number of population in planning horizon, which is
expressed as fuzzy random number.

3.1.1.2. Production constraints. The available cultivated area and yield
rate are the main factors impact the production of a certain crop.
According to the prevailing cropping practice, the lower and upper
limits of cultivated area for different crops should be considered to
ensure local food requirement diversity. In addition, the sum of
cultivated area for different crops is restricted by the total available
cultivated area.

≤ ⋅ ∀FP AVL PR m t s, , ,m t s m t s m t, , , , , (1c)

≤ ≤ ∀AVL AVL AVL m t s, , ,m t m t s m t,
min

, , ,
max (1d)

∑ ≤ ∀AVL TAVL t s, ,
m

m t s t, ,
(1e)

where, PRm t, is the crop yield per unit area (ton/m2); AVLm t,
min and

AVLm t,
max are the minimum and maximum cultivated area for crop m

(m2), and TAVLt represents the total arable land area (m2).

3.1.2. Water system
3.1.2.1. Water balance. Sufficient total water supply from various
sources, including traditional (i.e. underground water, surface water)
and unconventional (i.e. recycle water, desalination, and imported
water) water resources, are required to guarantee crop growth.

∑ ∑⋅ ≤ ∀IWR FP WS t s, ,
m

m t m t s
i

i t s, , , , ,
(1f)

where, i represents the type of water (1 for underground water, 2 for
surface water, 3 for recycle water, 4 for desalination, 5 for imported
water), and IWRm t, denotes the irrigation water requirements for crop m
(m3/ton).

3.1.2.2. Water resource availability constraints. The water resource
supply should not exceed the maximum available amount.

≤ ∀WS AVW i t s, , ,i t s i t, , , (1 g)

where, AVWi t, represents the available amount of water resource i
during period t (m3).

3.1.3. Energy system
3.1.3.1. Electricity balance. In this study, electricity consumption
associated with food production mainly consists of two parts, that is,
electricity consumption in crop production and water treatment
process. Except for fossil power generation, green certificates are also
encouraged to be considered as electricity supply to facilitate renewable
energy generation and realize carbon emission mitigation.

∑ ∑ ∑⋅ + ⋅ ≤ − + ∀FER FP WER WS β P GEP t s(1 )( ), ,
m

m t m t s
i

i t i t s t s
j

j t s, , , , , , , , ,

(1 h)

where, β is the loss factor, FERm t, and WERi t, denote the power
requirement for per unit crop irrigation (MWh/ton) and water

treatment and delivery (MWh/ton), respectively.

3.1.3.2. Electricity consumption constraints. The clean energy from green
certificates is encouraged to make sure minimum renewable energy
penetration. Besides, the green certificates of wind power and solar
should not be larger than the allowable quantity.

∑ ∑+ ≥ ∀GEP P GEP θ t s/( ) , ,
j

j t s t s
j

j t s, , , , ,
(1i)

≤ ∀GEP AVGEP j t s, , ,j t s j t, , , (1j)

where, θ represents the minimum percentage of renewable energy
generation. AVGEPj t, is the maximum available tradable green
certificates (MWh).

The above MSFRP model could be transferred into two deterministic
linear submodels (Seen in SI.).

In addition, CO2 emission in the food-water-energy nexus system is
also measured to evaluate the environmental impacts. CO2 emissions
associated with food production are mainly generated from fossil power
generation, fertilizer and pesticide utilization, which is formulated as:

∑= ⋅ + ⋅ ⋅ + ⋅ ⋅TCE CEE EP CEF FA VAL CEP PA VAL
m

t t s t m t m t s t m t m t s, , , , , , ,
(2)

where, CEEt is the carbon emission coefficient of electricity (kg CO2/
kWh); CEFt is the carbon emission coefficient of fertilizer utilization (kg
CO2/kg); CEPt is the carbon emission coefficient of pesticide utilization
(kg CO2/kg).

3.2. Data collection and the main assumption

The whole planning horizon covers 10 years (2016–2025), which
can be divided into two planning periods with 5 years for each period.
In the comprehensive system with food-water-energy nexus, there are
many parameters associated with food production, agricultural irriga-
tion, cultivated area, and electricity consumption. These data for this
case study are mainly collected from statistic yearbooks (Shandong
Statistical Bureau, 2016), local development planning reports
(Shandong Development and Reform Commission, 2016; Shandong
Government, 2016), and relevant literatures (Su et al., 2014; Wang
et al., 2017; Li et al., 2017, 2019; Dong et al., 2019), where some main
technical and economic parameters are listed in Table 1. According to
historical data and planning reports, future population with great un-
certainty can be captured by possibility theory and expressed as there
levels (e.g. low, medium, and high level). The uncertain population
increase trend is estimated relying on subjective opinions and experts’
knowledge through deeply analyzing of economy development, urba-
nization, ecological conditions, and policy. Thus, the forecasted popu-
lation is assumed to be imprecise and formulated as a possibility dis-
tribution in the form of triangle fuzzy numbers. Fig. 2 presents the
forecasted population with associated occurrence probabilities for each
planning period.

Since water resource is a significant factor for crop growth and
easily affected by climate change, the impacts of water resource
availability on the objective value and optimal solutions would also be
analyzed. Three scenarios with different water resource conditions are
designed and described as following:

• Base: the normal water resource condition;

• W1: the available water resource amount is 10 % less than that in
the Base scenario;

• W2: the available water resource amount is 20 % less than that in
the Base scenario.
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Table 1
Main economic and technical parameters in the case study.

Food subsystem (Su, et al., 2014; Shandong Statistical Bureau, 2016; F. Zhang et al., 2019)

Crop types Irrigation requirement (m3/ton) Fertilization consumption (ton/km2) Pesticide consumption (ton/km2)

t = 1 t = 2 t = 1 t = 2 t = 1 t = 2

Wheat 388 388 19.8 19.5 0.0510 0.0500
Rice 732 732 31.6 30.0 0.1097 0.0960
Corn 116 116 22.5 21.5 0.0540 0.0520

Crop types Market price
($/ton)

Maximum cultivated area (km2) Minimum cultivated area (km2)

t = 1 t = 2 t = 1 t = 2 t = 1 t = 2

Wheat 360 380 220,000 200,000 112,500 116,700
Rice 450 470 7,500 6,600 4,150 3,850
Corn 330 350 195,000 190,000 102,500 100,500

Water resource subsystem (Shandong Water Resources Department, 2016; Li, et al., 2017)

Water sources Maximum availability (106 m3) Water supply cost
($/103 m3)

Water resource cost
($/103 m3)

t = 1 t = 2 t = 1 t = 2 t = 1 t = 2

Underground water 19,310.40 18,115.20 18.0 20.0 5.25 5.85
Surface water 13,906.80 12,585.60 13.5 14.6 4.15 4.75
Recycle water 1,929.60 2,563.20 8.0 7.0 4.11 4.50
desalination water 14,234.40 16,113.60 17.0 16.0 1.95 2.15
Imported water 17,586.00 16,394.40 16.2 15.6 2.49 2.70

Energy subsystem (China National Energy Administration, 2019)

Types of renewable energy Price of green certification ($/MWh) Maximum available amount (GWh)

t = 1 t = 2 t = 1 t = 2

Wind 31.77 18.76 600 1000
Solar 86.58 73.50 320 500

Electricity price ($/MWh) Emission factor (ton/MWh)

t = 1 t = 2 t = 1 t = 2

Electricity from grid 37.8 34.5 1.010 0.976

Fig. 2. Forecasted population with associated occurrence probabilities for each planning period.
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4. Result analysis

4.1. Optimal objective value

Since α and λ are two critical parameters of the proposed MSFRP
model to reflect the subjective risk attitude of decision makers under
uncertainties, sensitivity analysis is conducted to track the impact of α
and λ change on the optimal objective value. Fig. 3(a) shows the impact
of the optimistic and pessimistic view on the objective value, where λ is
various from 0 to 1 with 0.1 interval and α is fixed as 1. It is found that
with λ value increasing, the objective function for both LAM and UAM
would increase, which indicates that more optimistic decision maker
would expect to gain greater benefits. Meanwhile, the differentiation
value between UAM and LAM model also has a gently increasing trend
as λ values increasing. For example, when λ=0.1 and 0.9, the dif-
ferentiation between UAM and LAM model would be 3.24×109 $ and
5.11×109 $, respectively. Fig. 3(b) illustrates the sensitivity analysis
of another important uncertain parameter α, where α is various from
0.6 to 1 with 0.1 interval and λ is fixed as 0.8. As α value increasing,
the objective function of the LAM and UAM model would behave in the
opposite way. The objective value of the LAM model would decrease,
and the value from the UAM model would increase. In addition, the
differentiation between UAM and LAM would be further broadened
under higher α value. From the results, it can be indicated that the
confidence level would have an impact on constraints for rebalancing
the interaction between subsystems, and that would directly lead to
different variations of the LAM and UAM model.

4.2. Optimized solutions under different risk preferences

Table 2 summarizes the optimal cultivated land distribution among
different crops under various demand levels and risk preferences with
λ=0.8. In general, the cultivated land distribution would change
during the whole planning horizon. Due to its high market price and
crop yield per unit area, rice planting area would reach its upper lim-
itation in order to achieve the goal of maximizing total benefit. For

example, the rice planting area would be 7.50× 103m2 in period 1,
and 6.60×103m2 in period 2, which would not be affected by the
demand level or the risk attitude. The wheat planting area would take
account for a large proportion in period 1, which is much more than
corn and rice planting. However, the planting area of rice would greatly
increase, and the land for wheat planting would reduce simultaneously
during period 2. As a result, both rice and wheat would be important
crops for cultivating in the planning horizon. To be more specific, the
cultivated area of wheat, corn, and rice would be 64 %, 34 %, and 2 %
in period 1, and that would be adjusted to 51 %, 47 %, and 2 % in
period 2, respectively. In period 1, the cultivated land for wheat
planting would also reach its maximum available area (i.e.
220× 103m2), which would not be affected by demand levels and risk
attitudes. As the demand level increasing, the cultivated area for corn
would increase to ensure food security. In addition, with higher α value
or more conservative attitude, the optimal strategy for corn planting
area would increase for the UAM model but decrease for the LAM
model. For example, as α fixed with the value of 0.6 and 1 under
medium demand level, the optimized corn planting area for the UAM
model would be 111.36×103m2 and 119.26× 103m2 in period 1,
respectively. In period 2, as demand level increasing, the cultivated
land for wheat would reduce, whereas that for corn would increase. For
example, with α=0.8 and λ=0.8 under low-low and high_low sce-
nario, the cultivated area for wheat would be 190.63× 103m2 and
189.46×103m2 for LAM model, and the planting area for corn would
be 162.59× 103m2 and 166.29× 103m2. In addition, the decision
maker’s risk attitude would also bring different effects on cultivated
land distribution during period 2. For the conservative risk attitude, the
cultivated area of wheat would increase, and that for corn would reduce
in the LAM model. The optimal strategy would be converse in the UAM
model.

Fig. 4 presents the optimized production of different crops under
various demand levels and risk preferences. As expected, the produc-
tion of different crops is proportional to their cultivated area. In period
1, the wheat production would be 136.18× 106 ton, which becomes
the main crop supply source and followed by corn. Rice production
would be up to its maximum 6.30× 106 ton due to the limited culti-
vated area. In addition, the yield of corn would vary under different
demand levels and risk preferences. With α=0.8 and λ=0.8, the corn
production for LAM model would be 71.32×106 ton, 72.16× 106 ton,
and 73.00× 106 ton under low, medium, and high demand level,
which is consistent with the fact that more food would be required for
population increase. Besides, for the UAM model, the corn production
would also increase to make sure system reliability under conservative
attitude. In period 2, the corn production would increase under higher
demand level, and the yield of wheat would decrease accordingly. For
example, with α=0.8 and λ=0.8, under low_medium and high_-
medium demand level, the yield of wheat would be 118.19× 106 ton
and 117.47×106 ton in the LAM model, and the output of corn would
be 105.68×106 ton and 108.09×106 ton, respectively.

Table S1 in SI lists the optimized water supply strategy under dif-
ferent demand levels under α=1 and λ=0.8. For more intuitionistic,
Fig. 5 presents the optimized water supply proportion for the LAM
model as supplementary. It could be found that imported water and
groundwater would be the main water supply sources during the whole
planning horizon, followed by surface water and desalination water.
Recycle water would take a relatively small fraction of the total water
supply. In general, the water supply structure among various sources
would have little changes under different demand levels. In fact, the
water resources supply from groundwater, surface water, recycle water,
and imported water would all reach their maximum availability. De-
salination water with more expensive total cost (water resource cost,
water supply cost, and electricity cost for water treatment), would be
considered as a flexible supplementary resource to guarantee water
safety for crop production under uncertain demand level and ambig-
uous risk attitude. As demand level increasing, more desalination water

Fig. 3. Optimal objective value under different λ and α values.
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would be used for agricultural irrigation. For example, in period 1, the
desalination water supply for the LAM model would be 12.84×109m3,
12.94× 109m3, and 13.04× 109m3 under low, medium, and high
demand level, respectively. Since the other water resources would not
be affected by demand levels and risk attitudes, Fig. 6 focuses on the
variation of desalination water supply under different risk attitudes. As
α value increasing, the optimal desalination water supply would in-
crease in the UAM model, but decrease in the LAM model. For example,
with α=0.6 and 0.9, under medium demand level in period 1, the
desalination water supply in the LAM would be 13.24× 109m3and
13.01× 109m3, and that in the UAM model would be
13.38× 109m3and 13.62×109m3, respectively.

Fig. 7 shows the optimized electricity supply strategies under dif-
ferent demand levels and risk attitudes. It indicates that electricity
purchased from the power grid would be the main energy source. The
green certifications would be bought only to satisfy the minimum re-
newable energy penetration for low-carbon purpose. In period 1, elec-
tricity purchased from the power grid would increase as demand level
from low to high, due to more crop production and water treatment. For
example, with α=0.6 and λ=0.8, the purchased electricity would be
68.96× 106 MWh, 69.09× 106 MWh, and 69.23×106 MWh for low,
medium, and high demand level in LAM model. As α value increasing,
the optimal purchased electricity would increase in the UAM model, but
decrease in LAM model, which is consistent with crop production and
land allocation strategies. In addition, the green certificates for wind
power would get priority due to its relatively low price. The amount of
purchased wind power green certificates would reach its maximum
availability and the value would be 0.60×106 MWh and 1.00×106

MWh in periods 1 and 2. The solar power green certificates would have
a similar strategy with electricity from the power grid, although it is
few in number. Moreover, the electricity supply during period 2 would
not be affected by demand levels and risk attitudes. The optimal elec-
tricity supply would be 63.72×106 MWh from power grid, 1.00×106

MWh from wind power green certificates, and 0.50× 106 MWh from
solar power green certificates.

The corresponding pesticide and fertilizer consumption would have
a positive correlation with crop planting, which could be found in SI.
Seen from Fig. S1, in period 1, wheat with the largest cultivated area
would consume the most pesticide and fertilizer, followed by corn. In
period 2, due to the adjustment of planting structure, both wheat and
corn would be the big consumers of pesticide and fertilizer. The pesti-
cide and fertilizer consumption of rice would keep a very small pro-
portion during the whole planning horizon, only about 3 %. Fig. S2

focuses on the pesticide consumption of wheat and corn under different
levels and risk attitudes. The pesticide requirement of wheat would
keep 11.22×103 ton regardless of demand level and risk attitude in
period 1. Corn planting would require more pesticide under high de-
mand level due to the increasing planning area. When α is fixed as 0.8,
the pesticide consumption of corn in LAM model would be 5.94× 103

ton, 6.01×103 ton, and 6.08× 103 ton respectively. In addition, with
a more conservative risk attitude, more pesticides would be required. In
the UAM model, when α is fixed as 0.6, 0.8 and 1, its pesticide con-
sumption would be 6.23×103 ton, 6.33×103 ton and 6.44×103 ton
under medium demand level. In period 2, the pesticide consumption of
wheat would decrease as demand level increasing, meanwhile, that of
corn would increase accordingly. This is due to the fact that corn would
become the main crop supplier gradually. Similarly, Fig. S3 depicts the
fertilizer consumption of various crops under different demand levels
and risk attitudes, which has the same variation trend with pesticide
consumption.

4.3. Impacts of water resource availability

To evaluate the impact of water resource availability, the para-
meters reflecting risk preference are fixed for convenient, i.e. α=0.9,
λ=0.8. Under Base, W1, and W2 scenarios, the optimal objective
value would be 170.53×109 $, 170.27× 109 $, and 169.91×109 $
for LAM model, respectively. It would be 174.42×109 $, 174.14× 109

$, and 173.77× 109 $ for UAM model. It demonstrates that the optimal
objective value would decrease under the scarcer water resource sce-
nario, indicating worse water resource conditions would shrink total
benefits. The changes in water resource conditions would bring great
effects on crop planting strategies and yield. Since there are close
synchronous changes among crop cultivated area, production, pesti-
cide, and fertilizer consumption, the comparison only focuses the
changes of crop production under different water resource scenarios
and demand levels, shown in Fig. 8. When facing scarcer water resource
conditions, the yield of wheat would reduce, that of corn would in-
crease. While the yield of rice would still keep full production with the
maximum available cultivated area, which indicates rice planting al-
ways gain the priority due to its high market price. For example, in LAM
model for medium demand level, the optimized wheat production
would be 136.18×106 ton, 128.46×106 ton, and 116.25× 106 ton
under Base, W1 and W2 scenario. The corn production would be
71.52×106 ton, 79.24×106 ton and 91.45×106 ton accordingly,
and rice production would be 6.30×106 ton regardless of water

Table 2
Optimized cultivated land distribution strategies under various demand levels and risk preferences (λ=0.8) Unit: 103 m3.

t= 1 t= 2

L M H L_L L_M L_H M_L M_M M_H H_L H_M H_H

Wheat LAM α=0.6 220.00 220.00 220.00 189.68 189.68 189.68 189.09 189.09 189.09 188.51 188.51 188.51
α=0.8 220.00 220.00 220.00 190.63 190.63 190.63 190.05 190.05 190.05 189.46 189.46 189.46
α=1 220.00 220.00 220.00 191.59 191.59 191.59 191.00 191.00 191.00 190.42 190.42 190.42

UAM α=0.6 220.00 220.00 220.00 188.72 188.72 188.72 188.14 188.14 188.14 187.56 187.56 187.56
α=0.8 220.00 220.00 220.00 187.77 187.77 187.77 187.18 187.18 187.18 186.60 186.60 186.60
α=1 220.00 220.00 220.00 186.81 186.81 186.81 186.23 186.23 186.23 185.65 185.65 185.65

Rice LAM α=0.6 7.50 7.50 7.50 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.60
α=0.8 7.50 7.50 7.50 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.60
α=1 7.50 7.50 7.50 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.60

UAM α=0.6 7.50 7.50 7.50 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.60
α=0.8 7.50 7.50 7.50 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.60
α=1 7.50 7.50 7.50 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.60

Corn LAM α=0.6 112.04 113.33 114.63 165.61 165.61 165.61 167.46 167.46 167.46 169.31 169.31 169.31
α=0.8 110.06 111.36 112.65 162.59 162.59 162.59 164.44 164.44 164.44 166.29 166.29 166.29
α=1 108.09 109.38 110.68 159.57 159.57 159.57 161.42 161.42 161.42 163.27 163.27 163.27

UAM α=0.6 114.01 115.31 116.61 168.64 168.64 168.64 170.49 170.49 170.49 172.34 172.34 172.34
α=0.8 115.99 117.28 118.58 171.66 171.66 171.66 173.51 173.51 173.51 175.36 175.36 175.36
α=1 117.96 119.26 120.56 174.69 174.69 174.69 176.53 176.53 176.53 178.38 178.38 178.38
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Fig. 4. Optimized crop production under different demand levels and α value (λ=0.8).

Fig. 5. Optimized water supply proportion for LAM model (α=1, λ=0.8).
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resource conditions. Moreover, the production of wheat and corn would
have a positive relationship with demand level as expected. However,
under scarcer water resource conditions, rice production would de-
crease under high demand level in period 2. That is, under W2 scenario,
the optimized rice production would be 5.56× 106 ton, 5.56×106

ton, and 4.90×106 ton for low_medium, medium_medium, and
high_medium demand level.

Table 3 presents the optimized water supply strategies under dif-
ferent water resource scenarios for the UAM model with α=0.9 and
λ=0.8. As irrigation amount from groundwater and surface water
decreasing, the desalination water amount would increase as supple-
mentary regardless of its high total cost. For example, for the low_low
demand level, irrigation amount from desalination water would be
12.52× 109m3, 14.67×109m3, and 16.11×109m3 under Base, W1,
and W2 scenario, respectively. Moreover, the supply amount of other
water resources except desalination water would still reach up to their
maximum availability. The supply amount of desalination water would
reach up to the upper limitation only under desperately scarce water
available situations. For example, the supply amount of desalination
water would reach its upper limitation, 14.23×109m3 under the W1
scenario in period 1 and 16.11× 109m3 under W2 scenario in period 2.

Table S2 in SI shows the optimized electricity supply schemes under
different water resource scenarios with α=0.9 and λ=0.8. Since the
crop production decrease under scarcer water resource scenario, the
requirement of electricity supply would also reduce accordingly. The
decline in electricity purchased from the main grid would be sig-
nificant. For example, for medium demand level in LAM model, the
amount of purchased electricity from power grid would be
68,782.66 GWh, 67,774.15 GW h, and 65,099.51 GWh under Base,
W1, and W2 scenario, respectively. The amount of purchased green
certificates would also decrease due to the fixed percentage require-
ment of renewable energy. The amount of purchased wind power cer-
tificates would keep its maximum availability no matter how the water
resource situation and demand level would be. However, as the demand
level increasing, the amount of purchased solar power certificates
would increase. Meanwhile, as the water resource declining, the
amount of purchased solar power certificates would decrease. For ex-
ample, for medium demand level, the purchased solar power certifi-
cates in the UAM model would be 174.17 GWh, 153.94 GW h, and
124.19 GW h under Base, W1, and W2 scenario. Under W1 scenario, the
purchased green certificates of solar power in the UAM model would be
153.92 GW h, 153.94 GW h, and 153.96 GW h for low, medium, and
high demand level, respectively.

Fig. 9 evaluated the carbon emission embodied in per unit crop
under different water resource scenarios and demand levels with
α=0.9 and λ=0.8. The carbon emission embodied in per unit crop

would decrease as the demand level increased due to the adjustment of
crop planting structure. For example, under the Base scenario in the
LAM model, the carbon emission embodied in per unit crop would be
0.4017 kg CO2/kg, 0.4011 kg CO2/kg, and 0.4005 kg CO2/kg for low,
medium, and high demand level, respectively. Moreover, under the
scarcer water resource situation, the carbon emission embodied in per
unit crop would also decline. For example, for medium demand level in
the UAM model, the carbon emission embodied in per unit crop would
be 0.3974 kg CO2/kg, 0.3893 kg CO2/kg, and 0.3773 kg CO2/kg for
Base, W1, and W2 scenarios. From the results, it can be seen that the
embodied carbon emission per unit crop production is calculated with
the consideration of energy consumption in water resources supply and
crop planting, as well as fertilizer and pesticide utilization, which could
help to evaluate the carbon emission from the resource consumption
perspective. The total carbon emission during the agricultural produc-
tion process, including both carbon fixed by the crop during the growth
period and carbon emission associated with energy and water resource
consumption, should be further analyzed to achieve low-carbon agri-
cultural structure adjustment.

5. Discussion

This study could be formulated as multi-stage fuzzy stochastic
programming (MFSP) if the deeper uncertainties in scenarios are not
considered. In the MFSP approach, the scenarios of the population in
the planning horizon are estimated as low, middle, and high with fuzzy
numbers (P̃̃t s, ), while the corresponding probabilities are estimated as
deterministic values (ps). As a result, the confidence level α (0.5≤ α ≤
1) is still used to considered to reflect the uncertain levels of para-
meters, and the optimistic and pessimistic attitude of decision makers is
not considered (i.e. neutral attitude with λ=0.5). Furthermore, the
study could be turned into a classic multi-stage stochastic programming
(MSP) problem, when the scenarios of population (Pt s, ) and the corre-
sponding probabilities (ps) are both simplified into deterministic values
rather than fuzzy numbers. As a result, the expected system profit and
optimal solutions for each scenario would be deterministic values. If the
probabilities and scenario levels are set as the prominent points of fuzzy
numbers, the optimal system benefit of the MSP model would be the
157.47 109 $, which is in the range of objective value obtained from
MSFRP model. It is mainly because the MSFRP model considers more
uncertain information and optimistic and pessimistic attitude of deci-
sion makers. Summarily, compared to MFSP and MSP, the proposed
MSFRP method allows reflecting the subjective probabilities setting and
possible perturbation in their values. The obtained solutions of MSFRP
model could provide an in-depth analysis of the tradeoff among system
benefits and supply security risk according to the optimistic and

Fig. 6. Optimized desalination water supply under different α values (λ=0.8).
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pessimistic attitude of decision makers, and the confidence level of
uncertain parameters.

6. Conclusions

In this study, a multi-stage stochastic fuzzy random programming is
developed to deal with uncertainties with mixed characters of fuzzy and
random fuzzy, and tailored to a practical study of a comprehensive
agricultural issue with FWE nexus in Shandong, China. The proposed
model provides the optimal optimistic-pessimistic tradeoff strategies of
cultivated land planning, food production arrangement, irrigation
water allocation, and energy supply in an efficient and sustainable way.
Various results can be obtained as follows:

(a) The hybrid inexact optimization model for FWE nexus man-
agement could provide tradeoff information between system benefit

and risk attitude, which can help decision makers to choose optimal
strategies according to risk tolerance and subjective opinion. (b) In the
study area, rice would gain the priority to grow regardless of demand
level, risk attitude, or water resource condition. Wheat would be the
main food supply during period one, while corn planting would in-
crease in period two and become the important grain as wheat for food
security. (c) Considering both the regular water supply cost and energy
cost for water treatment, desalination water with the highest total cost
would be considered as a flexible supplementary water resource to
satisfy agricultural irrigation under different demand levels and risk
attitudes. The other water resources would be used as much as their
maximum availability. (d) In spite of encouraging green certificates
purchasing, the electricity consumption for the FWE nexus system is
mainly from the traditional coal-fired dominated power grid due to the
relatively cheap electricity price. With the compulsory requirement of

Fig. 7. Optimized electricity supply strategies under different α values (λ=0.8).
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Fig. 8. Crop production under different water supply scenarios (α=0.9, λ=0.8).

Table 3
Optimized water supply strategy under different water resource scenarios for the UAM model (α=0.9, λ=0.8) Unit: 109 m3.

Water source Scenarios L M H L_L L_M L_H M_L M_M M_H H_L H_M H_H

i=1 BASE 19.31 19.31 19.31 18.12 18.12 18.12 18.12 18.12 18.12 18.12 18.12 18.12
W1 17.38 17.38 17.38 16.30 16.30 16.30 16.30 16.30 16.30 16.30 16.30 16.30
W2 15.45 15.45 15.45 14.49 14.49 14.49 14.49 14.49 14.49 14.49 14.49 14.49

i=2 BASE 13.91 13.91 13.91 12.59 12.59 12.59 12.59 12.59 12.59 12.59 12.59 12.59
W1 12.52 12.52 12.52 11.33 11.33 11.33 11.33 11.33 11.33 11.33 11.33 11.33
W2 11.13 11.13 11.13 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07

i=3 BASE 1.93 1.93 1.93 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56
W1 1.93 1.93 1.93 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56
W2 1.93 1.93 1.93 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56

i=4 BASE 13.51 13.61 13.70 12.52 12.52 12.52 12.52 12.52 12.52 12.52 12.52 12.52
W1 14.23 14.23 14.23 14.67 14.67 14.67 14.66 14.66 14.66 14.66 14.66 14.66
W2 14.23 14.23 14.23 16.11 16.11 16.11 16.11 16.11 16.11 16.11 16.11 16.11

i=5 BASE 17.59 17.59 17.59 16.39 16.39 16.39 16.39 16.39 16.39 16.39 16.39 16.39
W1 17.59 17.59 17.59 16.39 16.39 16.39 16.39 16.39 16.39 16.39 16.39 16.39
W2 17.59 17.59 17.59 16.39 16.39 16.39 16.39 16.39 16.39 16.39 16.39 16.39
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renewable energy penetration, wind power green certificates would
gain the priority rather than solar power. (e) Scarcer water resource
conditions would bring economic losses for crop production due to
higher water supply cost and crop planting structure adjustment, but it
would lead to less carbon emission embodied in per unit crop supply
and relieve local carbon emission control pressure. (f) The decision
maker should adjust food-water-energy nexus management according
to the population growth, water resource conditions as well as sub-
jective cognition and risk attitude to maximize total benefit and guar-
antee system reliability.

The proposed MSFRP model for the integrated FWE nexus man-
agement under uncertainties could be applied to coordinate food pro-
duction benefits, water resource allocation, and energy consumption in
a sustainable manner at the national or regional scale. However, there
are also forward improvements to be considered in future studies. For
example, in a practical food-water-energy nexus management, more
uncertain factors and their complex interactions should be elaborated
to enhance system reliability. This study focuses on water consumption
by crop planting, while ignores the water consumption in energy
supply, therefore, the boundary of the FWE nexus system could be
further broadened. In addition, although useful managerial insights
have been provided under different water resource availability in the
future, the impacts of other environmental policies such as carbon
emission, pesticide and fertilizer pollutant control, should gain more
concern.
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