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Abstract— This paper studies the dynamic state estimation
problem for cyber-physical distribution systems (CPDSs) with
false data injection attacks (FDIAs) and delayed measurements.
In view of the characteristics of multiple measurement types,
the equivalent current measurement transformation technique
is adopted to make the measurement equation be expressed
in the form of linear measurement model. Based on the
mixed measurements of phasor measurement units (PMUs) and
distribution remote terminal units (DRTUs), a novel model is
constructed using Bernoulli distributed random variables to
describe the delay phenomena. Further, in order to improve the
transmission efficiency of the measurement data, an mechanism
is introduced in the network transmission process to minimise the
amount of data transmission in the network while ensuring the
performance of system state estimation. A measurement model
based on the event-triggered mechanism is developed, and an
event-triggered square root cubature Kalman filter (ET-SRCKF)
algorithm incorporating delayed measurements is designed to
implement the state estimation of CPDSs, which can obtain the
optimal estimation of the states under delayed measurements.
Finally, simulated examples are conducted on the IEEE 33-bus
test system, and the effectiveness of the proposed method is
illustrated by numerical simulations.

Index Terms— State estimation, event-triggered square root
cubature Kalman filter, delayed measurements, equivalent
measurements, cyber-physical distribution systems.

I. INTRODUCTION

WITH the wide applications of information and com-
munication technology in the distribution network,

the cyber physical coupling in the distribution network is
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gradually deepened. A large number of data acquisition
equipment, computer equipment and electrical equipment
are connected through the power and the communication
networks. The distribution network systems with the newly
equipped characteristics of cyber-physical system (CPS) [1],
[2], [3], [4], [5], [6], become the cyber-physical distribution
systems (CPDSs) [7], [8], [9], [10]. The high dependence
of the distribution network on the cyber system makes the
physical system be inevitably prone to the information failure,
delay, etc. Studies on how to handle such negative impacts
therefore become a new hot topic.

State estimation is an important part of distribution
automation system. With the massive access of distributed
power supply and energy storage equipment, the operation
mode of CPDSs becomes more flexible and complex than
before which puts forward higher requirements for state
estimation of CPDSs. Ensuring high accuracy and reliability of
data is hence of particular importance [11], [12], [13], [14].
In order to achievehigher-precision measurement in CPDSs,
the phasor measurement units (PMUs) are increasingly
deployed. Different from DRTUs, the advanced PMUs are
not only capable of directly measuring the voltage/current
vector but also can be synchronized by GPS [15]. Despite
their capabilities, the high installation cost prohibits PMUs
from entirely replacing DRTUs in the foreseeable future.
Hence, relying solely on PMUs cannot fulfill the observability
requirements of distribution systems. A synergistic utilization
of both DRTUs and PMUs is imperative to acquire
comprehensive measurement information [16], [17], [18], [19].
In this paper, we shall consider the issues of data compatibility
between the two types of measurement data.

Dynamic state estimation of CPDSs involves deriving opti-
mal parameter estimates from data collected by measurement
devices. This process aims to ascertain various parameters
and operating states [20], to ensure the proper functioning
of advanced applications such as subsequent static security
analysis, fault isolation, and recovery. However, the increasing
prevalence of cyber attacks poses a significant threat to
power system security, potentially leading to severe conse-
quences like loss of equipment control, power transmission
interruptions, or grid collapse. False Data Injection Attacks
(FDIAs) represent a prevalent cyber attack method capable
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of compromising remote terminal units, PMUs, or tampering
with data transmitted from meters to control centers [21].
FDIAs can manipulate meter measurements, either by directly
compromising devices or by tampering with the data reported
to control centers. These attacks might introduce biases
into the estimated state outputs [22], obscuring the actual
operating state of the power grid. This obstruction prevents
timely detection of the attacker’s motives, potentially causing
practical or economic repercussions for CPDSs. Therefore,
investigating dynamic state estimation algorithms for CPDSs
under the influence of FDIAs becomes crucial for enhancing
system resilience and security.

In the measurement system, due to the FDIAs on the
CPDSs, there are always random delays in the measurement
data transmitted by the SCADA and PMU measurement sys-
tems, resulting in mixed measurement data being transmitted
to the estimator that is not always up-to-date [23]. How to
design a filtering algorithm for the dynamic state estimation
of CPDSs with delayed measurements is a crucial research
topic in engineering applications [24], [25], [26], [27], [28],
[29]. Su and Lu [30] reported the earliest work considering
time delay in power systems, which used a stochastic extended
Kalman filter algorithm to provide an optimal estimate of
state for a system where the measurements are randomly
delayed. An adaptive Kalman filtering algorithm to handle lost
or delayed measurement was addressed in [31]. A limitation
of the existing work is that it assumes the whole measurement
vector to be either received in time or delayed, which cannot
describe the situation, where only partial information is
delayed. In addition, Yang et al. [32] proposed a modified
state estimator to solve the power system state estimation
problem with time delay, which was based on the assumption
that all measurement data are obtained from PMUs. However,
few works are aimed at representing a state estimator with
delayed measurements to handle the issue of mixed DRTU and
PMU measurements. On the other hand, the existing studies on
CPDSs state estimation rarely consider the impact of network
transmission performance, and all assume that the transmission
of measured data is not limited by network bandwidth.

However, the transmission of large amounts of data causes
packet loss and delay [33], [34], which will adversely affect
the performance of state estimation in practical applications.
On the basis of ensuring the estimated performance of the
system, the network data transmission volume is reduced as
much as possible. Event triggering mechanism can effectively
reduce redundant data transmission in the network [35], [36],
[37], [38]. Motivated by the previous discussions, the goal
of this paper is to design an algorithm based on SRCKF
and capable of handling mixed PMU, DRTU and one-step
delay measurements. In order to reduce the data transmission
of the measuring device and ensure the performance of
state estimation, zero-input data retention strategy is adopted
to establish a measurement model under event triggering
mechanism. An ET-SRCKF with delay state estimation
algorithm is proposed to solve the problem of mixing PMU
and DRTU measurements. To conclude, the main contributions
of this paper are extracted in the following aspects.

1) The compatibility problem of the two types of
measurement data is solved by the equivalent current

measurement transformation technique, which can
improve the consistency of information and the accuracy
of state estimation.

2) The ET-SRCKF algorithm based on delay measurement
is designed not only to ensure the state estimation
accuracy but also to reduce the amount of data
transmission and alleviate the pressure of CPDSs
communication.

3) In contrast to the state estimation methods of [27]
and [28], the proposed method has better estimation
performance, and the algorithm is robust to partial
measurement delays and effective in handling both PMU
and DRTU measurements [32].

Notation: Throughout the entire article, R is the n-dimensional
Euclidean space. E[w] is utilized to represent the expectation
of a variable w. y ∈ Rn , ∥y∥ denotes the L2 norm of
vector y. AT indicates the transpose of matrix A. diag{. . .}

means the block-diagonal matrix. N (µ, R) is used to describe
the Gaussian stochastic process, where µ and R are the
mean value and covariance matrix of the Gaussian stochastic
process, respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Mathematical Model of CPDS State Estimation

In this paper, the system state xk ∈ Rn is defined as the
real and imaginary parts of bus voltage in the CPDS, that is,
xk =

[
x1,k, . . . , xl,k, . . . , xd,k

]T , where xl,k =
[
xl,k,re, xl,k,im

]
is a vector representing the state of bus l at time instant k.
Then, the state space model of the system can be described as

xk = f (xk−1) + wk, (1)

where f (·) is the state equation, respectively. wk represents
uncorrelated white Gaussian noise.

According to Holt-Winters double exponential smoothing
method [14], the state equation can be updated as follows

x̂k|k−1 = Sk−1 + bk−1,

Sk−1 = αH x̂k−1|k−1 + (1 − αH )x̂k−1|k−2,

bk−1 = βH (Sk−1 − Sk−2) + (1 − βH )bk−2,

(2)

where x̂k|k−1 is the predicted value of the system status. Sk−1
and bk−1 are the horizontal component and vertical component
at k − 1 moment respectively. αH and βH are called the
smoothing index, and their value range is usually (0, 1).

Generally, the DRTU measurement vector zdrtu
k ∈ Rm1 is

obtained by zdrtu
k =

[
P f T

k , Q f T
k , PT

k , QT
k

]T
, where Pk and

Qk are the vectors of the real and reactive power injections
at all buses, and P f

k and Q f
k are the vectors of the real and

reactive power flows between all buses, respectively.
Then, similar to [5], the measurement vector zdrtu

l,k from the
DRTU at bus l is derived

P f
l

1
= P f

i j = −(xi,rex j,re + xi,im x j,im)gi j

× (x2
i,re + x2

i,im)gi j −(xi,im x j,re−xi,rex j,im)bi j ,

Q f
l

1
= Q f

i j = (xi,rex j,im − xi,im x j,re)gi j

− (x2
i,re + x2

i,im)bi j +(xi,rex j,re+xi,im x j,im)bi j ,
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Pl = xl,re
∑
j∈Bl

(Gl j x j,re − Bl j x j,im)

+ xl,im
∑
j∈Bl

(
Gl j x j,im + Bl j x j,re

)
,

Ql = xl,im
∑
j∈Bl

(Gl j x j,re − Bl j x j,im)

− xl,re
∑
j∈Bl

(Gl j x j,im + Bl j x j,re), (3)

where Gl j + j Bl j is used to indicate the l j th term of the
complex admittance connected to bus l. gi j + jbi j denotes
the series admittance between bus i and bus j . Bl is a set
of the number of buses connected to bus l.

The DRTU measurement vector zdrtu
l,k is modeled as the

following equation

zdrtu
k = η (xk) + v1,k (4)

where η(xk) is obtained by Eq. (3), v1,k is the DRTU
measurement noise, which satisfies the Gaussian distribution
N (0, σ 2

c ).
In order to solve the problem of the difference of

data components obtained by different measuring devices,
we employ the measurement transformation technology to
convert the measurement collected by DRTUs into the
equivalent measurement of the real part and imaginary part
of the node injection current, as well as the measurement of
the real part and imaginary part of the branch current. It is
noticed that if all measured quantities are voltage or current
phasors and the states to be estimated are bus voltages, then
the linear measurement model is obtained in [36].

For Pl and Ql , the equivalent current injection at the same
bus is obtained from

Il,re =
Pl xl,re + Ql xl,im

x2
l,re + x2

l,im
,

Il,im =
Pl xl,im − Ql xl,re

x2
l,re + x2

l,im
. (5)

Similarly, for Pl j and Ql j , the equivalent branch current is
obtained from

Il j,re =
Pl j xl,re+Ql j xl,im

x2
l,re + x2

l,im
,

Il j,im =
Pl j xl,im−Ql j xl,re

x2
l,re + x2

l,im
. (6)

The measurement vector z pmu
l ∈ Rm2 from the PMU is

detailed as z pmu
l = [V pmu

i,re , V pmu
i,im , I pmu

i j,re , I pmu
i j,im]

T .
Similarly, based on the power flow calculation, each item of

the above measurement vector with PMUs can be described

I pmu
i j,re = xi,regi j − xi,imbi j − x j,regi j + x j,imbi j ,

I pmu
i j,im = xi,im gi j + xi,rebi j − x j,im gi j − x j,rebi j ,

V pmu
i,re = xi,re,

V pmu
i,im = xi,im .

(7)

The PMU measurement vector z pmu
k can be expressed as

z pmu
k = L (xk) + v2,k (8)

where v2,k is the noise from the PMU measurement, which
satisfies the Gaussian distribution N (0, σ 2

p).
Due to the equivalent measurements used instead of

the actual ones in state estimation, the error propagation
theory is required to evaluate the equivalent measurement’s
error covariance. For instance, the standard deviation of the
equivalent current flow σ 2

I c is obtained from

σ 2
I c =

σ 2
c

x2
re + x2

im
(9)

where σc is the standard deviation of DRTUs, xre and xim are
the real and imaginary parts of the state vector, respectively.
Details of the equivalent measurements and the corresponding
error covariance can be seen in [19].

Finally, combining with Eq. (5)- Eq. (7), the mixed
measurement equation of CPDS can be summarized as

zk = H xk + vk (10)

where zk = [Il,re, Il,im, Ii j,re, Ii j,im, z pmu
l ]

T
∈ Rm , vk is

the measurement error vector. Notice that different types of
standard deviations are independent of each other. Jacobian
matrix Hi can be expressed as

Hi =



∂ Ii,re/∂xi,re ∂ Ii,re/∂xi,im

∂ Ii,im/∂xi,re ∂ Ii,im/∂xi,im

∂ Ii j,re/∂xi,re ∂ Ii j,re/∂xi,im

∂ Ii j,im/∂xi,re ∂ Ii j,im/∂xi,im

∂ I pmu
i j,re /∂xi,re ∂ I pmu

i j,re /∂xi,im

∂ I pmu
i j,im/∂xi,re ∂ I pmu

i j,im/∂xi,im

∂Vi,re/∂xi,re 0

0 ∂Vi,im/∂xi,im


.

Remark 1: In this paper, the time synchronization caused
by different sampling instants and refreshing rates of PMU
and DRTU data is not considered when solving the data com-
patibility problem. Since the system is assumed unchangeable
during the scan for measurement, the synchrinization issues
can be ignored under steady-state operations.

B. False Data Injection Attacks Model

In the field of research on the detection of bad data against
the CPDSs, experts and scholars have achieved considerable
achievements. A variety of effective detection methods have
been proposed, yet most of them are still based on residuals
analysis [15].

r = zk − ẑk (11)

where ẑk represents the estimated vector of zk .
According to the definition of the residual, Eq. (10) can be

rewritten as follows [20]:

r = zk−H x̂k (12)

The measurement vector containing false data is defined
as za = zk + a, where zk = [z1, . . . , zm]T is the original
measurement vector and a = [a1, . . . , an]T is the false data
vector injected into the measurement. The state quantity after
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the attack can be expressed as x̂a = x̂k + c, where c =

[c1, . . . , cn]T is the arbitrary nonzero error vector of the state
quantity caused by FDIAs. The residuals after attacks can be
calculated as follows

∥r∥ =
∥∥za − H x̂a

∥∥
= ∥zk + a − H(x̂k + c)∥

= ∥zk − H x̂k + a − Hc∥ (13)

If the attack vector meets a = Hc, the following formula
is true.

∥r∥ =
∥∥za − H x̂a

∥∥ = ∥zk − H x̂k∥ (14)

Eq. (14) suggests that the residual values before and after
the FDIAs are equal, and then the residual-based bad data
detection is unable to identify the false data. Consequently,
the FDIAs are successfully applied to the measurement vector
when the attack is modelled as a = Hc. In this case, the
measurement vector under the attack has a larger deviation
from the true vector, which will undermine the safe and stable
operation of CPDSs [28].

In [29], If the errors of attack vectors are taken into account,
the residual values before and after the FDI attacks are not
equal. Then the following formula is obtained∥∥za − H x̂a

∥∥ = ∥zk − H x̂k + a − Hc∥

≤ ∥zk − H x̂k∥ + ∥a − Hc∥ (15)

However, if the residual value of the measurement data
is less than the detection threshold in the detection process,
the FDIAs are still successfully hidden. Furthermore, the
detection threshold J is determined by superimposing a certain
redundancy on the normal maximum estimated deviation. The
formula of the detection is as follows

∥zk − H x̂k∥ ≤
∥∥za − H x̂a

∥∥ ≤ J (16)

Thus, if za satisfies Eq. (15), the FDIAs can be implemented
to the CPDSs.

Remark 2: The basic principle of residuals analysis is
illustrated below. Under the circumstance of ignoring noise
and assuming that all state quantities are mutually indepen-
dent and the measurement obeys the normal distribution, the
residuals obey the chi-square distribution which the maximal
degree of freedom is m − n. Set an appropriate threshold J ,
the size of which is determined by the level of significance.
If ||r || < J , it is considered that there is no false data injection
attacks. Otherwise, it means FDIAs exist. FDIAs make full use
of the vulnerability of this detection mechanism. The attackers
construct the well-designed attack vector to keep the residuals
unchanged before and after the attack, in which case they can
avoid detection.

In practice, due to limited bandwidth issues and long-
distance communication, delays will inevitably occur in the
measurement data transmitted from DRTUs and PMUs, which
leads to the mixed measurement being transmitted to the
estimator not always to be updated. In this paper, the
hybrid measurement model with one-step stochastic delay

is considered. In [39], the delayed measurement equation is
always described as follows

yd,k = (I − ζk)zk + ζk zk−1 (17)

where ζk = diag{ζ1,k, ζ2,k, . . . , ζm,k} is the measurement delay
matrix, ς and ς(I − ς) are its mean and variance. The
i th element ζi,k is a stochastic variable, which satisfies the
Bernoulli distribution that takes the possible value on {0, 1}.
Furthermore, we define

P(ζi,k = 1) = E[ζi,k] = ςi ,

P(ζi,k = 0) = 1 − E[ζi,k] = 1 − ςi ,

E[(ζi,k − ςi )
2
] = (1 − ςi )ςi ,

(18)

where ςi is called the measurement delay rate of the i th
measurement. ζk is uncorrelated with v1,k , v2,k , and x0. If ςi
= is not all equal to 0, only part of the mixed measurements
are delayed.

Remark 3: In practice, due to the limited band-width and
complex communication network, there is a certain probability
that information transmitted by measurement data at one
moment may arrive on time with a delay. Distinguished
from [23], this partial delay measurement model is described
by Eq. (17).

III. ET-SRCKF-BASED STATE ESTIMATION WITH
DELAYED MEASUREMENTS

A. Predicting

In the SRCKF algorithm, L represents the number of
cubature points, L = 2n for third degree spherical-radial
cubature rule; the set of 2n cubature points is given by

ξi =

{√
nei , i = 1, 2, . . . , n,

−
√

nei−n, i = n + 1, n + 2, . . . , 2n,
(19)

where ei denotes the i th column of a n-dimensional unit
matrix.

The initial state estimated value and its error covariance
matrix are given by

x̂0 = E(x0), P0 = E[(x0 − x̂0)(x0 − x̂0)
T
] (20)

The initial value S0 of the square-root factor of error
covariance matrix is computed by the Cholesky decomposition
of P0.

S0 = (chol(P0))
T (21)

Evaluate cubature points and propagate them through the
state function {

χi,k−1 = Sk−1ξi + x̂k−1,

χ∗

i,k|k−1 = f (χi,k−1).
(22)

Estimate the predicted state

x̂k|k−1 =
1
L

L∑
i=1

χ∗

i,k|k−1 (23)
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Compute the square-root factor of predicted error covariance
matrix 

[
A B

]
= qr

([
χ∗

k|k−1 SQ,k−1

]T
)

,

Sk|k−1 = B(1 : n, :)T ,

(24)

where SQ,k−1 is a square-root factor of Qk−1, obtained by

SQ,k−1 = (chol(Qk−1))
T

χ∗

k|k−1 =
1

√
L

[
χ∗

1,k|k−1 − x̂k|k−1, . . . , χ
∗

L ,k|k−1 − x̂k|k−1

]
.

A and B are the unitary matrix and upper triangular matrix,
respectively, through QR decomposition.

B. Filtering

Taking into account Eq. (17), the mean ŷd,k|k−1 and square-
root factor of the innovation covariance matrix Syy,k|k−1,
as well as the cross-covariance Pxy,k|k−1 are formulated as

ŷd,k|k−1 = (I − ς)ẑk|k−1 + ς ẑk−1,

Syy,k|k−1 = (I − ς)Szz,k|k−1 + ς Szz,k−1

+ ς(I − ς)(ẑk|k−1 − ẑk−1)(ẑk|k−1 − ẑk−1)
T ,

Pxy,k|k−1 = Pxz,k|k−1(I − ς) + Pxz,k−1ς.

(25)

As in the prediction step, the statistics of zk−1 are
approximated from the cubature points χi,k−1, by defining
λ∗

i,k|k−1 = Hχi,k−1, we have the following

ẑk−1 =
1
L

L∑
i=1

λ∗

i,k|k−1,[
A B

]
= qr

([
Z∗

k−1 SR,k−1

]T
)

,

Szz,k−1 = B(1 : m, :)T ,

Pxz,k−1 = χk−1(Z∗

k−1)
T ,

(26)

where SR,k−1 is a square-root factor of Rk−1, obtained by

SR,k−1 = (chol(Rk−1))
T ,

Z∗

k−1 =
1

√
L

[
λ∗

1,k|k−1 − ẑk−1, . . . , λ
∗

L ,k|k−1 − ẑk−1

]
,

χk−1 =
1

√
L

[
χ1,k−1 − x̂k−1, . . . , χL ,k−1 − x̂k−1

]
.

However, to approximate the statistics of zk , which is a
function of xk , we use the information from the statistics given
in Eqs. (23)-(24). The formulas are described as follows

1) Evaluate cubature points and update the propagated
cubature points through the measurement function{

χi,k|k−1 = Sk|k−1ξi + x̂k|k−1,

Zi,k|k−1 = Hχi,k|k−1.
(27)

2) Estimate the predicted measurement

ẑk|k−1 =
1
L

L∑
i=1

Zi,k|k−1 (28)

3) Compute the square-root factor of the innovation
covariance matrix

[
A B

]
= qr

([
Z∗

k|k−1 SR,k

]T
)

,

Szz,k|k−1 = B(1 : m, :)T ,

(29)

where SR,k is a square-root factor of Rk , obtained by
SR,k = (chol(Rk))

T and

Z∗

k|k−1 =
1

√
L

[Z1,k|k−1 − ẑk|k−1, . . . ,

. . . , ZL ,k|k−1 − ẑk|k−1].

4) Compute the cross-covariance matrix

Pxz,k|k−1 = χk|k−1(Z∗

k|k−1)
T (30)

where

χk|k−1 =
1

√
L

[χ1,k|k−1 − x̂k|k−1, . . . ,

. . . , χL ,k|k−1 − x̂k|k−1].

The statistics of zk−1 and zk are substituted in Eq. (25) to
obtain those of yd,k , which are used in the following equations
providing the filter of xk and the error covariance:

x̂k = x̂k|k−1 + Kk(yd,k − ŷd,k|k−1),[
A B

]
= qr

([
χk|k−1 − Kk Z∗

k|k−1 Kk SR,k

]T
)

,

Sk = B(1 : n, :)T ,

(31)

where

Kk = (Pxy,k|k−1/Syy,k|k−1
T )/Syy,k|k−1.

C. Event-Triggered Mechanism

In the CPDSs state estimation, the data measured by the
measuring device needs to be transmitted to the system
state estimator through the network. With the increase
of measuring device layout in CPDSs, the amount of
measurement data transmitted by network is increasing, which
will lead to the increase of communication channel pressure
and network induction phenomenon. In order to rationally
utilize communication resources and relieve the pressure of
network communication, an event triggering mechanism is
used in this paper to reduce the amount of data transmission
from measuring device to estimator. As shown in Fig. 1, the
CPDSs measurement data is obtained by the DRTU and PMU
measurement devices. The event trigger controller filters the
measurement data according to the event trigger conditions,
and transmits the measured data meeting the conditions to the
estimated value x̂k of the CPDSs state at time k.

In order to reduce the data transmission amount of
measuring device and ensure the performance of state
estimation, distributed event triggering strategy is adopted
in this paper because the distribution network has many
points and wide areas and the state changes of nodes are
not synchronized. The event trigger controller is integrated
into the measuring device, and each event trigger controller
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Fig. 1. State estimation with event-triggered mechanism in the cyber-physical distribution systems.

independently detects whether the data measured by the
measuring device meets the trigger conditions.

First, given the event trigger threshold δi and the maximum
number of sampling Nmax , it is defined that εi,k = zi,k − zi,τ
represents the difference between the measured data zi,k at
time k of the i th measuring device and the measured data
transmitted to the estimator at the nearest time, zi,τ . Event
generation function is shown in the following Eq. (32)

li
(
εi,k, δi

)
= εT

i,kεi,k − δi (32)

where δi is the given event trigger threshold. Define the event
trigger logic as

γi,k =

{
1, ll

(
εi,k, δi

)
≥ 0

0, li
(
εi,k, δi

)
< 0

(33)

The value of γi,k determines whether the measured data
and yi,k will be transmitted to the estimator through the
communication network. If γi,k = 1, the measured data will
be transmitted to the estimator; otherwise, it will not be
transmitted. At this time, the measurement data received by
the time k estimator can be expressed as

z̆i,k =

{
zi,k, γi,k = 1
0, γi,k = 0

(34)

Remark 4: According to [40] and [41], the event-triggering
scheme based on system outputs is subjected to attacks or
external interference, which may lose efficacy under lack
measurement information. In contrast, the proposed event-
triggered mechanism remains operational under the conditions
of DRTUs without sampled information, since the triggering
threshold is set manually independent of the system output.
It is worth mentioning that the event-triggering mechanism
adopted in this paper can reduce computational complexity
and exhibits lower conservatism.

D. SRCKF Algorithm Based on Event-Triggered Mechanism

In order to solve the problem of incomplete measurements
received by the estimator due to the introduction of the event
trigger mechanism, the ET-SRCKF algorithm based on the
event trigger mechanism is proposed in this paper.

According to the zero-input data retention strategy, the
measurement information transmitted to the estimator at time
k is

z̆k = 8k zk (35)

where 8k = diag
(
γ 1

k I1, . . . , γ i
k Ii , . . . , γ

n
k In

)
, where Ii is

the identity matrix, whose dimension is equal to the dimension
of the data measured by the i th measuring device.

By revising Eq. (27) and Eq. (28) according to Eq. (35),
we can obtain{

χi,k|k−1 = Sk|k−1ξi + x̂k|k−1,

Z et
i,k|k−1 = 8k Zi,k|k−1.

(36)

ẑet
k|k−1 = 8k ẑk|k−1 (37)

where the superscript et represents the corresponding physical
quantity under the event triggering mechanism, and the same
is true below.

According to Eq. (29) and Eq. (30), the innovation
covariance matrix and the cross-covariance matrix of ET-
SRCKF algorithm can be obtained

Pet
zz,k|k−1 = Z∗et

k|k−1(Z∗et
k|k−1)

T
+ 8k Rk8k + Qµ

k (38)

where Qµ
k is the given positive definite matrix to ensure the

positive definiteness of the measurement covariance matrix
under the event triggered data transmission mechanism.

Pet
xz,k|k−1 = χk|k−1(Z∗et

k|k−1)
T (39)

where

Z∗et
k|k−1 =

1
√

L
[Z et

1,k|k−1 − ẑet
k|k−1, . . . ,

. . . , Z et
L ,k|k−1 − ẑet

k|k−1].
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Based on the previous derivation results, combined with the
SRCKF algorithm framework, the ET-SRCKF algorithm can
be obtained

x̂k = x̂k|k−1 + K et
k (y̆d,k − ŷet

d,k|k−1),[
A B

]
= qr

([
χk|k−1 − K et

k Z∗et
k|k−1 K et

k SR,k

]T
)

,

Sk = B(1 : n, :)T ,

K et
k = (Pet

xy,k|k−1/SetT
yy,k|k−1)/Set

yy,k|k−1. (40)

Based on the discussions given above, the ET-SRCKF
algorithm with delay measurement can be formative, which
is summarized in Algorithm 1 to facilitate implementations.

Algorithm 1 The ET-SRCKF With Delayed Measurements
1: Initialise: x0, x̂0, N , P0, S0, Q0, R0, n, m, L
2: for k = 1 : N
3: Evaluate cubature points

χi,k−1 = Sk−1ξi + x̂k−1,
4: Compute cubature points propagated through the state
equation

χ∗

i,k|k−1 = f (χi,k−1),
5: Estimate the predicted state

x̂k|k−1 = 1/
L

∑L
i=1 χ∗

i,k|k−1,
6: Compute the square-root factor of predicted error
covariance matrix

Sk|k−1 by (24),
7: Compute ẑk−1, Szz,k−1, Pxz,k−1 by (26),
8: Estimate the predicted measurement

ẑk|k−1 = 1/
L

∑L
i=1 Zi,k|k−1,

9: Compute the square-root factor
Szz,k|k−1 by (29),

10: Compute the cross-covariance
Pet

xz,k|k−1 = χk|k−1(Z∗et
k|k−1)

T ,
11: Compute ŷd,k|k−1, Syy,k|k−1, Pxy,k|k−1 by (25),
12: Compute the gain matrix

K et
k = (Pet

xy,k|k−1/SetT
yy,k|k−1)/Set

yy,k|k−1,
and provide x̂k, Sk by (40),

14: end

IV. NUMERICAL EXAMPLES

In this section, the ET-SRCKF based state estimation with
delayed measurements is tested in the case study of the IEEE
33-bus test system. To obtain more realistic case studies, the
measurement data used in the simulation are obtained by
adding white Gaussian noise into the results of power flow.
The power flow is calculated by MATPOWER package [42],
The standard deviation of SCADA measurement is set to
0.02. The standard deviations of PMU voltage amplitude and
phase angle are set to be 0.005 and 0.002 [43], respectively.
Furthermore, assume that the initial voltages of all buses are
at flat start, that is, xl,0,re = 1 p.u, xl,0,im = 0 for all
l = {1, 2, . . . , 33}.

Measuring terminals include traditional DRTUs and PMUs.
In Holt’s method, the smoothing parameters αH and βH are
very important for the accuracy of the state prediction model.

TABLE I
MSE OF CKF, SRCKF AND ET-SRCKF FOR STATE VARIABLE

According to the constraint condition of αH (1 + βH ) <

1 in [14], we conduct some comparative experiments under
different αH and βH . As shown in Fig. 3, it can be seen that the
algorithm has the best dynamic performance and estimation
accuracy when αH = 0.8 and βH = 0.1.

1) Voltage magnitude obtained at bus 1.
2) Power injections at buses 2, 3, 7, 8, 10, 11, 12, and 14.
3) Power flows between buses 6-7, 8-9, 13-14, 24-28, and

32-32.
PMUs are separately installed at critical nodes 2, 6, 12, 18,

22, and 33 [44], which can obtain the voltage and current
measurements on these nodes. In addition, the corresponding
measurement error covariances are Rdrtu(k) = diag20{0.01},
Rpmu(k) = diag36{0.012

} and W(k) = diag28{0.012
}

[45]. Then, the equivalent measurements error covariance is
obtained from Eq. (9). In this section, the main experiments
conducted in this test system are classified into three
categories.

1) The transmission process of SRCKF algorithm based on
event-triggered mechanism under different thresholds is
simulated.

2) The comparative experiment of the CKF, SRCKF and
proposed ET-SRCKF is implemented.

3) The ET-SRCKF-based state estimation with delayed
measurements is compared with various measurement
delay rates.

Remark 5: The measurement error covariance matrix
represents the uncertainty or variability in a measurement.
Different choices of measurement error covariance can have
an impact on the performance and results of the ET-SRCKF.
A larger measurement error covariance implies a greater
uncertainty in the measurement, so we generally assign a
smaller measurement error covariance, where the values
are set based on previous experience and identical to [45]
and [46].

Remark 6: In CPDSs, the most important basis for
selecting the location of PMUs is to ensure system
observability. However, achieving system observability by
increasing the number of measurement devices seems to
be economically impossible. Therefore, it is necessary to
reduce the number of PMUs installed. We consider installing
PMUs only at the beginning and end of the busbars and
connections [47], [48], [49].

Due to space constraints, only buses 5 and 7 in
the entire IEEE 33-bus system are selected to be the
representative buses. Fig. 4 and Fig. 5 respectively show
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Fig. 2. IEEE 33 bus test system.

Fig. 3. The estimated error results under different parameters αH and βH .

Fig. 4. Estimation of the system attacked.

the actual state and estimated state obtained by ET-
SRCKF algorithm under the FDIAs. The results show that
the proposed ET-SRCKF algorithm is effective in state
estimation.

Fig. 5. Estimation of the system attacked.

In order to demonstrate the performance of the event-
triggered mechanism, a data transmission ratio (DTR) is
defined as a transmission performance index by

Jdtr =
1

mkmax

j=m∑
j=1

k=kmax∑
k=1

γ j,k × 100%

Fig. 6 and Fig. 7 shows the event-triggered instants and
event-triggered data transmission rate for an event-triggered
threshold δi = 5 × 10−3. It can be seen that the inclusion of
the event-triggered transfer mechanism reduces the amount of
data transferred from the measurement device to the estimator
by approximately 30%.

In order to figure out the impact of various trigger-
ing thresholds on estimation performance, simulations are
conducted with δi = 2 × 10−3, δi = 4 × 10−3, and
δi = 6 × 10−3, respectively. Fig. 8 shows the RMSE
of estimation results and DTR with different triggering
thresholds. Fig. 9 shows the event-triggering instant with
different event-triggering thresholds. It can be found out
from these figures that the DTR decreases sharply with
the increase in the triggering threshold, which is because
the large triggering threshold prevented more measurement
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Fig. 6. Event-triggered instants with δi = 5 × 10−3.

Fig. 7. Data transfer rate under event-triggered mechanism.

Fig. 8. Variation of the RMSE and Jdtr with the trigger threshold.

data from being transmitted to the remote estimation center,
suggesting that the event-triggered mechanism contributes to
reducing data transmission in the communication network and
alleviating the communication pressure.

Remark 7: It can be seen through Fig. 8 and Fig. 9 that
when δi = 2 × 10−3, Jdtr = 89.17%; when δi = 4 × 10−3,

Fig. 9. Event-triggered instants.

Fig. 10. Estimation result of voltage amplitude.

Jdtr = 70.18%; when δi = 6 × 10−3, Jdtr = 54.19%; as the
trigger threshold δi increases, Jdtr decreases and the RMSE
of the estimated results of the ET-SRCKF algorithm increases,
which means that the smaller the δi , the better the performance
of event-triggered mechanism. Therefore, choosing the right
threshold in a practical CPDSs can effectively relieve the
communication pressure and ensure the performance of state
estimation.

Fig. 10 and Fig. 11 shows the state tracking curves for the
voltage magnitudes and voltage phase angles. As can be seen
from the figures, the ET-SRCKF algorithm is able to track
changes in the system state and make accurate estimates in
real time even when only partial measurements are received,
thanks to the fact that the ET-SRCKF algorithm handles non-
trigger errors well. Furthermore, it can be clearly seen from
Fig. 12 and Fig. 13 that the proposed ET-SRCKF algorithm
has better performance for state estimation of CPDSs with
delayed mensurements than the SRCKF algorithm and the
CKF algorithm.

Fig. 14 shows the errors of the ET-SRCKF algorithm under
FDIAs. It can be seen that the ET-SRCKF algorithm has
a relatively small error under FDIAs. In order to further
compare the performance of CKF, SRCKF and ET-SRCKF
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Fig. 11. Estimation result of voltage phase angle.

Fig. 12. Estimation result of voltage phase angle.

Fig. 13. Estimation result of voltage phase angle.

algorithms, mean square error (MSE) of the state variable
is used as the evaluation index, which is defined as follows:
MSEk = 1/

n
∑n

i=1
(
xk − x̂k

)2. The results, listed in Table I,
also indicates the effectiveness of the proposed algorithm
quantitatively.

Fig. 14. Estimation errors.

Fig. 15. MSEs of estimated values of real parts of states at bus 5 under
various measurement delay rates.

Fig. 16. MSEs of estimated values of imaginary parts of states at bus 5
under various measurement delay rates.

To analyze the impacts of delayed measurements on the
CPDSs state estimation, different measurement delay rates
are simulated. The MSE used can more accurately describe
the accuracy of state estimation. Fig. 15 and Fig. 16 show
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the results of state estimation under different measurement
delay probabilities, where R.V and I.V represent the real
and imaginary parts of the estimated state vector at bus 5,
respectively. It can be found that when the measurement delay
rate is 0, the waveform is stable; when the measurement
delay rate is 0.9, the error deviates from the equilibrium point
seriously, and the addressed system oscillates seriously.

V. CONCLUSION

This work has focused on the problem of dynamic state
estimation for measurements with delays. In this paper,
in order to cope with the delay phenomenon caused by
the transmission of large amount of measurement data in
CPDSs, a reliable event-triggered SRCKF method has been
proposed, which utilized the event-triggered mechanism to
reasonably reduce the redundant transmission. To ensure
the state estimation performance under the event-triggered
mechanism, the ET-SRCKF algorithm has designed. Finally,
the effectiveness of the method has verified by simulation.
In view of the importance of the new power system as a
development trend in the new energy field, the development
of high-performance state estimation algorithms for the new
power system has become an urgent task, and future research
will consider the dynamic characteristics of different systems
in the integrated energy system and apply the algorithms
proposed in this study to the new power system.
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