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Abstract

The characteristic of the external noise has significant influences on system modelling and
identification, and the assumption that the noise follows the Gaussian distribution may be
invalid due to realistic reasons. This paper discusses the identification issue of Hammer-
stein non-linear systems with non-Gaussian noise and presents a robust gradient algorithm.
The algorithm is derived based on the logarithmic cost function of continuous mixed p-
norm of prediction errors, which takes into account each p-norm of errors for 1 ⩽ p ⩽ 2.
The gain at each recursive step adapts to the data quality so that the algorithm has good
robustness to non-Gaussian noise. To improve the estimation accuracy, a robust multi-
innovation gradient algorithm is proposed by using the multi-innovation identification the-
ory. Two examples are provided to exhibit the validity of the proposed algorithms.

1 INTRODUCTION

System identification is the theory and methods of establish-
ing the mathematical models of dynamical systems [1–6]. Non-
linearity is the essential characteristics of industrial processes
[7–10]. Although the dynamic behaviours of many physical
plants are always modelled as linear systems in the vicinity of
a specific operating point, they can be better represented by
non-linear models when they demonstrate strong non-linearities
or need to be described in the whole operating range [11, 12].
Because of the diversity and complexity of non-linear phe-
nomena, there is no uniform model structures for describing
non-linearities up to now. Various models are exploited for dif-
ferent kinds of non-linearities [13–15]. Typical non-linear mod-
els include Volterra models, Hammerstein models and Wiener
models [16–18].

The Hammerstein model, which is composed of a static non-
linear block followed by a dynamic linear block [19, 20], has
been applied to many fields, such as chemical processes, fuel
cells, battery and biological processes. Li and Zhang presented
a maximum likelihood identification scheme for dual-rate Ham-
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merstein non-linear systems based on the polynomial transfor-
mation technique [21]. Wang et al. developed an expectation
maximization estimation algorithm for Hammerstein systems
by maximizing the expectation of the complete measurements
[22]. Rahmani and Farrokhi proposed a frequency domain esti-
mation algorithm for fractional-order Hammerstein systems, in
which the input non-linearity is modelled by a radial basis func-
tion neural network [23]. These works were accomplished by
confining that the external disturbances are the Gaussian noises.

Under the assumption of the Gaussian noise, the 𝓁2-norm
minimization based identification algorithms, such as the least-
squares-based identification algorithms, can obtain optimal esti-
mation performance [24, 25]. However, the Gaussian assump-
tion is sometimes not realistic due to the appearance of abrupt
disturbances, signal interferences and human errors, which
induces non-Gaussian noise or outliers [26–28]. In such a
scenario, the least-squares-based identification algorithms are
sensitive to non-Gaussian noise and their performance may
deteriorate seriously since the 𝓁2-norm cost function amplifies
the errors such that the outliers are likely to dominate all the
observations [29].
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To reduce the influence of the non-Gaussian noise, vari-
ous algorithms have been proposed [30–33]. Stojanovic and
Nedic modelled the non-Gaussian noise as an 𝜀-contaminated
distribution, and proposed a robust recursive algorithm for lin-
ear time-varying output-error systems by taking the expecta-
tion of least favorable probability density of prediction errors
as the cost function [34]. Li and Zhao presented an M-estimate
function-based total least mean algorithm for errors-in-variable
systems, where a threshold parameter is designed to control the
suppression of the impulsive noise [35]. Liu and Yang applied
the expectation-maximization algorithm to the identification of
a non-linear state-space model, in which Student’s t -distribution
is used to describe the non-Gaussian noises with outliers [36].
In these works, the external disturbance is assumed to follow a
given distribution in advance.

This paper studies the identification problem of the Ham-
merstein non-linear system with non-Gaussian noise. The dif-
ficulties are that the considered system not only involves the
parameters of the linear and non-linear subsystems, but also
is corrupted by non-Gaussian noise without prior distribution
knowledge. A robust multi-innovation gradient (RMIG) algo-
rithm is presented based on the logarithm continuous mixed
p-norm cost function, which takes into consideration each pth
moment of errors for 1 ⩽ p ⩽ 2. Differently from the 𝓁2-norm
minimization-based identification algorithms, minimizing the
continuous p-norm cost function of the RMIG algorithm can
generate an adjustable gain which can make the correction term
of the parameter estimation drop to near zero when the non-
Gaussian noise is encountered, thus the negative effect of the
non-Gaussian noise can be resisted. The main contributions of
this paper are as follows.

∙ Derive a logarithm continuous mixed p-norm cost function
to eliminate the detrimental effect of outliers.

∙ Present a RMIG algorithm for the Hammerstein non-linear
system with non-Gaussian noise.

∙ The RMIG algorithm is found to be robust for non-Gaussian
noise processes due to the effect of the varying gain.

The rest of this paper is organised as follows. Section 2
describes the identification problem and gives the identifica-
tion model of the Hammerstein non-linear systems with non-
Gaussian noise. Sections 3 and 4 derive the robust gradient algo-
rithm and the RMIG algorithm, respectively. Section 5 describes
the 𝓁1-norm multi-innovation gradient (𝓁1-MIG) algorithm for
comparison. Section 6 gives the simulation examples to illustrate
the effectiveness of the proposed algorithms. Section 7 shows
some concluding remarks.

2 SYSTEM DESCRIPTION AND
PROBLEM STATEMENT

Consider the following Hammerstein non-linear system,

y(t ) = A(z ) f [u(t )] + B(z )y(t ) + v(t ), (1)

f [u(t )] = 𝜇1 f1[u(t )] + 𝜇2 f2[u(t )] +⋯+ 𝜇s fs[u(t )], (2)

where {u(t )} is the input of the system, {y(t )} is the output of
the system, f [u(t )] is the non-linear input which can be repre-
sented as the pre-specified non-linear basis functions f j [u(t )]’s
with unknown coefficients 𝜇i ’s, the polynomials A(z ) and B(z )
are the functions in the unit backward shift operator z−1:

A(z ) := a1z−1 + a2z−2 +⋯+ ana
z−na ,

B(z ) := b1z−1 + b2z−2 +⋯+ bnb
z−nb .

The measurement noise v(t ) is a zero-mean non-Gaussian pro-
cess. Define the parameter vectors 𝝑 , a, 𝝁 and b, and the infor-
mation matrix/vectors F (t ), f (u(t )) and 𝝋(t ) as

𝝑 :=
⎡⎢⎢⎣

a

𝝁

b

⎤⎥⎥⎦ ∈ ℝ
n0 , n0 := na + nb + s,

a := [a1, a2,… , ana
]T ∈ ℝna ,

𝝁 := [𝜇1,𝜇2,… ,𝜇s ]
T ∈ ℝs ,

b := [b1, b2,… , bnb
]T ∈ ℝnb ,

F (t ) := [ f (u(t − 1)), f (u(t − 2)),… , f (u(t − na ))]T,

f (u(t )) := [ f1(u(t )), f2(u(t )),… , fs (u(t ))]T ∈ ℝs ,

𝝋(t ) := [y(t − 1), y(t − 2),… , y(t − nb )]T ∈ ℝnb .

Inserting (2) into (1) gives

y(t ) =
na∑

i=1

ai f (u(t − i )) +
nb∑

i=1

bi y(t − i ) + v(t )

=

na∑
i=1

ai f T(u(t − i ))𝝁 + 𝝋T(t )b+ v(t )

= aTF (t )𝝁 + 𝝋T(t )b+ v(t ). (3)

Equation (3) is the identification model of the Hammerstein
non-linear system in (1) and (2). Many identification methods
are derived based on the identification model in (3) [37–45],
which is applied in fields [46–51] such as chemical process con-
trol systems.

Assume that the orders na, nb and s are known. When
v(t ) is a Gaussian noise, the existing approaches such as the
over-parameterization algorithm and the least squares algo-
rithm can be applied to (3) [52, 53]. However, these 𝓁2-norm
minimization-based identification algorithms are sensitive to
outliers and have poor performance under the non-Gaussian
noise environment. The objective of this paper is to present
efficient identification algorithms with good robustness for esti-
mating the parameters ai ∈ ℝ, bi ∈ ℝ and 𝜇i ∈ ℝ from mea-
surements {u(t ), y(t ) : t = 1, 2, 3,…} with non-Gaussian noise
v(t ).
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WANG AND DING 991

Remark 1. If the pair (a,𝝁) is the solution of (3), then so
is (a∕𝛽,𝝁𝛽) (𝛽 ≠ 0). This means that the solution of (3) is
not unique. To have the parameter identifiability, either a or 𝝁
should be normalized. The following normalization constraint
on 𝝁 is adopted.

Assumption 1. ‖𝝁‖ = 1 and the first non-zero entry of 𝝁 is
positive, that is, the 𝓁2-norm of 𝝁 equals one and the first coef-
ficient of the non-linear input f [u(t )] is positive.

3 ROBUST GRADIENT ALGORITHM

Note that v(t ) is a non-Gaussian impulsive noise process. To
suppress the influence of the impulsive noise and to provide
robust parameter estimation, the following derives the robust
gradient algorithm for Hammerstein non-linear systems.

Define the continuous logarithmic mixed p-norm cost func-
tion

J1(t ) := ∫
2

1
𝜆t (p)E[ln(1 + |v(t )|p)]dp,

where 𝜆t (p) is the probability density-like weighting function

with constraint ∫ 2

1
𝜆t (p)dp = 1, E(⋅) is the expectation oper-

ator. Since the logarithm function is a monotonically increas-
ing function, minimizing J1(t ) is equivalent to minimizing

∫ 2

1
𝜆t (p)E[|v(t )|p]dp, which can be regarded as an infinite

weighted summation of each p-norm |v(t )|p from p = 1 to
p = 2. When E[ln(1 + |v(t )|p)] is approximated by a point esti-
mate ln(1 + |v(t )|p), the cost function J1(t ) can be rewritten as

J2(a,𝝁, b) := ∫
2

1
𝜆t (p)[ln(1 + |v(t )|p]dp,

where v(t ) = y(t ) − aTF (t )𝝁 − 𝝋T(t )b. Taking the gradient of
J2(a,𝝁, b) with respect to a, 𝝁 and b gives

𝜕J2(a,𝝁, b)

𝜕a
= ∫

2

1
p𝜆t (p)

|v(t )|p−1

1 + |v(t )|p

v(t )|v(t )| 𝜕v(t )

𝜕a
dp

= −𝜉(t )F (t )𝝁[y(t ) − aTF (t )𝝁 − 𝝋T(t )b],

𝜕J2(a,𝝁, b)

𝜕𝝁
= −𝜉(t )FT(t )a[y(t ) − aTF (t )𝝁 − 𝝋T(t )b],

𝜕J2(a,𝝁, b)

𝜕b
= −𝜉(t )𝝋(t )[y(t ) − aTF (t )𝝁 − 𝝋T(t )b],

grad[J2(a,𝝁, b)] =

⎡⎢⎢⎢⎢⎢⎣

𝜕J2(a,𝝁,b)

𝜕a

𝜕J2(a,𝝁, b)

𝜕𝝁
𝜕J2(a,𝝁, b)

𝜕b

⎤⎥⎥⎥⎥⎥⎦

= −𝜉(t )
⎡⎢⎢⎣

F (t )𝝁

FT(t )a
𝝋(t )

⎤⎥⎥⎦[y(t ) − aTF (t )𝝁 − 𝝋T(t )b],

where

𝜉(t ) := ∫
2

1
p𝜆t (p)

|v(t )|p−2

1 + |v(t )|p dp.

Let â(t ) be the estimate of a at instant t . Define the generalised
information vector 𝝍(t ) and the innovation e(t ) as

𝝍(t ) :=
⎡⎢⎢⎣

F (t )�̂�(t − 1)

FT(t )â(t − 1)
𝝋(t )

⎤⎥⎥⎦ ∈ ℝ
n0 ,

e(t ) := y(t ) − âT(t − 1)F (t )�̂�(t − 1) − 𝝋T(t )b̂(t − 1) ∈ ℝ.

Using the negative gradient search and minimizing the continu-
ous logarithmic mixed p-norm cost function J2(a,𝝁, b) give

⎡⎢⎢⎣
â(t )
�̂�(t )
b̂(t )

⎤⎥⎥⎦ =
⎡⎢⎢⎣

â(t − 1)
�̂�(t − 1)
b̂(t − 1)

⎤⎥⎥⎦ − 𝜌(t )

× grad[J2(â(t − 1), �̂�(t − 1), b̂(t − 1)]

=
⎡⎢⎢⎣

â(t − 1)
�̂�(t − 1)
b̂(t − 1)

⎤⎥⎥⎦ + 𝜌(t )�̄�(t )
⎡⎢⎢⎣

F (t )�̂�(t − 1)

FT(t )â(t − 1)
𝝋(t )

⎤⎥⎥⎦
× [y(t ) − âT(t − 1)F (t )�̂�(t − 1) − 𝝋T(t )b̂(t − 1)]

=

⎡⎢⎢⎢⎣
â(t − 1) + 𝜌(t )�̄�(t )F (t )�̂�(t − 1)e(t )

�̂�(t − 1) + 𝜌(t )�̄�(t )FT(t )â(t − 1)e(t )

b̂(t − 1) + 𝜌(t )�̄�(t )𝝋(t )e(t )

⎤⎥⎥⎥⎦
. (4)

or

�̂� (t ) = �̂� (t − 1) + 𝜌(t )�̄�(t )𝝍(t )e(t ), (5)

where 𝜌(t ) > 0 is the step size, and

�̄�(t ) := ∫
2

1
p𝜆t (p)

|e(t )|p−2

1 + |e(t )|p dp.

When 𝜆t (p) =
1

p ln 2
, the constraint ∫ 2

1
𝜆t (p)dp = 1 is met and

�̄�(t ) can be computed by

�̄�(t ) =
1

ln 2 ∫
2

1

|e(t )|p−2

1 + |e(t )|p dp

=
ln(1 + |e(t )|2) − ln(1 + |e(t )|)

ln 2 ⋅ (ln |e(t )|) ⋅ |e(t )|2 . (6)
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992 WANG AND DING

Generally speaking, the estimate �̂� (t ) approaches the true value
of 𝝑 as t increases, and the innovation e(t ) may be close to zero.
To avoid division by zero, Equation (6) can be modified as

�̂�(t ) =
ln(1 + |e(t )|2) − ln(1 + |e(t )|)

ln 2 ⋅ (ln(|𝜏(t )|) ⋅ (|𝜏(t )|)2
, (7)

where 𝜏2(t ) := e2(t ) + 𝜏0 and 𝜏0 is a small positive number. The
following derives the computation of the optimal step-size 𝜌(t )
by solving the optimization problem

min
𝜌⩾0

h(𝜌(t )) := J2(â(t ), �̂�(t ), b̂(t ))

= ∫
2

1
𝜆t (p)[ln(1 + |𝜀(t )|p]dp

by means of one-dimensional search, where

𝜀(t ) := y(t ) − âT(t )F (t )�̂�(t ) − 𝝋T(t )b̂(t ). (8)

Replacing �̄�(t ) in (4) and (5) by �̂�(t ) and inserting (4) into (8)
gives

𝜀(t ) = y(t ) − [â(t − 1) + 𝜌(t )�̂�(t )F (t )�̂�(t − 1)e(t )]TF (t )

× [�̂�(t − 1) + 𝜌(t )�̂�(t )FT(t )â(t − 1)e(t )]

−𝝋T(t )[b̂(t − 1) + 𝜌(t )�̂�(t )𝝋(t )e(t )]

= y(t ) − âT(t − 1)F (t )�̂�(t − 1) − 𝝋T(t )b̂(t − 1)

−𝜌(t )�̂�(t )âT(t − 1)F (t )FT(t )â(t − 1)e(t )

−𝜌(t )�̂�(t )�̂�T(t − 1)FT(t )F (t )�̂�(t − 1)e(t )

−𝜌2(t )�̂�2(t )�̂�T(t − 1)FT(t )F (t )FT(t )â(t − 1)e2(t )

−𝜌(t )�̂�(t )𝝋T(t )𝝋(t )e(t )

= {1 − 𝜌(t )�̂�(t )[‖FT(t )â(t − 1)‖2

+ ‖F (t )�̂�(t − 1)‖2 + ‖𝝋(t )‖2]}e(t )

−𝜌2(t )�̂�2(t )�̂�T(t − 1)FT(t )F (t )FT(t )â(t − 1)e2(t )

= (1 − 𝜌(t )�̂�(t )‖𝝍(t )‖2 − 𝜌2(t )�̂�2(t )k(t ))e(t ), (9)

where

k(t ) := �̂�T(t − 1)FT(t )F (t )FT(t )â(t − 1)e(t ).

The optimal step-size 𝜌(t ) can be obtained by letting the gradi-
ent of the cost function h(𝜌(t )) with respect to 𝜌(t ) be zero, that

is,

𝜕h(𝜌(t ))

𝜕𝜌(t )
= ∫

2

1
𝜆t (p)

𝜕[ln(1 + |𝜀(t )|p]

𝜕𝜌(t )
dp

= ∫
2

1
p𝜆t (p)

|𝜀(t )|p−2

1 + |𝜀(t )|p 𝜀(t )
𝜕𝜀(t )

𝜕𝜌(t )
dp

=
1

ln 2 ∫
2

1

|𝜀(t )|p−2

1 + |𝜀(t )|p dp ⋅ 𝜀(t )
𝜕𝜀(t )

𝜕𝜌(t )

=
ln(1 + |𝜀(t )|2) − ln(1 + 𝜀(t ))

ln 2 ⋅ (ln |𝜀(t )|) ⋅ |𝜀(t )|2
× [1 − 𝜌(t )�̂�(t )‖𝝍(t )‖2 − 𝜌2(t )�̂�2(t )k(t )]

× [−�̂�(t )‖𝝍(t )‖2 − 2𝜌(t )�̂�2(t )k(t )]e2(t ) = 0.

Note that �̄�(t ) > 0 (or �̂�(t ) > 0), since the terms ln(1 +|e(t )|2) − ln(1 + |e(t )|) and ln(|e(t )|) can keep the same sign
when 0 < |e(t )| < 1 and |e(t )| > 1. In the case of k(t ) ≠ 0, the
optimal 𝜌(t ) can be given by

𝜌(t ) =

√
�̂�2(t )‖𝝍(t )‖4 + 4�̂�2(t )k(t ) − �̂�(t )‖𝝍(t )‖2

2�̂�2(t )k(t )

=
2

�̂�(t )[
√‖𝝍(t )‖4 + 4k(t ) + ‖𝝍(t )‖2]

. (10)

The other solution

𝜌(t ) = −
‖𝝍(t )‖2

2�̂�(t )k(t )

is discarded because the step-size 𝜌(t ) should be non-negative
but this solution 𝜌(t ) < 0 when k(t ) > 0. Equation (10) is com-
plicated for computing the step-size 𝜌(t ) and can be modified
as

𝜌(t ) :=
1

r (t )
, (11)

r (t ) = r (t − 1) + �̂�(t )‖𝝍(t )‖2, r (0) = 1. (12)

Thus, we can summarise the following recursive relations:

⎡⎢⎢⎣
â(t )
�̂�(t )
b̂(t )

⎤⎥⎥⎦ =
⎡⎢⎢⎣

â(t − 1)
�̂�(t − 1)
b̂(t − 1)

⎤⎥⎥⎦ +
1

r (t )
�̂�(t )𝝍(t )e(t ), (13)

r (t ) = r (t − 1) + �̂�(t )‖𝝍(t )‖2, (14)

𝝍(t ) =
⎡⎢⎢⎣

F (t )�̂�(t − 1)

FT(t )â(t − 1)
𝝋(t )

⎤⎥⎥⎦, (15)
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WANG AND DING 993

�̂�(t ) =
ln(1 + |e(t )|2) − ln(1 + |e(t )|)

ln 2 ⋅ (ln |𝜏(t )|) ⋅ |𝜏(t )|2 , (16)

𝜏2(t ) = e2(t ) + 𝜏0, (17)

e(t ) = y(t ) − âT(t − 1)F (t )�̂�(t − 1) − 𝝋T(t )b̂(t − 1), (18)

F (t ) = [ f (u(t − 1)), f (u(t − 2)),… , f (u(t − na ))]T, (19)

f (u(t )) = [ f1(u(t )), f2(u(t )),… , fs (u(t ))]T, (20)

𝝋(t ) = [y(t − 1), y(t − 2),… , y(t − nb)]T. (21)

To guarantee the parameter identifiability, the following normal-
ization constraint of �̂�(t ) should be imposed,

�̄�(t ) := sgn[�̂�1(t )]
�̂�(t )‖�̂�(t )‖ , (22)

where sgn[�̂�1(t )] represents the sign of the first non-zero entry
of the estimate �̂�(t ), and we let �̂�(t ):= �̄�(t ). Equations (13)–(22)
construct the robust gradient (RG) algorithm for the Hammer-
stein non-linear system in (1)–(2).

Remark 2. It can be seen from (16) that the third term |𝜏(t )|2 in
the denominator of �̂�(t ) plays a dominant role. When the Ham-
merstein non-linear system encounters outliers, the term |𝜏(t )|2
in (16) abruptly increases and the gain �̂�(t ) sharply decreases
such that the parameter estimate �̂� (t ) in (13) has small changes.
It means that the robust gradient algorithm can automatically
adjust the gain to resist the influence of non-Gaussian noise.

Remark 3. From (6) and (7), we have

�̂�(t )

�̄�(t )
=

(ln |e(t )|) ⋅ |e(t )|2
(ln(|𝜏(t )|) ⋅ (|𝜏(t )|)2

. (23)

Let g(x ) := x2 ln x. The derivative of g(x ) with respect to x is

g′(x ) = x(2 ln x + 1).

Note that |e(t )| < |𝜏(t )|. When x = |e(t )| > 1√
e
, g′(x ) > 0 and

g(x ) is monotonically increasing and 0 < �̂�(t ) < �̄�(t ). When

0 < |e(t )| < 1√
e
, g′(x ) < 0 and g(x ) is monotonically decreas-

ing and 0 < �̄�(t ) < �̂�(t ). It indicates from (13) that when the

system encounters the non-Gaussian noise and |e(t )| > 1√
e
,

using �̂�(t ) in place of �̄�(t ) can reduce the influence of non-
Gaussian noise to parameter estimate �̂� (t ). When the system

is corrupted by white noise and 0 < |e(t )| < 1√
e
, using �̂�(t ) in

place of �̄�(t ) may slightly increase the parameter estimate error.
However, if 𝜏0 is taken as a very small positive number, then|𝜏(t )| ≈ |e(t )|, �̂�(t ) ≈ �̄�(t ) and the influence of this approxima-
tion on the results is trivial.

Remark 4. The robust gradient algorithm is based on the con-
tinuous logarithmic mixed p-norm cost function J2(a,𝝁, b) =

∫ 2

1
𝜆t (p)[ln(1 + |v(t )|p]dp, which takes into consideration each

p-norm of errors for 1 ⩽ p ⩽ 2 and keeps the merit of the vari-
ous error p-norms. The continuous changes of the parameter p
adapt noisy environments without resorting to a priori knowl-
edge of noise.

Remark 5. From (10) and (11), we have

r (t ) =
1
2
�̂�(t )

(√‖𝝍(t )‖4 + 4k(t ) + ‖𝝍(t )‖2

)

= �̂�(t )‖𝝍(t )‖2 + r̃ (t ), (24)

where r̃ (t ) :=
1

2
�̂�(t )(

√‖𝝍(t )‖4 + 4k(t ) − ‖𝝍(t )‖2). When the

parameter estimate �̂� (t ) approaches its true parameter 𝝑 with t
increasing and e(t ) → 0, we have k(t ) → 0 and r̃ (t ) → 0. Thus

r (t ) = �̂�(t )‖𝝍(t )‖2 and the gain vector L(t ) :=
1

r (t )
�̂�(t )𝝍(t ) of

the correction term in (13) becomes
𝝍(t )‖𝝍(t )‖2

, which does not

vanish as t increases and will make �̂� (t ) deviate from 𝝑 . After
approximating (24) by (12), replacing t in (12) with t − j ( j =
1, 2,… , t − 1) and successive substitutions give

r (t ) = �̂�(t )‖𝝍(t )‖2 + �̂�(t − 1)‖𝝍(t − 1)‖2 + r (t − 2)

=

t−1∑
j=0

�̂�(t − j )‖𝝍(t − j )‖2 + r (0)

= �̂�(t )‖𝝍(t )‖2 + r̄ (t ), (25)

where r̄ (t ) :=
∑t−1

j=1 �̂�(t − j )‖𝝍(t − j )‖2 + 1. Compared with
r̃ (t ) in (24), the modified r̄ (t ) in (25) satisfies r̄ (t ) > r̄ (t − 1) ⩾
1 and is monotonically increasing. As t →∞, r̄ (t ) →∞ and
the gain vector L(t ) → 0. Thus the parameter estimation error
�̃� (t ) := �̂� (t ) − 𝝑 in (13) is close to zero and the performance of
the algorithm can be guaranteed.

4 ROBUST MULTI-INNOVATION
GRADIENT ALGORITHM

The robust gradient algorithm updates the parameter estimates
by using the measurement {u(t ), y(t )} and the innovation e(t ) at
current instant. To improve the estimation accuracy by mak-
ing full use of data information, the following derives the
RMIG algorithm.
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994 WANG AND DING

Consider the measurements from t − l + 1 to t and define
the cost function

J3(a,𝝁, b) :=
l−1∑
j=0

∫
2

1
𝜆t (p)[ln(1 + |v(t − j )|p]dp,

where the integer l is the innovation length, and v(t − j ) =
y(t − j ) − aTF (t − j )𝝁 − 𝝋T(t − j )b. Taking the gradient of
J3(a,𝝁, b) with respect to a, 𝝁 and b gives

𝜕J3(a,𝝁, b)

𝜕a
=

l−1∑
j=0

∫
2

1
p𝜆t (p)

|v(t − j )|p−1

1 + |v(t − j )|p

×
v(t − j )|v(t − j )| 𝜕v(t − j )

𝜕a
dp

= −

l−1∑
j=0

𝜉(t − j )F (t − j )𝝁

×[y(t − j ) − aTF (t − j )𝝁 − 𝝋T(t − j )b],

𝜕J3(a,𝝁, b)

𝜕𝝁
= −

l−1∑
j=0

𝜉(t − j )FT(t − j )a

× [y(t − j ) − aTF (t − j )𝝁 − 𝝋T(t − j )b],

𝜕J3(a,𝝁, b)

𝜕b
= −

l−1∑
j=0

𝜉(t − j )𝝋(t − j )

× [y(t − j ) − aTF (t − j )𝝁 − 𝝋T(t − j )b],

grad[J3(a,𝝁, b)] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕J3(a,𝝁, b)

𝜕a

𝜕J3(a,𝝁, b)

𝜕𝝁

𝜕J3(a,𝝁, b)

𝜕b

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= −

l−1∑
j=0

𝜉(t − j )
⎡⎢⎢⎣

F (t − j )𝝁

FT(t − j )a
𝝋(t − j )

⎤⎥⎥⎦
× [y(t − j ) − aTF (t − j )𝝁 − 𝝋T(t − j )b]

= −

l−1∑
j=0

𝜉(t − j )𝝍(t − j )[y(t − j )

− aTF (t − j )𝝁 − 𝝋T(t − j )b],

where

𝜉(t − j ) := ∫
2

1
p𝜆t (p)

|v(t − j )|p−2

1 + |v(t − j )|p dp.

To facilitate the representation of the RMIG algorithm, define
the stacked vectors/matrices

Y (l, t ) := [y(t ), y(t − 1),… , y(t − l + 1)]T ∈ ℝl , (26)

𝜳 (l, t ) := [𝝍(t ),𝝍(t − 1),… ,𝝍(t − l + 1)] ∈ ℝn0×l , (27)

𝜴(l, t ) := [FT(t )â(t − 1), FT(t − 1)â(t − 1),… ,

FT(t − l + 1)â(t − 1)] ∈ ℝs×l , (28)

𝜱 (l, t ) := [𝝋(t ),𝝋(t − 1),… ,𝝋(t − l + 1)] ∈ ℝnb×l , (29)

E (l, t ) :=

⎡⎢⎢⎢⎢⎢⎢⎣

y(t ) − âT(t − 1)F (t )�̂�(t − 1)

y(t − 1) − âT(t − 1)F (t − 1)�̂�(t − 1)

⋮

y(t − l + 1) − âT(t − 1)F (t − l + 1)�̂�(t − 1)

⎤⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎣
𝝋T(t )b̂(t − 1)

𝝋T(t − 1)b̂(t − 1)
⋮

𝝋T(t − l + 1)b̂(t − 1)

⎤⎥⎥⎥⎥⎦
= Y (l, t ) −𝜴T(l, t )�̂�(t − 1) − 𝜱T(l, t )b̂(t − 1) ∈ ℝl ,

(30)

�̂� (l, t ) := diag{�̂�(t ), �̂�(t − 1),… , �̂�(t − l + 1)} ∈ ℝl×l . (31)

Similar to the derivation of the robust gradient algorithm, using
the negative search and minimizing J3(a,𝝁, b) yield

⎡⎢⎢⎣
â(t )
�̂�(t )
b̂(t )

⎤⎥⎥⎦ =
⎡⎢⎢⎣

â(t − 1)
�̂�(t − 1)
b̂(t − 1)

⎤⎥⎥⎦ −
1

r (t )

× grad[J3(â(t − 1), �̂�(t − 1), b̂(t − 1)]

=
⎡⎢⎢⎣

â(t − 1)
�̂�(t − 1)
b̂(t − 1)

⎤⎥⎥⎦ +
1

r (t )

l−1∑
j=0

𝜉(t − j )
⎡⎢⎢⎣

F (t − j )𝝁

FT(t − j )a
𝝋(t − j )

⎤⎥⎥⎦
× [y(t − j ) − âT(t − 1)F (t − j )�̂�(t − 1)

− 𝝋T(t − j )b̂(t − 1)]

=
⎡⎢⎢⎣

â(t − 1)
�̂�(t − 1)
b̂(t − 1)

⎤⎥⎥⎦ +
1

r (t )
𝜳 (l, t )�̂� (l, t )E (l, t ), (32)

r (t ) = r (t − 1) + �̂�(t )‖𝝍(t )‖2, (33)
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WANG AND DING 995

𝝍(t ) =
⎡⎢⎢⎣

F (t )�̂�(t − 1)

FT(t )â(t − 1)
𝝋(t )

⎤⎥⎥⎦, (34)

�̂�(t ) =
ln(1 + |e(t )|2) − ln(1 + |e(t )|)

ln 2 ⋅ (ln |𝜏(t )|) ⋅ |𝜏(t )|2 , (35)

𝜏2(t ) = e2(t ) + 𝜏0, (36)

e(t ) = y(t ) − âT(t − 1)F (t )�̂�(t − 1) − 𝝋T(t )b̂(t − 1),(37)

F (t ) = [ f (u(t − 1)), f (u(t − 2)),… , f (u(t − na ))]T, (38)

f (u(t )) = [ f1(u(t )), f2(u(t )),… , fs (u(t ))]T, (39)

𝝋(t ) = [y(t − 1), y(t − 2),… , y(t − nb)]T. (40)

Equations (22) and (26)–(40) form the RMIG algorithm for the
Hammerstein non-linear system in (1)–(2).

The steps of computing â(t ), �̂�(t ) and b̂(t ) in the RMIG algo-
rithm (22) and (26)–(40) are listed in the following.

1. Let t = 1, set â(0) = 1na
∕p0, �̂�(0) = 1s∕p0, b̂(0) = 1nb

∕p0,
r (0) = 1, 𝜏0 = 1∕p0, where p0 = 106.

2. Collect the input–output data u(t ) and y(t ).
3. Construct 𝝋(t ), f (u(t )), F (t ) and 𝝍(t ) using (40), (39), (38)

and (34). Compute e(t ), 𝜏(t ) and �̂�(t ) using (37), (36) and
(35).

4. Form Y (l, t ), 𝜳 (l, t ), 𝜴(l, t ), 𝜱 (l, t ) and �̂� (l, t ) using (26)–
(31). Compute E (l, t ) using (30).

5. Compute r (t ) using (33). Update the estimates â(t ), �̂�(t ) and
b̂(t ) using (32). Normalize �̂�(t ) using (22).

6. Increase t by 1 and go to Step 2.

Remark 6. Compared with the robust gradient algorithm, the
scalar gain �̂�(t ) in (13) is expanded into the gain matrix 𝜩 (l, t )
in (32) of the RMIG algorithm. Thus, the RMIG algorithm
can be illustrated as a weighted MIG estimation algorithm.
In addition, the RMIG algorithm utilises not only the current
data {u(t ), y(t )}, but also the past data {u(t − j ), y(t − j ), j =
1, 2,… , l − 1} at each recursive step, which improves the esti-
mation accuracy by using the observations repeatedly. When
l = 1, the RMIG algorithm reduces to the robust gradient
algorithm.

5 𝓵1-NORM-BASED
MULTI-INNOVATION GRADIENT
ALGORITHM

To show the advantage of the RMIG algorithm for the
Hammerstein non-linear system, the following simply describes
the 𝓁1-norm-based MIG (𝓁1-MIG ) algorithm for comparison.

Define the cost function

J4(a,𝝁, b) :=
l−1∑
j=0

√
(y(t − j ) − aTF (t − j )𝝁 − 𝝋T(t − j )b)2,

where J4(a,𝝁, b) represents the 𝓁1-norm of the error. Using the
negative search and minimizing J4(a,𝝁, b) yield

⎡⎢⎢⎣
â(t )
�̂�(t )
b̂(t )

⎤⎥⎥⎦ =
⎡⎢⎢⎣

â(t − 1)
�̂�(t − 1)
b̂(t − 1)

⎤⎥⎥⎦ −
1

r (t )

× grad[J4(â(t − 1), �̂�(t − 1), b̂(t − 1)]

=
⎡⎢⎢⎣

â(t − 1)
�̂�(t − 1)
b̂(t − 1)

⎤⎥⎥⎦ +
1

r (t )
𝜳 (l, t )�̂�(l, t )E (l, t ), (41)

r (t ) = r (t − 1) + ‖𝝍(t )‖2, (42)

𝝍(t ) =
⎡⎢⎢⎣

F (t )�̂�(t − 1)

FT(t )â(t − 1)
𝝋(t )

⎤⎥⎥⎦, (43)

�̂�(l, t ) = diag{𝜁(t ), 𝜁(t − 1),… , 𝜁(t − l + 1)}, (44)

𝜁(t ) =
1

1 + |e(t )| . (45)

Equations (22), (26)–(30) and (37)–(45) construct the 𝓁1-norm-
based MIG algorithm for Hammerstein non-linear system.
The proposed robust multi-innovation estimation algorithm for
Hammerstein non-linear systems with non-Gaussian noise in
this paper can combine some mathematical tools [54–56] to
study the parameter identification of some linear and non-linear
systems with coloured noises and can be applied to other fields
[57–60] such as the information processing and transportation
communication systems [61–67] and so on.

6 EXAMPLES

Example 1. Consider the following Hammerstein non-linear
system,

y(t ) = A(z ) f [u(t )] + B(z )y(t ) + v(t ),

f [u(t )] = 𝜇1u(t ) + 𝜇2u2(t ) = 0.60u(t ) + 0.80u2(t ),

A(z ) = a1z−1 + a2z−2 = 0.24z−1 + 0.20z−2,

B(z ) = b1z−1 + b2z−2 = 0.35z−1 − 0.45z−2.

The parameters 𝜇1 and 𝜇2 of the non-linear block meet
Assumption 1, and the input non-linearity f [u(t )] is a quadratic
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996 WANG AND DING

TABLE 1 The RMIG estimates and errors under different l for Example 1 (𝛼 = 1.60)

l t a1 a2 𝝁1 𝝁2 b1 b2 𝜹 (%)

1 100 0.04774 0.06281 0.74261 0.66972 0.23743 −0.31790 29.43038

200 0.05657 0.06912 0.74212 0.67027 0.24530 −0.33157 28.15767

500 0.06575 0.07643 0.74177 0.67066 0.25188 −0.35510 26.65769

1000 0.06910 0.07840 0.74151 0.67094 0.26009 −0.35978 26.09881

1500 0.07072 0.07943 0.74138 0.67109 0.26315 −0.36166 25.86165

2000 0.07105 0.07977 0.74134 0.67113 0.26401 −0.36329 25.77354

3 100 0.10393 0.13114 0.67269 0.73992 0.39193 −0.54477 17.36385

200 0.12640 0.14684 0.66910 0.74317 0.37722 −0.48785 13.49518

500 0.14484 0.15722 0.66967 0.74266 0.36264 −0.49476 12.20478

1000 0.15150 0.16079 0.66891 0.74334 0.36798 −0.48011 11.42197

1500 0.15445 0.16137 0.66846 0.74374 0.36438 −0.46657 10.97777

2000 0.15445 0.16148 0.66831 0.74388 0.36229 −0.46607 10.94064

7 100 0.20146 0.18817 0.60392 0.79704 0.46369 −0.55253 13.27942

200 0.22616 0.22041 0.59430 0.80424 0.38923 −0.46081 4.03328

500 0.23812 0.21295 0.59992 0.80006 0.33836 −0.48870 3.56125

1000 0.23483 0.21189 0.60056 0.79958 0.34246 −0.46880 2.01726

1500 0.23758 0.21192 0.60031 0.79977 0.34974 −0.46224 1.44732

2000 0.23580 0.21017 0.60029 0.79978 0.34903 −0.46260 1.40531

True values 0.24000 0.20000 0.60000 0.80000 0.35000 −0.45000

FIGURE 1 The impulsive noise versus t for Example 1

polynomial function. The parameter vector to be estimated is

𝝑 := [a1, a2,𝜇1,𝜇2, b1, b2]T

= [0.24, 0.20, 0.60, 0.80, 0.35,−0.45]T.

In simulation, the input {u(t )} is taken as a persistent excitation
signal sequence, {v(t )} is a non-Gaussian noise which is mod-
elled by the symmetric 𝛼-stable (S𝛼S ) distribution, and can be
described as the characteristic function:

g𝛼 (t ) = exp{−𝛾|t |𝛼},
where 0 < 𝛾 ⩽ 1 is a constant, and 𝛼 (1 < 𝛼 ⩽ 2) is a shape
parameter. As 𝛼 decreases, the outliers of the S𝛼S distribution
have higher amplitudes and are more likely more impulsive noise
[68, 69]. Figure 1 depicts the S𝛼S impulsive noise process with
𝛼 = 1.2.

FIGURE 2 The RMIG estimation errors 𝛿 versus t under different l for
Example 1

Take the data length L = 2000. Under the shape parameter
𝛼 = 1.6 of the noise process, the RMIG algorithm is applied
to identify the system, and the RMIG estimates and errors are
shown in Table 1 and Figure 2. The RMIG estimates with l = 7
versus t are illustrated in Figures 3 and 4.

To test the effect of the non-Gaussian noise v(t ) to the RMIG
algorithm, Table 2 and Figure 5 compare the RMIG estimates
and errors under the different shape parameters 𝛼.

Example 2. Consider the following Hammerstein non-linear
system,

y(t ) = A(z ) f [u(t )] + B(z )y(t ) + v(t ),

f [u(t )] = 𝜇1 cos(u(t )) + 𝜇2 cos2(u(t ))
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WANG AND DING 997

TABLE 2 The RMIG estimates and errors under different 𝛼 for Example 1 (l = 7)

𝜶 t a1 a2 𝝁1 𝝁2 b1 b2 𝜹 (%)

1.2 100 0.21698 0.20490 0.59771 0.80171 0.45852 −0.55871 13.03064

200 0.24055 0.23056 0.58653 0.80992 0.39017 −0.46881 4.72874

500 0.24910 0.22101 0.59399 0.80447 0.33799 −0.49620 4.48247

1000 0.24097 0.21729 0.59507 0.80367 0.34361 −0.47839 2.88591

1500 0.24328 0.21645 0.59464 0.80399 0.34956 −0.46675 2.06572

2000 0.24027 0.21351 0.59468 0.80396 0.34887 −0.46776 1.95428

2.0 100 0.19347 0.18244 0.60640 0.79516 0.46011 -0.55252 13.30230

200 0.21869 0.21694 0.59691 0.80231 0.38351 -0.45739 3.68683

500 0.23156 0.21039 0.60206 0.79845 0.33562 -0.48484 3.36034

1000 0.23138 0.20498 0.60264 0.79801 0.33838 -0.46166 1.63638

1500 0.23656 0.20591 0.60257 0.79806 0.34833 -0.45715 0.88391

2000 0.23441 0.20364 0.60257 0.79807 0.34926 -0.45713 0.86406

True values 0.24000 0.20000 0.60000 0.80397 0.35000 −0.45000

FIGURE 3 The RMIG estimates â1(t ), b̂1(t ) and ĉ1(t ) versus t for
Example 1

FIGURE 4 The RMIG estimates â2(t ), b̂2(t ) and ĉ2(t ) versus t for
Example 1

= 0.72 cos(u(t )) + 0.69397 cos2(u(t )),

A(z ) = a1z−1 + a2z−2 + a3z−3

= 0.40z−1 + 0.30z−2 + 0.25z−3,

FIGURE 5 The RMIG estimation errors 𝛿 versus t under different shape
parameters 𝛼 for Example 1

B(z ) = b1z−1 + b2z−2 + b3z−3

= 0.60z−1 − 0.15z−2 − 0.50z−3.

The parameters 𝜇1 and 𝜇2 of the non-linear block meet
Assumption 1, the input non-linearity f [u(t )] is a trigonomet-
ric function, and v(t ) follows the 𝜀-contaminated distribution
which can be approximated by the following mixed Gaussian
distribution [70]:

𝜀 = { :  = (1 − 𝜀) (0,𝜎2
1 ) + 𝜀 (0,𝜎2

2 )},

 (0,𝜎2
1 ) and  (0,𝜎2

2 ) represent the normal distribution with
zero mean and variances 𝜎2

1 and 𝜎2
2 (𝜎2

2 ≫ 𝜎2
1), respectively, and

𝜀 (0 < 𝜀 < 1) is the contamination degree. The normal distri-
bution with larger variance 𝜎2

2 produces outliers. The parameter
vector to be estimated is

𝝑 := [a1, a2, a3,𝜇1,𝜇2, b1, b2, b3]T

= [0.40, 0.30, 0.25, 0.72, 0.69397, 0.60,−0.15,−0.50]T.
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998 WANG AND DING

FIGURE 6 The mixed Gaussian noise with different contaminations for
Example 2

To show the influences of contamination degree 𝜀 to the noise
distribution, under the variances 𝜎2

1 = 0.502 and 𝜎2
2 = 10.002,

Figure 6 depicts the mixed Gaussian noise process with 𝜀 =
0.05 and 𝜀 = 0.15, respectively. It can be seen from Figure 6 that
a larger contamination degree 𝜀 corresponds to higher ampli-
tudes of the outliers.

Take the data length L = 3000. Under the noise variances
𝜎2

1 = 0.502 and 𝜎2
2 = 10.002 and the contamination degree 𝜀 =

0.05, apply the RMIG algorithm to identify the system, and the
parameter estimates and errors are shown in Table 3 and Fig-
ure 7.

To test the effect of the non-Gaussian noise v(t ) to the
RMIG algorithm, under the same noise variance 𝜎2

1 = 0.502

FIGURE 7 The RMIG estimation errors 𝛿 versus t under different l for
Example 2

and the same contamination degree 𝜀 = 0.05, Table 4 and Fig-
ure 8 compare the RMIG estimates and errors under different
noise variance 𝜎2

2. Under the same noise variances 𝜎2
1 = 0.502

and 𝜎2
2 = 10.002, Table 5 and Figure 9 compare the RMIG esti-

mates and errors under different contamination degree 𝜀.
To show the advantage of the RMIG algorithm, Table 6 and

Figure 10 compare the estimation errors of the RMIG algorithm
and the 𝓁1-MIG algorithm under the variances 𝜎2

1 = 0.502 and
𝜎2

2 = 10.002 and the contamination degree 𝜀 = 0.05.
From Tables 1–6 and Figures 1–10, the following conclusions

can be drawn.

∙ As t increases, the RMIG estimation errors decay, and a
larger innovation length l results in the higher estimation

TABLE 3 The RMIG estimates and errors for Example 2

l t a1 a2 a3 𝝁1 𝝁2 b1 b2 b3 𝜹 (%)

1 100 0.03438 0.03353 0.03344 0.71954 0.69445 0.07862 −0.02992 −0.04590 61.85030

200 0.04124 0.03908 0.03881 0.71959 0.69440 0.08850 −0.02527 −0.04783 60.97056

500 0.05122 0.04934 0.04880 0.71968 0.69431 0.10120 −0.01999 −0.04793 59.77824

1000 0.05764 0.05646 0.05544 0.71973 0.69426 0.11178 −0.01459 −0.04837 58.91180

2000 0.06344 0.06267 0.06168 0.71979 0.69420 0.12121 −0.01055 −0.04947 58.10741

3000 0.06597 0.06539 0.06456 0.71981 0.69417 0.12611 −0.00899 −0.05136 57.66379

4 100 0.20897 0.19708 0.17903 0.70365 0.71055 0.25647 −0.15333 −0.33353 31.93819

200 0.23382 0.22003 0.19929 0.70475 0.70946 0.30545 −0.12202 −0.33045 28.07873

500 0.25843 0.24404 0.22210 0.70590 0.70831 0.35138 −0.10427 −0.33904 24.22781

1000 0.27085 0.25723 0.23526 0.70653 0.70768 0.38255 −0.09261 −0.35004 21.76806

2000 0.28171 0.26766 0.24596 0.70705 0.70717 0.40851 −0.08625 −0.36253 19.64055

3000 0.28577 0.27224 0.25036 0.70723 0.70698 0.42796 −0.08694 −0.38060 17.85144

9 100 0.29003 0.29175 0.28405 0.71387 0.70028 0.55910 −0.10563 −0.45485 9.90403

200 0.31150 0.29556 0.27446 0.71294 0.70122 0.58185 −0.10992 −0.48332 7.43986

500 0.33276 0.29871 0.27450 0.71384 0.70031 0.58287 −0.13373 −0.50789 5.47061

1000 0.34654 0.29810 0.27171 0.71479 0.69934 0.58951 −0.13583 −0.50729 4.39230

2000 0.38491 0.30959 0.27679 0.71550 0.69862 0.61418 −0.13185 −0.50642 2.91299

3000 0.38343 0.30434 0.26182 0.71556 0.69855 0.60494 −0.14879 −0.51035 1.76635

True values 0.40000 0.30000 0.25000 0.72000 0.69397 0.60000 −0.15000 −0.50000
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WANG AND DING 999

TABLE 4 The RMIG estimates and errors under 𝜎2
2 for Example 2 (𝜎2

1 = 0.502, 𝜀 = 0.05)

𝝈2
2

t a1 a2 a3 𝝁1 𝝁2 b1 b2 b3 𝜹 (%)

20.002 100 0.26014 0.27370 0.28518 0.71292 0.70125 0.58774 −0.12380 −0.48234 10.81290

200 0.27220 0.28119 0.28552 0.71298 0.70118 0.59737 −0.13696 −0.49283 9.69389

500 0.29049 0.29451 0.28581 0.71350 0.70066 0.60172 −0.15015 −0.50523 8.30756

1000 0.31181 0.29728 0.28482 0.71437 0.69977 0.59785 −0.14486 −0.50085 6.83796

2000 0.36869 0.31553 0.28804 0.71622 0.69787 0.61840 −0.14219 −0.50343 3.99844

3000 0.36913 0.31487 0.28130 0.71616 0.69794 0.60250 −0.15129 −0.50272 3.36270

15.002 100 0.28000 0.28386 0.28495 0.71354 0.70061 0.58540 −0.12084 −0.47672 9.50550

200 0.29524 0.28959 0.28013 0.71318 0.70098 0.59706 −0.12714 −0.49058 8.08258

500 0.31057 0.29793 0.27701 0.71357 0.70058 0.59623 −0.14450 −0.50521 6.75980

1000 0.32864 0.30051 0.27757 0.71449 0.69964 0.59642 −0.14430 −0.50238 5.53834

2000 0.37460 0.31366 0.28291 0.71576 0.69834 0.62067 −0.13765 −0.50518 3.62677

3000 0.37263 0.31079 0.27165 0.71569 0.69842 0.60382 −0.15110 −0.50450 2.69113

True values 0.40000 0.30000 0.25000 0.72000 0.69397 0.60000 −0.15000 −0.50000

TABLE 5 The RMIG estimates and errors under 𝜀 for Example 2 (𝜎2
1 = 0.502, 𝜎2

2 = 10.002)

𝜺 t a1 a2 a3 𝝁1 𝝁2 b1 b2 b3 𝜹 (%)

0.30 100 0.24525 0.26614 0.28584 0.70808 0.70613 0.56847 −0.10194 −0.48427 12.46475

200 0.25520 0.27287 0.28796 0.70833 0.70588 0.58507 −0.12966 −0.49681 11.12454

500 0.27975 0.29157 0.29286 0.70919 0.70502 0.59803 −0.14184 −0.50918 9.28297

1000 0.30505 0.29627 0.28866 0.71005 0.70415 0.59724 −0.14385 −0.50126 7.44251

2000 0.36422 0.31422 0.28578 0.71197 0.70221 0.60990 −0.14623 −0.50124 3.93263

3000 0.36729 0.31545 0.28228 0.71201 0.70217 0.60105 −0.15089 −0.50136 3.57481

0.15 100 0.26986 0.27921 0.28622 0.71120 0.70299 0.59012 −0.12002 −0.48275 10.17400

200 0.28352 0.28706 0.28496 0.71115 0.70304 0.59890 −0.13319 −0.49385 8.90975

500 0.30160 0.29822 0.28288 0.71162 0.70256 0.59979 −0.14787 −0.50551 7.50162

1000 0.32323 0.30003 0.28127 0.71255 0.70162 0.59726 −0.14431 −0.50133 6.01094

2000 0.37516 0.31385 0.28237 0.71411 0.70003 0.61831 −0.14054 −0.50447 3.49270

3000 0.37401 0.31229 0.27442 0.71403 0.70012 0.60263 −0.15141 −0.50330 2.79181

True values 0.40000 0.30000 0.25000 0.72000 0.69397 0.60000 −0.15000 −0.50000

TABLE 6 The 𝓁1-MIG estimates and errors for Example 2

t a1 a2 a3 𝝁1 𝝁2 b1 b2 b3 𝜹 (%)

100 0.44656 0.17891 0.21748 0.72417 0.68962 0.67284 −0.25040 −0.39727 15.01719

200 0.43645 0.14388 0.15430 0.71844 0.69559 0.68205 −0.20640 −0.34914 18.63443

500 0.43372 0.19034 0.19665 0.72172 0.69218 0.70810 −0.25647 −0.41470 15.43090

1000 0.42028 0.20910 0.21380 0.72234 0.69154 0.67766 −0.22615 −0.44474 11.31038

2000 0.42529 0.28865 0.23021 0.72320 0.69064 0.61087 −0.19391 −0.43570 6.15207

3000 0.36463 0.28386 0.26647 0.72142 0.69250 0.60193 −0.19409 −0.48427 4.52457

True values 0.40000 0.30000 0.25000 0.72000 0.69397 0.60000 −0.15000 −0.50000
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1000 WANG AND DING

FIGURE 8 The RMIG estimation errors 𝛿 versus t under different noise
variances 𝜎2

2 for Example 2

FIGURE 9 The RMIG estimation errors 𝛿 versus t under different con-
tamination degree 𝜀 for Example 2

accuracy—see Tables 1 and 3, and Figures 2 and 7. It shows
that the RMIG algorithm is effective for the Hammerstein
non-linear system with non-Gaussian noise.

∙ The RMIG estimates can rapidly reach the vicinity of the true
values with increasing t —see Figures 3 and 4.

∙ With the shape parameter 𝛼 declining, the RMIG estimation
errors have a small increase and two estimation error curves
drop to below 0.02 at instant t = 2000—see Table 2 and Fig-
ure 5. This suggests that the RMIG algorithm is not sensitive
to the variation of S𝛼S noise to some extent.

FIGURE 10 The estimation errors of the RMIG algorithm and the 𝓁1-
MIG algorithm for Example 2

∙ Increasing the noise variance 𝜎2
2 and decreasing the con-

tamination degree 𝜀 lead to stronger noise interference and
lower RMIG estimation accuracy, but the reduced accuracy is
small—see Figures 8 and 9. It indicates that the RMIG algo-
rithm is robust to the 𝜀-contaminated noise.

∙ Under the same data length and the same noise environment,
the RMIG algorithm has higher estimation accuracy and bet-
ter robustness than the 𝓁1-MIG algorithm—see Figure 10.

7 CONCLUSIONS

A robust gradient algorithm and a RMIG algorithm are devel-
oped to identify the Hammerstein non-linear system corrupted
by non-Gaussian noise. The algorithms are based on the
approximation of the expectation of the logarithmic p-norm of
prediction errors. The continuous combination of error norms
generates an adjustable gain in the recursive algorithms and
yields good robustness to non-Gaussian noise, which is veri-
fied by the results of two simulation examples. In future, there
are still some interesting topics which can be discussed, for
example, how to devise proper weighting functions to enhance
the performance of the RMIG algorithm. Additionally, how
to design the identification algorithms with higher precision
by means of some acceleration techniques such as the Aitken
method. These topics will remain as open issues.
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