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Abstract 

Excessive vibration of the rotor system is one of the main reasons for the failure of rotating 

machines. Thus, developing cost-effective methods to reduce such vibrations is critical. One 

effective and practical method for mitigating rotor system vibrations is using a nonlinear vibration 

absorber (NVA) or nonlinear energy sink (NES). NVA significantly reduces vibration amplitude 

and prevents resonance in rotor systems. Previous studies have extensively explored vibration 

reduction in rotor systems using NVA via numerical methods. However, analytical approaches, 

such as perturbation methods, have not yet been employed. In this paper, due to the many 

advantages of the analysis, for the first time, the dynamics of rotor system equipped with a multi-

stable nonlinear vibration absorber (MNVA) has been investigated using the multiple scales 

method. The spring stiffness of the vibration absorber has been assumed to be a combination of 

linear and nonlinear components, and the response has been obtained using a first-order 

approximation. Then have been examined the impact of various parameters on the system’s 

oscillation amplitude and also the possibility of jump phenomenon. To validate the results, the 

response obtained from the present analytical method has been compared with the numerical 

method available in the technical literature. Lastly, the advantages of using MNVA compared to 

linear vibration absorber (LVA) have been investigated. The results show that the first-order 

approximation using the multiple scales method provides accurate solutions, closely matching 

numerical results. The vibration absorption rate of MNVA is 22% higher than that of the LVA. 

Keywords: Rotor system, nonlinear vibration absorber, vibration amplitude reduction, jump 

phenomenon, multiple scales method. 

 

1. Introduction 

Vibration is an inherent characteristic of all rotating machinery and must be controlled within 

acceptable thresholds to ensure reliable and safe operation [1-3]. Deviations from these established 

standards can result in elevated vibration levels, which may cause severe damage to components, 

leading to system failure and, in extreme cases, irreversible damage [4, 5]. High-amplitude 

vibrations typically manifest at certain critical speeds of the rotor, contributing to rotor shaft 

eccentricity. This excessive vibration may weaken connections and compromise structural 

integrity, ultimately impairing the functionality of the rotating machinery [6]. Consequently, the 
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development of effective solutions for mitigating vibrations in rotating systems has become a 

significant focus of research [7-10]. 

Vibration absorbers play a pivotal role in mitigating overall vibrations in rotor systems by 

transferring vibrational energy from the rotor to the absorber. Due to advantages such as low cost, 

simple structure, and operation without the need for external power sources, they have garnered 

significant attention in the engineering community [11-14]. The concept of the vibration absorber 

was first introduced by Watts [15], and the first practical implementation—a mass-spring system 

attached to the primary device—was proposed by Frahm [16]. Vibration absorbers for rotor 

systems are generally categorized into passive [17, 18] and semi-active (active) types [19, 20]. 

Both passive and active vibration absorbers are effective in reducing rotor system vibrations; 

however, each type has inherent limitations. Passive absorbers are generally restricted to operating 

within a narrow frequency range near resonance, limiting their effectiveness across broader 

frequency bands. On the other hand, active vibration absorbers, while capable of adapting to a 

wider range of frequencies, are complex and costly due to their intricate design and dependence 

on external energy sources. In contrast, nonlinear vibration absorbers (NVA) or nonlinear energy 

sinks (NES) [21-24] present a promising alternative. Unlike traditional absorbers, NVAs consist 

of small masses that do not rotate with the rotor, offering a more versatile and potentially cost-

effective solution for vibration mitigation. Consequently, their imbalance does not affect the 

behavior of the rotor system. These NESs possess multiple equilibrium points and can reduce 

vibrations over a wide frequency range. NESs have been applied in various industries, including 

aerospace [25], rotating machinery [26], architecture [27], and other fields. The study of vibration 

reduction in rotor systems using NES has been ongoing for a long time. For example, Bergeot et 

al. [28] examined a ground-resonant helicopter model equipped with a cubic absorber. They 

concluded that the NES plays a critical role in reducing vibrations in rotating machines and that a 

NES can reduce resonance vibrations in helicopters.  

Yao et al. [29] proposed a bi-stable nonlinear energy sink (BNES) made of a buckled beam to 

absorb vibrations in an unbalanced rotor system. They derived the dynamic equations of a rotor 

system equipped with the BNES and then numerically studied the transient and steady-state 

responses. Finally, they conducted experimental tests to validate the effect of the BNES. The 

numerical and experimental results showed that the designed BNES reduced the vibration of the 

rotor system by 60% and could absorb a wide range of vibrations. Abu Seer et al. [30] examined 

a prototype of an electromagnetic torsional vibration absorber designed to control torsional 

vibrations in rotating machinery. Yao et al. [31] proposed a multi-stable nonlinear energy sink 

(MNES), combining positive and negative stiffness, to reduce rotor system vibrations. In their 

design, the negative stiffness was achieved using circular permanent magnets. The results 

indicated that their proposed MNES effectively reduced rotor system vibrations, and the negative 

stiffness increased the absorber’s operating frequency range. Xiaomin Dong et al. [32] studied the 

performance of a novel torsional vibration absorber with variable magnetic stiffness and damping, 

both theoretically and experimentally. The results demonstrated that the torsional vibration 

absorber efficiently reduced rotor system vibrations. Yao et al. [33] developed a MNES to reduce 

the vibrations of unbalanced rotor systems. They derived the dynamic equations of the rotor system 

and, based on them, numerically examined the transient and steady-state responses. Their 

numerical and experimental results showed that the MNES was capable of reducing vibrations 
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across a wide range of rotor system imbalances. Cao et al. [34] found that excessive vibration in 

rotor-blade systems was one of the leading causes of failure in rotating machinery, and therefore, 

a NES was required. They first introduced the structure of the NES mechanism, then derived the 

dynamic equations for the rotor-blade system using Lagrangian methods, and finally conducted a 

simple experiment to test the vibration reduction ability of the NES in a rotor-blade system. Their 

results showed that, under the given parameters, the absorber performed better in the presence and 

absence of damping, achieving a vibration absorption rate of 93% in numerical simulations and 

88% in experimental tests. Hongliang Yao et al. [35] proposed a vibration absorber for unbalanced 

rotor systems composed of coil springs and magnets. 

 Pu Gao et al. [36] studied a new type of electromagnetic torsional vibration absorber with 

variable stiffness. They first conducted a dynamic simulation with the transient response for the 

system’s mechanical structure, then analyzed the magnetic field parameters, modal analysis, 

natural frequency, and damping effect of the absorber. Finally, they built a prototype of the 

electromagnetic torsional vibration absorber. The results showed that the torsional electromagnetic 

vibration absorber efficiently reduced rotor system vibrations. Hongliang Yao et al. [37] also 

studied a Ground nonlinear energy sink (GNES) attached to a rotor system with a simple structure. 

They analyzed the GNES and then derived the dynamic equations of the rotor and GNES systems. 

First, they performed a numerical simulation to investigate the vibration absorption of the rotor 

system, then conducted experimental tests on the rotor system to validate the vibration reduction 

effect. Their results showed that the GNES effectively reduced rotor system vibrations, with the 

numerical simulation achieving a vibration absorption rate of 78% and the experimental test 

achieving 68%. 

 A review of previous research highlights the significant influence of vibration absorbers' 

dynamic behavior in attenuating rotor system vibrations. Notably, most studies have employed 

numerical methods, while analytical approaches, such as perturbation analysis, have been largely 

overlooked. Although numerical methods are efficient and allow for the quick determination of 

time and frequency responses for specific system parameters, approximate analytical solutions 

offer distinct advantages. These solutions, while more challenging to derive, are often preferred as 

they provide deeper insights by predicting system trajectories, analyzing the influence of various 

parameters, and delivering qualitative assessments of system behavior. The previous work by Yao 

et al. [37] inspired the authors to further explore the performance of multi-stable nonlinear 

vibration absorbers (MNVAs), motivating the current study. The primary objectives and 

innovations of this work are as follows: 

1. The spring stiffness of the vibration absorber is modeled as a combination of linear and 

nonlinear components. 

2. For the first time, the response of a rotor system equipped with a MNVA is derived using the 

method of multiple scales with a first-order approximation. This study investigates the 

influence of both linear and nonlinear parameters on the oscillation amplitude, as well as the 

potential occurrence of jump phenomena. 

3. To validate the proposed analytical solution, the results obtained via the multiple scales method 

are compared with the numerical results from Yao et al., and the advantages of MNVA over 

linear vibration absorbers (LVA) are examined. 
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The findings of this study offer valuable insights for engineers seeking to reduce or eliminate 

rotor system vibrations over a wide frequency range through the implementation of MNVAs. 

2. Mathematical formulation 

In this section, the governing equations of a rotor system equipped with a MNVA, as specified 

in reference [37], are examined. Initially, it is assumed: 

 3

0 1( ) ( ) ( )c n c n n nk x x k x x k x x             (1) 

where 0ck and 1nk represent the linear and nonlinear stiffness of the vibration absorber’s spring in 

the axial direction. Figure 1 illustrates the dynamic model of a MNVA connected to a rotor system. 

 

Figure 1: Dynamic model of a rotor system equipped with a MNVA [37]. 

 
Thus, the governing equations of motion for the rotor system equipped with a MNVA in the 

horizontal direction can be formulated as follows: 
3 2

1 1 0 1 1

3 3

2 0 1 0

( ) ( ) cos( )

( ) ( ) 0

x x c n n n

n n x n c n n n n n n n

m x c x k x k x x k x x m r t

m x c x k x x k x x k x k x

       

       

                         (2) 

where the primary nonlinear vibration system consists of mass 1m , damping coefficient 1xc ، rotor 

system stiffness xk  in the axial direction, the rotor shaft eccentricity r , and the rotor’s angular 

velocity  . To reduce the vibration amplitude of the primary system, a MNVA is used, 

characterized by mass nm , damping coefficient 2xc , total bending stiffness of the connecting rods 

0nk  and nonlinear stiffness of the connecting rods nk . 

Due to the inherent nonlinearity of the governing equations, the method of multiple time scales 

is applied to obtain an approximate analytical solution. First, the governing equations (2) are 

rewritten in their dimensionless form to simplify the analysis. The following dimensionless 

variables are introduced: 

 2 3 2 2 3

1, , 1

2 2 3 2 2 3 2 3

2, , , ,0

3 3 cos( )

3 3 0

x x c n n n c n

n x n c n c n n n n n n n n n n n n n

x x x x x x xx x x f m t

x x x x x x x xx x x x

        

        

       

         
  (3) 

where 2

1f m r  represents the centrifugal force from the center of the rotor system and  is a 

small dimensionless perturbation parameter. The remaining parameters are defined as follows: 
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    

    (4) 

It is assumed that the solution to the dimensionless equations (3), considering a first-order 

approximation of O(ϵ), takes the following form as proposed in [38]: 

10 0 1 11 0 1

0 0 1 1 0 1

( , ) ( , ) ( , ) ...

( , ) ( , ) ( , ) ...n n n

x t x T T x T T

x t x T T x T T

 

 

  

  
         (5) 

where temporal scales are defined as follows: 

, 0,1,2,...n

nT T n            (6) 

Therefore, 0T t and 1T t  represent the fast and slow time scales, respectively. The first 

and higher-order derivatives with respect to time could be expanded as partial derivatives with 

respect to 0T  and 1T  as follows: 

2 2 2
2 2 20 1

0 1 0 0 12 2

0 1 0 0 1

( ) , 2 2 ( )
dT dTd d

D D O D D D O
dt dt T dt T dt T T T

    
   

         
    

 (7) 

where 

, 0,1,2,...n

n

D n
T


 


        (8) 

By substituting the assumed solutions from equations (5) and (7) into the original equations 

of motion (3), and collecting terms of the same order of ϵ\epsilonϵ, the governing equations are 

expressed as follows: 
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  (9) 
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  

   (10) 

By equating the coefficients of terms with equal powers of ϵ, we derive separate 

equations for each order of approximation. For the zeroth-order terms O(1) and the first-

order terms O(ϵ), we obtain the following governing equations: 

  
0 2 2

0 10 , 10: 0x cD x x            (11) 

2 2 2

0 0 ,0 0 , 10n n n c nD x x x           (12) 
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0 11 , 11 10 10 0 10 0 0 0

1, 0 10 0 1 10
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2 cos( )
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f
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m
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    (13) 
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3 2
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2
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   (14) 

The general solution for equation (11) is: 

10 1 , 0 1 , 0( )exp( ) ( )exp( )x c x cx A T i T A T i T           (15) 

where A is a function of 1T  and A  is the complex conjugate of A . Substituting the answer to 10x  

into equation (12), the solution of 0nx  is obtained as: 

2 2 2 2

0 1 , ,0 0 1 , ,0 0

0 1 , 0 0 1 , 0

( )exp( ) ( )exp( )

( )exp( ) ( )exp( )
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  

     (16) 

where 
2

,

0 2 2 2

, ,0 ,

c n

c n n x c

F


  


 
  and B are also a function 1T . 

For the primary resonance, it is assumed that the excitation frequency is approximately equal 

to the natural frequency of the primary system: 

,x c               (17) 

where   is a tuning parameter representing the proximity of   and ,x c . By substituting equations 

(15), (16), and (17) into equations (13) and (14), we get: 
2 2 3 3 2 3 3 3 2 2
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     

      

 

    

       

(18) 

 



7 
 

2 2 2 3 2 3 2 2 2 2

0 1 , ,0 1 0 0 0 0 0

2

0 2, , 0 , 0 1

3 3 3 3 2 3 3

, 0 0 0 0 0

3 2

, 0 0

( ) (3 3 9 9 6

6 2 ( ) 3

6 )exp( ) ( 3 3

)exp( 3 ) (6

n c n n n n n n n n

n x x c x c n

n x c n n n n

n x c n

D x x F A A F A A F A A F A A F ABB

F ABB i F A i F D A A A

ABB i T F A F A F A F A

A i T F AAB

      

    

     

  

      

   

    

   2

0 0

2 2 2 2

2, , ,0

2 2 2 2 3

, ,0 1 , ,0 0

3 2 2 2 2 2 2 2

, ,0 0 0 0 0

2 2 2

, ,0 0 , 0

6 12

6 3 3

2 ( ))exp( ) (

)exp( 3 ) (3 3 6

3 )exp( 2 ) (3

n n

n x c n n n n

c n n c n n n

n c n n n n n

n c n n x c n

F AAB F AAB

AAB i B B B B B

i D B i T B

B i T F A B F A B F A B

A B i T i T

 

     

    

     

    



    

   

    

    2 2
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In both equations (18) and (19), the terms 1( )A T  and 1( )B T represent the complex conjugates of 

1( )A T  and 1( )B T . To simplify, these are shown as A , A , B , and B . CC  represents the complex 

conjugate of the former terms.  

To obtain the solution for 1nx , we first solve for 11x  and substitute it into equation (19). Thus, 

we first need to extract the terms with a coefficient of 
2 2

, ,0 0c n ni T   from equation (18) and place 

them on the left-hand side of the equation. Having solved and simplified, the solution of 11x  can be 

written as below: 

2 2

11 , ,0 0exp( )c n nx KB i T cc            (20) 

where 
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0 0

2 2 2
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    
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    


 
. Therefore, the secular terms in equations 

(18) and (19) are: 
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1
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2
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f
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      
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2 2 2 2
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2 2 2 2 2

, ,0 1 ,

6 6 12 6

3 3 2 ( ) 0
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n n c n n c n
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    (22) 

The functions Aand B  (
1( )A T and 

1( )B T ) are expressed in polar form as follows: 

1 1 1 1

1 1
( )exp[ ( )], ( )exp[ ( )]

2 2
A a T i T B b T i T         (23) 

where 1( )a T , 1( )b T , 1( )T , and 1( )T  are functions of 1T . 

By substituting equation (23) into equations (21) and (22), and then separating the real and 

imaginary parts, we obtain the following equations: 
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where 1T    , 11 1,

1

2
xg   , 

1 ,

1
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   
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   , 

0

310

,

1

2

c

x c

F
g




 , 11 2,

1

2
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h
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


. 

The steady-state response of the system is obtained by substituting 0a b   and 0   into 

equations (24). Therefore, inserting equations (24) into the expression 
2 2sin cos 1   , the steady-

state response is given as: 
2 2 2 2 2 2

11 310 22( )g a g g a a e             (25) 

3. Results and Discussions 

 This section investigates the influence of both linear and nonlinear parameters of the rotor 

system equipped with a multi-stable nonlinear vibration absorber (MNVA) on the system's 

oscillation amplitude, as well as the occurrence of the jump phenomenon or the three-response 

region. The analysis utilizes the multiple scales method to obtain an approximate analytical 

solution, which is subsequently compared with numerical solutions obtained via the Runge-Kutta 

method, as presented in reference [37]. The comparison serves to validate the accuracy of the 

analytical approach. Additionally, the advantages of employing a MNVA over a traditional linear 

vibration absorber (LVA) are thoroughly examined, focusing on vibration reduction efficiency and 

broader operational frequency ranges. The parameter values for the MNVA connected to the rotor 

system, which are adopted from reference [37], are provided in Table 1. These parameters form 

the basis for the numerical and analytical analyses conducted in this study. These parameters are 

essential in the modeling and analysis of the rotor system's dynamic response when equipped with a MNVA. 

They are employed in both the analytical method of multiple scales and the numerical simulations based 

on the Runge-Kutta method for a comprehensive comparison of the results. 

Table 1. The values of rotor system and MNVA parameters [37] 

Values MNVA Parameters Values Rotor System 

Parameters 

0.0813 (kg) 
nm  1 (kg) 

1m  

1.62 N.s/m 
2xc  10 N.s/m 

1xc  

4000 (N/m) 
0ck  7.6×104 (N/m) 

xk  

1257.72 (N/m) 
0nk  3×10-5 (m) r  

11×109 (N/m) 
nk  251 (rad/s)   
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Figure 2 illustrates the impact of the nonlinear stiffness knl of the vibration absorber’s spring 

on the frequency response of the rotor system equipped with a MNVA. As demonstrated, an 

increase in knl from zero results in the frequency response curve bending to the left, signifying a 

softening spring behavior. Conversely, when knl decreases from zero, the frequency response curve 

bends to the right, indicating a stiffening spring effect. In both positive and negative cases of 

nonlinear stiffness, a three-response region or jumping phenomenon is observed. This jump 

phenomenon is characteristic of nonlinear systems and reflects the presence of multiple stable and 

unstable response branches. For values of knl  close to zero, the deviation from the linear frequency 

response is minimal, and the system exhibits behavior similar to that of a linear system. 

Furthermore, the maximum oscillation amplitude remains unaffected by variations in knl, 

indicating that the nonlinear stiffness primarily influences the system’s frequency response shape 

without altering the peak amplitude. 

 

Figure 2: Effect of the nonlinear stiffness of the vibration absorber spring on the frequency response of the rotor 

system equipped with a MNVA 

Figure 3 presents the frequency response curve of the rotor system equipped with a MNVA 

at three different levels of the damping coefficient c1x. As shown in the figure, an increase in the 

rotor system's damping leads to a reduction in the system's maximum oscillation amplitude. This 

behavior is consistent with the expected effects of increased damping, where higher damping 

levels effectively dissipate more energy from the system, thereby suppressing the vibration 

amplitude. The diagram clearly demonstrates that as the damping coefficient c1x increases, the 

peak amplitude decreases, resulting in a smoother and more controlled response. This finding 

highlights the important role that damping plays in managing the vibrational behavior of rotor 

systems equipped with nonlinear vibration absorbers, providing a means of improving system 

stability and reducing excessive vibrations.  
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Figure 3: Effect of rotor system damping on the frequency response of the rotor system equipped with a MNVA 

 Figure 4 illustrates the effect of varying the damping value of the MNVA on the oscillation 

amplitude of the rotor system equipped with the absorber. As depicted, changes in the absorber's 

damping value c2x do not significantly influence the system's oscillation amplitude. This behavior 

can be explained by the parameters defined in the frequency response equation, where the 

coefficients associated with the absorber's damping term are notably small and approach zero. As 

a result, even with variations in c2x, the system's response curve remains essentially unchanged, 

indicating that the damping of the MNVA has a negligible effect on the overall vibration amplitude 

of the rotor system. This suggests that the system's behavior is more sensitive to other factors, such 

as nonlinear stiffness, rather than the absorber's damping characteristics. 

 

Figure 4: Effect of damping in the MNVA on the frequency response of the rotor system equipped with MNVA 

 Figure 5 illustrates the variation in oscillation amplitude of the rotor system equipped with a 

MNVA for different values of the linear stiffness of both the rotor system (kx) and the MNVA 

(kc0). As seen in the figure, increasing the stiffness of both the rotor system and the vibration 

absorber leads to a reduction in the maximum oscillation amplitude. This reduction is accompanied 

by a noticeable leftward shift in the frequency response curve, indicating that the system begins to 

exhibit more linear behavior as stiffness increases. Furthermore, as the values of kx and kc0 increase, 
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the system’s frequency response curve continues to shift leftwards and approaches the resonance 

state. This shift reflects the stiffening effect in the system, where higher stiffness values bring the 

system closer to its natural frequency, thereby influencing the overall vibration characteristics. 

This trend suggests that increased stiffness enhances the system's stability by reducing amplitude 

and modifying the frequency response towards more predictable linear behavior. 

 

Figure 5: Effect of rotor system stiffness and absorber stiffness on the frequency response of the rotor system 

equipped with a MNVA 

 Figure 6 demonstrates the influence of changes in the total bending stiffness (𝑘𝑛0) of the 

connecting rods of the MNVA on the system's frequency response. As depicted in the diagram, an 

increase in 𝑘𝑛0 causes the response curve to shift to the right, moving further away from the 

resonance state. This behavior indicates that higher stiffness values increase the system’s 

resistance to vibrations, thereby reducing the likelihood of resonance. Additionally, as 𝑘𝑛0 

increases, the frequency response curve exhibits a greater deviation to the right, which results in 

the formation of a three-response region. This region reflects the occurrence of multiple stable and 

unstable responses, characteristic of nonlinear systems. The presence of these unstable responses 

suggests that the system becomes more prone to sudden jumps or bifurcations in its dynamic 

behavior as the stiffness increases. As σ increases, the amplitude a initially rises, reaches a peak, 

and then exhibits a decline, suggesting a resonance-like behavior. Each curve shows distinct 

resonance peaks at different frequencies, indicating how the system's response varies with the 

parameter kn0. 

The figure illustrates the response of a system with varying parameters, specifically 

highlighting the curves corresponding to different values of kn0. For the green curve (kn0=1000), 

the peak amplitude is approximately 0.00058 mm at around 40 Hz, representing a 287% increase 

from a baseline of 0.00015 mm. The blue curve (kn0=1257.72) reaches the highest peak amplitude 

of about 0.0006 mm at approximately 50 Hz, marking a 300% increase from the baseline. 

Conversely, the red curve (kn0=1500) shows a peak amplitude of approximately 0.00055 mm at 

around 60 Hz, reflecting a 267% increase. This analysis reveals that as kn0 increases, both the 

frequency of the peak response shifts to higher values and the amplitudes vary, underscoring the 
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significant influence of the parameter on the system's dynamic behavior and resonance 

characteristics. 

   

 

Figure 6: Effect of the total bending stiffness of the connecting rods in the MNVA on the rotor system's frequency 

response equipped with MNVA 

 Figure 7 demonstrates the effect of amplitude changes as a function of the tuning parameter 

for different values of the force factor (f). The graph shows curves for f =1.25, f=1.9, and f=2.5, 

indicating that as f increases, the oscillation amplitude of the rotor system equipped with a MNVA 

also increases. Specifically, for f=1.25, the maximum amplitude is approximately 0.0004 mm, 

while for f=2.5, the amplitude increases by about 100%, reaching 0.0008 mm. Additionally, the 

frequency response curve shifts to the right as f increases, suggesting that the system’s behavior 

becomes increasingly nonlinear with the rising centrifugal force of the rotor. This shift indicates 

that higher force factors lead to larger amplitude responses and greater deviation from linearity. 

 

Figure 7: Effect of the rotor system's centrifugal force on the frequency response of the rotor system equipped with 

MNVA 



13 
 

Initially, assuming 
9

1 5 10nk     and 1.25f  , the jumping phenomenon is examined. 

According to Figure 8, as   increases, the amplitude of the rotor system equipped with a non-

linear vibration absorber increases from point a  to points b  and c . From point c , as   

increases, the amplitude suddenly decreases and jumps to point d , which is referred to as the 

jumping phenomenon. Additionally, reducing   from point e  causes the system amplitude to 

drop to point d and ultimately to point g . At point g , with a decrease in  , a jump to point b  

occurs, resulting in a sudden increase in amplitude. A close inspection of the graph reveals that 

there are three amplitudes for b d  . The section of the graph labeled c g  represents an 

unstable state for the system, and the amplitude never resides in this section of the graph. 

Depending on the system's initial conditions, the amplitude will settle at one of the higher or lower 

values corresponding to these values of  . 

a

b

c

d e

g

 
Figure 8: Three-response region or jump phenomenon in the frequency response curve of the rotor system equipped 

with a MNVA during resonance ( ,x c    ) 

To validate the proposed solution for equations (2) and (3), equation (26) can be expressed 

as follows: 

1,

3 2
3 20 0 0 0 0

, , , , , , ,

1
sin( )

2

3 9 9 3 3 3 1
( ) (( ) ( ) ) cos( )
8 8 8 8 4 4 2

x

c

x c x c x c x c x c x c x c

a a e

F F F F F
a a b a e

 

     
  

      

  

        

 (26) 

Integrating the two equations in relation (26) and substituting them into 0cos( )x a T    

with initial conditions of 0 0.4a   and 0 0.4   yields the solution to the equation of motion as 

follows: 

10 10 10 10 8(0.0004242 0.4 )cos(282.8427 1.2695ln( ) ln(5 10 2.6576 10 ))t t tx e t e e          (27) 
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 where 0T t , 1T t , 0.01  , and 1 0nk  . 

To evaluate the accuracy of the solution and compare the analytical multiple time scales method 

with the numerical Runge-Kutta method from [37], the time response is illustrated in Figure 9. As 

observed, the response obtained using the analytical method aligns closely with the response 

produced by the numerical method, demonstrating strong agreement between the two approaches. 

The convergence of the response to zero over time indicates that, for the given parameters, the 

MNVA effectively reduces the vibrations in the rotor system, leading to system stabilization. This 

close match confirms the reliability of the multiple time scales method in predicting the dynamic 

behavior of the system. 

 

Figure 9: Comparison of the analytical and numerical solutions of the rotor system's equations equipped with a 

MNVA 

 To assess the advantages of using a MNVA over a linear vibration absorber (LVA), Figure 10 

presents the time response of the rotor system equipped with both types of absorbers, starting from 

an initial displacement of 0.4 mm. The results show that when the LVA is connected, the 

oscillation amplitude takes approximately 0.32 seconds to reduce to 0.047 mm. In contrast, with 

the MNVA attached, the amplitude decreases to the same value in about 0.2 seconds. This indicates 

that the vibration absorption speed of the MNVA is 1.6 times faster than that of the LVA. The 

enhanced performance of the MNVA highlights its superior ability to more rapidly mitigate 

vibrations, providing a more efficient solution for vibration control in rotor systems. 
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(0.2,0.047)
(0.32,0.047)

 

Figure 10: Comparison of the time response of the rotor system equipped with a LVA and a MNVA 

 Figure 11 illustrates the frequency response curves of the rotor system equipped with both 

the MNVA and the LVA. The maximum amplitude for the rotor system with the LVA is observed 

to be 0.027 mm, whereas the maximum amplitude with the MNVA is reduced to 0.022 mm. This 

difference highlights that the MNVA achieves approximately a 22% greater reduction in vibration 

amplitude compared to the LVA. Therefore, it can be concluded that the MNVA is more effective 

in minimizing rotor system vibrations, providing a significant improvement in vibration control 

performance over the LVA. 

 

Figure 11: Comparison of the frequency response of the rotor system equipped with LVA and a MNVA 
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4. Conclusions 
In previous research, the dynamic behavior of rotor systems equipped with a multi-stable 

nonlinear vibration absorber (MNVA) has predominantly been explored using numerical methods. 

While numerical methods are efficient for generating time and frequency responses for specific 

parameter values, they require recalculating the solution for each new parameter to assess its 

impact on the system's behavior. Semi-analytical methods, on the other hand, provide an advantage 

by allowing the effects of various linear and nonlinear parameters to be examined more easily 

without the need for repeated recalculations. Although these methods can increase computational 

demands, they are often preferred for their broader applicability. 

In this study, for the first time, the response of a rotor system equipped with a MNVA was 

derived using the perturbation method of multiple scales with a first-order approximation. The 

effects of different system parameters on the response were investigated. The results obtained from 

the multiple scales method were validated through comparison with numerical solutions generated 

using the Runge-Kutta method as described in Ref. [37]. Additionally, the advantages of using a 

MNVA over a linear vibration absorber (LVA) were evaluated. The findings demonstrate that the 

multiple scales method provides highly accurate results in both short- and long-term intervals. The 

key conclusions of this study are as follows: 

1. To reduce the maximum oscillation amplitude of the rotor system equipped with a MNVA, the 

stiffness of both the primary rotor system and the absorber as well as the primary system's 

damping should be increased, while the rotor’s centrifugal force should be reduced. 

2. Increasing the total bending stiffness of the absorber rods significantly shifts the frequency 

response curve away from resonance, enhancing the system stability. 

3. Positive changes in the nonlinear stiffness of the absorber spring shift the frequency response 

curve to the left, while negative changes shift it to the right. These shifts create a three-

response region or jump phenomenon, although the system's maximum amplitude remains 

unaffected. 

4. Variations in the vibration absorber's damping coefficient do not impact the oscillation 

amplitude of the rotor system equipped with a MNVA. 

5. The vibration absorption efficiency of the MNVA is 22% higher than that of the LVA, 

demonstrating its superior performance in reducing rotor system vibrations.  

Finally, the comparison of the responses obtained from the analytical and numerical methods 

shows that they are nearly coincident, with no significant differences between them, validating 

the accuracy of the proposed semi-analytical approach. 
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