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Highlights

• Optimal control of valves and variable speed pumps in water networks

without storage.

• A simplified modelling of Variable Speed Pumps.

• Operational characteristics of pumps are included in the optimization for-

mulation.

• Global optimality bounds of the solutions are considered.

• A bound-tightening scheme outperforms both general and specialized meth-

ods/solvers.
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Abstract

The paper investigates the problem of optimal control of water distribution

networks without storage capacity. Using mathematical optimization, we for-

mulate and solve the problem as a non-convex NLP, in order to obtain optimal

control curves for both variable speed pumps and pressure reducing valves of

the network and thus propose a methodology for the automated control of real

operational networks. We consider both single-objective and multi-objective

problems with average zonal pressure, pump energy consumption and water

treatment cost as objectives. Furthermore, we investigate global optimality

bounds for the calculated solutions using global optimization techniques. The

proposed approach is shown to outperform state-of-the-art global optimization

solvers. The described procedure is demonstrated in a case study using a large

size operational network.

Keywords: Networks, Mathematical Optimization, Optimal Control, Variable

Speed Pumps, Water Distribution Systems

1. Introduction

Drinking water distribution systems, especially in large metropolitan areas

of the world, are now faced with numerous challenges: Increasing size and com-

plexity, aging infrastructure, increase of urban population, diminishing potable
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water resources and energy costs. These challenges present the need for ad-

vanced control (and design) of water distribution networks, which enable dy-

namic adaptability both in terms of hydraulic conditions and network connec-

tivity (Wright et al., 2015).

Control of network elements such as valves and pumps, for optimal pressure,

leakage and pipe damage reduction and energy cost minimization has been the

focus of numerous works in the literature (for example Wright et al. (2015);

León-Celi et al. (2018); Fooladivanda & Taylor (2018); Skworcow et al. (2014);

Ghaddar et al. (2015, 2017)). Furthermore, the use of variable speed pumps

(instead of fixed speed) offers greater control and adaptability within a water

distribution network, which can increase energy savings and reduce maintenance

costs (Page et al., 2017).

While the presence of tanks provides a number of benefits for the manage-

ment of WDNs, storage capacity is not always available or the best choice - see

Walski & Creaco (2016). Furthermore, it might be the case that, in practice,

we consider separately part or parts of a larger network which do not contain

any storage capacity.

Wright et al. (2015) use sequential convex programming for the optimal con-

trol of pressure reducing valves in order to minimize the average zonal pressure

in an operational water network without storage. Based on the optimized solu-

tions, they derived and implemented the optimal control for the valves however,

no pump control was considered.

Ghaddar et al. (2017) consider the global optimization of valve settings for

the minimization of pressure and apply semidefinite programming relaxations

with a branch-and-bound scheme. However, they consider the solution for only

one time step (i.e. for a single demand vector).

León-Celi et al. (2018) consider the operation of multiple variable speed

pumps in water distribution networks without storage. Using derivative-free

optimization methods, they solve the problem of optimal control of the pumps

with the sum of power consumption and water treatment cost as the objec-

tive function. However, in this case, no valve control was considered and also
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constant efficiency was assumed for the operation of pumps. Furthermore, the

developed pressure management scheme was based on a critical node (i.e. node

with the lowest pressure in the network).

The novelties of this work are as follows: Firstly, we consider the simulta-

neous optimal control of pressure reducing valves and variable speed pumps.

Secondly, in contrast with León-Celi et al. (2018), we show that using a sim-

plified modelling of the variable speed pumps, does not mean that the charac-

teristics of the pumps need to be neglected but can be incorporated into the

optimization formulation as linear constraints. These constraints correspond

to a convex polytope approximating the bounds of the required efficiency area

of the pumps. Thirdly, we consider how the optimization results can be used

in practise for the automatic control of a real, operational network where flow

modulation control curves are derived from the optimization results. Finally, we

investigate global optimality bounds for the computed solutions. The proposed

optimization based bound tightening scheme is shown to outperform both the

performance reported in Ghaddar et al. (2017) as well as state-of-the-art solvers

such as BARON (Tawarmalani & Sahinidis (2005)).

The structure of the paper is as follows: In Section 2, we introduce the

Bristol Water Field Lab (BWFL) network, which we use as our case study. In

Section 3, we present the mathematical modelling of WDNs. Modelling the

characteristics of variable speed pumps (VSPs) is explained in Section 4. In

Section 5, we present the optimization formulation for both single and multi-

objective optimal control of the WDN. In Section 6, we discuss our results from

the application of the presented optimization formulation to the BWFL network.

Finally, we draw our conclusions in Section 7.

2. The BWFL case study network

The Bristol Water Field Lab (BWFL) network is part of the water distri-

bution network of the city of Bristol, UK, and it serves approximately 8,000

customer connections. The BWFL is a unique smart water network demon-
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strator, where advanced sensing and control solutions have been developed and

implemented to enable the dynamically adaptive control for both the hydraulic

conditions and network connectivity. It is operated jointly by Bristol Water plc,

InfraSense Labs in the Department of Civil and Environmental Engineering at

Imperial College London, and Cla-Val Ltd. The BWFL has been used as a case

study in a number of publications (for example see Wright et al. (2014, 2015);

Pecci et al. (2019); Abraham & Stoianov (2017)).

Pump-1

PRV-1

BV

BV

PRV-2

Pump-2

Source/Pump-1

Source/Pump-2

PRV-1

PRV-2

Source/Pump
PRV
BV

The BWFL network

Figure 1: The Bristol Water Field Lab (BWFL) network (modified for the purposes of our

case study)

The modified hydraulic model of the BWFL network consists of 2013 nodes

and 2369 links. Potable water is provided to the network by two inlets (sources),

indicated by the square markers in Figure 1. In addition, there are two pressure

reducing valves (PRVs), shown by the circle markers and two boundary control

valves (BVs), shown by the triangle markers. The boundary control valves open

and close according to a pre-determined time schedule (typically between 02:00

and 04:00 hours), which is embedded within the constraints of the optimization

problem. The control profiles for the PRVs are derived from the solution of the

optimization problem. For the purpose of this investigation, we also modified
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the BWFL network in order to include two variable speed pumps (VSPs) placed

at the two inlets (sources).

3. Water Distribution Networks - Mathematical Modelling

A water distribution network (WDN) is represented as a graph G(V,E). The

set of vertices, V , represents the nodes of the network with |V | = nn +n0 being

the total number of nodes. The network model includes nn unknown head nodes

and n0 source nodes. The set of edges, E, represents the set of links connecting

the nodes with |E| = np being the number of links. We consider the 24-hour

operation of a WDN in nt discrete time steps.

At each time step, we have a vector of nodal head values, h ∈ Rnn (m) and

a vector of nodal demands d ∈ Rnn (m3/s). Note that the demand for some

nodes can be fixed to zero. For the set of links we have a corresponding vector

of flow values q ∈ Rnp (m3/s). We also consider a vector of fixed head values

for source nodes, denoted by h0 ∈ Rn0 . Furthermore, we define the link-node

incidence matrix of the WDN, A12 ∈ Rnp×nn , as follows:

A12(i, j) =





1 if link i enters node j

0 if link i is not connected to node j.

−1 if link i leaves node j.

(1)

In a similar manner with A12, we define the link-source node incidence matrix,

A10 ∈ Rnp×n0 . In addition, we consider the vector of control variables u ∈ Rnu

(m) where nu is the number of PRVs and VSPs. When ui corresponds to a PRV,

it represents the amount of head reduced by the PRV and when it corresponds

to a VSP, it represents the head boost provided by the VSP. Finally, we define

the matrix A13 ∈ Rnp×nu as follows:

A13(i, j) =





1 if link i is the PRV corresponding to variable uj .

0 if link i is a pipe.

−1 if link i is the VSP corresponding to variable uj .

(2)

We consider a demand-driven, steady-state hydraulic model of the network.

Thus, we assume that, at each time step, an approximation of the demand
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vector d is known and we require the mass and energy balance constraints to

be satisfied,

AT
12q − d = 0 (3)

A12h+A10h0 +A13u+A11(q)q = 0, (4)

where

A11(q) = diag(a1|q1|+ b1, . . . , anp
|qnp
|+ bnp

). (5)

The mass balance given by (3) states that the flow that enters a node must

equal the flow that leaves the node. Note that the flows can take negative or

positive values with respect to the assumed direction of the corresponding link.

The energy balance given by (4), accounts for the energy losses (i.e. head losses)

across a link due to the frictional losses which depend on the flow and physical

properties of the pipe. The values for ai and bi in equation (5) are calculated

following the work of Bradley J. Eck (2015) and Pecci et al. (2017) in order to

approximate the Hazen-Williams head-loss formula for each link.

4. Variable Speed Pumps (VSPs)

In our experiments we make use of a theoretical pump whose characteristics

are based on affinity laws (Walski et al. (2003)). Nevertheless, this does not

restrict the applicability of the procedure since for a commercial pump we can

make use of the data provided by the manufacturer.

The affinity laws describe the proportional relationship of flows, heads and

power of a variable speed pump operating between two different speeds, ω1 and

ω2. They are given by equations (6)-(8),

q1
q2

=
ω1

ω2
(6)

u1
u2

=

(
ω1

ω2

)2

(7)
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p1
p2

=

(
ω1

ω2

)3

(8)

where q1, u1, p1 and q2, u2, p2 are the flows, heads and power consumption

of the VSP, corresponding to speeds ω1 and ω2 respectively. By choosing the

values of flow and head, q∗ and u∗, at which the pump operates at maximum

efficiency at nominal speed, we define a nominal speed pump curve (i.e. the

speed as a proportion of which we consider any other operating speed of the

pump) of the form,

u(q) = aq2 + b (9)

where a = (u∗ − b)/q∗
2

(such that u(q∗) = u∗) and b determines the in-

tersection of the nominal speed curve with the head axis. Next, we define a

corresponding efficiency curve of the form,

η(q) = −c(q − q∗)2 + ηmax, (10)

where ηmax is the maximum efficiency of the pump. For our experiments we

have used q∗ = 8 (l/s), u∗ = 9 (m), b = 10 and ηmax = 0.8 for both VSPs. The

value of c in equation (10) is chosen such that η(0) = 0 and thus c = ηmax/q
∗2 .

With the nominal speed and efficiency curves defined in equations (11) and

(12) respectively and by employing the affinity laws, we can determine the pump

curves for any throttle speed with respect to the throttle speed of the nominal

curve. This is shown in Figure 2.
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Figure 2: Variable speed pump curves. The efficiency curve, corresponding to the nominal

speed, is shown in the smaller graph.

Moreover, we can calculate the efficiency and the power consumption for

given pump flow and head values. This will allow us to include efficiency con-

straints in our optimization formulation (Section 5) as well as to consider energy

consumption as an objective function (Section 6).

Finally, it is important to note that the speed of a VSP can vary continu-

ously within a certain range (Brdys & Ulanicki (1994)). The points depicted

in Figure 2 show only the corresponding curves for a discrete set of operating

speeds. Therefore, for any flow-head pair (q, u) there is a speed for which the

corresponding pump curve passes through (q, u) (as long as the pair (q, u) is

within the operational limits of the pump).
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5. Mathematical Optimization - Problem Formulation

5.1. Objective Functions

We consider the 24-hour optimal control of the network with respect to aver-

age zonal pressure (AZP), energy consumption (EC) and water treatment cost

(WTC). The corresponding formulation for each objective is given in equations

(11), (12), (13) where, x = [x1, ..., xnt ]
T with xt = [qt ht ut]

T for t = 1, ..., nt.

Average Zonal Pressure (AZP):

One of the most important aspects of control in a WDN is nodal pressure.

By operating a network with as low pressure as possible we can reduce leakage,

pipe damage and burst incident rates (Lambert & Thornton (2011)). Hence, we

will consider pressure as our first objective for optimal control of the WDN. A

standard metric of pressure in a network is the Average Zonal Pressure (AZP):

fAZP (x) =
1

nt

nt∑

t=1

nn∑

j=1

αj(h
(t)
j − ξj) (11)

where αj =
∑

j∈Ij Lj/(2L) with Ij being the set of pipe indices of pipes

connected to node j, Lj the length of pipe j, L the average pipe length in the

network and ξj the elevation of node j. The AZP is thus a weighted average

of pressure in the network where the weighting is with respect to the length of

pipes connected to each node.

Energy Consumption (EC):

fEC(x) =

npumps∑

j∈Ipumps

γ q
(t)
j u

(t)
j

η
(
q
(t)
j , u

(t)
j

)δt (kWh) (12)

where npumps is the number of pumps in the network, Ipumps is the set of

pump link indices, qj is the flow through link j, uj is the discharge head of the

corresponding pump, γ = 9.81 (kN/m3) is the specific weight of water, and δt is

the time-step duration in hours (in our case δt = 1/4 (h)). In addition, η(qj , uj)

is the efficiency of the pump when operating at (qj , uj).

Given qj and uj , using the affinity laws and equation (9), of the nominal

curve, we can calculate the flow for which, at nominal speed, the pump has the
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same efficiency as when operating at qj and uj and thus, using the efficiency

curve (10) calculate η(qj , uj) and finally the energy consumption at qj and uj .

For our experiments, we have fitted a quadratic polynomial in order to obtain

an approximation of the surface of the energy consumption and use it as our

objective function. This, resulted in a convex quadratic polynomial and thus

more convenient, with respect to optimization, compared to a more complicated

closed formula for the energy consumption.

Water Treatment Cost (WTC):

fWTC(x) =

nt∑

t=1

n0∑

i∈Isource

q
(t)
i c

(t)
i δt (13)

where, nt is the number of time-steps, n0 is the number of sources/reservoirs

in the network, q
(t)
i is the outgoing flow from source i at time-step t, c

(t)
i (£/m3)

is the water treatment cost per m3 from source i at time-step t and δt (s) is

the duration of each time-step in seconds. For our experiments we have used

c
(t)
1 = 0.15 (£/m3) and c

(t)
2 = 0.35 (£/m3) for all t = 1, 2, ..., nt.

5.2. Single-Objective Optimization

The general form of the single-objective optimization problem that we aim

to solve is given in Problem 1:

Problem 1 (P1):

min f(x)

s.t. AT
12qt − dt = 0 (Mass balance)

A12ht +A10h0 +A13ut +A11(qt)qt = 0 (Energy balance)

qmin ≤ qt ≤ qmax, hmin ≤ ht ≤ hmax

ut ≥ 0

t = 1, ..., nt.

where x = [x1...xnt
]T ∈ R (np+nn+nu)nt . Note that, due to the form of the terms

A11(qt)qt, P1 is a non-linear, non-convex program.
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Because the constraints in P1 are decoupled with respect to time and the

objective functions presented in Subsection 5.1 are separable with respect to

time, problem P1 can be solved separately for each time-step (and thus in par-

allel if needed). Furthermore, we note that if storage elements, i.e. tanks, where

present in the network this would no longer be true since the tank constraints

would be coupled in time.

The formulation of P1 does not take into account any characteristics of the

pumps. Specifically, efficiency bounds within which the pumps are allowed to

operate (i.e. bounds for the ui control variables which correspond to pumps).

These bounds can be due to the actual operational limits of the pumps or in

order to prevent wear down and damage. Another reason for such bounds can be

to reduce energy consumption however, improving efficiency does not necessarily

lead to lower energy consumption.

Given a minimum efficiency threshold, we can impose efficiency bounds, as

linear constraints, Kqt + Λut ≤ b, in our problem formulation, approximating

the allowed area of operation by a convex polytope with npoly edges (and nvsp

being the number of VSPs in the network). Where, K ∈ Rnpolynvsp×np , Λ ∈
Rnpolynvsp×nu , b ∈ Rnpolynvsp . This is shown in Figure 3 and the new formulation

is given in Problem 2.

Problem 2 (P2):

min f(x)

s.t. AT
12qt − dt = 0 (Mass balance)

A12ht +A10h0 +A13ut +A11(qt)qt = 0 (Energy balance)

Kqt + Λut ≤ b (Efficiency constraints)

qmin ≤ qt ≤ qmax, hmin ≤ ht ≤ hmax

ut ≥ 0

t = 1, ..., nt.

The entries of K, Λ and b are calculated after choosing appropriate points on
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Figure 3: Approximation of the required efficiency area by a convex polytope.

the plane (q, u) that define the approximating convex polytope for each pump.

The number and location of points can vary based on our choice. In our case,

the chosen points and the corresponding convex polytope (the same for both

pumps) are shown in Figure 3.

It is possible that, for given efficiency bounds, P2 might be infeasible. One

option would be to relax/enlarge the convex polytope. However, this might

result in a number of previously feasible points (q
(t)
j , u

(t)
j ) to move to an area of

lower efficiency. Therefore, a better approach would be to include a slack vector,

st ≥ 0, allowing for violation of the efficiency constraints, Kqt + Λut − st ≤ b,

while adding a penalty function g(s1, ..., snt) to the objective. Nevertheless, in

our results from the study case presented in Section 6, we make use of formula-

tion P2 since it is simpler and feasible for the considered network.

It is important to note that the modelling of VSPs in the formulation of P2 is

advantageous compared to other approaches used in the literature (for example

D’Ambrosio et al. (2015); Fooladivanda & Taylor (2018)) where formulas of the

VSP curves are included directly in the energy balance constrain and include
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a variable for the pump speed. The modelling of each VSP in P2, by a linear

control variable, offers a benefit with respect to optimization while at the same

time and in contrast with León-Celi et al. (2018) the characteristics of the pumps

are not being neglected.

5.3. Multi-Objective Optimization

We also consider a multi-objective optimal control of the WDN. In Section

6, we present the results from the optimal control of the BWFL network with

average zonal pressure and water treatment cost as the objectives.

The most widely known methods for calculating the Pareto front of a multi-

objective problem are the Weighted Sum (Miettinen, 1998), the Normal Bound-

ary Intersection (Das & Dennis, 1998) and the Normalized Normal Constraint

method (Messac et al., 2003). All the aforementioned methods solve a series of

single-objective problems in order to calculate points of the Pareto front.

In our case, we implement the Normalized Boundary Intersection (NBI)

method. Thus, for a given vector w = [w1, w2]T , where w1, w2 ≥ 0 and w1+w2 =

1 we require the solution of Problem 3:

Problem 3 (P3):

min − s

s.t. f∗AZP + L12w2 + sQ1 = fAZP (x)

f∗WTC + L21w1 + sQ2 = fWTC(x)

AT
12qt − dt = 0 (Mass balance)

A12ht +A10h0 +A13ut +A11(qt)qt = 0 (Energy balance)

qmin ≤ qt ≤ qmax, hmin ≤ ht ≤ hmax

ut ≥ 0, s ≥ 0

t = 1, 2, ..., nt, x ∈ R(np+nn+nu)nt

where f∗AZP , f∗WTC are the (global) minima of the corresponding single-objective

problems and by denoting with x∗AZP , x∗WTC the corresponding minimizers we

define the entries of matrix L as L11 = L22 = 0, L12 = fAZP (x∗WTC)−f∗AZP and

14

                  



L21 = fWTC(x∗AZP )− f∗WTC . Finally, we define as Q = −L1n the quasi-normal

vector pointing towards the “utopia point” [f∗AZP f∗WTC ]T . In addition, we can

include the VSP efficiency constrains in the formulations of P3. Note that, in

contrast with P1 and P2, in the formulation of P3 the first two constraints cou-

ple the problem in time (since fAZP and fWTC involve all time-steps”). Thus,

P3 must be solved considering all time-steps.

6. Results

In this section we present the results from the implementation of the mod-

elling (Sections 3,4) and optimization formulations (Section 5) on the Bristol

Water Field Lab (BWFL) network introduced in Section 2. Further implemen-

tation of the presented methodologies to another network can be found in the

Supplementary Material.

All numerical experiments were conducted on a Windows 10 Enterprise (64-

bit), Intel(R) Xeon(R) CPU E5-2665 @2.40 GHz, 32GB RAM system. For the

(local) solutions of the optimization problems we have used IPOPT (Wächter

& Biegler, 2006) with Matlab R2018a. The solution of the single objective

problems, P1 and P2, for a single time-step, took approximately 1 second. Cal-

culation of a single Pareto front point (solving Problem P3) took on average

6 minutes. As a linear solver we use CPLEX v12.8 (www.cplex.com). Finally,

we make use of two global solvers, BARON v19.3.24 (Tawarmalani & Sahinidis

(2005)) and SCIP v5.0.1 (Gleixner et al. (2017)).

The results shown in Figures 5,6 and 8,9 are results from hydraulic simu-

lations (the hydraulic simulation method was based on Abraham & Stoianov

(2015); Abraham & Stoianov (2017) where a detailed comparison with the

EPANET hydraulic simulator can also be found) using the control variable set-

tings obtained from the optimization results. The hydraulic simulation allows

us to obtain more accurate results since in the optimization formulation we use

an approximation of the Hazen-Williams formula while the hydraulic simulation

uses the exact formula. The absolute errors/differences in the results between
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simulation and optimization are shown in Figure 4.
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Figure 4: Absolute errors/differences for flows, heads and energy consumption between hy-

draulic simulation and optimization results for the BWFL network.

6.1. Single-Objective Optimal Control

In Figure 5, we show the results from the optimal 24-hour operation of the

WDN, acquired by solving problems P1 (no efficiency constraints) and P2 (effi-

ciency constraints) with AZP as the objective function. The minimum pressure

head as defined by the regulatory compliance threshold is 15 m. The first row

of sub-figures corresponds to the solution of P1 and the second to the solution

of P2.

By comparing the two rows of sub-figures, we observe that, as expected, when

the network is operated with the efficiency constraints, the AZP takes slightly

higher values (maximum increase ≈ 1.5 m). Nevertheless, this small increase in

the AZP is acceptable with respect to the operation of the network. On the other

hand, the total power consumption is slightly lower (6 kWh less, over the 24-

hour operation). Furthermore, we observe that there is higher variation in the

outlet head of the PRVs when the efficiency constraints are taken into account,

especially for PRV-1 which is practically stable throughout the operations of

the WDN when efficiency constraints are not considered.
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Figure 5: AZP-optimal operation of the BWFL network. The first row of graphs corresponds

to the solution of P1 (no efficiency constraints) and the second row to the solution of P2

(efficiency constraints).

We next consider the pump energy consumption as our objective function.

Given qj and uj , using the affinity laws and equation (9), of the nominal curve,

we can calculate the flow for which, at nominal speed, the pump has the same

efficiency as when operating at qj and uj and thus, using the efficiency curve

(10) calculate η(qj , uj) and finally the energy consumption at qj and uj using

formula (12).

However, for our experiments, we have fitted a quadratic polynomial in order

to obtain an approximation of the energy consumption surface and use it as our

objective function. This, resulted in a convex quadratic polynomial and thus

more convenient, with respect to optimization, compared to a more complicated

closed formula for the energy consumption. Note however, that this approxima-

tion was only used for the optimization. For the results shown in Figures 6 and

, the calculation of the energy consumption was performed using formula 12.

In Figures 6, we show the results from the optimal 24-hour operation of the

WDN, acquired by solving problems P1 and P2, with energy consumption (EC)
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as the objective function. It is evident from the graphs in Figure 5 that the AZP

takes significantly higher values (up to 10m higher) when EC is the objective,

while there is little gain in the reduction of total energy use (13kWh or 3%).

As as result, for this case study, we do not further consider EC as an objective.
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Figure 6: Energy-optimal operation of the BWFL network. The first row of graphs corresponds

to the solution of P1 (no efficiency constraints) and the second row to the solution of P2

(efficiency constraints).

6.2. Automated Optimal Control of the WDN

In the previous subsection we have presented the results from the solution

of problems P1 and P2 with AZP and EC as objectives. However, once the op-

timization problem is solved, we need to determine how pumps and valves are

going to be controlled in practice, during the 24-hour operation of the WDN.

In fact, the results have been obtained for a predicted water demand. The un-

certainty inherent in water network modelling could cause the computed pump

and valve settings to be sub-optimal or even infeasible. We define control curves

so that the implemented controls are as close as possible to optimized settings.

These curves are fitted to the points (qt, ut) obtained from solving the optimiza-

tion problem (i.e. P1 or P2), where qt is the inlet flow of a pump or valve and ut
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is the corresponding outlet head at time-step t. Sensors placed at the inlet and

outlet of pumps and valves measure the inlet flow and outlet pressure. When a

measurement of inlet flow is taken, using the control curves, we adjust the op-

eration of the pump or valve until the outlet pressure measurement matches the

curve. We refer to this form of feedback control as “flow modulation control”

(see Wright et al. (2015); Ulanicki et al. (2000)).

In order to automatically compute the control curves for VSPs and PRVs,

we implement the following strategy: Given the points (qt, ut), t = 1, 2, ..., nt

we consider the statistical models,

ut = fi(qt) + εt (14)

where εt are independent random variables with εt ∼ N (0, σ2) and fi, i =

1, 2, ..., nmodels are functions, fi : A ⊆ R → R, of our choice to be fitted to the

optimization derived points (qt, ut). In our implementation we have considered

n-th degree polynomials with n=1,...,6, an exponential of the form aebx and

a piece-wise linear function with two segments (the break point of the two

segments is also a parameter). In order to consider the trade-off between the

SSE (Sum of Squared Errors) of a model and its number of parameters, we

make use of the Akaike Information Criterion (AICc) (Akaike, 1998) (see also

Burnham & Anderson (1998) pages 63-66). With the assumptions we made for

the statistical models in equation (14) the AICc value for the statistical model

corresponding to fi is given by

AICci = ntln(SSEi/nt) + (2kint)/(nt − ki − 1) (15)

where ki is the number of parameters of fi plus one for the σ parameter of

the residual εt. The model with the lowest value of AICc is considered the best

and thus the corresponding function, f∗, is the one chosen as our control curve.

This procedure is shown in Algorithm 1.
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Algorithm 1: Algorithm for automated control-curve fitting

1 Initialize: minAICc←∞;

2 for i = 1, 2, .., nmodels do

3 Fit fi to data (qt, ut) by minimizing its SSEi;

4 AICci ← ntln(SSEi/nt) + (2kint)/(nt − ki − 1);

5 if AICci < minAICc then

6 minAICc← AICci;

7 f∗ ← fi;

8 end

9 end

10 Return f∗;

The complete process of optimization, control curve fitting and optimal con-

trol of the network can thus be automated. This automated optimal control

scheme is illustrated in Figure 7.

WDN model

Demand pre-

diction for a

period T

Optimization

algorithm

Optimal

control

curves

Control for

period T

Figure 7: Automated optimal control scheme.

In Figures 8 and 9, we show the control curves obtained for pumps and

PRVs respectively. The plotted data were obtained by solving P1 (no efficiency

constraints) and P2 (efficiency constraints) with AZP as the objective function.

The control curves are chosen using Algorithm 1.
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Figure 8: Inlet flows and outlet heads of the VSPs obtained from solving: (a). P1; and, (b).

P2 with AZP as objective. The fitted control curves are shown with solid black lines. The

dots indicate the area of efficiency ≥ 55%.
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Figure 9: Inlet flows and outlet heads of the PRVs obtained from solving a) P1 and b) P2

with AZP as objective. The fitted control curves are shown with solid black lines.

Note that in Figure 8(b), the (qt, ut) points have shifted in order to follow
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the efficiency constraints. Furthermore, note that, in this case, Algorithm 1

has chosen the piece-wise linear model for the VSP control-curves. Some of the

points in Figure 8(b) can be seen to be slightly outside of the convex polytope.

This is because after the optimization results, we run a hydraulic simulation

using the optimal control variable values and the original Hazen-Williams head-

loss formula for more accurate results.

6.3. Multi-Objective Optimal Control

By solving P3 for a range of weight vectors w = [w1 w2]T , w1 + w2 = 1 we

obtain the Pareto front points shown in Figure 10. The fact that the Pareto

points without efficiency constraints dominate those obtained when efficiency

constraints are included in the formulation is to be expected since, in the latter

case, we are solving the same problem but with extra restrictions.
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Figure 10: Pareto-front points obtained from solving Problem P4 with average daily AZP and

total WTC as objectives.

The solutions of the multi-objective problem help us gain useful insights with
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respect to the optimal operation of the WDN. For example, assuming we are

operating the pumps with the efficiency constraints, we see that we can reduce

WTC by ≈ 4% (or by ≈ 10, 000 GBP annually) by allowing an increase of one

meter pressure head from the minimum AZP value. Moreover, we might decide

to install a second pump in each source, in parallel with the existing pump. This

will allow us to operate pumps in such a way as to match the results without

the efficiency constraints and thus, for the same head increase of 1m, reduce

WTC by ≈ 8% (or by ≈ 20, 000 GBP annually).

Finally, note that each Pareto point in Figure 10 corresponds to a control

curve which will allow us to operate the network with the optimized values for

AZP and WTC.

6.4. Global optimality bounds

Problems P1 and P2 are non-linear, non-convex problems. However the non-

convexities are only due to the terms aiqi|qi| in the energy balance equations.

The rest of the terms in the constraints are linear. In addition, all the objective

functions considered in this work are convex (AZP and WTC are linear while EC

is convex quadratic). Thus, we expect that the solutions provided by IPOPT are

global or near-global minima. In this section, we investigate global optimality

bounds for the computed solutions. We show that, for the considered problem,

the solutions computed by IPOPT are near-globally optimal.

In order to compute global optimality bounds for the solutions of Prob-

lem P2, we implement four different global optimization schemes. We evaluate

the performance of two state-of-the-art global solvers, BARON v19.3.24 (Tawar-

malani & Sahinidis (2005)) and SCIP v5.0.1 (Gleixner et al. (2017)). In addition,

we implement a simple branch-and-bound algorithm (with no bound tightening)

based on the polyhedral relaxations for the terms aiqi|qi| + biqi, presented in

Pecci et al. (2018). An example of such a relaxation is shown in Figure 11.
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Figure 11: Example of a polyhedral relaxation for the head loss function aq|q|+ bq.

Furthermore, using the same relaxations, we propose a bound tightening

scheme by solving the LP given in Problem 4 (see Puranik & Sahinidis (2017)

for a general review of domain reduction techniques).

Problem 4 (P4):

min ± qi

s.t. AT
12q − d = 0 (Mass balance)

g(x) ≤ 0 (Energy balance linear relaxation)

Mx ≤ b (Efficiency constraints)

qmin ≤ q ≤ qmax, hmin ≤ h ≤ hmax

u ≥ 0.

where x = [q h u]T ∈ R np+nn+nu and g(x) ≤ 0 defines a linear relaxation of

the energy balance constraint based on the polyhedral relaxations of the terms

aiqi|qi|+ biqi.

In each round of the bound tightening scheme we solve P4 for all pipes (i.e.

flow variables). Note that P4 defines two problems: one with objective −qi and
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one with qi. As soon as one of these problems is solved we update the bounds.

At the end of each bound tightening round we use the new bounds to solve a

linear relaxation of problem P2 (based on the same relaxations as in P4) and

thus obtain a lower bound of the global minimum.

In Figure 12 we plot the upper and lower bounds calculated, for problem P2

at time-step t = 45 with AZP as the objective function. We should mention that

SCIP failed to start even after 12 hours (even with the presolving option off)

while BARON was unable to calculate an upper bound (this issue with BARON

was also reported in Pecci et al. (2018)). Therefore, in Figure 12 we plot the

upper bound calculated by IPOPT and the lower bounds calculated by BARON,

our branch-and-bound implementation which we abbreviate as WNBB (Water

Network Branch-and-Bound) and the lower bounds obtained by the proposed

bound tightening scheme.
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Figure 12: Bounds (UB = Upper Bound, LB = Lower Bound) for the global minimum of

problem P2 with AZP as the objective function at time-step t = 45.

As we observe from Figure 12, both BARON and WNBB fail to provide

a conclusive lower bound value. In contrast, after four rounds of the bound

tightening scheme we achieve an absolute optimality gap of less than 0.5 meters
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of AZP, which is smaller than the level of uncertainty usually experienced in

hydraulic models of water networks. The fact that tailored methods can often

outperform general purpose solvers such as BARON and SCIP is also reported

in Sahinidis (2019). Moreover, the bound tightening scheme can provide a signif-

icant improvement compared to previous work by Ghaddar et al. (2017), where

semi-definite programming relaxations for the global solution of valve control in

water networks are proposed. A comparison between the two methodologies for

the problem of valve control, for the Pescara and Exnet networks from Ghaddar

et al. (2017), is shown in table 1. The placement of the valves in the Pescara

network is identical to Ghaddar et al. (2017). For the Exnet network, the place-

ment of the four valves is the same as in Bradley J. Eck (2012). This is because

the link id’s for the chosen valve locations reported in Ghaddar et al. (2017) do

not exist in our version of the Exnet network.

Table 1: Comparison (time / GAP%) of the proposed bound tightening scheme and the

method presented in Ghaddar et al. (2017).

Bound Tightening SDP (Ghaddar et al.)

Network Valves Round 1 Round 2 -

Pescara 1 19s / 0.01% 19s / 8e-4% 403s / 3.3e-3%

Pescara 2 19s / 0.02% 19s / 0.01% 384s / 3.8e-3%

Exnet 4 10598s / 51% 11383s / 15% 25529s / 61%

7. Conclusions

The presented optimization problem formulations and solution method are

an essential step towards the advanced control of water distribution networks,

which dynamically adapt their hydraulic conditions and connectivity in order

to achieve multiple operational objectives. This control approach enables water

utilities to better respond to the increasing financial, social, environmental and

regulatory pressures.

We have presented a methodology for the optimal control of water distribu-
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tion networks (WDNs) without storage capacity. Using mathematical optimiza-

tion we formulate and solve the problem of optimal control of variable speed

pumps (VSPs) and pressure reducing valves (PRVs). We consider both single

and multi-objective formulations.

Using the optimized solutions, we propose a strategy to automatically calcu-

late the control-curves for VSPs and PRVs, which are used to optimally operate

the network. We thus propose an optimal control scheme, which provides greater

flexibility to manage a wide range of operational conditions and needs.

As a study case, we apply the proposed methodology on a network model

based on a real operational network from Bristol, UK, comprised of 2013 nodes

and 2369 pipes. As objective functions, we consider the average zonal pressure,

the pump energy consumption and the water treatment cost. Both the opti-

mization formulations and the automated control-curve fitting are general and

applicable to any network without storage capacity.

The absence of storage elements decouples the problem of optimal control of

pumps and valves in time. Thus, it allows us to solve the optimization problem

separately and if needed in parallel for each time-step. Although, the problem is

non-linear and non-convex, the presented formulation simplifies the modelling

of the variable speed pumps without neglecting their physical characteristics.

The non-linearities present in the formulation are only due to the head-loss

terms. The numerical experiments show that the proposed method can solve

(using local solvers) the problem of optimal control of networks without storage

in minutes and if needed even in seconds with easily available computational

power, when real sized networks are considered. Moreover, we have proposed

an optimization based bound tightening scheme to compute global optimality

bounds for the considered optimization problems. The results suggest that,

for the considered problem, the proposed scheme performs better that previous

approaches in the literature as well as state-of-the-art solvers such as BARON

and that the solutions computed by the local solver IPOPT are globally or

near-globally optimal.
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