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ABSTRACT 
The present paper will report results for a “perfect-cross-flow” model. This is essentially 
a one-dimensional parallel tube model. However, it is assumed that fluid can flow 
without resistance between any tubes that contain the same phase (oil or water) at a given 
location. By comparing results from this model with results from a conventional two-
phase numerical simulator (based on the modified Darcy law), it is shown that the 
perfect-cross-flow model is an exact analogy to the modified Darcy law. Using the 
model, it is shown that the commonly assumed boundary condition of gradually 
increasing capillary pressure at the inlet and outlet faces of a sample is inconsistent with 
the microscopic behavior of the porous media. This can lead to significant errors in data 
interpretation. It will also be argued that because real porous media do not demonstrate 
perfect-cross-flow, it is possible that two-phase displacement flows cannot always be 
modeled using the modified Darcy law. 
 
INTRODUCTION 
A major impediment to quality control in core analysis is a lack of standard samples with 
which to validate data. The petrophysical properties (porosity, permeability, capillary 
pressure, relative permeability, etc.) of both natural and synthetic “standard” samples are 
not known a priori. Furthermore, these properties can vary with time and use. Therefore, 
the best that we can do is compare one data set to another; that is, we can determine 
precision but not accuracy. For some properties, this criticism can be extended to data 
analysis techniques. Whereas data reduction methods for such properties as porosity and 
permeability are direct, hence introduce no additional errors, methods for properties such 
as capillary pressure and relative permeability involve inverse methods that can introduce 
errors. For capillary pressure, idealized models can be used to generate model data sets 
that can then be used to validate data reduction techniques. However, the idealized 
models for unsteady state relative permeability experiments do not generally conform to 
real data sets. 
 
In the past, researchers have attempted to model two-phase flow in porous media in many 
ingenious ways. For example, Purcell [1] modeled the capillary pressure and saturation 
relationship using a bundle of parallel tubes; Yuster [2] analytically considered the 
simultaneous annular flow of oil and water through a single capillary tube and also in a 
series of connected tubes, each of a different diameter. Others have modeled relative 
permeability and trapping of oil in irregularly shaped conduits (e.g., Danis and Jacquin 
[3]). Large-scale network modeling of porous media has been done using lattice networks 
of pores and throats, in a range of connection patterns, varying from straight tubes to 
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sinusoidal-shaped tubes, and nodes of zero volume to nodes of spherical volume (e.g., 
Lin and Slattery [4]; Payatakes and Dias [5]; Koplik and Lasseter [6]). Recent efforts in 
network modeling have also included developing three-dimensional networks (e.g., 
Constantinides and Payatakes [7], Blunt and King [8]). Common numerical methods for 
network modeling include rule-based algorithms that model the invasion and 
displacement of fluids using pore-size and throat-size distribution functions (with 
possible spatial correlation) that define the pore-scale geometry and determine local fluid 
viscous resistances and local pressure discontinuities (e.g., Blunt [9]). Another approach 
is the dynamic network modeling method, where the interfaces between phases are 
tracked over time as they progress through the pore spaces, yielding detailed information 
about local flow rates and pressures of each phase (e.g. Dias and Payatakes [10], 
Constantinides and Payatakes [7], Mogensen and Stenby [11], Dahle and Celia [12]). 
 
There are two fundamental approaches to studying two-phase flow in porous media. One 
is to attempt to model the actual flow paths in naturally occurring flows such as those 
through sand or rock. The second is to treat a network model as being a theoretical form 
of porous media and interpret the results as pseudo-experimental data (e.g., Bartley and 
Ruth [13,14]). The advantage of the second approach is that one can apply mathematical 
theories that seek to describe the flow in any porous medium (such as the modified Darcy 
law for two-phase flow (MDL)) to the special case of the network model flow, and 
compare predicted quantities with directly calculated quantities. A network model that 
lends itself to this type of modeling is the bundle of capillary tubes or parallel tube model 
(PTM). In this case, one is able to accurately track the oil/water interfaces as they 
progress through the tubes and also to calculate the pressures at any point in the model. 
Closed-form equations for flow in a bundle of tubes can be developed. The model is 
rigorous and limited only by the assumptions of steady, fully developed laminar flow. 
The obvious limitation to the PTM is that no cross-flow occurs between the tubes, and 
some would argue that this disqualifies the model from being considered a porous 
medium; however, the PTM does fall within the general definition of a porous medium. 
Consider now the opposite scenario where we are still analyzing flow in a bundle of 
tubes, but fluids are allowed to cross over from tube-to-tube at any location along the 
length of the tube bundle, provided only that both tubes contain the same fluid. That is, 
we are attempting to describe a scenario where the resistance to flow between the tubes is 
zero (perfect-cross-flow occurs) and there is no pressure difference between the same 
fluid in different tubes at the same location (perfect pressure equalization between the 
tubes). Furthermore, there are no capillary effects between tubes. This model is another 
theoretical construction that qualifies as a porous medium. Implementation of the model 
involves tracking two fluid components (water and oil) that occupy varying portions of 
separate capillary tubes. Within each tube there is hydraulic resistance to flow and a 
capillary interface. The calculation of this type of flow (injection of a wetting phase) 
models immiscible displacement of the non-wetting phase from the tube bundle. 
 
The assumptions behind the perfect-cross-flow model (PCFM) were first proposed by 
Dong et al [15]. These assumptions are counter-intuitive. If flow paths exist between 
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tubes, the flow paths must offer resistance. Furthermore, these flow paths should allow 
water to invade an oil-filled tube from a water-filled tube. However, both tube-to-tube 
flow resistance and tube-to-tube fluid invasion are explicitly excluded in the PCFM. 
 
MODEL FORMULATION 
The essential features of the PCFM can be demonstrated by considering the set of three 
parallel tubes shown in Figure 1. The interfaces within the tubes subdivide the problem 
into four regions. It will be assumed that the flow of a single phase in any tube is 
governed by the Hagen-Poiseuille expression 
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where the α denotes the phase. The flow in each region is governed by the following 
expressions, which are obtained by summing the flows in the tubes in the region, 
separately by phase (the nomenclature is given in Figure 1): 
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Furthermore, by the definition of capillary pressure, for any tube j 
wjojcj PPP −=           3 

where 

j
cjP

δ
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By continuity, for any region j 
ojwjt QQQ +=          5 

where Qt is the total flow. Equations 1 through 5 may be combined to yield the 
expressions  
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This set of four equations contains nine unknowns: Qt , Pwi, Pw1, Pw2, Pw3, Poe, L1, L2, and 
L3. The system of equations will allow for two boundary conditions. These will typically 
be Qt or Pwi, and Poe, all possibly as functions of time. Given two of these quantities, the 
third can be obtained by summing the governing equations to yield 
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Therefore, if the lengths are known, all other parameters can be calculated.  
 
Given initial conditions for the lengths, typically all lengths equal to zero, the complete 
solution requires solving the following set of differential equations: 
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Combining the governing equations and using the continuity equations we can derive 
explicit expressions for the flow of water 
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For the present paper, these equations were solved using a fully implicit, iterative 
scheme. The size of a time step was calculated as the interval required for the fluid in the 
most advanced interface to move a given distance ∆x. For example, in the 3-tube model, 
in the time period before Tube #3 reaches the exit face, this time interval is given by the 
expression  
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Given this time step, the values for the new lengths of displacement in all of the tubes 
were found by iterating on the equations until a sufficiently converged solution was 
obtained. 
 
MODEL OPERATION 
To start the model, the interface in Tube #3 is advanced by the increment ∆x. Initially L1 
and L2 are set to zero. Only the equations for motion in Regions #3 and #4 are required 
(the equations for Region #1 and Region #2 are not required because of the zero lengths 
of these regions). In Region #2 oil is initially assumed to be immobile and the pressure at 
L3 is determined. The condition for flow to initiate in Tube #2 is that 

3c3w2cwi PPPP +>+          12 
If this condition obtains, then L2 is set to a small value (L2 <L3) and iterations are 
performed until a converged solution has been obtained. Note that this iteration now 
includes the equations for Region #2 but it is still assumed that oil is immobile in Region 
#1. A test is then made for flow in Tube #1. Once all of the interfaces that are going to 
start have been identified and values for flows and pressures have been obtained by an 
iterative scheme, the solution for that time step is complete. At each further time step, 
tests are done to ensure that any new interfaces can start if the proper conditions obtain. 
 
The upstream boundary condition is usually specified either as Qt(t) or as Pwi(t). Often the 
functions are constants; in fact, most laboratory experiments are designed for either 
constant flow or constant injection pressure. However, even if these functions are 
constants, complications can arise. Consider the case of constant flow rate at such a value 
that only Tube #3 starts during early time steps. If the condition for Tube #2 to start is not 
met, then conditions are actually appropriate for oil to flow backwards in Region #3 and 
be produced from the injection face of the sample. Most apparatuses prevent this from 
happening by proper design of the injection manifold. However, for some designs, such 
as an upstream plenum, production of oil at the injection face can occur.  
 
If it is assumed that oil can be produced from the injection face of the sample, and such 
production is to be accurately calculated, then the appropriate pressure condition for the 
oil at the inlet must be identified. The “obvious” choice is to allow the saturation at the 
inlet to dictate the capillary pressure difference between the oil and the water. In the case 
where only Tube #3 has started, this is equivalent to letting Pc2 determine the pressure of 
the oil at the inlet; hence, the pressure difference across the oil in Region #3 would be 

. However, this is not consistent with the perfect-cross-flow 
assumption. For perfect cross-flow, the oil will be produced from the tube offering the 
least capillary resistance, that is, from Tube #1. Hence, to be consistent with the PCFM, 
the actual pressure difference across the oil in Region #3 is . In the 
simulations performed for the present paper, production of oil at the inlet was suppressed. 

3c3w2cwi PPPP −−+

3c3w1cwi PPPP −−+



SCA2002-05 6/12 

 
The downstream boundary condition also needs special consideration. First, the fluid that 
contacts the exit face must be specified. Depending on experimental design, water may 
contact the exit face (a water filled plenum design), oil may contact the exit face (a 
design where oil is flushing the produced fluids at the exit face), or both oil and water 
may contact the exit face (a well-designed manifold). If both oil and water contact the 
exit face, then it can be assumed that both Pwe and Poe are zero (no capillary pressure can 
exist outside of the sample). If water contacts the exit face, then imbibition of water 
(assuming water-wet conditions) is possible, with water entering Tube #3 (the tube with 
the highest capillary pressure). Simultaneous with this mechanism, oil will be produced 
due to the imposed overall flow rate. Using a “path of least capillary resistance” 
argument similar to that given above, the pressure seen by the oil at the exit face will be 
Pc1. 
 
If oil contacts the exit face, then the potential for capillary trapping exists. Even if all of 
the oil in Tube #3 has been displaced by water, the water cannot exit the sample until the 
pressure of the water at the upstream end of Region #3 (Region #4 no longer exists) is 
greater than Pc3. It follows that the boundary condition on the water is either 

3c2w2wwe PPforPP <=       13a 

3c2w3cwe PPforPP >=        13b 
 
PROPERTIES OF A COREY MEDIUM 
In the present paper, the PCFM will be applied to a “Corey” medium. A Corey medium is 
defined as a porous media that has parallel tube-like flow channels that have a diameter 
distribution density, ρ, defined by the expression  
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The following equations for properties may then be derived from basic equations:  
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Capillary pressure (Pc) 
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Relative permeability (krw) 
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Figure 2 shows relative permeability and capillary pressure curves for λ=3, the value 
used for the simulations reported in the present paper. The relative permeabilities sum to 
1.0 because all of the fluid is mobile in the PCFM. 
 
SOME PRELIMINARY RESULTS 
Solutions were obtained for a PCFM model with 60 capillary tubes having a size 
distribution consistent with the curves in Figure 2. It was assumed that water contacted 
the exit face. Figure 3 shows saturation profiles for a range of viscosity ratios and two 
volumetric flow rates. The volumetric flow rates are normalized with the flow rate that 
would result for water with a pressure differential equal to the maximum capillary 
pressure (smallest capillary tube). The viscosity ratio is the viscosity of the oil divided by 
the viscosity of water. All of the curves in Figure 3 represent a point in the displacement 
process where 20% of the original oil in place has been produced. The wide variation in 
behavior is evidence of the importance of viscosity ratio and flow rate to the 
displacement process. 
 
Figures 4 and 5 show comparisons between results obtained by using the perfect cross-
flow model and results obtained by using a conventional numerical simulator based on 
the MDL. In order to allow direct comparisons with the MDL, the exit boundary 
condition for these simulations was based on the exit saturation. The input parameters to 
this model were the relative permeability and capillary pressure curves calculated for the 
PCFM, plus the petrophysical properties for that model. The results are calculated 
directly, without any adjustments, that is, the results were not history-matched. The water 
and oil production curves appear to give an exact agreement; this is partly attributed to 
the scale; small discrepancies can be seen in the actual data. The results for pressure 
again show excellent agreement. The saturation profiles for the PCFM are plotted as a 
series of steps; a stepped profile more accurately reflects the nature of the saturation 
changes at the fronts in each tube. The saturation profiles show small disagreements, with 
the simulation results being slightly below the PCFM results; this may be due to 
numerical dispersion. In general the agreement is very good. 
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THE INFLUENCE OF THE EXIT BOUNDARY CONDITION 
The PCFM was applied to demonstrate the influence of using different capillary pressure 
criteria at the exit face. As noted above, this capillary pressure is usually calculated based 
on the saturation at the exit face. To be consistent with the PCFM, the exit capillary 
pressure should correspond to the capillary pressure in the largest tube, that with the 
lowest capillary pressure. Figure 6 shows a comparison of the differential pressure as a 
function of time for the two boundary conditions. Clearly the two data sets would not 
lead to the same results if analyzed to determine relative permeabilities.  
 
THE VALIDITY OF THE MODIFIED DARCY LAW 
The PCFM casts doubt on the validity of the MDL as it is applied to multi-phase flow. 
Bartley and Ruth [13,14] have shown that the MDL gives results that are inconsistent 
with results calculated with the PTM. Specifically, the PTM leads to relative permeability 
curves that are functions of both saturation and position. It has been demonstrated in the 
present paper that the PCFM is consistent with the MDL. The problem is that real porous 
media cannot conform completely with the PCFM because perfect cross flow is a 
physically impossible situation (although we suggest that flow in unconsolidated sands 
may approach the model). It seems reasonable that flow in real porous media would fall 
somewhere in between the two cases of the PCFM and the PTM. The following logic 
would therefore apply: the PCFM yields results that are consistent with the MDL; the 
PTM yields results that are inconsistent with the MDL; the PTM and the PCFM bound 
the behavior of real porous media; therefore, the MDL is not necessarily valid for real 
porous media. 
 
CONCLUSIONS 
The results described in the present paper support the following conclusions: 
 
1. For the limited test cases investigated, the PCFM yields results that are consistent 

with the MDL. 
2. The boundary conditions generally imposed on two-phase displacement experiments 

are inconsistent with the PCFM. 
3. Preliminary results suggest that the MDL may not be applicable to all porous media. 
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Fig 1 A schematic representation of the perfect-cross-flow model 
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Fig 2.  The capillary pressure and relative permeability curves for a λ=3 Corey medium. 
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Fig 3  The saturation profiles at the time when 20% OOIP has been produced for various 

combinations of viscosity ratio and flow rate. The cases are Series 1: Qr=1,µr=1; 
Series 2: Qr=1,µr=10; Series 3: Qr=1,µr=100; Series 4: Qr=0.1,µr=1; Series 5: 
Qr=0.1,µr=10; Series 6: Qr=0.1,µr=100. 
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Fig 4.  Comparison of MDL results (lines) with PCFM results for volumetric production 

of water (solid circles), volumetric production of oil (solid triangles), and pressure 
(solid squares) for a λ=3 Corey medium with Qr=0.1 and µr=10. 
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Fig 5.  Comparison of MDL results with PCFM results for saturation profiles for a λ=3 

Corey medium with Qr=0.1 and µr=10. The steps correspond to the PCFM and 
the lines are the MDL simulations. 
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Fig 6.  The differential pressure across the PCFM for a λ=3 Corey medium with Qr=0.1 

and µr=10. The solid circles correspond to the saturation dependent boundary 
condition; the open circles correspond to the PCFM defined boundary condition. 




