
CS 586/IE 519: Combinatorial Optimization1

Chandra Chekuri2

May 6, 2022

1These notes are based on scribed lectures from the Spring 2010 edition of the course.

CC wrote notes on a tablet which were transcribed into Latex by students in the course.

Individual chapters will acknowledge the relevant student contributions. Substantial

revisions and corrections have been made during this semester and some new material

has been added. The original notes are mostly based on two sources: Schrĳver’s tome

and Michel Goemans’s lecutre notes from MIT.

Please report any error and omissions. I will acknowledge and make corrections.

These lecture notes are licensed under the Attribution-NonCommercial-ShareAlike 4.0

International license.

2Dept. of Computer Science, University of Illinois, Urbana, IL 61820. Email:

chekuri@illinois.edu. The author acknowledges support from several NSF CCF grants

over the years. Work on this version of the notes during Spring 2022 is supported by

NSF grants CCF-1910149 and CCF-1907937.

https://courses.engr.illinois.edu/cs598csc/sp2010/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

1 Introduction and Motivation 5
1.1 Network Flow . 7

1.2 Bipartite Matchings . 9

1.3 General Graph Matchings . 10

2 Matchings in Non-Bipartite Graphs 13
2.1 Tutte-Berge Formula for �(�) . 13

2.2 Polynomial-time Algorithm for Maximum Cardinality Matching . 15

3 Polyhedra and Linear Programming 27
3.1 Basics . 27

3.2 Polyhedra, Polytopes, and Cones 29

3.3 Fourier-Motzkin Elimination . 31

3.4 Linear Programming . 36

3.5 Implicit equalities and Redundant Constraints 40

3.6 Faces of Polyhedra . 41

3.6.1 Facets . 43

3.6.2 Minimal Faces and Vertices 43

3.6.3 Decomposition of Polyhedra 44

3.7 Complexity of Linear Programming 46

3.8 Polynomial-time Algorithms for LP 49

4 Integer Programming and Integer Polyhedra 51
4.1 Integer Polyhedra . 52

4.2 Integer Polyhedra and Combinatorial Optimization 53

5 TUMatrices and Applications 54
5.1 Examples and Network Matrices 56

5.2 Integer Decomposition Property 61

5.3 Applications of TUMMatrices . 61

5.3.1 Bipartite Graph Matchings 62

1

CONTENTS 2

5.3.2 Single Commodity Flows and Cuts 64

5.3.3 Interval graphs . 68

6 Network Flow: A Quick Overview 70
6.1 Preliminaries . 70

6.1.1 Maximum Flow and the Residual Network 73

6.2 Augmenting Path Algorithms . 75

6.2.1 Augmenting along high-capacity paths 76

6.2.2 Shortest augmenting path: a strongly polynomial-time

algorithm . 77

6.2.3 Blocking Flows . 78

6.3 Minimum Cost Flow . 80

6.3.1 Successive Shortest Path Algorithm 82

6.3.2 Cycle cancelling and a strongly polynomial time algorithm 82

7 Gomory-Hu Tree for Connectivity in Graphs 84
7.1 A Detour through Submodularity 85

7.2 Algorithmic Proof of Gomory-Hu Tree 88

8 Perfect Matching and Matching Polytopes 96
8.1 Separation Oracle for Matching Polytope 102

8.2 Edge Covers and Matchings . 103

9 Edmonds-Gallai Decomposition and Factor-Critical Graphs 105
9.0.1 Factor-Critical Graphs . 106

9.1 Edmonds-Gallai Decomposition 108

9.2 Ear Decompositions and Factor-Critical Graphs 111

10 Primal-Dual Algorithms for Weighted Matching 114
10.1 Primal-Dual Method for Linear Programs 114

10.2 Weighted Matching Problems . 115

10.3 MinimumWeight Perfect Matching in Bipartite Graphs 116

10.4 Min Cost Perfect Matching in Non-Bipartite Graphs 121

10.4.1 Notation . 122

10.4.2 Recap of Edmonds-Gallai Decomposition 123

10.4.3 Algorithm . 124

10.4.4 Example . 125

10.4.5 Proof . 128

11 Total Dual Integrality and Cunningham-Marsh Theorem 132
11.1 The Cunningham-Marsh Theorem 135

CONTENTS 3

12 Z -joins and Applications 139
12.1 Algorithms for Min-cost)-joins . 140

12.1.1 Negative costs . 141

12.1.2 Polyhedral aspects . 142

12.2 Applications . 143

12.2.1 Chinese Postman . 143

12.2.2 Shortest Paths and Negative lengths 143

12.2.3 Max-cut in planar graphs 144

12.2.4 Approximating Metric-TSP 145

13 Matroids 147
13.1 Introduction to Matroids . 147

13.1.1 Representation of Matroids 148

13.1.2 Base, Circuit, Rank, Span and Flat 149

13.1.3 Operations on a Matroid . 152

13.2 MaximumWeight Independent Set in a Matroid 154

13.2.1 Greedy Algorithm . 154

13.3 Matroid Polytope . 156

13.3.1 Spanning Set Polytope . 158

13.3.2 Separation Oracle . 158

13.3.3 Primal proof for Matroid Polytope 159

13.4 Facets and Edges of Matroid Polytopes 162

13.5 Further Base Exchange Properties 164

14 Matroid Intersection 168
14.1 Min-max Theorem for Maximum Cardinality Independent Set . . 170

14.2 Weighted Matroid Intersection . 173

14.3 Matroid Intersection Polytope . 174

15 Matroid Union 178
15.1 Motivation . 178

15.2 A Lemma of Nash-Williams . 179

15.3 Matroid Union Theorem and Applications 181

15.4 Algorithmic and Polyhedral Aspects 183

16 Spanning Trees and Arborescences 186
16.1 Spanning Trees . 186

16.2 Branchings and Arborescences . 187

16.2.1 Polyhedral Aspects . 190

16.3 Arc-Disjoint Arborescences . 192

CONTENTS 4

17 Submodular Set Functions and Polymatroids 196
17.1 Examples of submodular set functions 197

17.1.1 Unconstrained Submodular Set Function Optimization . . 198

17.2 Polymatroids . 199

17.2.1 Digression on connection to matroids 199

17.3 Greedy for optimizing over a polymatroid 202

17.4 Operations on Submodular Functions 204

17.5 Submodular Function Minimization via Ellipsoid 206

17.6 Submodularity on Restricted Families of Sets 207

18 Continuous Extensions of Submodular Set Functions 210
18.1 The convex and concave closure . 211

18.2 The Lovász extension and convexity for submodular set functions 212

18.3 Submodular set function maximization and the Multilinear ex-

tension . 215

19 Two Theorems Related to Directed Graphs 218
19.1 Nash-Williams Graph Orientation Theorem 218

19.2 Directed Cuts and Lucchesi-Younger Theorem 220

20 Polymatroid Intersection 223

21 Submodular Flows and Applications 225
21.1 Applications . 227

21.1.1 Circulations . 227

21.1.2 Polymatroid Intersection . 228

21.1.3 Nash-Williams Graph Orientation Theorem 229

21.1.4 Lucchesi-Younger theorem 230

21.2 The polymatroidal network flow model 231

22 Multiflows 235
22.1 Integer Multiflow and Disjoint Paths 238

22.2 Cut Condition, Sparsest Cut, and Flow-Cut Gaps 239

22.3 When is cut condition sufficient? 240

22.4 Okamura-Seymour Theorem . 241

22.5 Sparse Cuts, Concurrent Multicomodity Flow and Flow-Cut Gaps 246

Chapter 1

Introduction and Motivation1

Roughly speaking, an optimization problem has the following outline: given

an instance of the problem, find the “best” solution among all solutions to the

given instance. We will be mostly interested in discrete optimization problems

where the instances and the solution set for each instance is from a discrete set.

This is in contrast to continuous optimization where the input instance and the

solution set for an instance can come from a continuous domain.

We assume some familiarity with the computational complexity classes P,
NP, coNP. In this class we are mainly interested in polynomial time solvable

“combinatorial” optimization problems. Combinatorial optimization problems

are a subset of discrete optimization problems although there is no precise

formal definition for them. Typically, in combinatorial optimization, we work

with structures over a finite ground set �. Solutions correspond to subsets of of

2
�
(the power set of �) and one seeks to find a maximum or minimum weight

solution for some given weights on �. For example, in the minimum spanning

tree problem, the ground set � is the set of edges of a graph � = (+, �) and the

solutions are subsets of � that correspond to spanning trees in �.

We will be interested in NP optimization problems – NPO problems for

short. Formally, a problem & is a subset of Σ∗, where Σ is a finite alphabet such

as binary. Each string � in & is an instance of &. For a string G we use |G | to
denote its length. We say that & is an NPO problem if the following hold:

1. for each G ∈ Σ∗ there is a polynomial time algorithm that can check if

G ∈ &, i.e., if G is a valid instance of &

2. for each instance � there is a set B>;(�) ⊂ Σ∗ such that

(a) ∀B ∈ B>;(�), |B | = ?>;H(|� |)

1Based on scribed notes by Alina Ene from 2010.

5

CHAPTER 1. INTRODUCTION AND MOTIVATION 6

(b) there exists a poly-time algorithm that on input � , B correctly outputs

whether B ∈ B>;(�) or not

3. there is a function E0; : Σ∗ × Σ∗ → ℤ s.t. E0;(� , B) assigns an integer to

each instance � and B ∈ B>;(�) and moreover E0; can be computed by a

poly-time algorithm.

Given an NPO problem, we say it is a minimization problem if the goal is to

compute, given � ∈ &, arg minB∈B>;(�) E0;(� , B). It is a maximization problem

if the goal is to compute arg maxB∈B>;(�) E0;(� , B). A natural decision problem

associated with anNPO problem (say, maximization) is: given � and integer :,

is there B ∈ B>;(�) s.t. E0;(B, �) ≥ : 2.

Many problems we encounter are NPO problems. Some of them can be

solved in polynomial time. It is widely believed and conjectured that P ≠ NP,
which would mean that there are NPO problems (in particular, those whose

decision versions areNP-complete) that do not have polynomial time algorithms.

Assuming P ≠ NP, some important and useful questions are: What problems

are in P? What characterizes problems in P?
These are not easy questions. It has become clear that computation and algo-

rithms are difficult to understand and we are far from being able to characterize

the complexity of problems. However, in limited settings we seek to study broad

classes of problems and understand some unifying themes. One particular class

of problems where this has been possible is the class of constraint satisfaction

problems in the Boolean domain. A result of Schaefer completely characterizes

which problems are in P and which are NP-complete. In fact, there is a nice

dichotomy. However, the non-Boolean domain is much more complicated even

in this limited setting. We refer the interested reader to [7, 17] for surveys on

this topic.

In the field of combinatorial optimization some unified and elegant treatment

can be given via polyhedra ands the ellipsoidmethod. The purpose of this course

is to expose you to some of these ideas as well as outline some general problems

that are known to be solvable in polynomial time. The three ingredients in our

study are

1. polynomial time algorithms (which we will refer to as efficient)

2. structural results, especially via min-max characterizations of optimal

solutions

3. polyhedral combinatorics

2We used integers in our description of NPO problems for convenience. We can equivalently

define using rationals.

CHAPTER 1. INTRODUCTION AND MOTIVATION 7

We will illustrate these ingredients as we go along with examples and general

results. We refer the reader to Schrĳver’s tome on this topic [57] as well as

other references provided on the course website. In this introductory lecture,

we discuss some known examples to highlight the view point we will take on

the connections between these three topics. The discussion will be somewhat

informal.

1.1 Network Flow

Let � = (+, �) be a directed graph and let B, C ∈ + be two distinct nodes. Let

2 : �→ ℝ+ be a non-negative arc capacity function. An B-C flow is a function

5 : �→ ℝ+ that satisfies the following properties.

1. flow conservation:

∑
0∈�−(E) 5 (0) =

∑
0∈�+(E) 5 (0) for all E ∈ + − {B, C}

2. capacity constraint: 0 ≤ 5 (0) ≤ 2(0) for all 0 ∈ �

The value of a given B-C flow 5 is defined as

E0;(5) =
∑

0∈�+(B)
5 (0) −

∑
0∈�−(B)

5 (0) =
∑

0∈�−(C)
5 (0) −

∑
0∈�+(C)

5 (0)

The optimization problem is to find an B-C flow of maximum value.

An B-C cut is a partition of + into (�, �) such that B ∈ �, C ∈ �, and the capacity

of this cut is

2(�, �) =
∑

0∈�+(�)
2(0)

Clearly, for any B-C flow 5 and any B-C cut (�, �)

E0;(5) ≤ 2(�, �) ⇒ max B-C flow ≤ min B-C cut capacity

The well-known maxflow-mincut theorem of Menger and Ford-Fulkerson states

that

Theorem 1.1. In any directed graph, the maximum B-C flow value is equal to the

minimum B-C cut capacity.

Ford and Fulkerson proved the above theorem algorithmically. Although their

augmenting path algorithm is not a polynomial-time algorithm for general

integer capacities, it can be made to run in polynomial time with very slight

modifications (for example, the Edmonds-Karp modification to use the shortest

augmenting path). Moreover, the algorithm shows that there is an integer valued

maximum flow whenever the capacities are integer valued. Thus we have

CHAPTER 1. INTRODUCTION AND MOTIVATION 8

Theorem 1.2. In any directed graph, the max B-C flow value is equal to the min B-C cut

capacity. Moreover, if 2 is integer valued then there is an integer valued maximum flow.

This is an example of a polynomial time (good) algorithm revealing structural

properties of the problem in terms of a min-max result and integrality of flows.

Conversely, suppose we knew the maxflow-mincut theorem but did not know

any algorithmic result. Could we gain some insight? We claim that the answer

is yes. Consider the decision problem: given �, B, C, is the B-C max flow value

at least some given number :? It is easy to see that this problem is in NP
since one can give a feasible flow 5 of value at least : as an NP certificate3. In

addition, using the maxflow-mincut theorem we can also see that it is in coNP.
To show that the flow value is smaller than :, all we need to exhibit is a cut

of capacity smaller than : which is guaranteed by the theorem. Therefore the

min-max result shows that the problem is inNP∩coNP. Most “natural” decision

problems inNP ∩ coNP have eventually been shown to have polynomial time

algorithms (there are a few well-known exceptions). Moreover, a problem in

NP∩ coNP beingNP-complete or coNP-complete would imply thatNP = coNP
which is believed to be unlikely. Thus a min-max result implies that the decision

version is inNP∩ coNPwhich is strong evidence for the existence of a poly-time

algorithm. That does not imply that such an algorithm will come by easily.

Examples include matchings in general graphs and linear programming.

Finally, let us consider network flow as a special case of a linear programming

problem. We can write it as

max

∑
0∈�+(B)

5 (0) −
∑

0∈�−(B)
5 (0)

B.C.∑
0∈�+(E)

5 (0) −
∑

0∈�−(E)
5 (0) = 0 ∀E ∈ +, E ≠ B, C

5 (0) ≤ 2(0) ∀0 ∈ �
5 (0) ≥ 0 ∀0 ∈ �

The polynomial time solvability of LP implies a poly-time algorithm for network

flow. However, one can say much more. It is known that the matrix defining the

above system of inequalities is totally unimodular (TUM). From this, it follows

that the vertices of the flow-polytope defined by the LP is integral whenever

the capacities are integral! In addition, one can show that the dual also has

integer vertices since the objective function has integer coefficients. In fact, one

can derive the maxflow-mincut theorem from these facts about the polyhedra in

3We are ignoring a technicality here that the flow specification be of polynomial size in the

input.

CHAPTER 1. INTRODUCTION AND MOTIVATION 9

question. The polyhedral results also imply other useful facts. For example, we

could add lower bounds on the flow

ℓ (0) ≤ 5 (0) ≤ 2(0)
and the polytope remains an integer polytope. These generlizations allow one to

derive various theorems and algorithms about minimum cost flow, circulations,

transshipments, and bipartite matchings.

1.2 Bipartite Matchings

Many of you have seen bipartite matchings and various results about them

reduced to results on maximum-flow. We can also treat them independently4.

Let � = (- ∪ ., �) be a bipartite graph with bipartition given by -,.. Recall

that " ⊆ � is a matching in a graph if no vertex in � is incident to more than

one edge from ".

A vertex cover in � = (+, �) is a subset of vertices (⊆ + such that for each

edge DE ∈ �, D or E is in (. In other words, (covers all edges. We use �(�) to
indicate the cardinality of a maximummatching in � and �(�) for the cardinality
of a minimum vertex cover in �.

Claim 1.2.1. For every �, �(�) ≤ �(�).
In bipartite graphs, one has the following theorem.

Theorem 1.3 (König’s Theorem). If � is bipartite then �(�) = �(�).
The above proves that the max matching and min vertex problems (decision

versions) in bipartite graphs are both in NP ∩ coNP. (Note that the vertex

cover problem is NP-hard in general graphs.) We therefore expect a polynomial

time algorithm for �(�) and �(�) in bipartite graphs. As you may know, one

can reduce matching in bipartite graphs to maxflow and König’s theorem

follows from the maxflow-mincut theorem. One can also obtain a polynomial

time augmenting path algorithm for matching in bipartite graphs (implicitly a

maxflow algorithm) that proves König’s theorem algorithmically.

We now look at the polyhedral aspect. We can write a simple LP relaxation

for the maximum matching in a graph �.

max

∑
4∈�

G(4)∑
4∈�(D)

G(4) ≤ 1 ∀D ∈ +

G(4) ≥ 0 ∀4 ∈ �
4A less well-known fact is that one can reduce B-C flow to bipartite 1-matchings.

CHAPTER 1. INTRODUCTION AND MOTIVATION 10

For bipartite graphs the above LP and its dual have integral solutions since the

constraint matrix is TUM. One can derive König’s theorem and a polynomial

time algorithm for maximum (weight) matchings via polyhedral results.

1.3 General Graph Matchings

The constraint matrix of the basic LP for matchings given above is not integral

for general graphs, as the following simple graph shows. Let � = 3 be the

complete graph on 3 vertices. The solution G(4) = 1/2 for each of the 3 edges in

� is an optimum solution to the LP of value 3/2 while the maximum matching

in � has size 1.

The algorithmic study of general graph matchings and the polyhedral theory

that was developed by Jack Edmonds in the 1960’s, and his many foundational

results are the start of the field of polyhedral combinatorics. Prior to the

work of Edmonds, there was a min-max result for �(�) due to Berge which is

based on Tutte’s necessary and sufficient condition for the existence of a perfect

matching. To explain this, for a set* ⊆ + , let >(�−*) be the number of odd car-

dinality components in the graph obtained from � by removing the vertices in* .

Tutte-Berge formula

�(�) = min

*⊆+

1

2

(|+ | + |* | − >(� −*))

We will prove the easy direction for now, i.e.,

�(�) ≤ 1

2

(|+ | + |* | − >(� −*)) ∀* ⊆ +

To see this, the number of unmatched vertices is at least >(� −*) − |* |, since
each odd component in � −* needs a vertex in* . Hence

�(�) ≤ |+ |
2

− >(� −*) − |* |
2

≤ 1

2

(|+ | + |* | − >(� −*))

Corollary 1.4. (Tutte’s 1-factor theorem) � has a perfect matching iff ∀* ⊆ +

>(� −*) ≤ |* |.

The formula shows that the decision version of matching is in NP ∩ coNP.
Edmonds gave the first polynomial time algorithms for finding a maximum

cardinalitymatching and alsomore difficultmaximumweightmatching problem.

As a consequence of his algorithmicwork, Edmonds showed the following results

on matching polytopes.

CHAPTER 1. INTRODUCTION AND MOTIVATION 11

Consider the following polytope:∑
4∈�(E)

G(4) ≤ 1 ∀E ∈ +∑
4∈�[*]

G(4) ≤ b |* |
2

c ∀*, |* | odd

0 ≤ G(4) ∀4 ∈ �

Edmonds showed that the vertices of the above polytope are exactly the char-

acteristic vectors of the matchings of �5. Observe that the polytope has an

exponential number of constraints. One can ask whether this description of

the matching polytope is useful. Clearly if one takes the convex hull of the

characteristic verctors of the matchings of �, one obtains a polytope in ℝ�
;

one can do this for any combinatorial optimization problem. In general such

a polytope may require an exponential number of inequalities to describe it.

Edmonds argued that the matching polytope is different since

1. the inequalities are described implicitly in an uniform way

2. his algorithm gave a way to optimize over this polytope

At that time, no poly-time algorithm was known for solving LPs, although

LP was known to be in NP ∩ coNP. In 1978, Khachiyan used the ellipsoid

algorithm to show that linear programming is in P. Very soon, Padberg-Rao,

Karp-Papadimitriou, and Grötschel-Lóvasz-Schrĳver independently realized

that the ellipsoid algorithm has some very important features, and can be used

to show the polynomial-time equivalence of optimization and separation for

polyhedra; see [30] for a book-length treatment.

Separation Problem for Polyhedron W
Given = (the dimension of &), and an upper bound ! on the size of the numbers

defining the inequalities of &, and a rational vector G0 ∈ ℝ=
, output correctly

that G ∈ & or a separating hyperplane 0G = 1 such that 0G ≤ 1 ∀G ∈ & and

0G0 > 1.

Optimization Problem for Polyhedron W
Given = (the dimension of &), and an upper bound ! on the size of the numbers

defining the inequalities of &, and a rational vector 2 ∈ ℝ=
, output correctly one

of the following: (i) & is empty (ii) maxG∈& 2G has no finite solution (iii) a vector

5For a subset of edges � ⊆ � the characteristic vector of � is an |� |-dimensional vector "�
where "�(8) = 1 if edge 48 is in � and is 0 otherwise; here we assume that the edges in � are

numbered from 1 to <. Another typical notation for characteristic vectors is 1�.

CHAPTER 1. INTRODUCTION AND MOTIVATION 12

G∗ such that 2G∗ = supG∈& 2G.

Theorem 1.5. (Grötschel-Lóvasz-Schrĳver) There is a polynomial time algorithm for the

separation problem over & iff there is a polynomial time algorithm for the optimization

problem over &.

The above consequence of the ellipsoid method had/has a substantial theoretical

impact in combinatorial optimization. In effect, it shows that an algorithm for a

combinatorial optimization problem implies an understanding of the polytope

associated with the underlying problem, and vice-versa. For example, the

weighted matching algorithm of Edmonds implies that one can separate over

the matching polytope. Interestingly, it took until 1982 for Padberg and Rao to

find an explicit separation algorithm for the matching polytope although one is

implied by the preceding theorem.

Bibliographic Notes: Combinatorial Optiization is a mature area with several

classical and beatiful results. The book of Schrĳver [57] is a comprehensive

treatment. The theory of NP-Completeness showed that many natural problems

are NP-Complete and this came as perhaps a surprise (and a bit of a disappoint-

ment) for those, including Edmonds, who had hoped for an expanding field of

P time algorithms.

Chapter 2

Matchings in Non-Bipartite
Graphs1

We discuss matching in general undirected graphs. Given a graph �, �(�)
denotes the size of the largest matching in �. We follow [57] (Chapter 24).

(Based on scribed notes of Matthey Yancy in 2010).

2.1 Tutte-Berge Formula for .(M)

Tutte (1947) proved the following basic result on perfect matchings.

Theorem 2.1 (Tutte). A graph � = (+, �) has a prefect matching iff � −* has at

most |* | odd components for each* ⊆ + .

Berge (1958) generalized Tutte’s theorem to obtain a min-max formula for

�(�)which is now called the Tutte-Berge formula.

Theorem 2.2 (Tutte-Berge Formula). For any graph � = (+, �),

�(�) = |+ |
2

−max

*⊆+

>(� −*) − |* |
2

where >(� −*) is the number of components of � −* with an odd number of vertices.

Proof. We have already seen the easy direction that for any * , �(�) ≤ |+ |
2
−

>(�−*)−|* |
2

by noticing that >(� − *) − |* | is the number of nodes from the

odd components in � − * that must remain unmatched (one for each odd

component).

1Based on scribed notes of Matthew Yancey from 2010.

13

CHAPTER 2. MATCHINGS IN NON-BIPARTITE GRAPHS 14

Therefore, it is sufficient to show that �(�) = |+ |
2
−max*⊆+

>(�−*)−|* |
2

. Any

reference to left-hand side (LHS) or right-hand side (RHS) will be in reference to

this inequality. Proof via induction on |+ |. Base case of |+ | = 0 is trivial. We

can also assume that � is connected otherwise we can apply induction to each

connected component and the theorem easily follows.

Case 1: There exists v ∈ \ such that v is in every maximummatching. Let
�′ = (+′, �′) = � − E, then �(�′) = �(�) − 1 and by induction, there is *′ ⊆ +′
such that the RHS of the formula is equal to �(�′) = �(�) − 1. It is easy to verify

that* = *′ ∪ {E} satisfies equality in the formula for �.

Case 2: For every v ∈ M, there is amaximummatching thatmisses it. Such
a graph is called factor-critical and by Lemma 2.1 below, �(�) = |+ |−1

2
and that

there is an odd number of vertices in the entire graph. If we take * = ∅, then
the theorem holds. �

Lemma 2.1. Let � = (+, �) be a connected graph such that for each E ∈ + there is a

maximum matching in � that misses E. Then, �(�) = |+ |−1

2
. In particular, |+ | is odd.

Proof. By way of contradiction, assume there exists two vertices D ≠ E and

a maximum matching " that avoids them. Among all such choices, choose

", D, E such that 38BC(D, E) is minimized (by distance we mean the shortest

path length). Since � is connected 38BC(D, E) is finite. If 38BC(D, E) = 1 then "

can be grown by adding the edge DE to it, contradicting " being a maximum

matching. Therefore there exists a vertex C, D ≠ C ≠ E, such that C is on a shortest

path from D to E. Also, by minimality of distance between D and E we know that

C is covered by "; in fact all internal nodes on the shortest path between D and

E must be covered by ".

Tutte Beige formula

o a a o.no

t

u V

I

got

Figure 2.1: D, E are unmatched in " and every internal node on shortest path

must be matched by ". Choose C on path arbitrarily.

By the assumption, there is at least one maximum matching that misses C.

Choose a maximum matching # that maximizes # ∩ " while missing C. #

must cover D, or else #, D, C would have been a better choice than " since

38BC(D, C) < 38BC(D, E). Similarly, # covers E. Now |" | = |# | and we have one

vertex C covered by " but not covered by # , and and two vertices D, E that are

covered by # but not by". Hence there must be another vertex G covered by"

CHAPTER 2. MATCHINGS IN NON-BIPARTITE GRAPHS 15

Tutte Beige formula

o a a o.no

t

u V

I

got
Figure 2.2: D, E matched by # and C , G unmatched by # . GH ∈ " and HI ∈ # .

but not # that is different from D, E, C. Let GH ∈ " (since G is covered by "). #

is a maximum matching and hence GH cannot be added to it which implies that

H is covered by # and also H ≠ C (by choice of #). Let HI ∈ # . Note that I ≠ G.

Consider the matching #′ = # − HI+ GH. We have: |#′ | = |# | and #′ avoids
C and |#′ ∩ " | > |# ∩ " |. This is a contradiction to the choice of # . Thus,

any maximum matching in � leaves exactly one vertex out and this proves the

lemma. �

Remark 2.1. The preceding proof of the Tutte-Berge formula is graph theoretic

and does not yield algorithmic insights, at least directly. We will see an efficient

algorithm soon and one can use the properties of the algorithm to obtain an

alternative proof of the Tutte-Berge formula. We gave the preceding proof to

highlight the historical aspects and the fact that one can be motivated to look for

an efficient algorithm by the very existence of a min-max relation.

2.2 Polynomial-time Algorithm for Maximum Cardinal-
ity Matching

As we mentioned previously, the Tutte-Berge formula gives strong evidence that

maximum cardinality matching has a polynomial-time algorithm. The first such

algorithm was discovered by Jack Edmonds. Faster algorithms are now known

but the fundamental insight is easier to see in the original algorithm. Given a

matching " in a graph �, we say that a node E is "-exposed if it is not covered

by an edge of ".

Definition 2.3. A path % in � is "-alternating if every other edge is in ". It can

have odd or even length. A path % is "-augmenting if it is "-alternating and both

ends are "-exposed.

CHAPTER 2. MATCHINGS IN NON-BIPARTITE GRAPHS 16

Alinating paths etc

no

Ét

It

Figure 2.3: Examples of alternating paths with edges in " shown in red.

Alinating paths etc

no

Ét

It

Figure 2.4: Thepath E1 , E2 , E3 , E4 , E5 , E6 is an"-augmentingpath. Newmatching

after augmenting.

CHAPTER 2. MATCHINGS IN NON-BIPARTITE GRAPHS 17

Lemma 2.2. " is a maximum matching in � if and only if there is no "-augmenting

path.

Proof. If there is an "-augmenting path, then we could easily use it to find a

matching"′ such that |"′ | = |" | + 1 and hence" is not a maximummatching.

In the other direction, assume that " is a matching that is not maximum

by way of contradiction. Then there is a maximum matching # , and |# | > |" |.
Let � be a subgraph of � induced by the edge set "Δ# = (" − #) ∪ (# −")
(the symmetric difference). Note that the maximum degree of a node in � is

at most 2 since a node can be incident to at most one edge from # − " and

one edge from " − # . Therefore, � is a disjoint collection of paths and cycles.

Furthermore, all paths are "-alternating (and #-alternating too). All cycles

must be of even length, since they alternate edges from " and # . At least one

of the paths must have more edges from # than from " because |# | > |" | and
we deleted the same number of edges from # as ". That path must be of odd

length and is an "-augmenting path. �

The above lemma suggests a greedy algorithm for finding a maximum

matching in a graph �. Start with a (possibly empty) matching and iteratively

augment it by finding an augmenting path, if one exists. Thus the heart of the

matter is to find an efficient algorithm that given � and matching ", either finds

an "-augmenting path or reports that there is none.

Bipartite Graphs: We quickly sketch why it is easy to find augmenting paths

in bipartite graphs. Let � = (+, �) with �, � forming the vertex bipartition. Let

" be a matching in �. Let - be the "-exposed vertices in � and let . be the

"-exposed vertices in �. Obtain a directed graph � = (+, �′) by orienting the

edges of � as follows: orient edges in " from � to � and orient edges in � \"
from � to �.

The following claim is easy to prove and we leave it as an exercise.

Claim 2.2.1. There is an "-augmenting path in � if and only if there is an --. path

in the directed graph � described above.

Finding an augmenting path and implementing the greedy algorithm is

effectively the augmenting path algorithm for maximum flow in the graph

obtained from the standard reduction of bipartite matching to B-C max-flow.

Non-Bipartite Graphs: In general graphs it is not straight forward to find an

"-augmenting path. As we will see, odd cycles form a barrier and Edmonds

discovered the idea of shrinking them in order to recursively find a path. The

first observation is that one can efficiently find an alternating walk.

CHAPTER 2. MATCHINGS IN NON-BIPARTITE GRAPHS 18Bipartite graphs

É

A B
É

Figure 2.5: Finding "-augmenting path by reduction to directed graph reacha-

bility. The "-exposed nodes are shown with a circle over them.

Definition 2.4. A walk in a graph � = (+, �) is a finite sequence of vertices

E0 , E1 , E2 , . . . , EC such that E8E8+1 ∈ �, 0 ≤ 8 ≤ C − 1. The length of the walk is

C.

Note that edges and nodes can be repeated on a walk.

Definition 2.5. Awalk E0 , E1 , E2 , . . . , EC is"-alternatingwalk if for each 1 ≤ 8 ≤ C−1,

exactly one of E8−1E8 and E8E8+1 is in ".

Lemma 2.3. Given a graph � = (+, �), a matching", and"-exposed nodes -, there

is an $(|+ | + |� |) time algorithm that either finds a shortest "-alternating --- walk

of positive length or reports that there is no such walk.

Proof sketch. Define a directed graph � = (+, �) where � = {(D, E) : ∃G ∈
+, DG ∈ �, GE ∈ "}. Then a --- "-alternating walk corresponds to a --#(-)

CHAPTER 2. MATCHINGS IN NON-BIPARTITE GRAPHS 19

directed path in � where #(-) is the set of neighbors of - in � (we can assume

there is no edge between two nodes in - for otherwise that would be a shortest

walk). Alternatively, we can create a bipartite graph with � = (+ ∪+′, �)where

+′ is a copy of + and � = {(D, E′) | DE ∈ � \"} ∪ {(D′, E) | DE ∈ "} and find a

shortest ---′ directed path in � where -′ is the copy of - in +′. �

V
D

Figure 2.6: Finding "-alternating walk by reduction to directed graph reacha-

bility. Making copies of vertices. A shortest alternating walk from the unique

"-exposed node D to itself is D, E, F, G, H, D.

What is the structure of an --- "-alternating walk? Clearly, one possibility

is that it is actually a path in which case it will be an "-augmenting path.

However, there can be alternating walks that are not paths as shown by the

figure below.

One notices that if an --- "-alternating walk has an even cycle, one can

remove it to obtain a shorter alternating walk. Thus, the main feature of an

alternating walk when it is not a path is the presence of an odd cycle called a

CHAPTER 2. MATCHINGS IN NON-BIPARTITE GRAPHS 20

blossom by Edmonds.

Definition 2.6. An "-flower is an "-alternating walk E0 , E1 , . . . , EC such that

E> ∈ -, C is odd and EC = E8 for some even 8 < C. In other words, it consists of an

even length E0 , . . . , E8 "-alternating path (called the stem) attached to an odd cycle

E8 , E8+1 , . . . , EC = E8 called the "-blossom. The node E8 is the base of the stem and is

"-exposed if 8 = 0, otherwise it is "-covered.

Figure 2.7: A "-flower. The green edges are in the matching

Lemma 2.4. A shortest positive length --- "-alternating walk is either an "-

augmenting path or contains an "-flower as a prefix.

Proof. Let E0 , E1 , . . . , EC be a shortest --- "-alternating walk of positive length.

If the walk is a path then it is "-augmenting. Otherwise let 8 be the smallest

index such that E8 = E 9 for some 9 > 8 and choose 9 to be smallest index such

that E8 = E 9 . If E8 , . . . , E 9 is an even length cycle we can eliminate it from the

walk and obtain a shorter alternating walk. Otherwise, E0 , . . . , E8 , . . . , E 9 is the

desired "-flower with E8 as the base of the stem. �

Exercise 2.1. Describe an example of an --- "-alternating walk with an even

length cycle and show why one can eliminate it to obtain a shorter alternating

walk.

Given a "-flower and its blossom � (we think of � as both a set of vertices

and an odd cycle), we obtain a graph �/� by shrinking � to a single vertex 1

and eliminating loops and parallel edges. It is useful to identify 1 with the base

of the stem.

CHAPTER 2. MATCHINGS IN NON-BIPARTITE GRAPHS 21

Lll V8

0 1 7
t

Vo V V V do
Vio V5 V6

T
9Th

Figure 2.8: "-alternating walks and "-flowers. In the top figure the walk is

E0 , . . . , E11 with the "-flower obtained from the prefix E0 , . . . , E9. In the bottom

figure the walk is E0 , . . . , E5 which is itself an"-flower with degenerate stem; in

this case the base is "-exposed.

Figure 2.9: Shrinking the blossom. The shrunken vertex 1 base can be "/�
exposed or not.

CHAPTER 2. MATCHINGS IN NON-BIPARTITE GRAPHS 22

We obtain a matching"/� in �/�which consists of eliminating the edges of

" with both end points in �. We note that 1 is "/�-exposed iff 1 is "-exposed.

Theorem 2.7. " is a maximum matching in � if and only if "/� is a maximum

matching in �/�.
Proof. The next two lemmas cover both directions. �

To simplify the proof we do the following. Let % = E0 , . . . , E8 be the stem of

the"-flower. Note that% is an even length"-alternating path and if E0 ≠ E8 then

E0 is "-exposed and E8 is "-covered. Consider the matching "′ = "Δ�(%),
that is by switching the matching edges in % into non-matching edges and

vice-versa. Note that |"′ | = |" | and hence " is a maximum matching in �

iff "′ is a maximum matching. Now, the blossom � = E8 , . . . , EC = E8 is also a

"′-flower but with a degenerate stem and hence the base is"′-exposed. For the
proofs to follow we will assume that" = "′ and therefore 1 is an exposed node

in �/�. In particular we will assume that � = E0 , E1 , . . . , EC = E0 with C odd.

FI

RI
Figure 2.10: Given "-flower we change " to "′ such that |" | = |"′ | and the

blossom is "′-exposed. Helps simplify proof and algorithm.

Proposition 2.2.1. For each E8 in � there is an even-length "-alternating path &8

from E0 to E8 .

Proof. If 8 is even then E0 , E1 , . . . , E8 is the desired path, else if 8 is odd, E0 =

EC , EC−1 , . . . , E8 is the desired path. That is, we walk along the odd cycle one

direction or the other to get an even length path. �

Lemma 2.5. If there is an "/� augmenting path % in �/� then there is an "-

augmenting path %′ in �. Moreover, %′ can be found from % in $(<) time.

CHAPTER 2. MATCHINGS IN NON-BIPARTITE GRAPHS 23

i

Figure 2.11: "/�-augmenting path in �/� implies an"-augmenting path in �.

In the top figure D2E3 is the first edge of path % that touches 1 and we obtain

the "-augmenting path D0 , D1 , D2 , E3 , E4, E0 in �. In the bottom figure the path

D2E4 is the first edge of % that touches 1 and we obtain the "-augmenting path

D0 , D1 , D2 , E5 , E3 , E2 , E1 , E0 in �. The odd cycle allows us to traverse the even

length segment to the "-exposed node E0.

Proof. Case 1: V does not contain b. Set %′ = %.
Case 2: P contains b. 1 is an exposed node, so it must be an endpoint of %.

Without loss of generality, assume 1 is the first node in %. Then % starts with an

edge 1D ∉ "/� and the edge 1D corresponds to an edge E8D in � where E8 ∈ �.

CHAPTER 2. MATCHINGS IN NON-BIPARTITE GRAPHS 24

Obtain path %′ by concatenating the even length "-alternating path &8 from E0

to E8 from Proposition 2.2.1 with the path % in which 1 is replaced by E8 ; it is

easy to verify that is an "-augmenting path in �. �

Lemma 2.6. If % is an"-augmenting path in �, then there exists an"/� augmenting

path in �/�.

Proof. Let % = D0 , D1 , . . . , DB be an"-augmenting path in �. If % ∩ � = ∅ then %
is an "/� augmenting path in �/� and we are done. Since the only exposed

node in � is E0 one of the end points of % must be an exposed node that is not in

�; without loss of generality assume that D0 ≠ E0. Let D9 be the first vertex in %

that is in �. We claim that D0 , D1 , . . . , D9−1 , 1 is an"/� augmenting path in �/�.
Two cases to verify when D9 = E0 and when D9 = E8 for 8 ≠ 0, both are easy. If

D9 = E0 then D0 , D1 , . . . , D9 is itself an "-augmenting path in � since D9 = E0 is

"-exposed and since 1 is "/�-exposed it follows that D0 , D1 , . . . , D9−1 , 1 is an

"/�-augmenting path. If D9 = E8 for 8 ≠ 0 then the edge D9−1E8 ∉ " since E8 is

covered by ". Hence the path D0 , . . . , D9−1 , 1 is an "/� alternating path that

starts with D0 which is "/� exposed and ends in 1 which is "/�-exposed and

hence "/�-augmenting. �

From the above lemmas we have the following.

Lemma 2.7. There is an $(=<) time algorithm that given a graph � and a matching

", either finds an "-augmenting path or reports that there is none. Here < = |� | and
= = |+ |.

Proof. The algorithm is as follows. Let - be the "-exposed nodes. It first

computes a shortest --- "-alternating walk % in $(<) time — see Lemma 2.3.

If there is no suchwalk then clearly" ismaximumand there is no"-augmenting

path. If % is an"-augmenting path we are done. Otherwise there is an"-flower

in % and a blossom �. We can assume by a simple transformation that the base of

� is "-exposed. The algorithm shrinks � and obtains �/� and "/� which can

be done in $(<) time. It then calls itself recursively to find an"/�-augmenting

path or find out that"/� is a maximummatching in�/�. In the latter case," is

a maximummatching in �. In the former case the"/� augmenting path can be

extended to an"-augmenting path in $(<) time as shown in Lemma 2.5. Since

�/� has at least two nodes less than �, it follows that his recursive algorithm

takes at most $(=<) time. �

By iteratively using the augmenting algorithm from the above lemma at

most =/2 times we obtain the following result.

CHAPTER 2. MATCHINGS IN NON-BIPARTITE GRAPHS 25

Obama P A V Blt 0

I
td
touches is done

Figure 2.12: "-augmenting path in � implies an"/�-augmenting path in �/�.
In the top figure % = D0 , D1 , D2 , E0 which translates to D0 , D1 , D2 , 1 in �/�. In the

second figure % = D0 , D2 , E5 , E3 , G translates also to D0 , D1 , D2 , 1 in �/�. Note that

1 is "/� exposed in �/�.

Theorem 2.8. There is an $(=2<) time algorithm to find a maximum cardinality

matching in a graph with = nodes and < edges.

CHAPTER 2. MATCHINGS IN NON-BIPARTITE GRAPHS 26

The algorithm of Edmonds has been improved in terms of the running time.

With some basic book keeping and avoiding recomputing the walk from scracth

each iteration, one can obtain an $(=3) time algorithm. Via data structure tricks

such as Union-Find one can improve running time to $(=<). See Chapter 24 in

[57] for more details. Micali and Vazirani claimed an $(<
√
=) time algorithm

via an involved generalization of the Edmonds-Karp algorithm for bipartite

matching. The correctness proof of the Micali-Vazirani algorithm has been

difficult to establish (see [65]). However, if one does not worry about an extra

logarithmic factor, weighted matching algorithms based on scaling lead to an

easier to understand algorithm and proof [21].

Chapter 3

Polyhedra and Linear
Programming1

This chapter is mainly based on [58]. Missing proofs can be found there.

In this chapterwewill cover some basicmaterial on the structure of polyhedra

and linear programming. This is a large topic to be covered in a few classes, so

pointers will be given for further reading. For algorithmic and computational

purposes one needs to work with rational polyhedra. Many basic results,

however, are valid for both real and rational polyhedra. We will not make a

distinction unless necessary.

3.1 Basics

We will be working only with finite dimensional vector spaces over the reals

equipped with the standard notions of Euclidean metric and inner product. We

use R= for some finite dimension = to denote this space. For G, H ∈ R= ,

G − H

2

defines the Euclidean distance between G and H where ‖I‖
2
is the Euclidean

2-norm. The Pythagorean theorem shows that this distance induces a metric. A

subset - ⊆ R= is bounded if there is a finite radius ' such that every point in -

is at distance at most ' from the origin. A set - ⊆ ℝ=
is closed if the limit of

every converging sequence of points in - is contained in -. A set - is compact

if it is closed and bounded. We will implicitly use the Bolazano-Wierstrass

theorem: every bounded sequence has a convergent subsequence.

Notation: Given two vectors D, ER= we need notation for the sum

∑=
8=1
D8E8

which is the inner product of D and E. One notation for this is 〈D, E〉. However

this product also arises in optimization as a linear objective

∑
8 28G8 where 2

1Based on notes scribed by Sungjin Im and Ben Moseley in 2010.

27

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 28

is considered a fixed objective direction and G is a variable vector. In these

contexts it is perhaps more natural to use notation such as 2)G which comes from

linear algebra where we view both 2 and G as = × 1 column vectors. However,

sometimes it is cumbersome to use the transpose notation and one sees 2G or 2 · G
as representing the same quantity with the underlying assumption that 2 is a

row vector. We will use the transpose notation when there is scope for confusion

and may slip and use the more sloppy notation when it is not confusing.

Definition 3.1. Let G1 , G2 , ..., G< be points in R= . Let G =
∑<
8=1

�8G8 , where each
�8=1 ∈ R, 1 ≤ 8 ≤ < is a scalar. Then, G is said to be

1. a linear combination of the G8 (for arbitrary scalars �8).

2. an affine combination of the G8 if
∑
8=1

�8 = 1.

3. a conical combination if �8 ≥ 0 for 1 ≤ 8 ≤ <.

4. a convex combination if

∑
�8 = 1 and �8 ≥ 0 (affine and canonical).

In the following definitions and propositions, unless otherwise stated, it will

be assumed that G1 , G2 , ..., G< are points in R= and �1 ,�2 , ...,�< are scalars in R.

Definition 3.2. G1 , G2 , ..., G< are said to be linearly independent if

∑<
8=1

�8G8 = 0⇒
�8 = 0 ∀8 ∈ [<].

Definition 3.3. G1 , G2 , ..., G< are said to be affinely independent if the < − 1 vectors

(G8 − G1), 8 = 2, ..., < are linearly independent, or equivalently if

∑<
8=1

�8G8 = 0 and∑<
8=1

�8 = 0⇒ ∀8 ∈ [<] �8 = 0.

The following proposition is easy to check and the proof is left as an exercise

to the reader.

Claim 3.1.1. G1 , G2 , ..., G< are affinely independent if and only if the vectors

(
G8
1

)
,

8 = 1, 2, ..., <, are linearly independent in R=+1
.

Definition 3.4. A set - ⊆ R= is said to be a linear subspace if - is closed under linear

combinations of any finite subset of points in -. It is an affine set if it is closed under

affine combinations. - is a cone if it is closed under conincal combinations. - is a

convex set if it is closed under convex combinations.

Note that an affine set is a translation of a subspace. That is, - is an affine set

if there is a linear subspace. and a vector 1 such that - = {H+ 1 | H ∈ .}. Given

- ⊆ R= , we let Span(-), Aff(-), Cone(-), and Convex(-) denote the closures of
- under linear, affine, conical, and convex combinations, respectively. In any of

these sets - is said to be finitely generated if - is obtained by taking combinations

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 29

starting from a finite set of points. We know form linear algebra that every finite

dimensional subspace is generated by a finite sized basis and that all bases have

the same cardinality (which is the dimension of the subspace). However, cones

and convex sets in finite dimensional spaces need not be finitely generated. Take

for example the sphere.

To get an intuitive feel of the above definitions, see Figure 3.1.

Figure 3.1: The subspace, cone set, affine set, and convex set of G1 , G2 (from left

to right). Note that the subspace is R2
and the cone set includes all points inside

and on the two arrows.

Definition 3.5. Given a set - ⊆ R= , the affine dimension of - is the maximum number

of affinely independent points in -.

3.2 Polyhedra, Polytopes, and Cones

Definition 3.6 (Hyperplane, Halfspace). A hyperplane inR= is the set of all points

G ∈ R= that satisfy 0 · G = 1 for some 0 ∈ R= and 1 ∈ R. A halfspace is the set of all

points G such that 0 · G ≤ 1 for some 0 ∈ R= and 1 ∈ R.

Definition 3.7 (Polyhedron). A Polyhedron in R= is the intersection of finitely

many halfspaces. It can be equivalently defined to be the set {G | �G ≤ 1} for a matrix

� ∈ R<×= and a vector 1 ∈ R<×1
.

Definition 3.8 (Polyhedral cone). A polyhedral cone isR= the intersection of finitely

many halfspaces that contain the origin, i.e. {G | �G ≤ 0} for a matrix � ∈ R<×= .

There are two ways of defining polytopes.

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 30

Definition 3.9 (Polyotpe). A polytope is a bounded polyhedron.

Definition 3.10 (Polyotpe). A polytope is the convex hull of a finite set of points.

The equivalence of the two definitions is a non-trivial and fundamental

theorem! One can view polytopes as having two representations: via inequalities

and via vertices. There can be an exponential gap between the representation

sizes. For one direction consider the Boolean hypercube in = dimensions which

is the convex hull of the 2
=
vectors {0, 1}= . This is easily represented as a

polyhedron with 2= inequalities (how?). Similarly there are examples of <

points in = dimensions such that the number of inequalities required to describe

it is exponential.

Note that a polyhedron is a convex and closed set. It is illuminating to classify

a polyhedron into the following four categories.

1. Empty set (when the system �G ≤ 1 is infeasible.)

2. Polytope (when the polyhedron is bounded.)

3. Cone

4. (Combination of) Cone and Polytope

Figure 3.2: Examples of polyhedra left to right: Empty, Polytope, Cone, Combi-

nation of cone and polytope.

What “combination of cone and polytope" means will become clear soon in

Theorem 3.13. For the examples, the reader is referred to Figure 3.2. In 2-D, a

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 31

cone can have only two “extreme rays," while in 3-D there is no bound on the

number of extreme rays it can have.

For themost of part, wewill be largely concernedwith polytopes, butwe need

to have a better understanding of polyhedra first. Although it is geometrically

“obvious" that a polytope is the convex hull of its “vertices," the proof is quite

non-trivial. We will state the following three theorems without proof.

Theorem 3.11. A bounded polyhedron is the convex hull of a finite set of points.

Theorem 3.12. A polyhedral cone is generated by a finite set of vectors. That is, for

any � ∈ R<×= , there exists a finite set - such that {G = ∑
8 �8G8 | G8 ∈ -,�8 ≥ 0} =

{G | �G ≤ 0}.
Theorem 3.13. A polyhedron {G | �G ≤ 1} can be written as the Minkowski sum of a

polytope & and a cone �, i.e. % = & + � = {G + H | G ∈ &, H ∈ �}.
One can (geometrically) obtain the Minkowski sum of a polytope & and

a cone � by sweeping the origin of the cone � over the polytope &. If the

polyhedron % is pointed (has at least one “vertex"), the decomposition is, in

fact, modulo scaling factor unique. Further the cone � above is {G | �G ≤ 0},
or equivalently the set of unbounded directions in %. The cone � is called the

characteristic cone or the recession cone of %.

Exercise 3.1. Let % = {G | �G ≤ 1, G ∈ R=} be a polyhedron. Let I ∈ %. Prove
that for H ∈ � and any
 ≥ 0, I +
H ∈ %.

Many facts about polyhedra and linear programming rely on (in addition

to convexity) variants of Farkas’ lemma that characterizes when a system of

linear inequalities do not have solution. The simplest proof for one variant is via

Fourier-Motzkin elimination that is independently interesting and related to the

standard Gauss-Jordan elimination for solving system of linear equations.

3.3 Fourier-Motzkin Elimination

Let % = {G | �G ≤ 1} ⊆ R= be a polyhedron. For : in [=],
we let %: = {(G1 , .., G:−1 , G:+1 , ..., G=) | (G1 , G2 , ..., G=) ∈ %} be the projection of %

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 32

along the G:-axis.

Theorem 3.14. %: is a polyhedron.

Proof. We derive a set of inequalities that describe %: . We do this by considering

the inequalities in �G ≤ 1 and eliminating the variables G: as follows. Partition

the inequalities in �G ≤ 1 into three sets:

(+ = {8 ∈ [<] | 08: > 0}, (− = {8 ∈ [<] | 08: < 0}, and (0 = {8 ∈ [<] | 08: = 0}.

Define a new set of inequalities consisting of (0 and one new inequality for each

pair (8 , ℓ) in (+ × (−:

08:(
=∑
9=1

0ℓ 9G 9) − 0ℓ :(
=∑
9=1

08 9G 9) ≤ 08:1ℓ − 0ℓ :18 .

Note that the combined inequality does not have G: . We also observe that

since 08: > 0 and 0ℓ : < 0 the combined inequality is obtained as a non-negative

combination of two inequalities of the original system. It is therefore clear that

the new system of inequalities is a set of valid inequalities for % 2.

We now have a total of |(0 | + |(+ | |(− | new inequalities. Let %′ = {G′ ∈
R=−1 | �′G′ ≤ 1′} where �′G′ ≤ 1′ is the new system of inequalities in variables

G1 , G2 , ..., G:−1 , G:+1 , ..., G= . We prove the theorem by showing that %: = %′.
We first show the easier direction: %: ⊆ %′. Consider any point I ∈ %: . By

definition of %: , there exists H ∈ % such that �H ≤ 1 and projection of H onto

the :’th axis is I. The system �′G′ ≤ 1′ is valid for % and hence H satisfies this

system and hence also I (since the new system does not have the variable G:).

We now show that %′ ⊆ %: . Note that �G ≤ 1 can be rewritten as

081G1 ≤ 18 −
=∑
9=2

08 9G 9 , 8 ∈ [<]. (3.1)

Without loss of generality, assume : = 1. Consider any I = (I2 , I3 , ..., I=) ∈
%′. We want to show that there exists I1 ∈ R such that �I′ ≤ 1, where

I′ = (I1 , I2 , ..., I=). To simplify notation, for 8 ∈ [<], let �8 = 18 −
∑=
9=2

08 9I 9 .

Observe that I satisfies all inequalities in (0
, since the new system includes those

constraints. Thus it suffices to show that

∃I1 s.t. 081I1 ≤ �8 ,∀8 ∈ (+ ∪ (−.
⇔ maxℓ∈(−

�ℓ
0ℓ1
≤ I1 ≤ min8∈(+

�8
081
.

2It is convenient to assume, without loss of generality, that the coefficient of G: in each of the

inequalities of (
1
is 1 and is equal to −1 in each of the inequalities of (

2
. Then each new inequality

is obtained as simply the sum of one inequality from (
1
and one from (

2
.

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 33

It is easy to observe that this is equivalent to

�ℓ
0ℓ1
≤ �8

081
∀(8 , ℓ) ∈ (+ × (−

⇔ 0 ≤ 081�ℓ − 0ℓ1�8 ∀(8 , ℓ) ∈ (+ × (−
⇔ �′I ≤ 1′

And we know that �′I ≤ 1′ since I ∈ %′, completing the proof. �

We state two useful corollaries the first of which is based on observation we

made in the proof.

Corollary 3.15. %: is a polyhedron and moreover %: = {I ∈ R= | �′I ≤ 1′} where
each inquality in �′I ≤ 1′ is a non-negative combination of the inequalities of %.

Corollary 3.16. %: is empty iff % is empty.

Remark 3.1. Fourier-Motzkin elimination gives an exponetial time algorithm to

check if a polyhedron defined by a system of inequalities {G | �G ≤ 1} is empty.

We keep eliminating variables until we reduce the problem to a one-dimension

problem where it is easy, however, the number of inequalities grows as we

eliminate variables. Polynomial-time solvability of linear programming implies

that there are other more efficient ways of checking whether % is empty.

From Fourier-Motzkin elimination we get an easy proof of one variant of

Farkas’ lemma.

Theorem 3.17 (Theorem of Alternatives). Let � ∈ R<×= and 1 ∈ R< . For the

system �G ≤ 1, exactly one of the following two alternatives hold:

• The system is feasible.

• There exists H ∈ R< such that H ≥ 0, H)� = 0 and H)1 < 0.

What the theorem says is that if the system of inequalities �G ≤ 1 is infeasible
then there is a proof (certificate) of this which can be obtained by taking non-

negative combination of the inequalities (given by H ≥ 0) to derive a contradiction

of the following form: 0 = H)� ≤ H)1 < 0.

Proof of Theorem 3.17. Suppose that there exists a vector H ≥ 0 such that H)� = 0

and H)1 < 0. If there is any feasible vector I such that �I ≤ 1 then it easily

follows that 0 ≤ H)�I ≤ H)1, since H ≥ 0, which is a contradiction to the fact

that H)1 < 0. Thus there can be no feasible solution to �G ≤ 1.
Conversely, suppose �G ≤ 1 is infeasible. Let % = {G | �G ≤ 1}. We use

Fourier-Motzkin procedure to eliminate variables G1 , G2 , ..., G= (we can choose

any arbitrary order) to obtain polyhedra % = &0 , &1 , &2 , ..., &=−1 , &= . Note that

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 34

&8+1 is non-empty iff&8 is, and that&=−1 has only one variable and&= has none.

The inequalities describing &8 are non-negative combination of the inequalities

of % as we observed earlier. Thus, &= is empty iff we have derived an inequality

of the form 0 ≤ � for some � < 0 at some point in the process. That inequality

gives the desired H ≥ 0. �

Two variant of Farkas’ lemma that are useful can be derived from the theorem

of alternatives.

Theorem 3.18. �G = 1, G ≥ 0 has no solution iff ∃H ∈ R< such that H)� ≥ 0 and

H)1 < 0.

The preceding theorem has a nice geometric interpretation. Let
1 ,
2 , ...,
=
be the columns of� viewed as vectors inR< . Then�G = 1, G ≥ 0 has a solution if

and only if 1 is in the cone generated by
1 ,
2 , ...,
= ; here the conic combination

is given by G ≥ 0. So 1 is either in the Cone(
1 ,
2 , ...,
=) or there is a hyperplane
separating 1 from
1 ,
2 , ...,
= .

In fact the theorem can be strengthened to show that the hyperplane can be

chosen to be one that spans C − 1 linearly independent vectors in
1 ,
2 , ...,
= ,
where C = rank(
1 ,
2 , ...,
= , 1).

Proof of Theorem 3.18. It is easy to see that if ∃H ∈ R< such that H)� ≥ 0 and

H)1 < 0 then the original system has no solution. We prove the harder direction.

We can rewrite �G = 1, G ≥ 0 as
�

−�
−�

 G ≤

1

−1
0


Hence by the Theorem of Alternatives, �G = 1, G ≥ 0 is not feasible only if there

exists a H′ =
[
D E F

])
, where D, E are vectors in R< and F is vector in R=

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 35

such that

D, E, F ≥ 0

D)� − E)� − F = 0

D)1 − E)1 < 0

Let H = D − E. Note that H ∈ R< is not necessarily positive. From the second

and third inequalities, we can easily obtain H)� = F ≥ 0 and H)1 < 0. �

Another variant of Farkas’ lemma is as follows and the proof is left as an

exercise.

Theorem 3.19. �G ≤ 1, G ≥ 0 has a solution iff H)1 ≥ 0 for each row H ≥ 0 with

H)� ≥ 0.

Another interesting and very useful theorem is Carathéodory’s theorem

Theorem 3.20 (Carathéodory). Let G ∈ Convexhull(-) for a finite set - of points

in R= . Then G ∈ Convexhull(-′) for some -′ ⊆ - such that vectors in -′ are affinely

independent. In particular, |-′ | ≤ = + 1.

A conic variant of Carathéodory’s theorem is as follows.

Theorem 3.21. Let G ∈ Cone(-) where - = {G1 , G2 , ..., G<}, G8 ∈ R= . Then

G ∈ Cone(-′) for some -′ ⊆ - where vectors in -′ are linearly independent. In

particular, |-′ | ≤ =.

Proof. Since G ∈ Cone(-), G = ∑
8 �8G8 for some �8 ≥ 0. Choose a combination

with mininum support, i.e. the smallest number of non-zero �8 values. Let

-′ = {�G8 | �8 > 0} and � = {8 | �8 > 0}. If vectors in -′ are linearly independent,

we are done. Otherwise, ∃
8 , 8 ∈ � s.t.
∑
8∈�
8�8G8 = 0. By scaling we can assume

that ∀8 ∈ � ,
8 ≤ 1, and ∃9 ∈ � s.t.
 9 = 1. Then,

G =
∑
8∈�

�8G8 =
∑
8∈�

�8G8 −
∑
8∈�

8�8G8 =
∑
8∈�

�8(1 −
8)G8 .

Letting �′
8
= �8(1−
8)we see that �′

8
≥ 0 for all 8 and �′

9
= 0. Therefore, from the

preceding we have that G =
∑
8∈�\{ 9} �

′
8
G8 which means that G can be written as a

conical combination of vectors in -′ − {G 9}, contradicting the choice of -′. �

Exercise 3.2. Prove the affine version of Carathéodory’s theorem from the conical

version (or directly).

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 36

3.4 Linear Programming

Linear programming is an optimization problem of the following form.

max 2)G (Primal-LP)
�G ≤ 1

where 2 ∈ R= and � ∈ R<×= . Here

In other words, we wish to optimize a linear objective function over a

polyhedron; by negating 2 we can also minimize. This is a natural standard form

of LP since we wish to highlight the fact that the feasible space is a polyhedron.

Given an LP, there are three possibilities:

1. The polyhedron is infeasible.

2. The objective function can be made arbitrarily large in which case we say

it is unbounded.

3. There is a finite optimum value in which case we say it is bounded.

Another important standard form of LP is

max 2)G (Primal-LP)
�G = 1

G ≥ 0

The above is an interesting standard form since the form highlights the

difference between linear system solving and LPs. In linear system solving we

only have �G = 1 without the constraint that G ≥ 0.

Exercise 3.3. Consider the problemmax 2)G subject to�G = 1. Use insights from

basic linear algebra and linear system solving to obtain an efficient algorithm for

this problem.

Each linear program has its associated “dual" linear program. The LP we

refer to by “dual" depends on the “starting" LP, which is called as the primal LP;

in fact the dual of dual LP is exactly the same as the primal LP. Let us say that

the following LP is the primal LP here.

max 2)G

�G ≤ 1

We can “derive" the dual by thinking about how we can obtain an upper

bound on the optimal value for the primal LP. Given the system �G ≤ 1, any

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 37

inequality obtained by non-negative combination of the inequalities in �G ≤ 1 is
a valid inequality for the system. We can represent a non-negative combination

by a < × 1 row vector H) ≥ 0.

Thus H)�G ≤ H)1 is a valid inequality whenever H ≥ 0. Take any vector

H ≥ 0 such that H)� = 2. Then such a vector gives us an upperbound on the

LP value since H)�G = 2G ≤ H)1 is a valid inequality. Therefore one can obtain

an upperbound by minimizing over all H ≥ 0 such that H)� = 2. Therefore the

objective function of the primal LP is upperbounded by the optimum value of

min H)1 (Dual-LP)

H)� = 2

H ≥ 0

The above derivation of the Dual LP immediately implies the Weak Duality

Theorem.

Theorem 3.22 (Weak Duality). If G′ and H′ are feasible solutions to Primal-LP and

Dual-LP then 2)G′ ≤ (H′))1.

Corollary 3.23. If the primal-LP is unbounded then the Dual-LP is infeasible.

Exercise 3.4. Prove that the dual of the Dual-LP is the Primal-LP.

The main result in the theory of linear programming is the following Strong

Duality Theorem which is essentially a min-max result.

Theorem 3.24 (Strong Duality). If Primal-LP and Dual-LP have feasible solutions,

then there exist feasible solutions G∗ and H∗ to them such that 2)G∗ = (H∗))1.

Proof. Note that by weak duality we have that 2)G′ ≤ (H′))1 for any feasible pair

of G′ and H′. Thus to show the existence of G∗ and H∗ it suffices to show that the

system of inequalities below has a feasible solution whenever the two LPs are

feasible.

2)G ≥ H)1

�G ≤ 1

H)� = 2

H ≥ 0

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 38

We rewrite this as

�G ≤ 1

H)� ≤ 2

−H)� ≤ −2
−H ≤ 0

−2)G + H)1 ≤ 0

and apply the Theorem of Alternatives. Note that we have inequalities in = + <
variables corresponding to the G and H variables. By expressing those variables

as a vector I =

[
G

H

]
, we have


� 0

0 �)

0 −�)
0 −�
−2) 1)


[
G

H

]
≤


1

2

−2
0

0


Note that only one inequality ties the two sets of variables. The total number

of constraints in the above system is < + 2= + < + 1. If the above system does

not have a solution then there exists a row vector

[
B) ?) @) D)

]
≥ 0,

where B is a < × 1 vector, ?, @ are = × 1 vectors, D is a < × 1 vector and
 is a

scalar such that

B)� −
 · 2 = 0

?�) − @�) − D +
 · 1 = 0

and

B)1 + ?) 2 − @) 2 < 0.

We replace ? − @ by F and note that now F is not necessarily positive. Hence

we obtain that if the strong duality does not hold then there exist vectors

B, D ∈ R< , F ∈ R= , E ∈ R such that

B, D,
 ≥ 0

B)� −
2 = 0

F�) − D +
1 = 0

B)1 + F) 2 < 0

We consider two cases.

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 39

Case 1:
 = 0. (note that
 is a scalar.) What does this case mean? This means

that the inequality 2)G ≥ H)1 is not playing a role in the infeasibility proof of

the system. Recall that this is the only inequality that ties the G and H variables

together. Thus the infeasibility must be present in either the original primal

sytem or the dual system but they have feasible solutions and hence this cannot

happen. We formally prove this now.

When
 = 0 we obtain the simplified set.

B ≥ 0

B)� = 0

F�) = D

B)1 + F2) < 0

We have a feasible dual solution H∗ that satisfies (H∗))� = 2. Since B)� = 0,

and B ≥ 0, H∗+ �B is a feasible solution for the dual for any scalar � ≥ 0. Similarly

knowing that there exists a feasible solution �G∗ ≤ 1, and �F = 0, it follows

that G∗ − �F is feasible for the primal for any scalar � ≥ 0. Applying the Weak

Duality Theorem, we have that ∀� ≥ 0,

2)(G∗ − �F) ≤ (H∗ +
B))1
⇒ 2)G∗ − (H∗))1 ≤ �(B)1 + 2)F)

However, the LHS is fixed while the RHS can be made arbitrarily small because

B)1 + 2)F < 0 and � can be chosen arbitrarily large. This is a contradiction.

Case 2:
 > 0. Let B′ = 1

 (B), F′ = 1

 (F), and D′ = 1

 (D). Then, we have

B′, D′ ≥ 0

(B′))� = 2

F′�) − D′ = −1 ⇒ −�(F′)) = 1 − D′ ≤ 1 [Since D′ ≥ 0.]

(B′))1 + 2)F′ < 0

From the inequalities above, we observe that B′ is dual feasible and −F′ is
primal feasible. Thus by theWeakDuality, we have−2)F′ ≤ (B′))1, contradicting
that B′1 + 2)F′ < 0.

�

Complementary Slackness is a very useful consequence of Strong Duality.

Theorem 3.25 (Complementary Slackness). Let G∗, H∗ be feasible solutions to the
primal and dual LPs. Then G∗ , H∗ are optimal solutions if and only if ∀8 ∈ [<], either
H∗
8
= 0 or 08G

∗ = 18 .

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 40

Proof. Let �1 , �2 , . . . , �< be the row vectors of �. Suppose that the given

condition is satisfied. Then we have (H∗))�G∗ = ∑<
8=1

H∗
8
(�8G∗) =

∑<
8=1

H∗
8
18 =

(H∗))1. Also we know that 2)G∗ = ((H∗))�)G∗ since H∗ is a feasible solution for

the dual. Thus we have 2)G∗ = (H∗))1, and by weak duality, we conclude that G∗,
H∗ are optimal.

Conversely, suppose that G∗ and H∗ both are optimal.

(H∗))1 = 2)G∗ = (H∗))�G∗ ≤ (H∗))1

where the first equality is due to strong duality, second is due to dual feasibility

of H∗ and the third is due to primal feasibility of G∗. Thus we obtain the equality

(H∗))�G∗ = (H∗))1, that is ∑<
8=1

H∗
8
(�8G∗) =

∑<
8=1

H∗
8
18 ; note that this is a vector

equation. Also H∗ ≥ 0. This forces the desired condition, since �8G
∗ ≤ 18 , H∗8 ≥ 0

for each 8 ∈ [<] due to feasibility of G∗ , H∗. �

3.5 Implicit equalities and Redundant Constraints

Let % = {G | �G ≤ 1} is a polyhedron in ℝ=
where � is a < × = matrix and 1 is a

< × 1 matrix.

The set of directions along which one can go to infinity in % is described by

the charectiristic cone of % (also called the recession cone of %).

Definition 3.26. charcone(%) = {G | �G ≤ 0}.
Definition 3.27. linspace(%) = {G | �G = 0} = charcone(%) ∩ −charcone(%). In
words, linspace(%) is the set of all directions 2 such that there is a line parallel to 2 fully
contained in %.

Definition 3.28. A polyhedron % is pointed if and only if linspace(%) = {0}, that is
linspace(%) has dimension 0.

Exercise 3.5. Describe a polyhedron in two dimensions that is not pointed.

Definition 3.29. An inequality 08G ≤ 18 in�G ≤ 1 is an implicit equality if 08G = 18
∀G ∈ %.
Definition 3.30. A constraint row in �G ≤ 1 is redundant if removing it does not

change the polyhedron. The system�G ≤ 1 is irredundant if no constraint is redundant.
Let � ⊆ {1, 2, . . . , <} be the index set of all implicit equalities in �G ≤ 1.

Then we can partition � into �=G ≤ 1= and �+G ≤ 1+. Here �= consists of the

rows of � with indices in � and �+ are the remaining rows of �. Therefore,

% = {G | �=G = 1= , �+G ≤ 1+}. In other words, % lies in an affine subspace

defined by �=G = 1=. In some setting it is convenient to assume that each row

in �+G ≤ 1+ is irredundant.

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 41

Exercise 3.6. Prove ∃G ∈ % such that �=G = 1= and �+G < 1+.

Definition 3.31. The dimension, dim(%), of a polyhedron % is the maximum number

of affinely independent points in % minus 1.

Notice that by definition of dimension, if % ⊆ ℝ=
then dim(%) ≤ =. If % = ∅

then dim(%) = −1, and dim(%) = 0 if and only if % consists of a single point. If

dim(%) = = then we say that % is full-dimensional.

Exercise 3.7. Show that dim(%) = = − rank(�=).

The previous exercise implies that % is full-dimensional if and only if there

are no implicit inequalities in �G ≤ 1.

Definition 3.32. affhull(%) = {G | �=G = 1=}

The following lemma says that inequalities in �=G ≤ 1= already imply that

they are equalities.

Lemma 3.1. affhull(%) = {G | �=G = 1=} = {G | �=G ≤ 1=}.

3.6 Faces of Polyhedra

Definition 3.33. An inequality
G ≤ �, where
 ≠ 0, is a valid inequality for a

polyhedron % = {G | �G ≤ 1} if
G ≤ � ∀G ∈ %. The inequality is a supporting

hyperplane if it is valid and has a non-empty intersection with %.

Definition 3.34. A face of a polyhedron % is the intersection of % with {G |
G = �}
where
G ≤ � is a valid inequality for %.

We are interested in non-empty faces. Notice that a face of a polyhedron is

also a polyhedron. A face of % is an extreme point or a vertex if it has dimension 0.

It is a facet if the dimension of the face is dim(%) − 1. The face is an edge if it has

dimension 1.

Another way to define a face is to say that � is a face of % if � = {G ∈ % | �′G =
1′} where �′G = 1′ is a subset of the inequalities of �G ≤ 1. In other words,

� = {G ∈ % | 08G = 18 , 8 ∈ �} where � ⊆ {1, 2, . . . , <} is a subset of the rows of �.

Nowwe will show that these two definitions are equivalent. The equivalence

helps in various proofs with one or the other more convenient.

Theorem 3.35. Let � ∈ ℝ<×= , 1 ∈ ℝ=
. Let % = {G | �G ≤ 1} be a polyhedron. Let

� be a face defined by a valid inequality
G ≤ �. Then ∃� ⊆ {1, 2, . . . , <} such that

� = {G ∈ % | 08G = 18 , 8 ∈ �}.

Proof. Let � = {G | G ∈ %,
G = �} where
G ≤ � is a supporting hyperplane.

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 42

Claim 3.6.1. � is the set of all optimal solutions to the LP

max
G

�G ≤ 1.

Proof of Claim. Since
G ≤ � is a valid inequality for % the optimum value for the

LP is at most �. Since � is non-empty the optimum is achievable. By definition

of �, H ∈ � iff �H ≤ 1 and
H = �. Thus any point in � is an optimum solution

to the LP and vice versa. �

As we saw the above LP has a bounded optimal value �. This implies that

the dual LP has a feasible solution H∗ of the same value. Let � = {8 | H∗
8
> 0}. Let

/ be the set of all optimal solutions to the primal. Let I ∈ /. By complimentary

slackness for I and H∗, we have that H∗
8
> 0 implies 08I = 18 for all I ∈ /.

Therefore / satisfies,

08G = 18 8 ∈ �
08G ≤ 18 8 ∉ �

Again, by complementary slackness any I that satisfies the above is optimal

(via H∗) and, hence, � = {G ∈ % | 08G8 = 18 , 8 ∈ �}. �

Now we consider the converse.

Theorem 3.36. Let % = {G | �G ≤ 1} be a non-empty polyhedron where � ∈ ℝ<×=

is a < × = matrix, 1 ∈ ℝ<
is a < × 1 matrix. Let � ⊆ {1, 2, . . . , <} and � = {G ∈

% | 08G = 18 , 8 ∈ �}. If � is non-empty, then there is a valid inequality
G ≤ � such

that � = % ∩ {G |
G = �}.

Proof. Let
 =
∑
8∈� 08 be a row vector and � =

∑
8∈� 18 . We claim that � =

% ∩ {G |
G = �}. To see this we observe that the inequality
G ≤ � is a valid

inequality for % since it is a non-negative combination of inequalities of the

system �G ≤ 1. Consider any I ∈ �. We have I ∈ % and 08I = 18 for each

8 ∈ �. This implies that
I =
∑
8∈� 08I =

∑
8∈� 18 = �. Thus � ⊆ % ∩ {G |
G = �}.

Conversely if
I = � and I ∈ % then we claim that 08I = 18 for all 8 ∈ �; this is
easy to verify. �

Corollary 3.37.

1. Each face is a polyhedron.

2. The number of faces of % = {G | �G ≤ 1} where � is a < × = matrix is at most

2
<
.

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 43

3. If � is a face of % and �′ ⊆ � then �′ is a face of % if and only if �′ is a face of �.

4. The intersecton of two faces is either a face or is empty.

The faces of a polyhedron naturally induce a poset and in fact they form a

lattice.

3.6.1 Facets

Definition 3.38. A facet of % is an inclusion-wise maximal face distinct from %.

Equivalently, a face � of % is a facet if and only if dim(�) = dim(%) − 1.

If % is full-dimensional then facets are hyperplanes but in general a facet

may be a lower-dimensional object if % is not full-dimensional. Suppose % is

a line segement in = > 2 dimensions. Then the facets are in fact the two end

points of the line segment which are 0 dimensional objects.

One can show the following intuitive theorem about facets.

Theorem 3.39. Let % = {G | �G ≤ 1} = {G | �=G ≤ 1= , �+G ≤ 1+}. If �+G ≤ 1+
is irredundant then there is a one to one correspondence between the facets of % and the

inequalities in �+G ≤ 1+. That is, for any facet � of % there is a unique irredundant

inequality 08G ≤ 18 from �+G ≤ 1+ such that � = {G ∈ % | 08G = 18}, and vice-versa.
Corollary 3.40. Each face of % is the intersection of some of the facets of %.

Corollary 3.41. A polyhedrom % has no facet if and only if % is an affine subspace.

Exercise 3.8. Prove the above two corollaries assuming Theorem 3.39.

3.6.2 Minimal Faces and Vertices

A face is inclusion-wise minimal if it does not contain any other face. From

Corollary 3.41 and the fact that a face of a polyhedron is a polyhedron the next

proposition follows. We leave the proof as an exercise.

Claim 3.6.2. A face of � of % is minimal if and only if � is an affine subspace.

Theorem 3.42. A set � is minimal face of % if and only if ∅ ≠ �, � ⊆ % and

� = {G | �′G = 1′} for some subsystem �′G ≤ 1′ of �G ≤ 1.
Proof. Suppose � is a face and � = {G | �′G = 1′} thenby thepreviousproposition
it is minimal. For the converse direction suppose � is a minimal face of %. Since

� is a face we can define � as � = {G | �′′G ≤ 1′′, �′G = 1′} where �′′G ≤ 1′′
and �′G ≤ 1′ are two subsystems of �G ≤ 1. We can assume that �′′G ≤ 1′′
is as small as possible and therefore, irredundant. If there is an irredundant

inequality then � has a facet which contradicts the minimality of �. Hence there

can be no irredundant inequality which implies that � = {G | �′G = 1′}. �

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 44

Claim 3.6.3. If � is a minimal face of % then it is a translate of linspace(%). Hence all

minimal faces have the same dimension.

Proof. Let � be a minimal face of % where � = {G | �′G = 1′}. Then {G | �′G =
0} ⊇ {G | �G = 0} = linspace(%). Moreover, the rank of �′ is equal to the rank of

�. Otherwise there would exist an inequality 08G ≤ �8 in �G ≤ 1 where 08 is not

in the linear hull of the rows of �′. Thus we have, � ⊆ {G | �′G = 1′, 08G ≤ �8}
since � is a face of % but since 08 is not in the linear hull of �′ we have strict

containement {G | �′G = 1′, 08G ≤ �8} ⊂ {G | �′G = 1′} = �, a contradiction. �

A vertex or an extreme point of % is a (minimal) face of dimension 0. That

is, a single point. A polyhedron is pointed if and only if it has a vertex. Note

that since all minimal faces have the same dimension, if % has a vertex than all

minimal faces are vertices. Since a minimal face � of % is defined by �′G = 1′

for some subsystem �′G ≤ 1′ of �G ≤ 1, if a vertex of % is the unique solution to

�′G = 1′ then rank(�′) = =. We can then assume that �′ has = rows. Vertices

are also called basic feasible solutions.

Corollary 3.43. A polyhedron {G | �G ≤ 1, G ∈ ℝ=} has a vertex only if � has a

column rank =.

Exercise 3.9. Prove that {G | �G ≤ 1, G ∈ ℝ=} has a vertex if it is non-empty and

� has column rank =.

3.6.3 Decomposition of Polyhedra

Recall that we had earlier stated that,

Theorem 3.44. Any polyhedron % can be written as & + � where & is a convex hull

of a finites set of vectors and � = {G | �G ≤ 0} is the charcone of %.

We can say a little bit more now. Given %, let �1 , �2 , . . . , �ℎ be its minimal

faces. Choose G8 ∈ �8 arbitrarily. Then % = convexhull(G1 , G2 , . . . , Gℎ) + �.
In particular, if % is pointed then G1 , G2 , . . . , Gℎ are vertices of % and hence

% = convexhull(vertices(%)) + �.
We will prove the above for polytopes.

Theorem 3.45. A polytope (bounded polyhedron) is the convex hull of its vertices

Proof. First observe that a bounded polyhedron is necessarily pointed; otherwise

its minimal faces affine subspaces with dimensional at least 1 which implies

that it is not bounded. Let - = {G1 , G2 , . . . , Gℎ} be the vertices of %. Clearly

convexhull(-) ⊆ %. We prove the converse. Suppose G∗ ∈ % does not belong to

convexhull(-).

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 45

Claim 3.6.4. There exists a hyperplane
G = � such that
G8 ≤ � ∀G8 ∈ - and

G∗ > �.

x∗
x1

x2

x3

x4

αx = β

Now consider the LP max
G such that G ∈ %. The set of optimal solutions

to this LP is a face of � and the optimum value is strictly larger than � since

G∗ ∈ % by assumption and
G∗ > �. By Claim 3.6.4 - ∩ � = ∅. Since � is a face of

%, it has a vertex of % since % is pointed. The contradicts that - is the set of all

vertices of %. �

One consequence of the decomposition theorem is the following.

Theorem 3.46. If % = {G | �G ≤ 1} is pointed then for any 2 ≠ 0 the LP

max 2G

�G ≤ 1
is either unbounded, or there is a vertex G∗ such that G∗ is an optimal solution.

Proof. Suppose the given LP has a finite optimum of value �. Then the inequality

G ≤ � is a supporting hyperplane and hence there is an optimum solution on

the face � defined by the intersection of % and his supporting hyperplane. Thus

there is a minimal face of �′ of % contained in % which contains an optimum

solution. Since % is pointed any minimal face is a vertex. �

Exercise 3.10. Give an example of polyhedron in two dimensions which is not

pointed and an objective direction such that the optimum value is finite.

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 46

3.7 Complexity of Linear Programming

Recall that LP is the problem

max 2)G

�G ≤ 1
G ∈ R=

As a computational problem we assume that the inputs 2, �, � are given as

rational numbers along with the integer dimension =. Thus the input consists of

= + < × = + = rational numbers. Given an instance � we use size(�) to denote

the number of bits in the binary representation of �. We use it loosely for other

quantities such as numbers, matrices, etc. We have that size(�) for an LP instance

is,

size(2) + size(�) + size(1) ≤ (< × = + 2=)size(!)
where ! is the largest number in 2, �, 1.

Linear system solving: Wefirst consider the problem of solving a linear system

of the form �G = 1. Recall that Gaussian elimination is a standard algorithm

that we learn which takes $(=3) arithmetic operations in the worst-case but it is

less obvious that is in fact a true polynomial time algorithm since one also has

to worry about the size of the numbers.

Lemma 3.2. Given a = × = rational matrix size(det(�)) = poly(size(�)).
Proof. First assume that � is integer valued. Let (= be the set of =! permutations

of [=]. For a permuation � ∈ (= let sign(�) ∈ {−1, 1} be its sign. A well know

characterization of the determinant is:

det(�) =
∑
�∈(=

sign(�)
=∏
8=1

�8�(8).

From this one can conlude that | det(�)| ≤ =!

∏
8 9(|�8 9 | + 1)when all entries of �

are integers. Therefore

log(| det(�)|) = $(= log =) + $(
∑
8 9

log(|�8 9 | + 1)).

This shows the desired claim when � is integer valued. For the rational case Let

� = (?8 9@8 9)
=
8,9=1

where for each 8 , 9 the values of ?8 9 and @8 9 are relatively prime and

@8 9 > 0. Let @ be the least common multiple of @8 9 values. Then @ ≤
∏

8 , 9 @8 , 9 . Let

�′ = @�. Then �′ has integer values and det(�′) = det(�)/@= . We leave it as an

exercise to see that det(�) can be expressed as a rational number 2/3 where 2

and 3 are of size polynomial in the size of �. �

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 47

Corollary 3.47. If � has an inverse then size(�−1) = poly(size(�)).

Corollary 3.48. If �G = 1 has a feasible solution then there exists a solution G∗ such
that size(G∗) = poly(size(�, 1)).

Proof. Follows by applying Cramer’s rule for the solution of linear systems. �

Using Gaussian elimination carefully and the above we can show the fol-

lowing. The reason to be careful is that we need to ensure that the size of the

number in the intermediate calculations are also of size polynomial in the input

size.

Theorem 3.49. There is a polynomial time algorithm that given a rational linear system

�G = 1, decides whether it has a feasible solution and outputs one if it has. Moreover,

one can determine if � has a unique feasible solution.

Now thatwe have understood the setting of linear system solvingwe consider

LP. First, we consider we consider the decision problem of whether �G ≤ 1 has
a feasible solution.

Theorem 3.50. If a linear system �G ≤ 1 has a feasible solution then there exists a

solution G∗ such that size(G∗) = poly(size(�, 1)).

Proof. Consider a minimal face � of % = {G | �G ≤ 1}. We have seen that

� = {G | �′G = 1′} for some subsystem �′G ≤ 1′ of �G ≤ 1. By Corollary 3.48

�′G = 1′ has a solution of size poly(size(�′, 1′)). �

Corollary 3.51. The problem of deciding whether {G | �G ≤ 1} is non-empty is in

NP. The problem of deciding whether {G | �G ≤ 1} is empty os om co −NP.

Proof. To prove that �G ≤ 1 has a feasible solution it suffices to exhibit a vector

I ∈ R= and there is an efficient verifier that checks that �I ≤ 1. The complexity

of this checking depends on the size of I and from the preceding theorem we

know that there exists a I whose size is polynomial in the size of the input �, 1.

This proves that the problem of checking non-emptiness is in NP.
By Farkas lemma, if �G ≤ 1 is empty only if ∃H ≥ 0 such that H)� = 0 and

H)1 = −1. Thus, checking if �G ≤ 1 is empty is equivalent to checking if the

system H)� = 0, H)1 = −1, H ≥ 0 is feasible. �

Thus we have seen that deciding whether �G ≤ 1 is feasible is in NP∩ coNP.
Now consider the optimization problem.

max
G

�G ≤ 1

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 48

A natural decision problem associated with the above optimization problem

is to decide if the optimum value is at least some given rational number �. Thus
the input to this problem is 2, �, 1, �.

Exercise 3.11. Prove that the preceding decision problem is in NP ∩ coNP.

Another useful fact is the following.

Lemma 3.3. If the optimum value of the LP max{2)G | �G ≤ 1} is finite then the

optimum value is of size polynomial in the input size.

Proof sketch. If it is finite then the primal and the dual have finite values. We

consider the system of inequalities.

2G = H1

�G ≤ 1
H� = 2

H ≥ 0.

A solution to this system has size at most size(�, 1, 2) by Lemma 3.2. �

Exercise 3.12. Show that the decision problem of deciding whether the LP

max{2)G | �G ≤ 1} is unbounded is in NP ∩ coNP.

The optimization problem for

max 2)G

�G ≤ 1

requires an algorithm that correctly outputs one of the following

1. �G ≤ 1 is infeasible

2. the optimal value is unbounded

3. a solution G∗ such that 2)G∗ is the optimum value

A related search problem is given �G ≤ 1 either output that �G ≤ 1 is

infeasible or a solution G∗ such that �G∗ ≤ 1.

Lemma 3.4. Prove that the optimization problem and the search problem are polynomial

time equivalent.

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 49

Proof sketch: It is to see that the optimization problem is more genereal than the

search problem. The interesting direction is to reduce optimization to search.

Given an LP max{2)G | �G ≤ 1} we first check if it in feasible via the search

procedure. Then we check whether the value is unbounded by considering

feasibility of the dual LP (note that the dual is of size polynomial in the primal).

If both primal and dual are feasible then we can use the idea to combine the

primal and dual into a single system of inequalties and any feasible solution to

the combined system gives an optimum solution to the primal. �

3.8 Polynomial-time Algorithms for LP

The simplex method is a well-known and practical method for LP solving.

Originally due to Dantzig in the US and others in USSR, it has several variants

and hence we refer to it as a method. It continues to be the method of choice in

many software packages. However all known variants have been shown to run

in exponential time in the worst case. Whether there is a variant that runs in

(strongly) polynomial-time is a major open problem.

Khachiyan’s Ellipsoid algorithm was the first polynomial-time algorithm for

LP. Although an impractical algorithm, it had (and continues to have) a major

theoretical impact. It showed that one does not need the full system �G ≤ 1
in advance. For a linear system �G ≤ 1 there is a solution G∗ such that G∗ is a
solution to �′G ≤ 1′ for some subsystem �′G ≤ 1′ such that rank of �′ is equal
to the rank of �. This implies hat �′ can be chosen to have at most = rows. Thus

the size of a solution depends only on = and the maximum sized entry in �. As

we discussed in the first chapter, the Ellipsoid method can be used to show the

equivalence of separation and optimization.

Subsequently, Karmarkar described a different polynomial-time algorithm

based on the interior point method. This is much more useful in practice,

especially for certain large linear programs and can beat the well-known simplex

method. However, we note that Karmarkar’s algorithm works only for explicitly

given LPs while the Ellipsoid method works for a more general class of implicit

LPs which come up in combinatorial optimization from a theoretical point of

view.

The known polynomial-time algorithms for LP are not strongly-polynomial.

That is, the number of arithmetic operations depends on bit size of the numbers

in the input (and not just on the combinatorial parameters =, <). A major

open problem is whether there exists a strongly-polynomial-time algorithm for

LP. Tardós [61] showed that the running time for explicitly given LPs can be

made polynomial in =, < and B8I4(�); in other words the number of arithmetic

operations do not depend on the bit size of the objective vector 2 and the

CHAPTER 3. POLYHEDRA AND LINEAR PROGRAMMING 50

right hand side vector 1. In several combinatorial applications the entries in �

are small (typically in {0, 1,−1}) and hence her result automatically implies a

strongly polynomial time algorithm for all such LPs which are given explicitly.

She obtained the first strongly polynomial time algorithm for the fundamental

problem of min-cost flow via the LP technique [62] before other more practical

and direct methods were found [29]. There are many technical developments

since then to extend and improve these results.

Schrĳver’s book [58] is a methodical and technical introduction covering

structural and algorithmic aspects. The book by Grötschel, Lovász and Schrĳver

[30] covers the Ellipsoid method and its implications for combinatorial optimiza-

tion. There are many fine books on linear programming. The book by Matousek

and Gärtner [49] is an accessible and recent introduction.

Chapter 4

Integer Programming and
Integer Polyhedra

Many discrete optimization problems are naturallymodeled as an integer (linear)

programming (ILP) problem. An ILP problem is like an LP problem in that it

has a linear object and a set of linear constraints but we require the solution to

be an integer vector rather than a real-valued vector.

max 2G

�G ≤ 1
G ∈ ℤ=

(4.1)

It is easy to show that ILP is NP-hard via a reduction from say SAT. The

decision version of ILP is the following: Given rational matrix � and rational

vector 1, does �G ≤ 1 have an integral solution G?

Theorem 4.1. Decision version of ILP is in NP, and hence it is NP-Complete.

To prove that ILP is in NP requires technical work: we need to show that

if there is integer vector in �G ≤ 1 then there is one whose size is polynomial

in B8I4(�, 1). We proved this for LP by appealing to the fact that if there is a

solution to a linear system �G = 1, where �, 1 have rational entries, then there

is one whose size is polynomial B8I4(�, 1). It is harder to prove it for integer

vectors and requires some understanding of the algorithmic aspects of lattices

and the geometry of numbers [47, 58].

A special case of interest is when the number of variables, =, is a fixed

constant but the number of constraints, <, is part of the input. The following

theorem is known, first established by Lenstra [44] in 1983.

Theorem 4.2. For each fixed =, there is a polynomial time algorithm for ILP in =

variables.

51

CHAPTER 4. INTEGER PROGRAMMING AND INTEGER POLYHEDRA 52

4.1 Integer Polyhedra

Given a rational polyhedron % = {G |�G ≤ 1}, we use %� to denote the convex

hull of all the integer vectors in %; this is called the integer hull of %. It is not

hard to see that if % is a polytope then %� is also a polytope. A technically more

involved result is the following.

Theorem 4.3. For any rational polyhedron %, %� is a polyhedron.

Definition 4.4. A rational polyhedron % is an integer polyhedron if and only if % = %� .

Theorem 4.5. The following are equivalent:

1. % = %� i.e., % is integer polyhedron.

2. Every face of % has an integer vector.

3. Every minimal face of % has an integer vector.

4. max{2G | G ∈ %} is attained by an integer vector when the optimum value is

finite.

Proof. (i)=⇒(ii): Let � be a face of %, then � = % ∩ �, where � is a supporting

hyperplane, and let G ∈ �. From % = %� , G is a convex combination of integral

points in %. All the points in this convex combination must belong to � and

thus to �.

(ii)=⇒(iii): it is direct from (ii).

(iii)=⇒(iv): Let � = max{2G : G ∈ %} < +∞, then � = {G ∈ % : 2G = �} is a face

of %, which has an integer vector from (iii).

(iv)=⇒(i): Suppose there is a vector H ∈ % \ %� . Then there is an inequality

G ≤ � valid for %� while
H > � (a hyperplane separating H and %�). It follows

that max{
G | G ∈ %�} ≤ � while max{
G | G ∈ %} > � since H ∈ % \ %� . Then
(iv) is violated for 2 =
. �

Corollary 4.6. A pointed polyhedron % is an integer polyhedron iff each vertex of % is

an integer vector.

Another useful theorem that characterizes integral polyhedra, in full gener-

ality due to Edmons and Giles is the following.

Theorem 4.7. A rational polyhedron % is integral if and only if max{2G | �G ≤ 1} is
an integer for each integral vector 2 for which the maximum is finite.

CHAPTER 4. INTEGER PROGRAMMING AND INTEGER POLYHEDRA 53

4.2 Integer Polyhedra and Combinatorial Optimization

Combinatorial optimization can typically be modeled as an ILP problem in a

natural fashion although there is not necessarily a unique way to model them.

Say the ILP is of the form max{G | �G ≤ 1, G ∈ ℤ=}. By lucky coincidence if the

underlying LP max{G | �G ≤ 1, G ∈ ℝ=} is an integer polyhedron then we can

solve the ILP in polynomial time provided we can solve the LP in polynomial

time! If the LP has a polynomial number of constraints then it can be solved in

polynomial time. In other cases, even when the LP has an exponential number

of constraints, we may still be able to solve it in polynomial time via the Ellipsoid

method if the LP admits an efficient separation oracle.

Why should such a coincidence happen? As we will see shortly there is

a class of problems which exhibit this coincidence via the notion of totally

unimodular matrices. As we discussed in the introductory lecture we can invert

the question as follows. Consider a typical combinatorial optimization problem.

Consider an instances � of size = and let S(�) be the set of feasible solutions. One

can often easily define an implicit integer polytope %(�) as the convex hull of the

characteristic vectors of the set S(�). For example let the problem correspond

to finding maximum weight matchings in a graph � = (+, �). We can define

S(�) to be the set of all matchings of � and each matching " corresponds to a

|� |-dimensional {0, 1} vector "" (the characteristic vector of "). The convex

hull of these vectors forms the matching polytope of �. It is clearly an integer

polytope by definition. Since it is a rational polytopewe can seek to optimize over

this polytope which would enable us to solve the maximum weight matching

problem; the Ellipsoid method shows that optimization over this polytope is

polynomial-time equivalent to separating over this polytope. Thus, integer

polyhedra naturally arise from a combinatorial optimizaton problem in an

implicit fashion. One can use combinatorial and polyhedral insights to efficiently

solve the underlying LP. And any algorithm to efficiently solve the optimization

problem implies understanding of this polytope.

Chapter 5

Totally Unimodular Matrices and
Applications1

Totally Unimodular Matrices give rise to integer polyhedra with several funda-

mental applications in combinatorial optimization.

Definition 5.1. A matrix � is totally unimodular (TUM) if the determinant of each

square submatrix of � is in {0, 1,−1}.

The definition automatically implies that each entry of a TUM is in {0, 1,−1}.

Claim 5.0.1. If � is TUM and* is a non-singular square submatrix of �, then*−1
is

a matrix with entries in {0, 1,−1}.

Proof. *−1 =
adj �

34C(*) where adj* is the adjoint matrix of * . Recall that

adj* = �) where � is cofactor matrix of * . �8 , 9 is the determinant of the

sub-matrix of* obtained by removing row 8 and column 9 from* . Since � is

TUM, �8 , 9 ∈ {0,−1, 1} for all 8 , 9 and det(*) ∈ {−1, 1} since * is non-singular.

Therefore,*−1
is an integer matrix with entries in {0,−1, 1}. �

Theorem 5.2. If � is TUM then for all integral vectors 1, the polyhedron % = {G |
�G ≤ 1} is an integer polyhedron.

Proof. We will assume without loss of generality that % is non-empty. Consider

any minimal face � of %. � = {G | �′G = 1′} for some subsystem �′G ≤ 1′ of
�G ≤ 1 where �′ having full row rank. � is non-empty since % is non-empty.

Consider the system �′G = 1′ which has a feasible solution and since it has

full row rank, �′ has <′ ≤ = rows. Then �′ = [* +], where * is a <′ × <′

1Based on notes scribed by GuoJun Qi and Siva Theja Maguluri from 2010.

54

CHAPTER 5. TU MATRICES AND APPLICATIONS 55

matrix of full row and column rank after potentially rearranging columns of

�′. Note that * is a is a square submatrix of � with full rank and hence it is

invertible. Therefore �′G = 1′ has a solution H = *−11 and by Claim 5.0.1*−1
is

an integral matrix and hence H is an integer vector when 1 is an integer vector.

Thus every minimal face of % has an integer vector which implies that % is an

integer polyhedron. �

The following simple claim is useful in various proofs on TU matrices. We

leave the proof as an exercise.

Claim 5.0.2. � is TUM⇐⇒ �′ obtained by multiplying any row or column by −1 is

TUM.

We claim several important corollaries.

Corollary 5.3. If � is TUM then for all integral vector 0, 1, 2, 3, the polyhedron

{G | D ≤ G ≤ 1, 2 ≤ �G ≤ 3} is an integer polyhedron.

Proof. Suppose � is TUM. We claim that the matrix �′


�

−�
�

−�

 is also TUM.

Consider any sub-matrix * of �′. We need to show that det(*) ∈ {0,−1, 1}.
This can be easily proven by using the formula for computing the determinant

via cofactors and using the preceding claim as needed. �

The constraints 0 ≤ G ≤ 1 are called box constraints thus total unimodularity

implies that adding integral box constraints retains integrality of the polyhedron

which is very useful.

Claim 5.0.3. � is TUM⇐⇒ �) is TUM.

Corollary 5.4. Suppose � is TUM and 1, 2 are integral vectors. Then max{2G | �G ≤
1, G ≥ 0} = min{H1 | H� ≤ 2, H ≥ 0} are attained by integral vectors G∗ and H∗, if the
optimum value is finite.

Proof. The polyhedron {H | H ≥ 0, H� ≤ 2} is integral since �) is TUM and also[
�)

−�

]
. Thus, the primal and dual LPs are integer polyhedrons and hence they

have integer optima whenever the optimum value is finite. �

There are several characterizations of TUMmatrices. We give a few useful

ones below. See [58] (Chapter 19) for a proof.

CHAPTER 5. TU MATRICES AND APPLICATIONS 56

Theorem 5.5. Let � be a matrix with entries in {0,+1,−1}. Then the followings are

equivalent.

1. � is TUM.

2. For all integral vector 1, {G | �G ≤ 1, G ≥ 0} is an integer polyhedron.

3. For all integral vectors 0, 1, 2, 3, {G | 0 ≤ G ≤ 1, 2 ≤ �G ≤ 3} is an integer

polyhedron.

4. Each collection of column (of � can be split into two sets (1 and (2 such that the

sum of columns in (1 minus the sum of columns in (2 is a vector with entries in

{0,+1,−1}.

5. Each nonsingular submatrix of � has a row with an odd number of nonzero

components.

6. No square submatrix of � has determinant +2 or −2.

(8) ⇐⇒ (88) is the Hoffman-Kruskal’s theorem. (88) =⇒ (888) follows from

the fact that � is TUM =⇒


�

−�
�

−�

 is TUM. (8) ⇐⇒ (8E) is Ghouila-Houri’s

theorem.

Solving LPs with TUM matrices: LPs with TUM matrices can be solved in

strong polynomial time via Tardös’s algorithm [61, 62]. The generic result is

useful to know from a theoretical point of view; for the typical applications

there are problem-specific combinatorial algorithms that are much faster and

practical.

5.1 Examples and Network Matrices

Several important matrices that arise in combinatorial optimization are TUM.

Example 1: Bipartite Graphs. Let � = (+, �) an undirected graph. Let " be

the {0, 1} edge-vertex incidence matrix defined as follows. " has |� | rows, one

for each edge and |+ | columns, one for each vertex. "4 ,E = 1 if 4 is incident to E

otherwise it is 0. The claim is that " is TUM iff � is bipartite.

To see bipartiteness is needed, consider the matrix


0 1 1

1 0 1

1 1 0

 for a triangle

which is an odd cycle. Its determinant is 2.

CHAPTER 5. TU MATRICES AND APPLICATIONS 57

a
1

a
2

a
3

a
4

a’
1

a’
2

a’
3

Figure 5.1: Network matrix is defined by a directed tree (dotted edges) and a

directed graph on the same vertex set.

Exercise 5.1. Show that edge-vertex adjacency matrix of any odd cycle has

determinant 2.

Example 2: Directed Graphs. Let � = (+, �) be a directed graph. Let " be an

|� | × |+ | arc-vertex adjacency matrix defined as

"0,E =


0, if 0 is not incident to E

+1, if 0 enters E

−1, if 0 leaves E

(5.1)

" is TUM. This was first observed by Poincar4́ [1900].

Example 3: Consecutive 1’s: A matrix � with is a consecutive 1’s matrix if it is

a matrix with entries in {0, 1} such that in each row the 1’s are in a consecutive

block. This naturally arises as an incidence matrix of a collection of intervals

and a set of points on the real line. One can also consider consecutive 1’s in each

column and those are also TUM.

The above three claims of matrices are special cases of network matrices (due

to Tutte).

Definition 5.6. A network matrix is defined from a directed graph � = (+, �) and a
directed tree) = (+, �′) on the same vertex set + . The matrix " is |�′ | × |�| matrix

such that for 0 = (D, E) ∈ � and 0′ ∈ �′

"0,0′ =


0, if the unique path from D → E in) does not contain 0′

+1, if the unique path from D → E in) passes through 0′ in forward direction

−1, if the unique path from D → E in) passes through 0′ in backward direction

The network matrix corresponding to the directed graph and the tree in

Figure 5.1 is given below. The dotted edge is), and the solid edge is �.

CHAPTER 5. TU MATRICES AND APPLICATIONS 58

(a) (b)

u

(a) (b)

Figure 5.2

01 02 03 04

" =

0′
1

0′
2

0′
3


1 0 −1 1

−1 −1 0 0

0 1 −1 1


Theorem 5.7 (Tutte). Every network matrix is TUM.

We will prove this later. First we show that the previous examples can be

cast as special cases of network matrices.

Bipartite graphs. Say � = {- ∪ ., �} as in Figure 5.2(a). One can see that

edge-vertex adjacency matrix of � as the network matrix induced by a directed

graph � = (- ∪ . ∪ {D}, �) where D is a new vertex and � is the set of arcs

defined by orientating the edges of � from - to ..) = (- ∪ . ∪ {D}, �′) where

�′ = {(E, D)|E ∈ -} ∪ {(D, E)|E ∈ .} as in Figure 5.2(b).

Directed graphs. Suppose� = (+, �) is a directed graph. Consider the network

matrix induced by � = (+ ∪ {D}, �) and) = (+ ∪ {D}, �′) where D is a new

vertex and where �′ = {(E, D)|E ∈ +}.
Consecutive 1’s matrix. Let � be a consecutive 1’s matrix with < rows and =

columns. Assume for simplicity that each row has at least one 1 and let ℓ8 and A8
be the left most and right most columns of the consecutive block of 1’s in row 8.

Let + = {1, 2, . . . , =}. Consider) = (+, �′) where �′ = {(8 , 8 + 1) | 1 ≤ 8 < =}
and � = (+, �) where � = {(ℓ8 , A8) | 1 ≤ 8 ≤ =}. It is easy to see that � is the

network matrix defined by) and �.

CHAPTER 5. TU MATRICES AND APPLICATIONS 59

v

w

u

a
1

a
2

v

w

u

a
1

(v,w)

Edges in directed graph

Before subtracting a
1

from a
2

After subtracting a
1

from a
2

Edges in directed graph

Edges in associated tree

Figure 5.3

Now we prove that every network matrix is TUM. We need a preliminary

lemma.

Lemma 5.1. Every submatrix "′ of a network matrix " is also a network matrix.

Proof. If " is a network matrix, defined by � = (+, �) and) = (+, �′), then
removing a column in " corresponds to removing an arc 0 ∈ �. Removing a

row corresponds to identifying/contracting the end points of an arc 0′ in). �

Claim 5.1.1. � is TUM⇐⇒ �′ obtained by multiplying any row or column by −1 is

TUM.

Corollary 5.8. If " is a network matrix, " is TUM⇐⇒ "′ is TUM where "′ is
obtained by reversing an arc of either) or �.

Proof of Theorem 5.7. By Lemma 5.1, it suffices to show that any square network

matrix � has determinant in {0,+1,−1}. Let � be a : × : network matrix

defined by � = (+, �) and) = (+, �′). We prove by induction on : that

34C(�) ∈ {0, 1,−1}. Base case with : = 1 is trivial since entries of � are in

{0, 1,−1}.
Let 0′ ∈ �′ be an arc incident to a leaf D in T. By reorienting the arcs of), we

will assume that 0′ leaves D and moreover all arcs � incident to D leave D (see

Corollary 5.8).

Let 01 , 02 , · · · , 0ℎ be arcs in � leaving D (If no arcs are incident to D then

34C(�) = 0). Assume without loss of generality that 0′ is the first row of � and

that 01 , 02 , · · · , 0ℎ are the first ℎ columns of �.

CHAPTER 5. TU MATRICES AND APPLICATIONS 60

Claim 5.1.2. Let �′ be obtained by subtracting column 01 from column 02. �
′
is the

network matrix for) = (+, �′) and � = (+, � − 02 + (E, F)) where 01 = (D, E) and
02 = (D, F).

We leave the proof of the above as an exercise — see Figure 5.3.

Let �′′ be the matrix obtained by subtracting column of 01 from each of

02 , · · · , 0ℎ . From the above claim, it is also a network matrix. Moreover,

34C(�′′) = 34C(�) since determinant is preserved by these operations. Now �′′

has 1 in the first row in column one (corresponding to 01) and 0’s in all other

columns. Therefore, 34C(�′′) ∈ {0,+1,−1} by expanding along the first row and

using induction for the submatrix of �′′ consisting of columns 2 to : and rows 2

to :. �

Some natural questions on TUMmatrices are the following.

(i) Are there TUMmatrices that are not a network matrix (or its transpose)?

(ii) Given a matrix �, can one check efficiently whether it is a TUMmatrix?

The answer to (i) is negative as shown by the following two matrices given by

Hoffman[1960] 
1 −1 0 0 −1

−1 1 −1 0 0

0 −1 1 −1 0

0 0 −1 1 −1

−1 0 0 −1 1


and Bixby[1977]. 

1 1 1 1 1

1 1 1 0 0

1 0 1 1 0

1 0 0 1 1

1 1 0 0 1


Amazingly, in some sense, these are the only two exceptions. Seymour, in

a deep and difficult technical theorem, showed via matroid theory methods

that any TUM matrix can be obtained by “gluing” together network matrices

and the above two matrices via some standard operations that preserve total

unimodularity. His descomposition theorem also led to a polynomial time

algorithm for checking if a givenmatrix is TUM. There was an earlier polynomial

time algorithm to check if a given matrix is a network matrix. See [58] (Chapters

20 and 21) for details.

CHAPTER 5. TU MATRICES AND APPLICATIONS 61

5.2 Integer Decomposition Property

A polyhedron % has the integer decomposition property if ∀ integers : ≥ 1 and

G ∈ %, :G is integral implies :G = G1 + G2 + . . .+ G: for integral vectors G1 , . . . , G:
in %. Baum and Trotter showed the following:

Theorem 5.9 (Baum and Trotter). A matrix � is TUM iff % = {G | G ≥ 0, �G ≤ 1}
has the integer decomposition property for all integral verctors 1.

Proof. We show one direction, the one useful for applications. Suppose � is

TUM, consider % = {G | G ≥ 0, �G ≤ 1}. Let H = :G∗ be an integral vector where

G∗ ∈ %. We prove by induction on : that H = G1 + G2 +G: for integral vectors
G1 , G2 , . . . , G: in %.

Base case for : = 1 is trivial.

For : ≥ 2, consider thepolyhedron%′ = {G | 0 ≤ G ≤ H;�H−:1+1 ≤ �G ≤ 1}.
%′ is an integral polyhedron since � is TUM and �H − :1 + 1 and 1 are integral.
The vector G∗ ∈ %′ and hence %′ is not empty. Hence there is an integral vector

G1 ∈ %′. Moreover H′ = H − G1 is integral and H
′ ≥ 0, �H′ ≤ (: − 1)1.

By induction H′ = G2 + . . . + G:−1 where G2 , . . . , G:−1 are integral vectors in %.

H = G1 + . . . + G: is the desired combination for H. �

Remark 5.1. A polyhedron % may have the integer decomposition property even

if the constraint matrix � is not TUM. The point about TUM matrices is that the

property holds for all integral right hand side vectors 1.

5.3 Applications of TUMMatrices

We saw that network matrices are TUM and that some matrices arising from

graphs are network matrices. TUM matrices give rise to integral polyhedra, and

in particular, simultaneously to the primal and dual in the following when � is

TUM and 2, 1 are integral vectors.

max{2G | G ≥ 0, �G ≤ 1} = min{H1 | H ≥ 0, H� ≥ 2}

We can derive some min-max results and algorithms as a consequence.

CHAPTER 5. TU MATRICES AND APPLICATIONS 62

5.3.1 Bipartite Graph Matchings

Let � = (+, �) be a bipartite graph with + = +1]+2 as the bipartition. We can

write an integer program for the maximum cardinality matching problem as

max

∑
4∈�

G(4)

G(�(D)) ≤ 1 ∀D ∈ +
G(4) ≥ 0 ∀4 ∈ �
G ∈ ℤ

We observe that this is a ILP problem max{1 · G | "G ≤ 1, G ≥ 0, G ∈ ℤ} where

" is the edge-vertex incidence matrix of �. Since " is TUM, we can drop the

integrality constraint and solve the linear program max{1 · G | "G ≤ 1, G ≥ 0}
since {G | "G ≤ 1, G ≥ 0} is an integral polyhedron. The dual of the above LP is

min

∑
D∈+

H(D)

H(D) + H(E) ≥ 1 DE ∈ �
H ≥ 0

in other words min{H · 1|H" ≥ 1, H ≥ 0} which is is also an integral polyhedron

since ")
is TUM. We note that this is the min-cardinality vertex cover problem

Note that the primal LP is a polytope and hence has a finite optimum solution.

By duality, and integrality of the polyhedra, we get that both primal and dual

have integral optimum solutions G∗ and H∗ such that 1 · G∗ = H∗ · 1. We get as an

immediate corollary König’s Theorem.

Theorem 5.10 (König). In a bipartite graph the cardinality of a maximum matching is

equal to the cardinality of a minimum vertex cover.

Also, by poly-time solvability of linear programming, there is a polynomial

time algorithm for maximum matching and minimum vertex cover in bipartite

graphs, and also their weighted versions. Note that we have much more efficient

combinatorial algorithms for these problems.

Weighted case: Consider maximumweight bipartite matching where F : �→
ℤ are given edge weights. Since the polytope is integral we can solve the

maximumweight problem by simply solving the underlying LP relaxation. Now

consider the case when the weights are integral. We then have max{FG | "G ≤
1, G ≥ 0} = min{H · 1 | H" ≥ F, H ≥ 0} has integer primal and dual solutions

G∗ and H∗ · 1 since F is integral. For the primal G∗ corresponds to a maximum

F-weight matching. In the dual, via complementary slackness, we have

H∗(D) + H∗(E) = F(E)

CHAPTER 5. TU MATRICES AND APPLICATIONS 63

for all G∗(DE) > 0 The dual values H∗ can be thought of as a solution to a

generalization of vertex cover: we wish to cover each edge 4 ∈ � F(4) times and

we are allowed to take integer copies of vertices. The duality relation implies

that max F-weight matching value is equal to the min F-vertex cover value and

this is a generalization of König’s theorem and is the so-called Egervary theorem.

Sometimes the two theorems are jointly called König-Egervary theorem.

Perfect matchings: A matching " in a graph � = (+, �) is said to saturate a

subset (⊆ + of vertices if " ∩ (= ((that is every vertex in (is matched). "

is perfect if " saturates + . A well-known theorem in graph theory is Hall’s

marriage theorem which gives a necessary and sufficient condition for the

existence of a perfect matching. It is typically given in terms of a matching that

saturates one side of the bipartite graph.

Theorem 5.11 (Hall). Let � = (+, �) be a bipartite graph with -,. as the vertex sets

of the bipartition. Then there is a matching that saturates - iff |#(()| ≥ |(|∀(⊆ -
where #(() is the set of neighbors of (.

Exercise 5.2. Derive Hall’s theorem from König’s Theorem.

We state a more general version of Hall’s theorem below.

Theorem 5.12. Let � = (- ∪ ., �) be a bipartite graph. Let ' ⊆ * . Then there is a

matching that covers ' iff there exists a matching " that covers ' ∩ - and a matching

that covers ' ∩ .. Therefore, a matching covers ' iff |#(()| ≥ |(|∀(⊆ ' ∩ - and

∀(⊆ ' ∩ ..

Exercise 5.3. Prove above theorem.

Matching and PerfectMatching Polytopes: The polytope {G | "G ≤ 1, G ≥ 0}
is the convex hull of the characteristic vectors of the matchings in � and

{G | "G = 1, G ≥ 0} is the convex hull of the perfect matchings of �. One easy

consequence is the following theorem.

Theorem 5.13 (Birkhoff - Von Neumann). Let � be a = × = doubly stochastic matrix.

Then � can be written as a convex combination of permutation matrices.

A doubly stochastic matrix is a square non-negative matrix in which each

row and column sum is 1. A permutation matrix is a square {0, 1} matrix that

has a single 1 in each row and column. Each permulation matrix corresponds to

a permutation � in (= , the set of all permutations on an =-element set.

Exercise 5.4. Prove the above theorem using the perfect matching polytope

description for bipartite graphs. Show that one can find a convex combination

that has at most < matrices where < is the number of non-zeroes in the given

doubly-stochastic matrix.

CHAPTER 5. TU MATRICES AND APPLICATIONS 64

Min-cost perfect matching: In min-cost perfect matching we are given a graph

� = (+, �) and edge costs 2 : � → ℤ (costs can be negative) and the goal is to

find a minimum-cost perfect matching. It is easy to see that for bipartite graphs

we can solve this problem via the LP min{2G | "G = 1, G ≥ 0}.

Exercise 5.5. Show that we can assume that all edge costs are non-negative when

considering min-cost perfect matching. Show that min-cost perfect matching

can be efficiently reduced to max-weight matching and vice-versa.

b-matchings: 1-matchings generalize matchings. Given an integral vector

1 : + → ℤ+, a 1-matching is a set of edges such that the number of edges

incident to a vertex E is at most 1(E). From the fact that the matrix" is TUM, one

can obtain various properties of 1-matchings by observing that the polyhedron

"G ≤ 1

G ≥ 0

is integral for integral 1.

5.3.2 Single Commodity Flows and Cuts

We can derive various useful and known facts about single commodity flows

and cuts using the fact that the directed graph arc-vertex incidence matrix is

TUM.

Consider the B-C maximum-flow problem in a directed graph � = (+, �)
with capacities 2 : �→ ℝ+. We can express the maximum flow problem as an

LP with variables G(0) for flow on arc 0.

max

∑
0∈�+(B)

G(0) −
∑

0∈�−(B)
G(0)∑

0∈�+(E)
G(0) −

∑
0∈�−(E)

G(0) = 0 ∀E ∈ + − {B, C}

G(0) ≤ 2(0) ∀0 ∈ �
G(0) ≥ 0 ∀0 ∈ �

Note that the polyhedron defined by the above is of the form {G | "′G =
0, 0 ≤ G ≤ 2} where "′ is the arc-vertex incidence matrix of � with the

columns corresponding to B, C removed. "′ is a submatrix of ", the arc-vertex

incidence matrix of � which is TUM, and hence "′ is also TUM. Therefore, the

polyhedron above is integral for integral 2. One immediate corollary is that for

integral capacities, there is a maximum flow that is integral. We now derive the

maxflow-mincut theorem as a consequence of the total unimodularity of ".

CHAPTER 5. TU MATRICES AND APPLICATIONS 65

The dual to themaximum-flowLP above has two sets of variables. H(0), 0 ∈ �
for the capacity constraints and I(E), E ∈ + − {B, C} for the flow conservation

constraints. We let F(0) be the weight vector of the primal. Note that

F(0) =


1 if 0 = (B, E) for some E ∈ +
−1 if 0 = (E, B) for some E ∈ +
0 otherwise

For simplicity assume that there is no arc (B, C) or (C , B). If there are such

arcs we can sub-divided them with an internal node; this assumption is only to

simplify the description of the dual. Then the dual is:

min

∑
0∈�

2(0)H(0)

I(D) − I(E) + H(D, E) ≥ 0 (D, E) ∈ � {D, E} ∩ {B, C} = ∅
−I(E) + H(B, E) ≥ 1 ∀(B, E) ∈ �
I(E) + H(B, E) ≥ −1 ∀(E, B) ∈ �
I(E) + H(E, C) ≥ 0 ∀(E, C) ∈ �
−I(E) + H(C , E) ≥ 0 ∀(C , E) ∈ �

H ≥ 0

Note that I are unconstrained variables. In matrix form, the primal is

max{FG | "′G = 0, 0 ≤ G ≤ 2} and the dual is min{H2 | H ≥ 0;∃I : H + I"′ ≥
F)}. Since F is integral and "′ is TUM, dual is an integral polyhedron. Primal

is bounded polyhedron and hence primal and dual have optimal solution G∗ and
(H∗ , I∗) such that FG∗ = H∗2 and H∗ , I∗ is integral.

We give two related but slightly different proofs that prove that there is an

B-C mincut whose cost is at most

∑
0∈� 2(0)H∗(0).

In the first proof consider �′ = {0 ∈ � | H∗(0) ≥ 1}. It is easy to see that

2(�′) = ∑
0∈�′ = 2(0) ≤ ∑

0∈� 2(0)H∗(0). We now argue that there is no path

in � − �′ which implies that �′ induces an B-C cut. Suppose there is a path

? = B, E1 , E2 , . . . , E: , C in �−�′where : ≥ 1 (note that we assume that (B, C) is not
in � for simplicity). Since H∗ is integral, H∗(0) = 0 for all 0 ∈ ?. Considering the

dual constraint for the arc (B, E1) we see that I(E1) ≤ −1 since H(B, E1) = 0. For

each arc (E8 , E8+1) in ?, via the dual constraint and the fact that H∗(E8 , E8+1) = 0,

we obtain that I(E8+1) ≤ I(E8). These set of inequalities imply that I(E:) ≤ −1.

However, applying the dual constraint to the arc (E: , C) we obtain that I(E:) ≥ 0

which is a contradiction to the feasibility of the dual solution.

We now describe the second proof. We can extend I to have variables

I(B) and I(C) with I(B) = −1 and I(C) = 0. Then the dual has a cleaner form,

CHAPTER 5. TU MATRICES AND APPLICATIONS 66

max{H2 | H ≥ 0, ∃I : H + I" ≥ 0}. Note that " here is the full arc-vertex

incidence matrix of �. Thus we have G∗ and integral (H∗ , I∗) such that FG∗ = H∗2
and H∗ + I∗" ≥ 0.

Let* = {E ∈ + |I∗(E) < 0}. Note that B ∈ * and C ∉ * and hence �+(*) is a
B-C cut.

Claim 5.3.1. 2(�+(*)) ≤ H∗2 = ∑
0∈�

H∗(0)2(0)

Proof. Take any arc (D, E) ∈ �+(*). We have I∗(D) − I∗(E) + H∗(D, E) ≥ 0 for each

(D, E). Since D ∈ * and E ∉ * , I∗(D) < 0 and I∗(E) ≥ 0. Since I∗ is integral, we

have

H∗(D, E) ≥ 1

=⇒ 2(�+(*)) ≤
∑

0∈�+(*)
2(0)H∗(0)

≤
∑
0∈�

2(0)H∗(0) since H∗ ≥ 0

�

Therefore,* is a B-C cut of capacity at most H∗2 = FG∗ but FG∗ is the value of
a maximum flow. Since the capacity of any cut upper bounds the maximum

flow, we have that there exists a cut of capacity equal to that of the maximum

flow. We therefore, get the following theorem,

Theorem 5.14. In any directed graph � = (+, �) with non-negative arc capacities,

2 : � → ℚ+, the B-C maximum-flow value is equal to the B-C minimum cut capacity.

Moreover, if 2 : �→ z+, then there is an integral maximum flow.

Interpretation of the dual values: A natural interpretation of the dual is the

following. The dual values, H(0) indicate whether 0 is cut or not. The value

I(E) is the shortest path distance from B to E with H(0) values as the length on

the arcs. We want to separate B from C. So, we have (implicitly) I(B) = −1 and

I(C) = 0. The constraints I(D) − I(E) + H(D, E) ≥ 0 enforce that the I values are

indeed shortest path distances. The objective function

∑
0∈�

2(0)H(0) is the capacity
of the cut subject to separating B from C.

Circulations and lower and upper bounds on arcs: More general applications

of flows are obtained by considering both lower and upper bounds on the flow

on arcs. In these settings, circulations are more convenient and natural.

Definition 5.15. For a directed graph � = (+, �), a circulation is a function 5 : �→
ℝ+ such that

∑
0∈�−(E)

5 (0) = ∑
0∈�+(E)

5 (0)∀E ∈ +

CHAPTER 5. TU MATRICES AND APPLICATIONS 67

Given non-negative lower and upper bounds on the arcs, ; : �→ ℝ+ and
D : �→ ℝ+, we are interested in circulations that satisfy the bounds on the arcs.

In other words, the feasibility of the following:

;(0) ≤ G(0) ≤ D(0)
G is a circulation

The above polyhedron is same as {G | "G = 0, ; ≤ G ≤ D} where " is the

arc-vertex incidence graph of �, which is TUM. Therefore, if ; , D are integral

then the polyhedron is integral. Checking if there is a feasible circulation in

a graph with given ; and D is at least as hard as solving the maximum flow

problem.

Exercise 5.6. Given �, B, C ∈ + and a flow value �, show that checking if there is

an B − C flow of value � can be efficently reduced to checking if a given directed

graph has a circulation respecting lower and upper bounds.

The converse is also true however; one can reduce circulation problems to

regular maximum-flow problems, though it takes a bit of work.

Min-cost circulation is the problem: min{2G | ; ≤ G ≤ D, "G = 0}. We

therefore obtain that

Theorem 5.16. The min-cost circulation problem with lower and upper bounds can be

solved in (strongly) polynomial time. Moreover, if ; , D are integral then there exists an

integral optimum solution.

The analogue of max flow-min cut theorem in the circulation setting is

Hoffman’s circulation theorem.

Theorem 5.17. Given � = (+, �) and ; : � → ℝ+ and D : � → ℝ+, there is a
feasible circulation G : �→ ℝ+ iff

1. ;(0) ≤ 2(0) ∀0 ∈ � and

2. ∀* ⊆ +, ;(�−(*)) ≤ 2(�+(*)).

Moreover, if ; , D are integral then there is an integral circulation.

Exercise 5.7. Prove Hoffman’s theorem using TUM property of " and duality.

b-Transshipments: One obtains slightly more general objects called transship-

ments as follows:

Definition 5.18. Let � = (+, �) be a directed graph and 1 : � → ℝ. A 1-

transshipment is a function 5 : �→ ℝ+ such that∀D ∈ + , 5 (�−(D))− 5 (�+(D)) = 1(D)
i.e, the excess inflow at D is equal to 1(D).

CHAPTER 5. TU MATRICES AND APPLICATIONS 68

We think of nodes D with 1(D) < 0 as supply nodes and 1(D) > 0 as demand

nodes. Note that 1 = 0 captures circulations. Once can generalize Hoffman’s

circulation theorem.

Theorem 5.19. Given � = (+, �), 1 : + → ℝ+ and ; : � → ℝ+and D : � →
ℝ+ ,there exists a 1-transshipment respecting ; , D iff

1. ;(0) ≤ D(0) ∀0 ∈ � and

2.

∑
E∈+

1(E) = 0 and

3. ∀(⊆ + , D(�+(()) ≥ ;(�−(()) + 1(().

Moreover, if 1, ;, D are integral, there is an integral 1-transshipment.

Exercise 5.8. Derive the above theorem from Hoffman’s circulation theorem.

5.3.3 Interval graphs

A graph � = (+, �) on = nodes is an interval graph if there exist a collection ℐ
of = closed intervals on the real line and a bĳection 5 : + → ℐ such that DE ∈ �
iff 5 (D) and 5 (E) intersect. Given an interval graph, an interesting problem is to

find a maximum weight independent set in � where F : �→ ℝ+ is a weight

function. This is same as asking for the maximum weight non-overlapping set

of intervals in a collection of intervals.

We can write an LP for it. Let ℐ = {�1 , . . . , �=}

max

=∑
8=1

F8G8∑
�8 :?∈�8

G8 ≤ 1 ∀? in ℝ

G8 ≥ 0 1 ≤ 8 ≤ =

Note that the constraints can be written only for a finite set of points which

correspond to the end points of the intervals. These are the natural “clique”

constraints: each maximal clique in � corresponds to a point ? and all the

intervals containing ?. Clearly an independent set cannot pick more than one

node from a clique.

The LP above is max{FG | G ≥ 0, "G ≤ 1}. If we sort the points then " is

a consecutive ones matrix (each column has consecutive 1s), and hence TUM.

Therefore, the polyhedron is integral. We therefore have a polynomial time

algorithm for the max-weight independent set problem in interval graphs. This

CHAPTER 5. TU MATRICES AND APPLICATIONS 69

problem can be easily solved efficienctly via dynamic programming. However,

we observe thatwe can also efficiently solvemax{FG | G ≥ 0, "G ≤ 1, G ∈ ℤ=}for
any integer 1 and this is not easy to see via other methods.

To illustrate the use of integer decomposition properties of polyhedra, we

derive a simple and well known fact.

Claim 5.3.2. Suppose we have a collection of intervals ℐ such that ∀? ∈ ℝ the

maximum number of intervals containing ? is at most :. Then ℐ can be partitioned into

ℐ1 ,ℐ2 , . . . ,ℐ: such that each ℐ: is a collection of non-overlapping intervals. In other

words, if � is an interval graph then $(�) = "(�) where $(�) is the clique-number of

� and "(�) is the chromatic number of �.

One can prove the above easily via a greedy algorithm. We can also derive

this by considering the independent set polytope {G | G ≥ 0, "G ≤ 1}. We note

that G∗ = 1

: .1 is feasible for this polytope if no point ? is contained in more than

: intervals. Since % has the integer decomposition property, H = :G∗ = 1 can

be written as G1 + . . . + G: where G8 is integral ∀1 ≤ 8 ≤ : and G8 ∈ %. This

gives the desired decomposition. The advantage of the polyhedral approach

that one obtains a more general theorem by using an arbitrary integral 1 in the

polytope {G | G ≥ 0, "G ≤ 1} and this has applications; see for example [68],

and generalizations [51, 59].

Chapter 6

Network Flow: A Quick
Overview

Network flow is a large subject with many books and articles devoted to it. We

refer the reader to [3, 57, 67] for book length treatments. See also notes of Kent

Quanrud (Chapters 1 to 3). We confine our attention to single-commodity flows

in this chapter. The goal is to highlight a few structural and algorithmic aspects

of flows. The discussion will be breezy with several claims left as exercises. We

discussed polyhedral aspects of the standard edge-based flows in the chapter on

TUM matrices. Here will focus on some combinatorial and algorithmic aspects,

and also point out the path-based flow formulation and its utility.

6.1 Preliminaries

Throughoutwewill onlyworkwith directed graphs. Let� = (+, �) be a directed
graph with non-negative edge capacities 2 : �→ ℝ+. We will frequently use B, C

to denote two distinct nodes in �. It is common to refer to an edge-capacitated

directed graphs as a flow network.

We will start with an edge-based definition of flows.

Definition 6.1. Let � = (+, �) be a capacitated directed graph and let B, C ∈ + with

B ≠ C. A real-valued function 5 : � → ℝ is an B-C flow if it satisfies the following

conditions:

• flow conservation at all nodes E ∉ {B, C}: ∑0∈�+(E) 5 (0) =
∑
0∈�−(E) 5 (0)

• capacity constraints on all arcs: 0 ≤ 5 (0) ≤ 2(0) for all 0 ∈ �.

Definition 6.2. Given an B-C flow 5 , the value of the flow is defined as the net flow

leaving the source B:
∑
0∈�+(B) 5 (0) −

∑
0∈�−(B) 5 (0). We use val(5) or | 5 |.

70

https://advanced-algorithms-fall-2021.s3.amazonaws.com/aaf21-book.pdf

CHAPTER 6. NETWORK FLOW: A QUICK OVERVIEW 71

Exercise 6.1. Suppose 5 is an B-C flow and let (⊂ + such that B ∈ (, C ∈ + \ (.
The flow out of (is defined as

∑
0∈�+(() 5 (0) −

∑
0∈�−(() 5 (0). Prove that this is

equal to val(5).

Definition 6.3. Given a edge-capacitated graph � = (+, �) a function 5 : � → ℝ

is a circulation if it satisfies flow conservation at every node of �. Given upper and

lower bounds on the arcs ℓ : �→ ℝ and 2 : �→ ℝ a circulation respects the bounds if

ℓ (0) ≤ 5 (0) ≤ 2(0) for all arcs 0.

Remark 6.1. An B-C flow 5 can have zero value but can be a non-trivial circulation.

A circulation is an D-E flow of value 0 for any nodes D, E.

Remark 6.2. It is convenient/necessary to manipulate flows and circulations by

adding and subtracting them. In doing these operations the bound constraints

may not hold (including non-negativity). In such settings we may use the

terminology of flows/circulations if they satisfy the conservation constraints.

It is sometimes convenient to assume that the underlying directed graph is a

complete directed graph.

Path based definition of flow and flow decomposition: An alternative and

important view of flows is via paths. Given � = (+, �) and nodes B, C let

PB,C denote the set of all B-C paths. We may use P to simplify notation when

B, C are clear form the context. Then one can define an B-C flow as a function

5 : PB,C → ℝ+ that assigns a flow of value 5 (?) for each path ? ∈ PB,C . We can

define val(5) for a path based flow as

∑
?∈PB,C 5 (?). One can define circulations

similarly as a function 5 : C → ℝ+ where C is the set of all directed cycles in �.

Given a path based B-C flow 5 one naturally obtains an edge based B-C flow 6

where 6(0) = ∑
?∈P:0∈? 5 (?). It is easy to check that the value of 5 and 6 are the

same. At first glance the path based notion of flow seems not so useful since

it is defined over PB,C whose size can be exponential in the size of the input

graph. Nevertheless, one sees that the paths are impicitly encoded by a graph,

and in many scenarios one has a flow that is non-negative only on a polynomial

number of paths.

Flow decomposition is the process of taking an edge-based flow 5 and

decomposing it into a path based flow. Similarly one can decompose an edge-

based circulation into a cycle based circulation.

Lemma 6.1. Let 5 : �→ ℝ+ be an B-C flow. Then there is an efficient algorithm that

outputs a path flow 6 : PB,C → ℝ+ of the same value and 6 has non-zero flow on at

most < paths where < = |�|. Moreover, for all 0 ∈ �, 5 (0) ≥ ∑
?30 6(?).

Proof sketch. Consider an edge based flow 5 . We construct 6 as follows; we

implicitly assign 6(?) = 0 for all ? initially. We can assume, without loss of

generality, that 5 (0) > 0 for all 0 (otherwise we remove such arcs). If val(5) = 0

CHAPTER 6. NETWORK FLOW: A QUICK OVERVIEW 72

then we can return empty 6. Otherwise there is an B-C path ? in � with all arcs

in ? having non-zero flow (why?). Let 0′ be the arc in ? with the smallest 5 value.

We set 6(?) = 5 (0′) and reduce 5 (0) for all 0 ∈ ? by 6(?) to obtain a new flow 5 ′.
It is easy to observe that 5 ′ is a valid flow and that val(5) = val(5 ′) + 5 (0′). We

recursively compute a flow decomposition 6′ of 5 ′ in � − 0′ (since 5 ′(0′) = 0); by

induction val(6′) = val(5 ′) and support of 6′ has at most <−1 paths. We update

6 by adding 6′ to it and we return 6. Note that the support of 6 is at most <

and val(6) = val(5). It is easy to see that this decomposition can be efficiently

computed. �

We leave the following two lemmas as exercises.

Lemma 6.2. Let 5 be an edge-based circulation in � that respects non-negative lower

and upper bounds ℓ : � → ℝ+ and 2 : � → ℝ+. Then there is a 6 : C → ℝ+ such
that (i) for all 0 ∈ � we have 5 (0) = ∑

�∈C:0∈� 6(�) = 5 (0) and (ii) support of 6 is at

most |�|. Moreover such a 6 can be computed efficiently.

Definition 6.4. An B-C flow is acyclic if there is no cycle in the support of 5 . In other

words the arcs with non-negative flow form a directed acyclic graph (DAG).

Claim 6.1.1. Given any B-C flow 5 : � → ℝ+ there is an acyclic flow 6 : � → ℝ+
such that (i) 6(0) ≤ 5 (0) for all 0 ∈ � and (ii) val(6) = val(5). Moreover one can

compute such a 6 in polynomial time.

Proof sketch. Start with 5 . If there is a cycle � in the support of 5 we reduce the

flow on all arcs in the cycle by min0∈� 5 (0). This reduces the flow on at least

one arc to zero and does not affect the value. We repeat this until we obtain an

acyclic flow. �

Lemma 6.3. Any B-C flow 5 can be efficiently decomposted into a collection of at at

most < paths and cycles such that 5 (0) is equal to the total flow on the paths and cycles

in the decomposition. More formally there is a 6 : PB,C ∪ C → ℝ+ such that (i) for all
0 ∈ �, 5 (0) = ∑

?∈PB,C :0∈? 6(?) +
∑
�∈C:0∈� 6(�) and (ii) support of 6 is at most <,

and (iii) such a 6 can be computed efficiently from 5 .

Exercise 6.2. What is the difference between Lemma 6.1 and Lemma 6.3?

Remark 6.3. Given a flow 5 the representation size of a flow decomposition via

paths/cycles is $(=<) since we need to specify < paths each of which can have

size =. This is indeed necessary in theworst case when capacities can be arbitrary

(can you construct an easy example?). Here = = |+ | and < = |� |. This is in

contrast to the edge flow represenation which requires only < numbers. The

$(=<) bound is some times called the flow-decomposition barrier since several

maximumflow algorithms based on augmenting paths implicitly compute a flow

CHAPTER 6. NETWORK FLOW: A QUICK OVERVIEW 73

decomposition along the way. How fast can one compute a flow decomposition.

The obvious algorithm implied in the proof implies a bound of $(<2) (we

assume < ≥ =) since each iteration requires finding an B-C path and there are a

total of < iterations. A careful implementation via dynamic tree data structure

allows one to obtain a running time of $(=< log(</=)).

6.1.1 Maximum Flow and the Residual Network

The input to the maximum B-C flow problem is a flow network � = (+, �) with

non-negative edge capacities 2 : �→ ℤ+ and two nodes B, C. The goal is to find

an B-C flow of maximum value.

LP Formulations: We saw that it can be cast as an LP problem via the edge

formulation and we reproduced it below. Consider the B-C maximum-flow

problem in a directed graph The variables are G(0), 0 ∈ � which stand for the

flow value on the arcs.

max

∑
0∈�+(B)

G(0) −
∑

0∈�−(B)
G(0)∑

0∈�+(E)
G(0) −

∑
0∈�−(E)

G(0) = 0 ∀E ∈ + − {B, C}

G(0) ≤ 2(0) ∀0 ∈ �
G(0) ≥ 0 ∀0 ∈ �

The path formulation also leads to an LP with a variable G(?) for each path ?.

max

∑
?∈PB,C

G(?)∑
?30

G(?) ≤ 2(0) 0 ∈ �

G(?) ≥ 0 ? ∈ PB,C

Note that the two polyhedrons are very different! The arc-based formulation

is an integer polyhedron when the capacities are integral while the path based

polyhedron is not although the two have the same optimum value. Is there

any advantage of the exponential sized path based formulation? There are

indeed some, and the change in perspective is useful in some applications when

considering more general versions of flows.

CHAPTER 6. NETWORK FLOW: A QUICK OVERVIEW 74

Residual network: The residual graph/network plays a fundamental role in

the study of network flows. Given a flow network � = (+, �) and a valid B-C

flow 5 : �→ ℝ+ the residual negraph � 5 = (+, �′) is defined as follows. We

describe it in a constructive fashion. For each arc (D, E) ∈ � with 0 ≤ 5 (0) < 2(0)
there we add a forward arc (D, E) with residual capacity 2′(D, E) = 2(0) − 5 (0)
and a reverse arc (E, D) with capacity 2′(E, D) = 5 (0). For an arc (D, E) with

5 (D, E) = 2(D, E) (which is called a saturated arc) we only add a reverse arc (E, D)
with 2′(E, D) = 5 (0) = 2(D, E). Via the construction, every arc in � 5 has a positive

capacity.Residual Graph Example

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

/
3
0

/2
0/10

/2
0 /1020

20

2
0

Figure: Flow on edges is indicated in
red

s

v

u

t

/2
0

/
2
0

/
1
0

/10

/10

/2
0

Figure: Residual Graph

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 / 42

Figure 6.1: Flow in a network and the residual network.

Remark 6.4. In a directed graph � = (+, �), for a pair of nodes D, E, both arcs

(D, E) and (E, D) can be in �. A pair of arcs (D, E) and (E, D) is called a digon

and forms a cycle. If 5 (D, E) > 0 and 5 (E, D) > 0 then the residual network can

create two parallel arcs in each direction. These can be merged into a single arc

by combining the capacities. Alternatively, when considering B-C flows we can

reduce the flow along the digon to make sure that at least one of the two arcs

have zero flow; this transformation is not feasible if arcs have lower bounds.

Once we compute a flow 5 , the residual graph � 5 captures precisely the

remaining problem. This can be formalized via the following two lemmas which

are somewhat tedious to formally prove but are very intuitive. The two lemmas

look similar but read them carefully.

Lemma 6.4. Suppose 5 is an B-C flow in �. Let 6 be any B-C flow in � 5 . Then 5 + 6
is an B-C flow in � of value val(5) + val(6).

Lemma 6.5. Suppose 5 is an B-C flow in � and let 6 be any B-C flow in �. Then 6 − 5
is an B-C flow in the residual network � 5 of value val(6) − val(5) (which can be negative

indicating that it is a C-B flow).

Corollary 6.5. A flow 5 is a maximum B-C flow iff there is no B-C path in � 5 .

CHAPTER 6. NETWORK FLOW: A QUICK OVERVIEW 75

Proof. Suppose there is a flow 6 such that val(6) > val(5) then by Lemma 6.5

there is a flow in � 5 of value val(6) − val(5) > 0 in � 5 which implies that there

is an B-C path in � 5 . Thus no path in � 5 implies that 5 is maximum. Suppose

there is a path in � 5 then there is a non-zero flow 6 in � 5 since every edge in � 5

has strictly positive capacity. Hence 6 + 5 is a flow in � with val(6 + 5) > val(5)
and hence 5 is not a maximum flow. �

Remark 6.5. Note that the preceding argument does not invoke the notion of cuts.

The following establishes the maxflow-mincut theorem.

Lemma 6.6. Let 5 be a flow such that there is no B-C path in � 5 . Let � be the set of

nodes reachable from B in � 5 . Then val(5) = ∑
0∈�+(�) 2(0) and hence is a minimum

B-C cut whose value is equal to val(5).

Proof sketch. Let � be set of nodes reachable from B in � 5 . This implies that

there is no arc (G, H) ∈ �+
� 5
(�) for otherwise H would be reachable from B too.

This implies that every arc (D, E) ∈ �+
�
(�)must be saturated by 5 , and every arc

(D, E) ∈ �−
�
(�)must have zero flow, otherwise (D, E)would be in �+

� 5
(�) by the

definition of � 5 . Thus the flow out of � in � must be equal to val(5) which

implies that it is a minimum cut. �

6.2 Augmenting Path Algorithms

Lemmas 6.4 and 6.5 give a simple algorithm for finding a maximum flow. Start

with any flow 5 (in particular a flow of value 0). Create � 5 . If � 5 has no B-C

path (which is easy to check) then 5 is maximum. Otherwise find any non-zero

flow 6 in � 5 . Update 5 to be 6 + 5 to obtain a flow of more value. The most

obvious way to find a flow of non-zero value in a flow network � is to take any

path ? from B to C with non-zero edge capacities and send flow of value equal

to min0∈? 2(0) on it. This is the Ford-Fulkerson augmenting path algorithm

that repeatedly finds a path in � 5 and augments along that path. Typically

the algorithm is described as augmenting in � along the path ? in � 5 which

wraps the idea of finding a flow in � 5 and adding it to flow 5 in one step.

However, it is conceptually useful to realize that one can find any flow 6 in � 5

and add it to the flow 5 in �. The termination of the basic algorithm is not

guaranteed if the capacities are irrational. If all capacities are integer then the

augmenting path algorithm maintains the fact that the flow at each stage is

integral (if it starts with 5 (0) = 0 for all 0 ∈ �)). Termination is easily guaranteed

since each augmentation increases flow by an integer amount which is at least

1, and the maximum flow is at most the minimum cut which is an integer

value. The FF algorithm also proves that one has an integral maximum flow

CHAPTER 6. NETWORK FLOW: A QUICK OVERVIEW 76

whenevever capacities are all integers. The basic Ford-Fulkerson algorithm can

take � iterations where � is the maximum flow value. Each iteration can be

implemented in $(<) time and hence on obtains an $(<�) time algorithm. In

particular, if � is a simple directed graph, � ≤ = and hence we obtain an $(<=)
time algorithm. However, when the graph can have large (integer) capacities,

� depends on the edge capacities and the Ford-Fulkerson algorithm need not

run in polynomial time. Note that the algorithm is not fully specified since the

procedure to choose the B-C path ? in � 5 is not explicitly stated; if one can choose

the path ? adversarially there are examples showing that the algorithm can take

an exponential time when capacities are large.

There is a huge amount of research on fast maximum flow algorithm and

there have been several recent breakthroughs via sophisticated mix of discrete

and continuous optimization methods combined with advances in dynamic data

structures. Here we describe a few variants of the augmenting path algorithm

that capture some nice ideas. We will not discuss scaling based algorithms.

6.2.1 Augmenting along high-capacity paths

Suppose we find find an B-C path ? in � 5 . The maximum amount of flow that we

can send along ? is given by its bottleneck capacity which is min0∈? 2(0). Thus, it
makes sense to find a path ? that has maximum bottleneck capacity; this is the

path that allows us to send the maximum amount of flow if we can only use one

path.

Exercise 6.3. Decribe an adaptation of Dĳkstra’s shortest path algorithm or

another method to find the B-C path with maximum bottleneck capacity in

$(< log =) time.

One can prove that the algorithm terminates in polynomial time.

Theorem 6.6. The algorithm that augments along the path with maximum bottleneck

capacity in the residual graph terminates in $(< log �) iterations when all capacities

are integer valued. Here � is the maximum flow value.

We sketch the proof. Suppose 5 is the current flow and let 5 ∗ is a maximum

flow. Then by Lemma 6.5 there is a flow 6 of value val(5 ∗) − val(5) in � 5 . By

flow decomposition 6 can be decomposed into at most < paths in � 5 . This

implies that one of these paths must carry a flow of value at least val(6)/< =

val(5 ∗) − val(5) = (� − val(5))/<. This implies that the algorithm that augments

along the maximum bottleneck capacity path increases the flow value of 5 by at

least (� − val(5))/<. Note that in the first iteration the increase is at least �/<
but then as it proceeds and val(5) gets closer to �, the guarantee on the increase

gets smaller. Nevertheless we can analyze the number of iterations as follows.

CHAPTER 6. NETWORK FLOW: A QUICK OVERVIEW 77

We start with flow value 0 and maximum flow value �. Howmany iterations

does it take so that we reach a flow of value at least �/2? As long as the current

flow 5 satisfies val(5) < �/2, the amount we increase in each iteration is at

least (� − val(5))/< ≥ �/(2<). Thus, we can have at most 2< iterations where

val(5) ≤ �/2.
Once we reach a flow 5 with val(5) ≥ �/2 we see that we can analyze the

process with respect to � 5 . In � 5 the maximum flow left is at most �/2. It

takes ≤ 2< iterations to get to flow of value at least �/4 in � 5 by the same

reasoning. Following this, one can see that after (2<)8 iterations the maxflow in

the residual graph is at most �/28 . Thus after 2< log � iterations the flow in the

residual network is at most 1 and we will be done in one more iteration since

each augmentation increases the flow but at least one unit.

One can do a more direct analysis that show an upper bound of 1 + < ln �

iterations.

6.2.2 Shortest augmenting path: a strongly polynomial-time algo-
rithm

Edmonds and Karp described and analyze a variant of the Ford-Fulkerson

algorithm which is very simple and natural. In each iteration augment along

the shortest B-C path in the residual network � 5 . By shortest we mean the path

with the fewest number of edges. They proved the following.

Theorem 6.7 (Edmonds-Karp, 1972). The shortest augmenting path algorithm termi-

nates in $(<=) iterations and hence the total running time of a simple implementation

of this algorithm is $(<2=). Here < is the number of edges and = is the number of

nodes in the flow network.

Thus the algorithm is strongly polynomial time algorithm. The algorithm will

terminate even for irrational capacities as long as we can do arithmetic over the

given capacities. The analysis is based on the following two lemmas.

Lemma 6.7. Suppose we augment along a shortest B-C path in � 5 then the shortest B-C

path length does not decrease in the new residual graph after the augmentation.

Lemma 6.8. There can at most < iterations of the shortest augmenting path algorithm

before the shortest path B-C path length in the residual graph increases by at least 1.

We sketch the proofs of the preceding lemmas. They are based on simple

properties of shortest paths that are typically computed by the breadth-first-

search (BFS) algorithm. BFS from a node B in a directed graph � = (+, �)
classifies nodes according to distance. Let !8 be the set of nodes at distance

exactly 8 from B with !0 = {B}. Let C ∈ !3 where 3 is the shortest path distance

CHAPTER 6. NETWORK FLOW: A QUICK OVERVIEW 78

from B to C. The followingproprties are easy to see and standard in understanding

BFS.

• An arc (D, E) is a forward arc if D ∈ !8 and E ∈ !8+1

• An arc (D, E) is a backward arc if D ∈ !8 and E ∈ ! 9 for some 9 < 8

• An arc may have both end points inside the same layer and we ignore

them.

• Every B-C shortest path uses only forward edges

We make two simple claims.

Claim 6.2.1. Suppose a forward edge is deleted. Then the shortest path distance from

B to any node does not decrease.

Claim 6.2.2. Suppose we add a backward edge (D, E) to � where D ∈ !8 and E ∈ ! 9 for
some 9 < 8. Then the shortest path distance from B to any node does not decrease.

Suppose ? is an B-C shortest path in the residual network � 5 . Then what

happens after we augment along ?? We remove edges in ? that are saturated.

For each edge in ? we add a corresponding reverse arc. Since ? is a shortest path

its edges are all forward edges in the BFS layers. By the preceding claims we see

that after augmentation the shortest B-C path length in the residual network does

not decrease. This proves Lemma 6.7. Now we sketch the proof of Lemma 6.8.

Suppose the shortest path distance from B to C is 3. Each augmentation saturates

at least one forward edge which is deleted and becomes a backward edge. If the

B-C path length stays at 3 then no backward edge can be in the shortest B-C path

(why?). However, there can be at most < iterations before B-C distance increases

since each iteration deletes at least one forward edge.

6.2.3 Blocking Flows

Dinic defined the notion of blocking flows based on the analysis of the shortest

augmenting path algorithm. Suppose the current shortest B-C path distance in

� 5 is 3. Augmenting along a single path can take< iterations before the distance

increases by one. Instead of augmenting along a single path suppose we find a

flow 6 in � 5 such that 6 blocks all B-C shortest paths of length at most 3. Then

after adding 6 to 5 in the residual graph the shortest path distance increases by

one. The shortest path distance between B and C can increase at most = times.

Definition 6.8. Given a flow network � an B-C flow 5 is a blocking flow if for every B-C

path ? there is at least one arc in ? that is saturated by 5 . In other words 5 is amaximal

flow in that one cannot add greedily add flow to 5 in �.

CHAPTER 6. NETWORK FLOW: A QUICK OVERVIEW 79

Note that a blocking flow is maximal in � and need not be a maximum flow.

How can we find a blocking flow? One can do a simple greedy algorithm where

in each iteration we find an B-C path and augment along the path to saturate one

additional arc; the capacities along the path are reduced and those that saturated

are not considered in future path selections. Note that we are not computing a

residual network in this process, and it is clear that the greedy algorithm will

terminate in $(<) iterations; a naive implementation takes $(<2) time. The

utility of blocking flows is given by the next lemma.

Lemma 6.9. Let � be a flow network and let the B-C distance be 3. Suppose 5 is a

blocking flow in � then the B-C shortest distance in � 5 is strictly more than 3.

Corollary 6.9. A maximum B-C flow can be computed via $(=) blocking flow compu-

tations.

The preceding lemma and corollary shows that if we find a blocking flow 6

in � 5 and augment along 6 then we will need $(=) such iterations. The total

time would be $(<2=) since each blocking flow takes $(<2) time. This has not

led to any improvement in the running time over the shortest augmenting path

algorithm! A useful observation is that instead of finding a blocking flow in the

entire graph � 5 , it suffices to find it only in the layered graph consisting of the

forward edges in a BFS computation.

Lemma 6.10. Let � be flow network and let the B-C shortest path distance be 3. Let

� be the layered subgraph of � obtained by retaining only the forward edges between

layers of a BFS computation from B (and omitting the layers beyond !3). Suppose 5 is a

blocking flow in � and consider 5 as a flow in � — the shortest B-C path distance is

strictly larger than 3 in � 5 .

Computing blocking flow in layered DAGs can be done faster than the naive

greedy algorithm. One can use some simple graph search methods to avoid

recomputing shortest paths from scratch in each iteration. These lead to the

following.

Theorem 6.10. In unit-capacity layered graphs a blocking flow can be computed in

$(<) time. In capacitated graphs a blocking flow can be computed in $(<=) time.

Corollary 6.11. One can compute maximum flow in unit capacity graphs in $(<=)
time and in capacitated graphs in $(<=2) time.

Note that we obtained an improvement in general capacitated graphs from

$(<2=) to $(<=2).
Via dynamic tree data structures Goldberg and Tarjan showed that blocking

flows can be compted in capacitated graphs in almost linear time.

CHAPTER 6. NETWORK FLOW: A QUICK OVERVIEW 80

Theorem 6.12 (Goldberg and Tarjan). In a capacitated flow network a blocking flow

can computed in $(< log(=2/<)) time.

Corollary 6.13. There is an $(<= log(=2/<)-time algorithm for max flow.

In recent work, Orlin obtained an $(<=) time algorithm which is the fastest

strongly polynomial time algorithm for arbitrary capacities.

Combining blocking flows with Ford-Fulkerson: In unit-capacity graphs

and simple graphs one can combine blocking flows with simple observations

about maxflow being small when the shortest path distance is long. When

flow value is small we can switch to the basic Ford-Fulkerson algorithm which

turns out to be more efficient in that regime. By balancing parameters one

obtains faster algorithms. We refer the reader to network flows books for more

details. As a particular application we mention the reduction of maximum

cardinality bipartite matching to network flow. Applying this basic idea implies

an algorithm with running time $(<
√
=) for maximum bipartite matching

which was noted by Hopcroft and Karp.

6.3 Minimum Cost Flow

In min-cost flow we are given a capacitated flow network � = (+, �), source B
and sink C and also costs/weights F(0), 0 ∈ � on the arcs (they can be negative).

Formally the cost of a flow 5 , denoted by cost(5) is defined as

∑
0∈� F(0) 5 (0).

The goal is to find aminimum-cost maximum flow. Alternatively, one can ask for

a minimum cost flow of some given value �. One can write the second version

as an LP below.

min

∑
0∈�

F(0)G(0)∑
0∈�+(B)

G(0) −
∑

0∈�−(B)
G(0) ≥ �∑

0∈�+(E)
G(0) −

∑
0∈�−(E)

G(0) = 0 ∀E ∈ + − {B, C}

G(0) ≤ 2(0) ∀0 ∈ �
G(0) ≥ 0 ∀0 ∈ �

The polytope is integral whenever � and the capacities are integer valued.

Here we are interested in a discussion of combinatorial algorithm and some

basic results. We observe that when � = 1 the problem is closely connected to

the shortest path problem.

CHAPTER 6. NETWORK FLOW: A QUICK OVERVIEW 81

Exercise 6.4. Show that the B-C shortest path problem in a directed graph with

non-negative edge lengths is equivalent to computing the B-C mincost flow of

value 1 in the same graph with non-negative costs.

The costs can be negative and in fact one sees that shortest path computation

even with negative lengths can be reduced to minimum cost flow.

Exercise 6.5. Suppose � = (+, �) is a network with edge lengths which can

be negative. Show that the B-C shortest path problem in � is equivalent to

computing the B-C mincost flow of value 1 in the same graph when there is no

negative length cycle in �. Show that if the min-cost B-C flow of value 1 in �

with capacities set to 2 has strictly less cost than cost of flow with capacities 1 iff

� has a negative length cycle.

Circulations are quite natural in discussing min-cost flow for two reasons.

First, as we observed above, if edges can have negative lengths then the min-cost

flow need not be acyclic. Second, even when we start out with non-negative

costs, the natural residual flow network creates negative costs. For this reason, it

is common for people to work with min-cost circulations instead of min-cost

flow. There are advantages and disadvantages to this. For the sake of brevity

and intuitive clarity we will stick with min-cost flow

Residual network: We generalize the definition of the residual network to

incorporate costs. Suppose � = (+, �) is a flow network with capacities

2 : �→ ℤ+ and edge costs F : �→ ℤ. Let 5 : �→ ℝ be an B-C flow in �. Recall

the definition of the residual network � 5 = (+, �′). For each arc (D, E) with

0 ≤ 5 (0) < 2(0)we keep the arc (D, E)with residual capacity 2′(0) = 2(0) − 5 (0)
and add a reverse arc (E, D) with capacity 2′(E, D) = 5 (0). If (D, E) is saturated,
that is 5 (0) = 2(0)we only add the reverse arc. When edges have costs we simply

set the cost of the reverse arc to be −F(0) and the cost of the forward arc to be

the same as the original one. This is natural since sending flow on the reverse

arc corresponds to reducing flow on the original arc. The following lemmas

capture the calculus of flows with costs.

Lemma 6.11. Suppose 5 is an B-C flow and let 6 be an B-C flow in � 5 . Then 5 + 6 is an
B-C flow in � such that val(6+ 5) = val(6)+val(5) and cost(6+ 5) = cost(6)+ cost(5).

Lemma 6.12. Suppose 5 and 6 are B-C flows in �. Then 6 − 5 is an B-C flow such that

val(6 − 5) = val(6) − val(5) and cost(6 − 5) = cost(6) − cost(5).

Optimality characterization: The key to understanding min-cost flow is the

following intuitive characterization.

Lemma 6.13. Suppose 5 is an B-C flow of value �. Then 5 is a min-cost B-C-flow of

value � iff there is no negative cost cycle in � 5 .

CHAPTER 6. NETWORK FLOW: A QUICK OVERVIEW 82

Proof sketch. Suppose there is a negative cost cycle � in � 5 . Then we can send a

non-negative amount of flow along � and the cost of this flow < 0. Let 6 be this

flow which is in fact a circulation since it is along a cycle. Thus 5 + 6 is an B-C
flow of the same value �, and the cost of 5 + 6 is reduced because cost of 6 is

negative.

Let 6 be the min-cost flow among all flows with value �. Suppose 2>BC(5) >
2>BC(6). Consider the flow 6 − 5 in � 5 . Since val(6) = val(5) we have 6 − 5 is a
flow of value 0 in � 5 which means that it is a circulation, and 2>BC(6 − 5) < 0.

We can decompose the circulation 6 − 5 into a collection of cycles. At least one

of these cycles have to have negative cost since the total cost is negative. Thus if

5 is not a min-cost flow then there is a negative length cycle in � 5 . �

Based on the preceding optimality criterion there are two classes of algorithm

one can think of. One is to increase the flow value from 0 to � while inductively

maintaining the optimality of the cost at each stage. The other is to find a flow

value � and then improve its cost. We briefly discuss these approaches.

6.3.1 Successive Shortest Path Algorithm

Here we will assume that costs are non-negative and capacities are integer

valued; in fact we will assume that they are unit. Suppose we want to find a

flow of value 1. This is simply the shortest path problem so we can think of

this as augmenting flow by one unit along the shortest path. Now suppose we

want to find a flow of value 2 by increasing the flow by one more unit. In the

standard Ford-Fulkerson augmenting path algorithm we will computed the

residual graph � 5 and find an augmenting path. Instead we will find a shortest

path in � 5 and augment along that path. Note that even if the original graph

did not have negative costs the residual graph � 5 will have negative costs! But

can it have a negative length cycle?

Theorem 6.14. Let � be flow network with unit capacities and non-negative costs.

Suppose 5 is a min-cost B-C flow of value : in �. Then there is no negative length cycle

in � 5 . If there is an B-C path in � 5 then augmenting along a shortest B-C path in � 5

yields a min-cost flow of value : + 1.

6.3.2 Cycle cancelling and a strongly polynomial time algorithm

Now we discuss the cycle-cancelling approaches. Suppose we want to compute

a min-cost B-C flow of value �. We will assume that capacities and costs are

integer valued (but costs can be negative now). We first compute an arbitrary

flow 5 of value � (or certify that there is no flow of value � in �). We will further

assume that � is integer valued. Recall that 5 is a min-cost flow iff there is no

CHAPTER 6. NETWORK FLOW: A QUICK OVERVIEW 83

negative length cycle � in � 5 . We can check whether � 5 has a negative length

cycle � via say the Bellman-Ford algorithm. If it does not then 5 is a min-cost

flow. Otherwise by sending flow of at least one unit along � we obtain a new

flow 6 with less cost than 5 . We can repeat this until no improvement is possible.

When all costs and capacities are integer valued this process terminates since

cost is reduced by one unit in each iteration and we maintain the invariant that

the flow is integer valued. However this is not a polynomial time algorithm

when costs or capacities can be large. A natural question is whether one can

choose the negative length cycle � is some clever fashion. One obstacle is that

some of the natural candidates are NP-Hard to compute; for instance finding

the most negative length cycle generalizes the Hamiltonian cycle problem.

Even though maxflow had a simple strongly polynomial-time algorithm

from 1972, finding one for min-cost flow was not obvious. As we mentioned in

earlier chapters, Eva Tardös was the first to obtain a strongly polynomial time

algorithm via LP techniques. The first “combinatorial” strongly polynomial

time algorithm for min-cost flow is due to Goldberg and Tarjan. Their algorithm

checks whether � 5 has a negative length cycle � and if so it finds the minimum

mean length cycle � and augments along that cycle. The mean length of a cycle �

is defined as

∑
0∈� F(0)
|� | . One can find a minimummean length cycle in strongly

polynomial time via dynamic programming. See if you can figure it out.

Lemma6.14. There is a strongly polynomial-time algorithm for computing theminimum

mean length cycle.

The non-trivial result of Goldberg and Tarjan is the following.

Theorem 6.15. Suppose 5 is a flow of value �. Augmenting along the minimum

mean length cycle in each iteration terminates with a min-cost flow in $(<2= log =)
iterations.

For integer costs the algorithm can be shown to terminate in $(<= log(=,))
iterations where, is the maximum absolute value of the edge costs.

Chapter 7

Gomory-Hu Tree for
Connectivity in Graphs1

Most of this chapter is based on Chapter 15 from [57] with some additional

discussion on submodularity.

Connectivity is a fundamental topic in graph theory. Given an undirected

graph � = (+, �) and two nodes B, C the edge-connectivity between B and C is the

maximumnumber of edgedisjoint paths between B and C. Wedenote it by
�(B, C).
Via Menger’s theorem (equivalently the maxflow-mincut theorem),
�(B, C) is
the same as the minimum number of edges whose deletion disconnects B from C.

Another way to express this is via cuts:
�(B, C) = min*⊂+,B∈*,C∈+−(|�(*)|. Note

that in undirected graphs
�(B, C) =
�(C , B) due to symmetry. Connectivity in

directed graphs and for vertex connectivity are also important and well-studied

but we will confine our attention in this chapter to undirected graphs; we drop

the term undirected for the rest of the chapter. When � has non-negative

edge capacities 2 : �→ ℝ+, the connectivity notion generalizes naturally where

�(B, C) is the capacity of theminimum cut separating B from C. One can compute

�(B, C) via maximum flow computation. There are also other ways to compute

it An important and useful notion is that of the global minimum cut of �. We

can define it two equivalent ways: minB,C∈+,B≠C
�(B, C) = min∅⊂*⊂+ 2(�(*)).
Sometime the global mincut value is referred to as the connectivity of � when

� has unit capacities: it is the minimum number of edges whose removal

disconnects the graph into two components.

How can we compute the global minimum cut? The naive way, based on

the definition, is via computing the minimum cut for all

(
=
2

)
pairs of vertices.

However, one can do better, due to symmetry. Pick an arbitrary vertex B and

compute the min B-C cut for all C ∈ + − {B} and take the minimum. This only

1Based on scribed notes of David Morrison from 2010.

84

CHAPTER 7. GOMORY-HU TREE FOR CONNECTIVITY IN GRAPHS 85

requires = − 1 minimum cut computations. Can we do better? Karger, in his

seminal work, showed two different ways to compute the global minimum cut

of a graph without flows; the first is via random contraction [37], and the second

is via tree packings which yields a near-linear time randomized algorithm [36].

A remarkable and simple result in very recent work shows how to do this

computation using only $(log =) B-C maximum flow computations [45]; the

precise statement is a bit more technical and we refer the reader to the paper.

At first glance it appears that in a given graph � there can be

(
=
2

)
different

minimum cut values, one for each pair. In a beautiful result, Gomory and Hu

showed that in fact there are only (= − 1) distinct B-C minimum cut values in

any graph. Moreover there is a single tree that captures all the cut values and

minimum cuts. Moreover this tree can be computed via (= − 1)minimum cut

computations. There have been several recent results yielding faster algorithms.

7.1 A Detour through Submodularity

We have seen that
�(B, C) can be computed via maximum flow and/or via

LP techniques. A different and fundamental way to compute
�(B, C) is via a

connection to submodularity.

Definition 7.1. Given a finite set # , a real-valued set function 5 : 2
→ ℝ is

submodular if for all �, � ∈ 2
#
, 5 (�) + 5 (�) ≥ 5 (� ∪ �) + 5 (� ∩ �).

An alternate definition based on the idea of “decreasing marginal value” is

the following:

Definition 7.2. Given a finite set # , a real-valued set function 5 : 2
→ ℝ is

submodular if 5 (� + E) − 5 (�) ≥ 5 (� + E) − 5 (�) for all � ⊆ � and E ∈ # \ �.

Exercise 7.1. Prove the equivalence of the two definitions.

There are several special cases of submodular functions that will be of

interest:

1. Monotone submodular functions that satisfy 5 (�) ≤ 5 (�) for all � ⊆ �.

2. Non-negative submodular set functions: 5 (�) ≥ 0 for all � ⊆ # .

3. Symmetric submodular functions where 5 (�) = 5 (# \ �) for all � ⊆ # .

4. Normalized: 5 (∅) = 0.

We will cover submodularity in more depth later on but we consider the

connection to the graph cut function here.

CHAPTER 7. GOMORY-HU TREE FOR CONNECTIVITY IN GRAPHS 86

Lemma 7.1. Let � = (+, �) be a graph with non-negative capacity function 2 : �→
ℝ+. Then 5 : 2

+ C>ℝ+ defined by 5 (�) = 2(�(�)) (i.e., the capacity of a cut induced

by a set �) is non-negative, submodular and symmetric.

Proof. To see this, notice that 5 (�) + 5 (�) = 0 + 1 + 22 + 3 + 4 + 2 5 , for any

arbitrary � and �, and 0, 1, 2, 3, 4 , 5 are as shown in figure 7.1. Here, 0 (for

example) represents the total capacity of edges with one endpoint in � and the

other in + \ (� ∪ �). Also notice that 5 (� ∪ �) + 5 (� ∩ �) = 0 + 1 + 22 + 3 + 4,
and since all values are positive, we see that 5 (�) + 5 (�) ≥ 5 (� ∪ �) + 5 (� ∩ �),
satisfying definition 7.1.

A

bc

a

d e

f

B

Figure 7.1: Given a graph � and two sets �, � ⊆ + , this diagram shows all of

the possible classes of edges of interest in �. In particular, there could be edges

with both endpoints in + \ (� ∪ �), �, or � that are not shown here.

�

Exercise 7.2. Suppose 5 and 6 are two submodular functions over same ground

set # . Prove that 5 + 6 is submodular. Argue that if � has a single edge 4 then

the cut function is submodular and use this and the preceding fact to obtain an

alternate proof of the submodularity of the cut function of a graph.

Exercise 7.3. Let � = (+, �) be directed graph. Show that the directed cut func-

tion |�+(()|, (⊆ + is submodular. Note that this is not necessarily symmetric.

Symmetric submodular functions satisfy an additional property.

Definition 7.3. A real-valued set function 5 : 2
→ ℝ+ is called posi-modular, if

5 (�) + 5 (�) ≥ 5 (� − �) + 5 (� − �) for �, � ⊆ # .

Lemma 7.2. If 5 : 2
→ ℝ is submodular and symmetric then it is posi-modular.

CHAPTER 7. GOMORY-HU TREE FOR CONNECTIVITY IN GRAPHS 87

Proof.

5 (�) + 5 (�) = 5 (+ − �) + 5 (�) ≥ 5 ((+ − �) ∩ �) + 5 ((+ − �) ∪ �)
= 5 (� − �) + 5 (+ − (� − �))
= 5 (� − �) + 5 (� − �).

We use symmetry in the first and last lines above and submodularity in the first

line. �

Submodular set function minimization: Consider a submodular set function

5 : 2
→ ℝ. How do we specify 5 ? Note that the function specifies a value for

an exponential number of sets. As we saw, the graph cut function is submodular.

Thus, in many settings the set function is implicitly defined in some setting. In

such settings we will assume that 5 is available via what is called a value oracle:

this means that there is a procedure/black box that given � ⊆ # outputs the

value 5 (�). For instance if 5 is the cut function of a graph � there is a procedure

that can efficiently compute |�(�)| for any given set � of vertices. A classical

and fundamental result in combinatorial optimization that we will see later is

the following.

Theorem 7.4. Given # and a submodular set function 5 : 2
→ ℤ via a value oracle

there is a strongly polynomial-time algorithm2 that computes min(⊆# 5 (() and a set

achieving the minimum.

Via the above general result one obtains an alternate algorithm for computing

the minimum B-C cut.

Corollary 7.5. There is a strongly polynomial time algorithm that given an capacitated

directed graph � = (+, �) and B, C outputs
�(B, C).

Proof. Consider the function 5 : 2
+−{B,C} → ℝ+ where 5 (�) = |�+(� + B)|. Note

that 5 is submodular and the minimum of this derived set function is the B-C

minimum cut value. �

Several properties of graph cuts are more easily understood as properties

of submodularity. There are two advantages to this. One can simplify certain

(parts of) proofs via submodularity and this helps delineate where and whether

one is exploiting the specifics of the graph cut function. Second, some results

can be shown to hold beyond graphs and then one has a more general result that

2Technically speaking the running time consists of two parts. One is the number of calls to the

value oracle and the other is the number of arithmetic operations. Both are strongly polynomial

in |# |. Thus the overall run time is strongly polynomial if one assumes that the value oracle is

itself a strongly polynomial time algorithm.

CHAPTER 7. GOMORY-HU TREE FOR CONNECTIVITY IN GRAPHS 88

allows for other applications. In the context of Gomory-Hu trees we will see that

we only use submodularity and symmetry, and hence there is a Gomory-Hu

tree for the cut function defined by an any non-negative symmetric submodular

function. We will mention an application to hypergraphs later.

Definition 7.6. Given a symmetric set function 5 : 2
+ → ℝ+ and distinct nodes

B, C ∈ + we let
 5 (B, C) = min*⊂+ :B∈*,E∈+−* 5 (�) denote the B-C cut with respect to

the function 5 . Note that
 5 is symmetric.

We state a simple property for cut values that holds in the abstract setting.

Lemma 7.3. For any symmetric set function 5 : 2
+ → ℝ+ and three distinct nodes

0, 1, 2 we have
 5 (0, 2) ≥ min{
 5 (0, 1),
 5 (1, 2)}.

Proof. Consider a mincut* that separates 0 from 2, that is 0 ∈ *, 2 ∈ + −* and

 5 (0, 2) = 5 (*). Where is 1? If 1 ∈ + −* then
 5 (0, 1) ≤ 5 (*) =
(0, 2) since
* separates 0 from 1. Otherwise, 1 ∈ * and hence
(1, 2) ≤ 5 (*) =
(0, 2). �

The preceding basic property of the cuts induced by symmetric function

suffice to prove that there can be at most = − 1 distinct mincut values and that

there is a compact representation [32, 34] of the cut value. However, one cannot

optimize cut values for arbitrary symmetric functions via value oracles and

hence it is mainly a structural result. For symmetric submodular functions the

results can be made algorithmic and one derives additional properties of the

cut tree that also allow us to obtain the value as well as the cuts themselves.

The stronger properties are not known to hold true for arbitrary symmetric

functions.

7.2 Algorithmic Proof of Gomory-Hu Tree

We start with a definition of a Gomory-Hu tree that satisfies a key property

which implies additional stronger properties.

Definition 7.7. Let � = (+, �) be a graph with non-negative edge-capacities 2 : �→
ℝ+. A tree) = (+(�), �)) is a Gomory-Hu tree if for all BC ∈ �) , �(,) is a

minimum B, C cut in �, where, is one component of) − BC.

The natural question is whether such a tree even exists; we will return to this

question shortly. However, if we are given such a tree for an arbitrary graph �,

we know that this tree obeys some very nice properties. In particular, we can

label the edges of the tree with the values of the minimum cuts, as the following

theorem shows (an example of this can be seen in figure 7.2):

CHAPTER 7. GOMORY-HU TREE FOR CONNECTIVITY IN GRAPHS 89

3

f

a

b c

d

e

2

7

5
22

3

4

10

8

14

a b f e c

d

18 17 13 15

Figure 7.2: A graph � with its corresponding Gomory-Hu tree. Taken from

[64].

Theorem 7.8. Let) be a Gomory-Hu tree for a graph � = (+, �). Then, for all

D, E ∈ + , let BC be the edge on the unique path in) from D to E such that
�(B, C) is
minimized. Then,

�(D, E) =
�(B, C)
and the cut �(,) induced by)−BC is a D, Eminimumcut in�. Thus
�(B, C) =
)(B, C)
for each B, C ∈ + where the capacity of an edge BC in) is equal to
�(B, C).

Proof. We first note that
� obeys a triangle inequality. That is,
�(0, 1) ≥
min(
�(0, 2),
�(1, 2)) for any undirected graph � and vertices 0, 1, 2 (to see

this, note that 2 has to be on one side or the other of any 0, 1 cut).

Consider the path from D to E in). We note that if DE = BC, then
�(D, E) =

�(B, C). Otherwise, let F ≠ E be the neighbor of D on the D-E path in). By

the triangle inequality mentioned above,
�(D, E) ≥ min(
�(D, F),
�(F, E)). If
DF = BC, then
�(D, E) ≥
�(B, C); otherwise, by induction on the path length,

we have that
�(D, E) ≥
�(F, E) ≥
�(B, C).
However, by the definition of Gomory-Hu trees, we have that
�(D, E) ≤

�(B, C), since the cut induced by) − BC is a valid cut for D, E. Thus, we have

�(D, E) =
�(B, C) and the cut induced by) − BC is a D, E minimum cut in �. �

Remark 7.1. Gomory-Hu trees can be (and are often) defined by asking for the

property described in Theorem 7.8. However, the proof shows that the basic

requirement in Definition 7.7 implies the other property.

The preceding theorem shows that we can represent compactly all of the

minimum cuts in an undirected graph. Several non-trivial facts about undirected

CHAPTER 7. GOMORY-HU TREE FOR CONNECTIVITY IN GRAPHS 90

graphs can be seen transparently via the existence of the Gomory-Hu tree. The

only remaining question is “Does such a tree exist? And if so, how does one

compute it efficiently?” We will answer both questions by giving a constructive

proof of Gomory-Hu trees for any undirected graph �.

We now prove the following lemma, which will be instrumental in construct-

ing Gomory-Hu trees.

Lemma 7.4. Let �(,) be an B, C minimum cut in a graph � with respect to a capacity

function 2. Then for any D, E ∈ ,, D ≠ E, there is a D, E minimum cut �(-) where
- ⊆ , .

Proof. Let �(-) be any D, E minimum cut that crosses, . Suppose without loss

of generality that B ∈ ,, B ∈ -, and D ∈ -. If one of these are not the case,

we can invert the roles of B and C or - and + \ -. Then there are two cases to

consider:

Ws

u

t

v

X

Figure 7.3: �(,) is a minimum B, C cut. �(-) is a minimum D, E cut that crosses

, . This diagram shows the situation in Case 1; a similar picture can be drawn

for Case 2

Case 1: C ∉ - (see figure 7.3). Then, via submodularity of the cut function,

2(�(-)) + 2(�(,)) ≥ 2(�(- ∩,)) + 2(�(- ∪,)) (7.1)

But notice that �(- ∩,) is a D, E cut, so since �(-) is a minimum D-E cut,

we have 2(�(- ∩,)) ≥ 2(�(-)). Also, - ∪, is an B-C cut (since C ∉ -), so

2(�(- ∪,)) ≥ 2(�(,)). Thus, equality holds in equation (7.1), and - ∩,
is a minimum D, E cut.

CHAPTER 7. GOMORY-HU TREE FOR CONNECTIVITY IN GRAPHS 91

Case 2: C ∈ -. Since 2 is posi-modular, we have that

2(�(-)) + 2(�(,)) ≥ 2(�(, \ -)) + 2(�(- \,)) (7.2)

However, �(, \ -) is a D, E cut, so 2(�(, \ -)) ≥ 2(�(-)). Similarly,

�(- \,) is an B, C cut, so 2(�(- \,)) ≥ 2(�(,)). Therefore, equality holds

in equation (7.2), and, \ - is a D, E minimum cut.

�

The preceding argument shows that minimum cuts can be uncrossed, a
technique that is useful in many settings. In order to construct a Gomory-Hu

tree for a graph, we need to consider a stronger definition to apply induction.

Definition 7.9. Let � = (+, �), ' ⊆ + . Then a Gomory-Hu tree for X in M is a

pair consisting of) = (', �)) and a partition (�A | A ∈ ') of + associated with each

A ∈ ' such that

1. For all A ∈ ', A ∈ �A

2. For all BC ∈ �) ,) − BC induces a minimum cut in � between B and C defined by

�(*) =
⋃
A∈-

�A

where - is the vertex set of a component of) − BC.

Notice that a Gomory-Hu tree for � is simply a generalized Gomory-Hu tree

with ' = + . Intuitively, we associate with each vertex E in the tree a “bag” that

contains all of the vertices that have to appear on the same side as E in some

minimum cut. This allows us to define the algorithm GomoryHuAlg which

is a simple divide and conquer algorithm. It is based on the key lemma. We

pick an arbitrary pair A1 , A2 from ' and compute a mincut, that separates A1
and A2. Let '1 = ' ∩, and '2 = ' \ '1 = ' ∩ (+ −,). By the key lemma, for

any D, E ∈ '1 there is a D-E mincut - completely contained in, and similarly

if D, E ∈ '2 there is a mincut is completely contained in + −, . This justifies

divide and conquer where we shrink the other side of the cut to a single vertex.

The key issue is how to attach the two trees together and it requires some care.

Claim 7.2.1. Let D, E ∈ '1. Then
�1
(D, E) =
�(D, E). Similarly, let D, E ∈ '2 then

�2
(D, E) =
�(D, E).

Proof. Follows from Lemma 13.3. �

CHAPTER 7. GOMORY-HU TREE FOR CONNECTIVITY IN GRAPHS 92

Algorithm 1 GomoryHuAlg(G, R)

if |' | = 1 then return) = ({A}, ∅), �A = +
else

Let A1 , A2 ∈ ' , and let �(,) be an A1 , A2 minimum cut

⊲ Create two subinstances of the problem

�1 = � with + \, shrunk to a single vertex, E1; '1 = ' ∩,
�2 = � with, shrunk to a single vertex, E2; '2 = ' \,

⊲ Now we recurse

)1 , (�1

A | A ∈ '1) = GomoryHuAlg(�1 , '1)
)2 , (�2

A | A ∈ '2) = GomoryHuAlg(�2 , '2)

Let A′ be the vertex such that E1 ∈ �1

A′

Let A′′ be the vertex such that E2 ∈ �2

A′′

⊲ Note that A′, A′′ are not necessarily A1 , A2!

⊲ See figure 7.4
) = ('1 ∪ '2 , �)1

∪ �)2
∪ {A′A′′})

(�A | A ∈ ') = ComputePartitions('1 , '2 , �
1

A , �
2

A , A
′, A′′) return), �A

end if

Theorem 7.10. GomoryHuAlg returns a valid Gomory-Hu tree for a set '.

Proof. We need to show that any BC ∈ �) satisfies the “key property” of Gomory-

Hu trees. That is, we need to show that) − BC induces a minimum cut in �

between B and C. The base case is trivial. Then, suppose that BC ∈)1 or BC ∈)2.

By Claim 7.2.1 and induction we see that the key property is satisfied for all

edges in)1 and)2.

Thus, the only edge we need to care about is the edge we added from

A′ to A′′. Note) − (A′, A′′) corresponds to the cut (,,+ −,) in �. Thus, to

prove correctness of) it suffices to prove that the cut �(,) is a A′-A′′ mincut

in �. In particular it suffices to argue that
�(A′, A′′) ≥
�(A1 , A2). Note that

�(A′, A′′) ≤
�(A1 , A2) since �(,) is a valid cut that separates A′ form A′′. First,
consider the simple case when
�(A1 , A2) is minimum over all pairs of vertices in

'. In this case, we see that in particular,
�(A1 , A2) ≤
�(A′, A′′), so we are done.

However, we chose A1 , A2 arbitrarily so we need a more general argument.

Suppose there is a A′-A′′ minimum cut �(-) such that 2(�(-)) < (̧�(,)). Assume

without loss of generality that A′ ∈ -, A′′ ∉ -. Note that A1 , A
′ ∈, . - does not

separate A1 from A2, otherwise we will contradict the fact that �(,) is a mincut

CHAPTER 7. GOMORY-HU TREE FOR CONNECTIVITY IN GRAPHS 93

Algorithm 2 ComputePartitions('1 , '2 , �
1

A , 2
2

A , A
′, A′′)

⊲We use the returned partitions, except we remove E1 and E2 from �A′ and

�A′′, respectively

For A ∈ '1, A ≠ A
′
, �A = �

1

A

For A ∈ '2, A ≠ A
′′
, �A = �

2

A

�A′ = �
1

A′ − {E1}, �A′′ = �2

A′′ − {E2} return (�A | A ∈ ')

r’’

1

r2

T1 T2

C = {v ,...}r’
1

1 r’’
2

2
C = {v ,...}

r’

r

Figure 7.4:)1 and)2 have been recursively computed by GomoryHuAlg. Then

we find A′ and A′′ such that E1 (the shrunken vertex corresponding to + \, in

)1) is in the partition of A′, and similarly for A′′ and E2. Then, to compute), we

connect A′ and A′′, and recompute the partitions for the whole tree according to

ComputePartitions.

for them. Therefore, both A1 , A2 ∈ - or neither. We will assume A1 , A2 ∉ -. The

other case is similar. Thus A′ ∈ - and A1 ∉ -. Thus - separates A′ from A1.

Via the key lemma, there is a mincut separating A′ and A1 which is completely

contained in , . This means we can assume without loss of generality that

- ⊆ , and hence
�1
(A′, A1) ≤ 2(�(-)) < 2(�(,)) =
�(A1 , A2).

Now, consider the path from A′ to A1 in)1. There exists an edge DE on this

path such that the weight of DE in)1, F1(DE), is
�1
(A′, A1). Because)1 is a

Gomory-Hu tree for �1, DE induces an A1 , A2 cut in � of capacity F1(DE) (since
E1 ∈ �1

A′). But this contradicts the fact that, is a A1 , A2 minimum cut.

This proves that) is a Gomory-Hu tree for �, and hence by induction,

GomoryHuAlg is correct. �

CHAPTER 7. GOMORY-HU TREE FOR CONNECTIVITY IN GRAPHS 94

We obtain the following corollary:

Corollary 7.11. AGomory-Hu tree for ' ⊆ + in � can be computed in the time needed

to compute |' | − 1 minimum-cuts in graphs of size at most that of �.

Finally, we present the following alternative proof of the last step of the-

orem 7.10 (that is, showing that we can choose A1 and A2 arbitrarily in Go-

moryHuAlg). As before, let �(,) be an A1 , A2 minimum cut, and assume that

A1 ∈ ,, A2 ∈ + \, . Assume for simplicity that A1 ≠ A′ and A2 ≠ A′′ (the other

cases are similar). We claim that
�1
(A1 , A′) =
�(A1 , A′) ≥
�(A1 , A2). To see this,

note that if
�1
(A1 , A′) <
�(A1 , A2), there is an edge DE ∈ �)1

on the path from

A1 to A
′
that has weight less than
�(A1 , A2), which gives a smaller A1 , A2 cut in �

than, (since E1 ∈ �1

A′). For similar reasons, we see that
�(A2 , A′′) ≥
�(A1 , A2).
Thus, by the triangle inequality we have

�(A′, A′′) ≥ min{
�(A′, A1),
�(A′′, A2),
�(A1 , A2)} ≥
�(A1 , A2)
which completes the proof.

Gomory-Hu trees allow one to easily show some facts that are otherwise

hard to prove directly. Some examples are the following.

Exercise 7.4. For any undirected graph there is a pair of nodes B, C and an B-C

minimum cut consisting of a singleton node (either B or C). Such a pair is called

a pendant pair.

Exercise 7.5. Let � be a graph such that deg(E) ≥ : for all E ∈ + . Show that

there is some pair B, C such that
�(B, C) ≥ :.

Notice that the proof of the correctness of the algorithm relied only on the

key lemma which in turn used only the symmetry and submodularity of the cut

function. One can directly extend the proof to show the following theorem.

Theorem 7.12. Let+ be a ground set, and let 5 : 2
+ → ℝ+ be a symmetric submodular

function. Given B, C in + , define the minimum cut between B and C as

 5 (B, C) = min

,⊆+,|,∩{B,C}|=1

5 (,)

Then, there is a Gomory-Hu tree that represents
 5 . That is, there is a tree) = (+, �))
and a capacity function 2 : �) → ℝ+ such that
 5 (B, C) =
)(B, C) for all B, C in+ , and

moreover, the minimum cut in) induces a minimum cut according to 5 for each B, C.

Exercise 7.6. Let + be a ground set, and let 5 : 2
+ → ℝ+ be a symmetric

submodular function. Suppose ' ⊆ + . Define a a function 6 : 2
' → ℝ+ where

6(�) = min�⊆(⊆+−� 5 ((). In other words we are deriving a function on the

ground set ' via 5 . Prove that 6 is symmetric and submodular.

CHAPTER 7. GOMORY-HU TREE FOR CONNECTIVITY IN GRAPHS 95

Exercise 7.7. A hypergraph � = (+, �) consists of a finite vertex set + and a set

of hyperedges � where each hyperedge 4 ∈ � is a subset of + , that is, 4 ⊆ + .
Graphs are hypergraphs where each hyperedge has cardinality two. Given

a hypergraph � = (+, �), define the cut function of � as: 5 : 2
+ → ℝ+ as

5 (,) = |�(,)|, where (∈ � is in �(,) iff (∩, and (\, are non-empty. Show

that 5 is a non-negative, symmetric, submodular function.

Remark 7.2. Isolating cuts from [45] and other ideas have led to a spate of new

results on graphs, submodular functions, hypergraphs, and related problems

and faster algorithms for Gomory-Hu tree computation in both the exact and

approximate setting.

Chapter 8

Perfect Matching and Matching
Polytopes1

Let � = (+, �) be a graph. For a set �′ ⊆ �, let "�′ denote the characteristic

vector of �′ in ℝ |� |. We define two polytopes:

P?4A 5 42C_<0C2ℎ8=6(�) = convexhull({"" | " is a perfect matching in �})

P<0C2ℎ8=6(�) = convexhull({"" | " is a matching in �})
Edmonds gave a description of these polytopes. Recall that for bipartite

graphs, P?4A 5 42C_<0C2ℎ8=6(�) is given by the following polytope.

G (�(E)) = 1 ∀E ∈ +
G(4) ≥ 0 ∀4 ∈ �

And P<0C2ℎ8=6(�) is given by the following polytope.

G (�(E)) ≤ 1 ∀E ∈ +
G(4) ≥ 0 ∀4 ∈ �

We saw an example of a non-bipartite graph, namely a tringle, for which (1
2
, 1

2
, 1

2
)

is basic feasible solution for both of the preceding polytopes.

1

2

1

2

1

2

1Based on notes scribed by Vivek Srikumar from 2010.

96

CHAPTER 8. PERFECT MATCHING AND MATCHING POLYTOPES 97

Hence, (perfect) matching polytope for non-bipartite graphs are not captured by

the simple constraints that work for bipartite graphs.

Theorem 8.1 (Edmonds). P?4A 5 42C_<0C2ℎ8=6(�) is determined by the following set of

inequalities.

G(4) ≥ 0; 4 ∈ �
G (�(E)) = 1; E ∈ +
G (�(*)) ≥ 1; * ⊆ +, |* | ≥ 3, |* | odd

Edmonds gave a proof via an algorithmic method. In particular, he gave a

primal-dual algorithm for the minimum cost perfect matching problem, which,

as a by product showed that for any cost vector 2 on the edges, there is a

minimum cost perfect matching whose cost is equal the minimum value of 2G

subjecto to the above set of inequalities. This implies that the polytope is integral.

We describe a short non-algorithmic proof that was given later [57] (Chapter 25).

Proof. Let&(�) denote the polytope described by the inequalities in the theorem

statement. It is easy to verify that for each graph �, P?4A 5 42C_<0C2ℎ8=6(�) ⊆ &(�).
Suppose there is a graph � such that &(�) * P?4A 5 42C_<0C2ℎ8=6(�). Among all

such graphs, choose the one that minimizes |+ | + |� |. Let � be this graph. In

particular, there is a basic feasible solution (vertex) G of &(�) such that G is not

in P?4A 5 42C_<0C2ℎ8=6(�).
We claim that G(4) ∈ (0, 1); ∀4 ∈ �. If G(4) = 0 for some 4, then deleting 4

from � gives a smaller counter example. If G(4) = 1 for some 4, then deleting 4

and its end points from � gives a smaller counter example.

Wecanassume that |+ | is even, for otherwise&(�) = ∅ andP?4A 5 42C_<0C2ℎ8=6(�) =
∅ as well (why?). Since 0 < G(4) < 1 for each 4 and G(�(E) = 1 for all E,

346(E) ≥ 2; ∀E ∈ + . Suppose |� | = 2|+ |. Then 346(E) = 2; ∀E ∈ + and there-

fore, � is a collection of vertex disjoint cycles. Then, either � has an odd cycle in

its collection of cycles, in which case, &(�) = ∅ = P?4A 5 42C_<0C2ℎ8=6(�), or � is a

collection of even cycles and, hence bipartite and &(�) = P?4A 5 42C_<0C2ℎ8=6(�).
Thus |� | > 2|+ |. Since G is a vertex of &(�), there are |� | inequalities in the

system that are tight and determine G. Therefore there is some odd set* ⊂ +
such that G (�(*)) = 1. Here |* | ≥ 3. Note that |+ −* | > 1 for if + −* = {E}
the inequality G (�(*)) = 1 is implied by G(�(E)) = 1. Let �′ = �/* , where* is

shrunk to a node, say D′. Define �′′ = �/*̄ , where *̄ = + −* is shrunk to a

node D′′; see Figure 8.1.
The vector G when restricted to �′ induces G′ ∈ &(�′) and similarly G

induces G′′ ∈ &(�′′). Since �′ and �′′ are smaller than �, we have that

&(�′) = P?4A 5 42C_<0C2ℎ8=6(�′) and &(�′′) = P?4A 5 42C_<0C2ℎ8=6(�′′). Hence, G′ can

CHAPTER 8. PERFECT MATCHING AND MATCHING POLYTOPES 98

* *̄

41

4ℎ

D′

*̄

41

4ℎ

*

D′′
41

4ℎ

Figure 8.1: Graphs �, �′ and �′′ from top to bottom.

be written as a convex combination of perfect matchings in �′ and G′′ can
be written as a convex combination of perfect matchings in �′′. The vector

G is rational since we chose it as a vertex of &(�), therefore, G′, G′′ are also

rational; hence, ∃ integer : such that G′ = 1

:

∑:
8=1

""
′
8 , where "′

1
, "′

2
, · · · , "′

:

are perfect matchings in �′ and G′′ = 1

:

∑:
8=1

""
′′
8 , where "′′

1
, "′′

2
, · · · , "′′

:
are

perfect matchings in �′′. (Note that : is the same in both expressions.)

Let 41 , 42 , · · · , 4ℎ be edges in �(*). Since G′(�(D′) = 1 and D′ is in every perfect

matching, we have that 4 9 is in exactly :G′(4 9) = :G(4 9)matchings "′
1
, · · · , "′

:
.

Similarly, 4 9 is in exactly :G(4 9)matchings"′′
1
, · · · , "′′

:
. Note that

∑=
9=1

:G(4 9) = :
and moreover, exactly one of 41 , · · · , 4ℎ can be in "′

8
and "′′

8
. We can, therefore,

CHAPTER 8. PERFECT MATCHING AND MATCHING POLYTOPES 99

assume (by renumbering if necessary) that "′
8
and "′′

8
share exactly one edge

from 41 , · · · , 4ℎ . Then, "8 = "′
8
∪ "′′

8
is a perfect matching in �. Hence,

G = 1

:

∑:
8=1

""8
, which implies that G ∈ P?4A 5 42C_<0C2ℎ8=6(�), contradicting our

assumption.

The proof can alternatively be viewed as giving an inductive proof to express

any vertex G of &(�) as a convex combination of perfect matchings of �. �

Now, we use the above theorem to derive the following:

Theorem 8.2. P<0C2ℎ8=6(�) is determined by

G(4) ≥ 0; 4 ∈ �
G (�(E)) ≤ 1; E ∈ +

G (�[*]) ≤ |* | − 1

2

; * ⊆ +, |* | odd

Here �[*] is the set of edges with both end points in* .

Proof. We use a reduction of weighted matching to weighted perfect matching:

Given � = (+, �), create a copy �′ = (+′, �′) of �. And let �̃ be the graph (+̃ , �̃)
defined as +̃ = + ∪+′, �̃ = � ∪ �′ ∪ {(E, E′) | E ∈ +}.

� �′, copy of �

E′E

The following claim is easy to prove.

Claim 8.0.1. Suppose " is a matching in �. Then there is a perfect matching "̃ in

�̃ such that "̃ ∩ � = ". Suppose "̃ is a perfect matching in �̃. Then "̃ ∩ � is a

matching in �.

Corollary 8.3. The maximum weight matching problem is poly-time equivalent to

maximum weight perfect matching problem.

Proof. Given a graph � in which we wish to compute a maximum-weight

matching we first remove edges with negative weights and then construct �̃ as

above where we assign a zero weight to each edge EE′ and retain the original

edge weights in � and set edge-weights in �′ to zero. �

CHAPTER 8. PERFECT MATCHING AND MATCHING POLYTOPES 100

We can use the above idea to establish the theorem. Let G be feasible for the

system of inequalities in the theorem. We show that G can be written a convex

combination of matchings in �. It is clear that "" satisfies the inequalities for

every matching ". From �, create �̃ as above and define a fractional solution

G̃ : �̃→ ℝ+ as follows: first, we define G′ : �′→ ℝ+ as the copy of G on �. That

is, G′(4′) = G(4), where 4′ is the copy of 4. Then,

G̃ =


G(4); if 4 ∈ �
G′(4); if 4 ∈ �′
1 − G (�(E)) ; if 4 = EE′

� �′

0.40.2
0.3

0.1

0.2
0.3

0.1

Claim 8.0.2. G̃ belongs to P?4A 5 42C_<0C2ℎ8=6(�̃).
Assuming the claim, we see that G̃ can be written as a convex combination of

perfect matchings in �̃. Each perfect matching in �̃ induces a matching in �

and it is easy to verify that G can therefore be written as a convex combination of

matchings in �.

It only remains to verify the claim. From the previous theorem, it suffices to

show that

G̃
(
�̃(*)

)
≥ 1; ∀* ⊆ +̃ , |* | odd

� �′

*

, -′

CHAPTER 8. PERFECT MATCHING AND MATCHING POLYTOPES 101

Let * ⊆ +̃ and |* | odd. Let, = * ∩+ and -′ = * ∩+′, where -′ is the
copy of - ⊆ + . First we consider the case that -′ = ∅ and |, | is odd. Then

G̃
(
�̃(*)

)
= G̃

(
�̃(,)

)
=

∑
E∈,

G̃
(
�̃(E)

)
− 2G̃ (�[,])

= |, | − 2G (�[,])

≥ |, | − 2

(
|, | − 1

2

)
≥ 1

For the general case, we claim that G̃
(
�̃(*)

)
≥ G̃

(
�̃(, \ -)

)
+ G̃

(
�̃(-′ \, ′)

)
.

Without loss of generality, , \ - is odd. Then G̃
(
�̃(*)

)
≥ G̃

(
�̃(, \ -)

)
≥ 1

from above.

The claim can be verified as follows:

,

-′, ∩ -

, \ -
, ′ ∩ -′

-′ \, ′

Notice that only edges between, and -′ are between, ∩ - and -′ ∩, ′.
Let � =, ∩ -, �′ =, ′ ∩ -′. Then

G̃
(
�̃(*)

)
= G̃

(
�̃(, ∪ -′)

)
= G̃

(
�̃(, \ -)

)
+ G̃

(
�̃(-′ \, ′)

)
+

G (�(�)) − 2G((� (�[�,, \ -])) +
G (�′(�′)) − 2G (�′ (�[�′, -′ \, ′]))

The claim follows from the observation that G(�(�)) ≥ G (�[�,, \ �]) +
G (�(�[�, - \,]). �

Corollary 8.4. P?4A 5 42C_<0C2ℎ8=6(�) is also determined by

G(4) ≥ 0; 4 ∈ �
G (�(E)) = 1; E ∈ +

G (�[*]) ≤ |* | − 1

2

; * ⊆ +, |* | odd

CHAPTER 8. PERFECT MATCHING AND MATCHING POLYTOPES 102

We note that although the system in the above corollary and the earlier

theorem both determine P?4A 5 42C_<0C2ℎ8=6(�), they are not identical.

8.1 Separation Oracle for Matching Polytope

The inequality systems that we saw for P?4A 5 42C_<0C2ℎ8=6(�) and P<0C2ℎ8=6(�)
have an exponential number of inequalities. Therefore, we cannot use them

directly to solve the optimization problems of interest, namely, the maximum

weight matching problem or the minimum weight perfect matching problem.

To use the Ellipsoid method, we need a polynomial time separation oracle for

the polytopes. Edmonds gave efficient strongly polynomial time algorithms

for optimizing over these polytopes via the primal-dual method. From the

equivalence of optimization and separation (via the ellipsoid method), this

implies that there are polynomial time separation oracles for these polytopes.

However, the oracle obtained via the above approach is indirect and cumbersome.

Padberg and Rao [1982] gave a simple and direct separation oracle. We discuss

this for the system

G(4) ≥ 0; 4 ∈ � (8.1)

G (�(E)) = 1; E ∈ +
G (�(*)) ≥ 1; |* | odd, * ⊆ +

and it can be used to obtain a separation oracle for for the matching polytope

via the reduction we discussed earlier.

Theorem 8.5. There is a strongly polynomial time algorithm, that given � = (+, �)
and G : �→ ℝ determines if G satisfies (8.1) or outputs an inequality from (8.1) that is

violated by G.

It is trivial to check the first two sets of inequalities. Therefore, we assume

that G ≥ 0 and G (�(E)) = 1;∀E ∈ + . We can also assume that |+ | is even otherise

the perfect matching polytope is empty since + itself is violated. Thus the

question is whether there is a set * ⊂ +, |* | odd, such that G (�(*)) < 1. It is

sufficient to give an algorithm for the minimum odd-cut problem, which is the

following: Given a capacitated graph � = (+, �), find a cut �(*) of minimum

capacity among all sets* such that |* | is odd. We claim that the following is a

correct algorithm for the minimum odd-cut problem.

1. Compute a Gomory-Hu tree) = (+, �)) for � with edge capacities given

by G.

2. Among the odd-cuts induced by the edges of), output the one with the

minimum capacity.

CHAPTER 8. PERFECT MATCHING AND MATCHING POLYTOPES 103

To see the correctness of the algorithm, let �(*∗) be a minimum capacity odd

cut in �. Then �)(*∗) is a set of edges in �) .

Claim 8.1.1. There is an edge BC ∈ �)(*∗) such that) − BC has a component with an

odd number of nodes.

The proof of the preceding claim is left as an exercise. Assuming the claim, by

the prperties of the Gomory-Hu tree,) − BC induces an odd cut in � of capacity

equal to
�(B, C) (recall that
�(B, C) is the capacity of a minimum B-C cut in �).

Since �(*∗) separates B and C, the odd cut induced by) − BC has capacity at most

G(�(*∗)).

Exercise 8.1. Given a graph � = (+, �) and an even cardinality subset (⊆ + of

vertices, the odd-(-cut problem is to find a cut �(*) in � of minimum capacity

such that |* ∩ (| is odd. Derive a poly-time algorithm via the Gomory-Hu tree

for this problem. Note that we considered the case when (= + .

8.2 Edge Covers and Matchings

Given � = (+, �) an edge cover is the subset �′ ⊆ � such that each node is

covered by some edge in �′. This is the counterpart to vertex cover. Edge covers

are closely related to matchings and hence optimization problems related to

them are tractable, unlike the vertex cover problem whose minimization version

is NP-Hard. Note that the Edge Cover problem can be viewed as a special case

of the Set Cover problem where each set has size exactly two (the case with sets

of size two or one can be reduced to the case with size exactly two). The Set

Cover problem when each set has size exactly three is NP-Complete (we can

view this as Edge Cover in a rank 3 hypergraph).

Theorem 8.6 (Gallai). Let �(�) be the cardinality of a minimum edge cover in �. Then

�(�) + �(�) = |+ |

where �(�) is the cardinality of a maximum matching in �.

Proof. Take any matching " in �. Then " covers 2|" | nodes, the end points

of ". There are at most |+ | − 2|" | uncovered nodes. For each such uncovered

node pick an arbitrary edge to cover it. This gives an edge cover of size

≤ |+ | − 2|" | + |" | ≤ |+ | − |" |. Hence �(�) ≤ |+ | − �(�).
We now show that �(�) + �(�) ≥ |+ |. Let �′ be any inclusion-wise minimal

edge cover and let " be an inclusion-wise maximal matching in �′. If E is not
incident to an edge of" then since it is covered by �′ there is an edge 4E ∈ �′ \"
that covers E; since" is maximal the other end point of 4E is covered by". This

CHAPTER 8. PERFECT MATCHING AND MATCHING POLYTOPES 104

implies that 2|" | + |�′ \ " | ≥ |+ |, that is 2|" | + |�′ | − |" | ≥ |+ | and hence

|" | + |�′ | ≥ |+ |. If �′ is a minimum edge cover then |�′ | = �(�) and |" | ≤ �(�),
therefore, �(�) + �(�) ≥ |+ |. �

The above proof gives an efficient algorithm to compute �(�) and also a

minimum cardinality edge cover via an algorithm for maximum cardinality

matching.

Weighted case: Consider the minimum weight edge cover problem. Let F(4)
denote the weight of edge 4. Note that weights can be negative. We can

use minimum weight perfect matching to solve this problem via a reduction.

Consider the graph �̃ that we saw earlier when reducing maximum weight

matching to maximum weight perfect matching. �̃ consists of two copies of �,

namely � = (+, �) and �′ = (+′, �′) and we add a perfect matching between +

and +′. We will use the same graph but with different weights. For each edge

4 = DE of � we set its weight to be same as F(4) in the original graph �; similarly

if 4′ is a copy of 4 then its weight is also the same as that of 4. Each edge EE′ has
its weight set 2�(E) where �(E) is the weight of the least weight edge incident to

E in � (note that if any E is a isolated vertex in � then there is no feasible edge

cover in �). Computing an minimum weight edge cover in � corresponds to

computing a minimum weight perfect matching in �̃.

Exercise 8.2. Complete the details of the preceding reduction and show that

this leads to a polynomial-time algorithm for computing the minimum weight

edge cover in a graph.

Polytope: The following set of inequalities determine the edge cover polytope

(the convex hull of the characterstic vectors of edge covers in �).

G (�(+)) ≥ 1 ∀E ∈ +
G (�[*] ∪ �(*)) ≥ |* |+1

2
* ⊆ + ; |* |>33

0 ≤ G(4) ≤ 1; 4 ∈ �

Exercise 8.3. Prove that the polytope above is the edge cover polytope and obtain

a polynomial time separation oracle for it.

Chapter 9

Edmonds-Gallai Decomposition
and Factor-Critical Graphs

This material is based on notes of Michel Goemans and also borrows from [57]

(Chapter 24).

Recall the Tutte-Berge formula for the size of a maximum matching in a

graph �.

Theorem 9.1 (Tutte-Berge). Given a graph �, the size of a maximum cardinality

matching in �, denoted by �(�), is given by:

�(�) = min

*⊆+

1

2

(|+ | + |* | − >(� −*))

where >(�−*) is the number of connected components in�[+ *]with odd cardinality.

We call a set* that achieves the minimum on the right hand side of the Tutte-

Berge formula, a Tutte-Berge witness set. Such a set* gives some information

on the set of maximum matchings in �. In particular we have the following.

• All nodes in* are covered in every maximum matching of �.

• If is the vertex set of a component of � − * , then every maximum

matching in � covers at least b /2c nodes in . In particular, every node

in an even component is covered by every maximum matching.

A graph can have different Tutte-Berge witness sets as the example in Fig ??
shows. The witness set * = {E} is more useful than * = ∅ since it gives more

information on which of the vertices are in every maximum matching.

A natural question is whether each graph has a canonical Tutte-Berge witness

set that gives us as much information as possible. The Edmonds-Gallai decom-

position shows that there is such a canonical witness set. Before we describe the

105

CHAPTER 9. EDMONDS-GALLAI DECOMPOSITION 106

v

Figure 9.1: Graph � above has 13 nodes, and �(�) = 6. * = ∅ and* = {E} are
both Tutte-Berge witness sets.

theorem, we digress to describe some other settings with canonical witness sets.

The reader can skip the next paragraph.

Let � = (+, �) be a directed graph and B, C ∈ + . It is easy to see that B

has no directed path to C iff there is a set - ⊆ + such that B ∈ -, C ∉ - and

�+(-) = ∅, that is no arcs leave -. Among all such sets -, the set -∗ defined
as the set of all nodes reachable from B, is a canonical set. It is a simultaneous

witness for all nodes that are not reachable from B. Moreover, most algorithms

for checking reachability of C from B would output -∗. Similarly, consider

the B-C maximum flow problem in a capacitated directed graph �. By the

maxflow-mincut theorem, the maximum flow value � is equal to the capacity

of a minimum capacity cut �(-) that separates B from C. Again, there could be

multiple minimum cuts. One can show that if �(-) and �(.) are B-C minimum

cuts (here - and . contain B and do not contain C) then �(- ∩ .) and �(- ∪ .)
are also minimum cuts (follows from submodularity of the cut function). From

this, it follows that there exists a unique minimal minimum cut �(-∗) and a

unique maximal minimum cut �(.∗). We note that -∗ is precisely the set of

vertices reachable from B in the residual graph of any maximum flow; similarly

+ \.∗ is the set of nodes that can reach C in the residual graph of any maximum

flow.

9.0.1 Factor-Critical Graphs

Suppose � has a perfect matching. Then every vertex in every matching and

there is no information in a Tutte-Berge witness set and we may as well take

* = ∅. It is therefore interesting to examine graphs that do not contain a perfect

CHAPTER 9. EDMONDS-GALLAI DECOMPOSITION 107

matching. In graph theory it is common to consider criticality with respect to

having a property.

Definition 9.2. A graph � = (+, �) is factor-critical1 if � has no perfect matching

but for each E ∈ + , � − E has a perfect matching.

Factor-critical graphs are connected and have an odd number of vertices.

Two simple examples are (i) an odd cycle and (ii) a complete graph on an odd

number of vertices.

Theorem 9.3. A graph � is factor-critical if and only if for each node E there is a

maximum matching that misses E.

Proof. If � is factor-critical then � − E has a perfect matching and hence a

maximum matching in �. We saw the converse direction in the proof of the

Tutte-Berge formula — it was shown that if each node E is missed by some

maximum matching then � has a matching of size (|+ | − 1)/2. �

If * is a non-empty Tutte-Berge witness set for a graph �, then it follows

that there are nodes in � that are covered in every maximum matching. If

� is factor-critical then * = ∅ is the unique Tutte-Berge witness set for � for

otherwise there would be a node that is in every maximum matching. In fact

the converse is also true, but is not obvious. It is an easy consequence of the

Edmonds-Gallai decomposition to be seen shortly. We give a useful fact about

factor-critical graphs.

Proposition 9.0.1. Let � be an odd cycle in �. If the graph �/�, obtained by shrinking
� into a single vertex, is factor-critical then � is factor-critical.

Proof. Proof sketch: Let 2 denote the vertex in �/� in place of the shrunken

cycle �. Let E be an arbitrary node in +(�). We need to show that � − E has a
perfect matching.

If E ∉ � then �/� − E has a perfect matching " that matches 2, say via edge

2D. When we unshrink 2 into �, let F be the vertex in � that corresponds to the

edge 2D. We can extend " a perfect matching in � − E by adding edges in the

even length path � − F to cover all the nodes in � − F.
If E ∈ �, consider a perfect matching" in �/� − 2. It is again easy to extend

" to a perfect matching in � − E by considering � − E. �

We will see later a structural characterization of factor-critical graphs via ear

decompositions.

1In graph theory a :-factor of a graph � is a subgraph in which each vertex has degree exactly :.

In particular 1-factor is a perfect matching. This is the reason for the terminology of factor-critical.

CHAPTER 9. EDMONDS-GALLAI DECOMPOSITION 108

9.1 Edmonds-Gallai Decomposition

Theorem 9.4 (Edmonds-Gallai). Given a graph � = (+, �), let

�(�) := {E ∈ + | there exists a maximum matching that misses E}
�(�) := {E ∈ + | E is a neighbor of �(�) but E ∉ �(�)}
�(�) := + \ (�(�) ∪ �(�)).

Then, the following hold.

1. The set* = �(�) is a Tutte-Berge witness set for �.

2. �(�) is the union of the even components of � − �(�).

3. �(�) is the union of the odd components of � − �(�).

4. Each odd component in � − �(�) is factor-critical.

A(G)

D(G)

C(G)

Figure 9.2: Edmonds-Gallai Decomposition

Corollary 9.5. A graph� is factor-critical if and only if* = ∅ is the unique Tutte-Berge
witness set for �.

We prove the theorem in the rest of this section. We make use of the

properties, and proof of correctness, of Edmonds algorithm for maximum

cardinality matching that we discussed previously.

Let " be any maximum matching in � and let - be the set of "-exposed

nodes. We define three sets of nodes with respect to " and -.

Even(�, ") := {E ∈ + | there is an even length "-alternating --E path}
Odd(�, ") := {E ∈ + | there is an "-alternating --E path} \ Even

Free(�, ") := {E ∈ + | there is no "-alternating --E path}

CHAPTER 9. EDMONDS-GALLAI DECOMPOSITION 109

Note that E ∈ Odd(�, ") implies that there is an odd length "-alternating --E

path but no even length path. A node E ∈ Even(�, ")may have both an even

and odd length path; also - ⊆ Even(�, ").

Lemma 9.1. For any maximum matching " in � we have (i) Even(�, ") = �(�)
(ii) Odd(�, ") = �(�) and (iii) Free(�, ") = �(�).

Proof. We prove the claims in order. If E ∈ Even(�, "), let % be an even

length "-alternating path from some G ∈ - to E. Then, "Δ�(%) is another
maximum matching in which E is exposed; hence, E ∈ �(�). Conversely, if

E ∈ �(�) there is a maximummatching"E that misses E. Then"Δ"E gives an

even length --E "-alternating path implying that E ∈ Even(�, "). Therefore,
Even(�, ") = �(�).

If E ∈ Odd(�, "), let % be an --E "-alternating path. Since E ∉ Even(�, "),
% is of odd length and its last edge is DE where D ∈ Even(�, "). Therefore E is a

neighbor of Even(�, ") = �(�) and E ∉ �(�) and hence E ∈ �(�). Conversely,
suppose E ∈ �(�) and let DE ∈ � where D ∈ �(�) = Even(�, "). There is an

"-alternating --D path % of even length which ends in an edge FD ∈ ". If

E ∈ +(%) then clearly there is an --E alternating path. Otherwise, % + DE is an

--E alternating path (FD ∈ ", hence DE ∉ " unless F = E but then E ∈ +(%)).
Therefore E ∈ Odd(�, ") since E ∉ �(�) = Even(�, ").

Finally, �(�) = + \ (�(�) ∪ �(�)) and hence Free(�, ") = �(�). �

Lemma 9.2. Let " be any maximum matching in �, then each node in �(�) ∪ �(�)
is covered by " and moreover every node E ∈ �(�) is matched to some node in �(�).

Proof. From Lemma 9.1, - ⊆ �(�) where - is the set of "-exposed nodes.

Hence each node in �(�) ∪ �(�) is covered by ".

Suppose D ∈ �(�) and DE ∈ ". Since D ∈ Odd(�, "), there is an odd length

--E alternating path % which ends in an edge FD ∉ ". If E is not in % then

% + DE is an "-alternating --E path and hence E ∈ Even(�, ") = �(�). If E is

in %, let & be the prefix of % till E, then & + ED is an even length "-alternating

--D path which contradicts the fact that D ∈ �(�). �

Corollary 9.6. Each component in �[�(�)] is even and |" ∩ �(�)| = |�(�)|/2.

Proof. All nodes in �(�) are covered by ". Since �(�) separates �(�) from
�(�), and �(�) is matched only to �(�) (by the above lemma), nodes in �(�)
are matched internally and hence the corollary follows. �

The main technical lemma is the following.

Lemma 9.3. Let " be a maximum matching in � and - be the "-exposed nodes.

Each component � of �[�(�)] satisfies the following properties:

CHAPTER 9. EDMONDS-GALLAI DECOMPOSITION 110

1. Either |+(�) ∩ - | = 1 and |" ∩ ��(+(�))| = 0, or |" ∩ ��(+(�))| = 1.

2. � is factor-critical.

Assuming the above lemma, we finish the proof of the theorem. Since

each component of �[�(�)] is factor-critical, it is necessarily odd. Hence,

from Corollary 9.6 and Lemma 9.3, we have that �[�(�)] contains all the even
components of � − �(�) and �[�(�)] contains all the odd components of

� − �(�). We only need to show that �(�) is a Tutte-Berge witness. To see

this, consider any maximum matching " and the "-exposed nodes -. We

need to show |" | = 1

2
(|+ | + |�(�)| − >(� − �(�))). Since |" | = 1

2
(|+ | − |- |),

this is equivalent to showing that |- | + |�(�)| = >(� − �(�)). From Lemma 9.2,

" matches each node in �(�) to a node in �(�). From Lemma 9.3, each odd

component in �[�(�)] either has a node in - and no "-edge to �(�) or has
exactly one"-edge to �(�). Hence |- | + |�(�)| = >(� −�(�)) since all the odd
components in � − �(�) are in �[�(�)].

We need the following proposition before the proof of Lemma 9.3.

Proposition 9.1.1. Let " be a maximum matching in �. If there is an edge DE ∈ �
such that D, E ∈ Even(�, "), then there is an "-flower in �.

Proof sketch. Let % and & be even length"-alternating paths from - to D and E,

respectively. If DE ∉ " then % + DE +& is an --- alternating walk of odd length;

since " is maximum, this walk has an "-flower. If DE ∈ ", then DE is the last

edge of both % and & and in this case % − DE + & is again an --- alternating

walk of odd length. �

Proof of Lemma 9.3. We proceed by induction on |+ |. Let " be a maximum

matching in � and - be the "-exposed nodes. First, suppose �(�) is a stable
set (independent set). In this case, each component in �[�(�)] is a singleton

node and the lemma is trivially true.

If �[�(�)] is not a stable set, by Proposition 9.1.1, there is an "-flower in �.

Let � the"-blossomwith the node 1 as the base of the stem. Recall that 1 has an

even length"-alternating path from some node G ∈ -; by going around the odd

cycle according to required parity, it can be seen that � ⊆ Even(�, ") = �(�).
Let �′ = �/� be the graph obtained by shrinking �. We identify the shrunken

node with 1. Recall from the proof of correctness of Edmonds algorithm that

"′ = "/� is a maximum matching in �′. Moreover, the set of "′-exposed
nodes in �′ is also - (note that we identified the shrunken node with 1, the

base of the stem, which belong to - if the stem consists only of 1). We claim the

following with an informal proof.

Claim 9.1.1. �(�′) = (�(�) \ �) ∪ {1}, and �(�′) = �(�) and �(�′) = �(�).

CHAPTER 9. EDMONDS-GALLAI DECOMPOSITION 111

Proof. We observed that - is the set of exposed nodes for both " and "′. We

claim that E ∈ Even(�′, "′) implies E ∈ Even(�, "). Let % be an even length

--E "′-alternating path in �′. If it does not contain 1 then it is also an --E even

length "-alternating path in �. If % contains 1, then one can obtain an even

length --E "-alternating path & in � by expanding 1 into � and using the odd

cycle � according to the desired parity. Conversely, let E ∈ Even(�, ") \ � and

let % be an --E "-alternating path of even length in �. One can obtain an even

length --E "′-alternating path & in �′ as follows. If % does not intersect � then

& = % suffices. Otherwise, we consider the first and last nodes of % ∩ � and

shortcut % between them using the necessary parity by using the odd cycle �

and the matching edges in there. Therefore, �(�′) = (�(�) \ �) ∪ {1} and the

other claims follow. �

By induction, the components of �′ − �(�′) satisfy the desired properties.

Except for the component �1 that contains 1, every other such component is

also a component in � − �(�). Therefore, it is not hard to see that it is sufficient

to verify the statement for the component � in � − �(�) that contains � which

corresponds to �1 in �
′ − �(�′) that contains 1. We note that - is also the set of

"′-exposed nodes in �′ and since ��(�) ∩" = ��′(�1) ∩"′ (� is internally

matched by " except possibly for 1), the first desired property is easily verified.

It remains to verify that � is factor-critical. By induction, �1 is factor-critical.

Since �1 is obtained by shrinking an odd cycle in �, Proposition 9.0.1 show that

� is factor-critical. �

Algorithmic aspect: Given �, its Edmonds-Gallai decomposition can be effi-

ciently computed by noting that one only needs to determine �(�). A node E is

in �(�) iff �(�) = �(� − E) and hence one can use the maximum matching algo-

rithm to determine this. However, as the above proof shows, one can compute

�(�) in the same time it takes to find �(�) via the algorithm of Edmonds, which

has an $(=3) implementation. The proof also shows that given a maximum

matching ", �(�) can be obtained in $(=2) time.

9.2 Ear Decompositions and Factor-Critical Graphs

A graph � is obtained by adding an ear to � if � is obtained by adding to � a

path % that connects two not-necessarily distinct nodes D, E in �. The path % is

called an ear. % is a proper ear if D, E are distinct. An ear is an odd (even) ear if

the length of % is odd (even). A sequence of graph �0 , �1 , . . . , �: = � is an ear

decomposition for � starting with �0 if for each 1 ≤ 8 ≤ :, �8 is obtained from

�8−1 by adding an ear. One defines, similarly, proper ear decomposition and

odd ear decomposition by restricting the ears to be proper and odd respectively.

CHAPTER 9. EDMONDS-GALLAI DECOMPOSITION 112

proper odd ear

proper even ear

not a proper ear

Figure 9.3: Variety of ears.

The following theorems are well-known and standard in graph theory.

Theorem 9.7 (Robbins, 1939). A graph � is 2-edge-connected if and only if it has an

ear-decomposition starting with a cycle.

Theorem 9.8 (Whitney, 1932). A graph � is 2-node-connected if and only if it has a

proper ear-decomposition starting with a cycle.

Factor-critical graphs have the following characterization.

Theorem 9.9 (Lovász, 1972). A graph � is factor-critical if and only if it has an odd

ear decomposition starting with a single vertex.

Proof. If � has an odd ear decomposition it is factor-critical by inductively using

Proposition 9.0.1 and noting that an odd cycle is factor-critical for the base case.

We now prove the converse. � is necessarily connected. Let E be an arbitrary

vertex and let "E be a perfect matching in � − E. We iteratively build the ear

decomposition starting with the empty graph E. At each step we maintain a

(edge-induced) subgraph � of � such that � has an odd ear decomposition and

no edge DE ∈ "E crosses� (that is, |+(�)∩ {D, E}| ≠ 1). The process stops when

�(�) = �(�). Suppose �(�) ≠ �(�), then since � is connected, there is some

edge 01 ∈ �(�) such that 0 ∈ +(�) and 1 ≠ +(�). By the invariant, 01 ∉ "E .

Let "1 be a perfect matching in � that misses 1. Then "1Δ"E contains an

even length "E-alternating path & := D0 = 1, D1 , . . . , DC = E starting at 1 and

ending at E. Let 9 be the smallest index such that D9 ∈ +(�) (9 exists since

DC = E belongs to +(�)); that is D9 is the first vertex in � that the path & hits

starting from 1. Then, by the invariant, D9−1D9 ∉ "E and hence 9 is even. The

path 0, 1 = D0 , D1 , . . . , D9 is of odd length and is a valid ear to add to � while

maintaining the invariant. This enlarges � and hence we eventually reach �

and the process generates an odd ear decomposition. �

CHAPTER 9. EDMONDS-GALLAI DECOMPOSITION 113

One can extend the above proof to show that � is 2-node-connected and

factor-critical iff it has an proper odd ear decomposition starting from an odd

cycle.

From Proposition 9.0.1 and Theorem 9.9, one obtains the following.

Corollary 9.10. � is factor-critical iff there is an odd cycle � in � such that �/� is

factor-critical.

Chapter 10

Primal-Dual Algorithms for
Weighted Matching1

The primal-dual method is an important and standard technique in optimization.

It finds several applications in combinatorial optimization. In this chapter

we will consider primal-dual algorithms for weighted matching problems to

illustrate the technique.

10.1 Primal-Dual Method for Linear Programs

We briefly discuss the high-level approach of primal-dual for solving LPs. The

technique is easier to illustrate whe the primal LP is in the standard form

min 2)G | �G = 1, G ≥ 0}.

Then the dual is

max{H)1 | H)� ≥ 2)}.
The primal-dual algorithm is an iterative procedure that starts with a feasible

dual solution H0 and tries to find a feasible primal solution G0 such that G0 and

H0 satisfy the complementary slackness condition. If they do then we obtain

optimality for both. Failing to find an G0 satisfying complementary slackness

will yield a new dual solution H1 which is better than H0 in terms of the objective

function, that is, H)
1
1 > H)

0
1. Thus, the dual solution value improves until the

algorithm terminates.

Recall that a primal-dual pair of solutions G, H satisfy complementary slack-

ness if the following condition is true: G8 > 0 iff H)08 = 28 for all 8. Thus, given

1Notes for bipartite matching were scribed by Abner Guzmán-Rivera based on Nitish Korula’s

lecture. Notes for non-bipartite graphs were scribed by Rajhans Samdhani.

114

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 115

H0 we see if there is a solution to the system

G′ ≥ 0, �′G′ = 1

where G′ corresponds to those rows 8 where H)
0
08 = 28 which are the tight

constraints in the dual. Note that we are now solving another LP! However,

this LP is simpler in that it is only a feasiblity LP rather than an optimization

LP. Suppose we find a feasible solution G′
0
to this LP. Then by padding G′

0

with 0’s for the other rows will yield a feasible primal solution G0 that satisfies

complementary slackness with respect to H0. Thus the algorithm can terminate.

Suppose there is no solution to G′ ≥ 0, �′G′ = 1. Then, by Farkas lemma

there is I such that

I)1 > 0 and I)� ≤ 0.

Let H1 = H0 +
I where
 is the largest real number such that H)
1
� ≤ 2) . Note

that
 > 0. If
 = ∞ then the dual is unbounded and hence the primal is

infeasible. Otherwise we see that H)
1
1 > H)

0
1 and thus we obtain a better dual

solution and we iterate.

Combinatorial settings: In combinatorial settings, especially in exact algo-

rithms, the primal-dual algorithm converts aweighted problem to an unweighted

problem. In the above we see that the LP we need to solve a feasibility LP while

the original primal LP had an objective with cost/weight vector 2) . Further,

in combinatorial settings we wish to find an integer solution. Thus, we work

with an underyling integer polytope. The primal-dual iteration requires one to

typically understand a combinatorial min-max relation that characterizes integer

solutions. This is useful/necessary to maintain integrality of the primal (and

often dual solutions), to find a way to improve the dual (as guaranteed by Farkas

lemma), and to bound the total number of iterations and the running time.

10.2 Weighted Matching Problems

Definition 10.1 (Maximum Weight Matching). Given a graph � = (+, �) and
weight function F : �→ ℝ find a matching of maximum weight where the weight of

matching " is given by F(") = ∑
4∈" F(4).

Note that in a maximum weight matching we can assume that F(4) > 0 for

all 4, otherwise we can ignore 4.

Definition 10.2 (MinimumWeight/Cost Perfect Matching). Given a graph � =

(+, �) and weight function F : �→ ℝ ∪ {∞}, find a perfect matching " minimizing

F(") = ∑
4∈" F(4).

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 116

We could also assume that no edge weights are negative as we may add a

large enough constant � to all weights. This is a useful assumption to make in

some situations.

Remark 10.1. Although the two problems are poly-time equivalent in the exact

algorithms settings, they behave differently in the approximate setting. Approx-

imating maximum-weight matching is feasible in near-linear time [20] while

the min-weight perfect matching requires one to solve the decision problem of

checking whether there is a perfect matching which seems harder, especially in

non-bipartite graphs.

Exercise 10.1. Describe a reduction from max-weight matching to min-weight

perfect matching. Describe a reduction in the converse direction. Show that the

reductions can be done so that if the original graph is bipartite then the new

graph is also bipartite.

Reduction to Min-Cost Flow in Bipartite Graphs: In bipartite graphs the

min-weight perfect matching problem can be reduced to min-cost flow problem.

This is easy to see and follows the same type of reduction we use to reduce

maximum matching to maximum flow. We have seen strongly polynomial-time

algorithms for min-cost flow and in fact the successive shortest path algorithm

for min-cost flow easily yields an $(=(= + < log =))-time algorithm for min-cost

perfect matching in bipartite graphs. Despite this we describe a primal-dual

algorithm for bipartite graphs without explicitly referring to this reduction since

it helps set up the ideas for non-bipartite case.

We will focus on the min-weight perfect matching problem since its formula-

tion is more convenient for the primal-dual algorithm.

10.3 MinimumWeightPerfectMatching inBipartiteGraphs

We consider the easier case of bipartite graphs. We will assume � = (� ∪ �, �)
where |�| = |�|. The following is an ILP formulation of the minimum weight

perfect matching problem:

min

∑
(0,1)

F(0, 1)G(0, 1) subject to:∑
1

G(0, 1) = 1 ∀0 ∈ �∑
0

G(0, 1) = 1 ∀1 ∈ �

G(0, 1) ∈ {0, 1} ∀0 ∈ �, 1 ∈ �

(10.1)

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 117

Definition 10.3 (Primal). This is the LP relaxation of the above ILP:

min

∑
(0,1)

F(0, 1)G(0, 1) subject to:∑
1

G(0, 1) = 1 ∀0 ∈ �∑
0

G(0, 1) = 1 ∀1 ∈ �

G(0, 1) ≥ 0 ∀0 ∈ �, 1 ∈ �

(10.2)

Recall that we saw, in an earlier lecture, a proof of the following theorem by

noting that the constraint matrix of the polytope is totally unimodular.

Theorem 10.4. Any extreme point of the polytope defined by the constraints in (10.2)

is integral.

Weobtain a different proof of Theorem10.4 via algorithms to find aminimum-

weight perfect matching. Our algorithms are primal-dual; we will construct a

feasible solution to the dual of LP (10.2) with value equal to the weight of the

perfect matching output by the algorithm. By weak duality, this implies that

the matching is optimal. More precisely, our algorithms will always maintain a

feasible dual solution H, and will attempt to find a primal feasible solution (a

perfect matching ") that satisfies complementary slackness.

(Dual) The following LP is the dual for (10.2):

<0G8<8I4
∑
(0∈�

H(0) +
∑
1∈�

H(1) subject to:

H(0) + H(1) ≤ F(0, 1) ∀(0, 1) ∈ � (10.3)

Given a dual-feasible solution H, we say that an edge 4 = (0, 1) is tight if

H(0) + H(1) = F(0, 1). Let Ĥ be dual-feasible, and let " be a perfect matching in

�(+, �): Then,

F(") =
∑
(0,1)∈"

F(0, 1) ≥
∑
(0,1)∈"

Ĥ(0) + Ĥ(1)

=

∑
0∈�

Ĥ(0) · (�(0) ∩") +
∑
1∈�

Ĥ(1) · (�(1) ∩")

=

∑
0∈�

Ĥ(0) +
∑
1∈�

Ĥ(1)

where the first inequality follows from the feasibility of Ĥ, and the final

equality from the fact that " is a perfect matching. That is, any feasible primal

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 118

solution (a perfect matching ") has weight at least as large as the value of any

feasible dual solution. (One could conclude this immediately from the principle

of weak duality.) Note, though, that if " only uses edges which are tight under

Ĥ, we have equality holding throughout, and so by weak duality, " must be

optimal. That is, given any dual feasible solution Ĥ, if we can find a perfect

matching " only using tight edges, " must be optimal. (Recall that this is the

principle of complementary slackness.)

Our primal-dual algorithms apply these observations as follows: We begin

with an arbitrary feasible dual solution H, and find a maximum-cardinality

matching " that uses only tight edges. If " is perfect, we are done; if not,

we update our dual solution. This process continues until we find an optimal

solution.

Wefirst give a simple algorithm (Algorithm1 in the followingpage) exploiting

these ideas to prove Theorem 10.4. The existence of set (in line 6 is a consequence

Algorithm 3MinWeightPerfectMatching(� = (+, �), F)

1: H ← 0

2: �′← set of tight edges

3: " ←max cardinality matching for graph �′ = (+, �′)
4: while " is not a perfect matching do
5: let �′ = (+, �′)
6: let (⊆ � be such that |(| > |#(()|
7: let & = min0∈(,1∈�\#(()

{
F(0, 1) − H(0) − H(1)

}
8: ∀0 ∈ (H(0) = H(0) + &
9: ∀1 ∈ #(() H(1) = H(1) − &
10: update �′, "
11: end while
12: return "

of Hall’s theorem. Observe that the value of H increases at the end of every

iteration. Also, the value of H remains feasible as tight edges remain tight and it

is easy to verify that by the choice of & the constraints for other edges are not
violated.

Claim 10.3.1. Algorithm 3 terminates if F is rational.

Proof. Suppose all weights in F are integral. Then at every iteration & is integral
and furthermore & ≥ 1. It follows that the number 8 of iterations is bounded by

8 ≤ maxF(0, 1) · |� |. If weights are rational we may scale them appropriately so

that all of them become integers. �

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 119

Proof. Proof of Theorem 10.4 The incidence vector of a perfect matching com-

puted by Algorithm 3 is an extreme point of the polytope in (10.2). This vector is

integral. Furthermore, by carefully choosing the cost function one can make any

extreme point be the unique optimum solution to the primal linear program. �

Note that Algorithm 3 does not necessarily terminate in strongly polynomial

time; in the rest of this section, we describe a more efficient algorithm for the

minimum-weight bipartite matching problem.

As before, Algorithm 4 always maintains a feasible dual H and attempts to

find a close to primal feasible solution (matching") that satisfies complementary

slackness. One key difference from Algorithm 3 is that we now carefully use

the maximum cardinality matching " as a guide in constructing the updated

dual solution H; this allows us to argue that we can augment " efficiently. (In

contrast, Algorithm 3 effectively “starts over” with a new matching " in each

iteration.)

Algorithm 4MinWeightPerfectMatchingPD(� = (+, �), F)

1: ∀1 ∈ � H(1) ← 0

2: ∀0 ∈ � H(0) ← min1 {F(0, 1)}
3: �′← set of tight edges

4: " ←max cardinality matching for graph �′ = (+, �′)
5: while " is not a perfect matching do
6: let �38A ← {4 directed from � to � | 4 ∈ �′, 4 ∉ "}⋃
7: {4 directed from � to � | 4 ∈ �′, 4 ∈ "}
8: let � = (+, �38A) ⊲ � is a directed graph

9: let !← {E | E is reachable in � from an unmatched vertex in �}
10: let & = min0∈�∩!,1∈�\!

{
F(0, 1) − H(0) − H(1)

}
11: ∀0 ∈ � ∩ ! H(0) = H(0) + &
12: ∀1 ∈ � ∩ ! H(1) = H(1) − &
13: update �′, "
14: end while
15: return "

Claim 10.3.2. At every iteration, � = (� \ !) ∪ (� ∩ !) is a vertex cover for graph

�′ = (+, �′). Moreover, |� | = |" |.

Proof. Assume � is not a vertex cover. Then there must be an edge 4 = (0, 1) ∈ �′
with 0 ∈ �∩ ! and 1 ∈ � \ !. If 4 is directed from 0 to 1, then since 0 is reachable

from an unmatched vertex in �, so is 1; this contradicts the fact that 1 ∈ � \ !.
Therefore, 4 must be directed from 1 to 0, and hence 4 is in the matching ".

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 120

As 0 itself is matched (using edge 4) and 0 ∈ !, it must be reachable from an

unmatched vertex of �. But the only incoming edge to 0 is (1, 0) (this is the
unique edge incident to 0 in the matching"), and hence 1 is reachable from this

unmatched vertex of �; again, this contradicts the fact that 1 ∉ !. To show the

second part of the proof we show that |� | ≤ |" |, since the reverse inequality is

true for anymatching and any vertex cover. The proof follows from the following

observations:

1. No vertex in � \ ! is unmatched by the definition of !.

2. No vertex in � ∩ ! is unmatched since this would imply the existence of

an augmenting path (contradicting the maximality of ").

3. There is no edge 4 = (0, 1) ∈ " such that 0 ∈ �\! and 1 ∈ �∩!. Otherwise,

as this edge would be directed from 1 to 0, 0 would be in !.

These remarks imply that every vertex in � is matched and moreover the

corresponding edges of the matching are distinct. Hence |� | ≤ |" |, and so � is

an optimum vertex cover for �′(+, �′). �

At every iteration where the maximum cardinality matching" output is not

perfect, the algorithm will use information from the optimum vertex cover �

to update the dual solution and improve its value. By the proof of claim 10.3.2

there is no tight edge between 0 ∈ � ∩ ! and 1 ∈ � \ !, which implies & > 0; it is

easy to check that the updated dual solution is feasible. Moreover, the difference

between the new dual solution and the old dual solution is:

& · (|� ∩ !| − |� ∩ !|) = & · (|� ∩ !| + |� \ !| − |� \ !| − |� ∩ !|) = & · (|+ |
2

− |� |),

but |� | = |" | < |+ |
2
, since " is not perfect, which implies the value of the dual

solution strictly increases. When the algorithm terminates, we obtain a perfect

matching" and a dual feasible solution which satisfy complementary slackness.

Claim 10.3.3. Algorithm (4) terminates in $(|+ |2) iterations.

Proof. We first observe that after any iteration, all edges in " are still tight: The

only edges (0, 1) that are tight at the beginning of an iteration but not at the

end are those with 0 ∈ � ∩ ! and 1 ∈ � \ !; from observation 3 in the proof of

Claim 10.3.2, there are no edges in " of this form. Thus, after any iteration, the

size of a maximum cardinality matching " in �′(+, �′) cannot decrease.
Say that an iteration is successful if the size of amaximumcardinalitymatching

using the tight edges�′ increases. Clearly, after atmost |+ |/2 successful iterations,

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 121

we have a perfect matching, and the algorithm terminates. We show that there

are at most |�| = |+ |/2 consecutive unsuccessful iterations between any pair of

successful iterations. Hence, the total number of iterations is at most
|+ |
2
· |+ |

2
,

which is $(|+ |2).

To bound the number of consecutive unsuccessful iterations, we argue below

that after an unsuccessful iteration, |� ∩ !| increases. Assume for now that this

is true: After at most |�| unsuccessful iterations, we have � ∩ ! = �. Once this

occurs, every vertex of � (which must include at least one unmatched vertex) is

reachable from an unmatched vertex of �, and so we can augment " to find a

larger matching, which means that the current iteration is successful.

It remains only to prove that at every unsuccessful iteration, at least one

more vertex in �must become reachable from an exposed vertex in � (i.e. |�∩!|
increases). First note that no vertex of � or � becomes unreachable; the only

way this could happen is if for some path % from an unmatched vertex 0 ∈ �
to vertex E ∈ !, an edge 4 ∈ % that was previously tight is no longer tight. But

the only edges that are no longer tight are between � \ ! and � ∩ !, and by

definition, no such path % visits a vertex in � \ !. To see that at least one new

vertex of � becomes reachable, note that some edge 4 = (0, 1)with 0 ∈ �∩ ! and

1 ∈ � \ ! now has become tight by our choice of &. As the edge (0, 1) is directed
from 0 to 1, 1 is now reachable. �

It is not hard to see that each iteration takes only $(|+ |2) time, and hence the

overall running time of the algorithm is $(|+ |4). A more careful analysis would

yield a tighter running time of $(|+ |3).

10.4 Min Cost Perfect Matching in Non-Bipartite Graphs

We describe a strongly polynomial time algorithm for the minimum cost perfect

matching problem in a general graph. Using a simple reduction discussed

earlier, one can also obtain an algorithm for the maximum weight matching

problem. We also note that when discussing perfect matching, without loss of

generality, we can assume that all weights/costs are non-negative (why?).

The algorithm we describe is essentially due to Edmonds. The algorithm is

primal-dual based on the following LP formulation and its dual.

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 122

Primal:

min

∑
4∈�

F(4)G(4) subject to:

G(�(E)) = 1 ∀E ∈ +
G(�(*)) ≥ 1 ∀* ⊂ +, |* | ≥ 3, |* |>33

G(4) ≥ 0 ∀4 ∈ �

(10.4)

Dual:

max

∑
⊆+,| |≥3,|* |>33

�(*) subject to:∑
⊆+,| |≥3,|* |>33,�(*)34

�(*) = F(4) ∀4 ∈ �

�(*) ≥ 0 ∀* ⊆ +, |* | ≥ 3, |* |>33

We note that non-negativity constraints on the dual variables are only for odd

sets* that are not singletons (because the equations for the singleton sets are

equalities). In certain descriptions of the algorithm the dual variables for the

singleton sets are distinguished from those for odd sets of size ≥ 3, however we

do not do that here.

Like other primal dual algorithms, we maintain a feasible dual solution �
and an integral infeasible primal solution G and iteratively reduce the infeasiblity

of G. Here G corresponds to a matching and we wish to drive it towards a

perfect matching. In particular, we will also maintain the primal complementary

slackness, that is,

G(4) > 0⇒
∑

* :4∈�(*)
�(*) = F(4)

(a primal variable being positive implies the corresponding dual constraint is

tight). Thus, at the end, if we have a perfect matching in the primal, it is feasible

and certifies its optimality.

The main question is how to update the dual and the primal. Also, we

observe that the dual has an exponential number of variables and hence any

polynomial time algorithm can only maintain an implicit representation for a

subset of the variables.

10.4.1 Notation

Definition 10.5. A family of sets S = {(1 , (2 , . . . , (?} is laminar if no two sets of

S properly cross. In other words for any 8 , 9 exactly one of the following holds: (i)

(8 ∩ (9 = ∅ (ii) (8 ⊂ (9 (iii) (9 ⊂ (8 .

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 123

Remark 10.2. Laminar families are often represented by a rooted forest where

there is a node for each set in the family and node D a child of node E if the set

(D corresponding to D is a maximal set contained in (E . A laminar family over a

ground set of size = can have at most 2= − 1 sets.

The algorithm maintains a laminar family of odd subsets of + denoted by

Ω. Ω always includes the singletons {E} , E ∈ + . It maintains the invariant that

�(*) = 0 if * ∉ Ω, hence Ω is the implicit representation of the “interesting”

dual variables. Note that |Ω| ≤ 2|+ |.
Given �,Ω and � : Ω→ ℝwhere � is dual feasible, we say an edge is �-tight

(or tight when � is implicit) if

∑
∈Ω:4∈�() �(*) = F(4).

Let �� be the set of tight edges (with Ω, � implicit) and �� be the graph

induced by them. We obtain a new graph �′ in which we contract each maximal

set in Ω into a (pseudo) vertex. For a node E ∈ �′, let (E ∈ Ω be the set of nodes

of � contracted to E.

For each* ∈ Ω, |* | ≥ 3, consider the graph �� [*] and let �* be the graph

obtained from �� [*] by contracting each maximal proper subset (⊂ * where

(∈ Ω. The algorithm also maintains the invariant that �* has a Hamiltonian

cycle �* . The laminar family corresponds to a series of blossom shrinkings that

arise in the algorithm to find a maximum cardinality matching that we saw

previously.

10.4.2 Recap of Edmonds-Gallai Decomposition

We restate the Edmonds-Gallai decomposition theorem and make some obser-

vations which help us in proposing and analysing an algorithm for min-cost

perfect matching. We also use the notation from this section in subsequent

sections.

Theorem 10.6 (Edmonds-Gallai). Given a graph � = (+, �), let

�(�) := {E ∈ + | there exists a maximum matching that misses E}
�(�) := {E ∈ + | E is a neighbor of �(�) but E ∉ �(�)}
�(�) := + \ (�(�) ∪ �(�)).

Then, the following hold.

1. The set* = �(�) is a Tutte-Berge witness set for �.

2. �(�) is the union of the even components of � − �(�).

3. �(�) is the union of the odd components of � − �(�).

4. Each component in � − �(�) is factor-critical.

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 124

Let " be a matching in � and - be the set of "-exposed nodes. We can

partition + into Even(�, "), Odd(�, ") and Free(�, ") where Even(�, ")
is the set of all nodes reachable from - with an even length "-alternating

path, Odd(�, ") are those that are reachable from - with only an odd length

"-alternating path, and Free(�, ") are the rest of the nodes. If there is an edge

DE ∈ � where D, E ∈ Even(�, ") then there is an odd length --- "-alternating

walk which implies that there is an "-flower (and hence also a blossom) in �.

Moreover, shrinking a blossom results in a new graph and new matching where

the set of "-exposed nodes and the parity of the remaining nodes does not

change — recall that we identify the shrunken node for a blossom � with the

base 1.

Finally, as we saw in the proof of the Edmonds-Gallai decomposition, if" is

a maximum cardinality matching, then Even(�, ") = �(�) and Odd(�, ") =
�(�) and Free(�, ") = �(�). It also follows that if " is maximum then either

there is an "-blossom or �(�) consists of singleton nodes.

10.4.3 Algorithm

Following is the algorithm for min cost perfect matching using primal dual

method.

Initialize: Ω = {{E} | E ∈ +},�(*) = 0 ∀* with odd |* |, " = ∅, and �′ = ��.

while (" is not a perfect matching in �′) do

1. - ← "-exposed nodes in �′.

2. Find - − -, "−alternating walk % in �′.

3. If % is an "−augmenting path then do

" ← "Δ�(%)

continue.

4. If % has an "−blossom �, then do shrinking as:

* = ∪E∈�(E ,Ω← Ω ∪*,�(*) = 0, �′← �′/�, " ← "/�

continue.

5. Else% is empty⇒ " is amaximummatching in�′. Compute�(�′), �(�′),
and �(�′) as in Edmonds-Gallai decomposition. Let & be the largest value

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 125

such that �((E) = �((E) + &,∀E ∈ �(�′) and �((E) = �((E) − &,∀E ∈ �(�′)
maintains dual feasibility2 of � in �.

If & is unbounded then � has no perfect matching; STOP.
Else update as follows:

• Add newly tight edges to ��. Remove any edges in �� that become

non-tight.

• For each E ∈ �(�′)with |(E | ≥ 3 and �((E) = 0 deshrink as

– Remove (E from Ω

– Update �′

– Extend " by a perfect matching in �(E − {E}.

end while
Extend " in �′ to a perfect matching in �� and output it.

10.4.4 Example

Consider the execution of this algorithm on the following graph:

Figure 10.1: Original graph �

The execution is shown in figures 2 to 9. Red edges are the current edges in

the matching; black edges are tight.

2Dual feasibility requires that �(*) ≥ 0 for all odd |* | ≥ 3 and for all 4 ∈ �, ∑* :4∈�(*) �(*) ≤
F(4). Thus the choice of & is defined by some new edges becoming tight as we increase � values

for nodes in �(�′), or because for some E ∈ �(�′) with |(E | ≥ 3 we have �((E) reaches 0 as we

decrease � values for nodes in �(�′).

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 126

Figure 10.2: �′ after iteration 1.

Figure 10.3: �′ after iteration 2. Shrinking.

Figure 10.4: �′ after iteration 3. Edge tight.

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 127

Figure 10.5: �′ after iteration 4. Augment.

Figure 10.6: �′ after iteration 5. Edge tight.

Figure 10.7: �′ after iteration 6. Deshrink.

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 128

Figure 10.8: �′ after iteration 7. Edge tight. Some edges become slack and hence

disappear from ��.

Figure 10.9: �� after iteration 8. Augment. Maximum hence STOP.

10.4.5 Proof

Lemma 10.1. The algorithm maintains the following invariants over the iterations

• � is dual feasible

• Ω is laminar

• for each* ∈ Ω, �* has a hamiltonian cycle �* .

Proof sketch. We need to check that each iteration maintains the given properties.

We analyze all the considered cases and see that in each case, this property is

preserved.

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 129

If " is augmented then Ω and � don’t change.

If we shrink a blossom � in finding % then we add * = ∪D∈�(E to Ω. This

preserves laminarity since nodes in �′ correspond to the maximal sets in Ω.

Since we set �(*) = 0 no dual violation happens. Moreover, � is an odd cycle

and hence �* indeed contains a hamiltonian cycle for the new set* added toΩ.

For the final case we observe that we are not adding any sets to Ω and & is
chosen to ensure dual feasiblity. Deshrinking preserves laminarity. �

Claim 10.4.1. If" is a matching in �′ then there is a matching # in �� where number

of #-exposed nodes is same as "-exposed nodes.

Proof. We can recursively expand the nodes in �′ and extend " using the fact

that �* has a Hamiltonian cycle for each* ∈ Ω. �

Corollary 10.7. If " is a perfect matching in �′ then it can be extended to perfect

matching # in ��.

Claim 10.4.2. If the algorithm terminates with a perfect matching then it is an optimal

matching.

Proof. Let � be the feasible dual solution at the end of the algorithm. If " is a

perfect matching in �� then, {G(4) = 1 if 4 ∈ " and G(4) = 0 otherwise}, is a
feasible primal solution and G and � satisfy complementary slackness conditions

thus implying that both the solutions are optimal. �

The above claims show that if the algorithm terminates then it outputs an

optimum solution. Now we establish that the algorithm indeed terminates.

Lemma 10.2 (Main Lemma). The algorithm terminates in $(|+ |2) iterations.

Each iteration can be implemented in$(<) timewithminimal data structures,

Thus we have the following theorem due to Edmonds.

Theorem 10.8 (Edmonds). There is a an $(=2<) time algorithm for the min cost

perfect matching problem.

As a corollary we also obtain

Corollary 10.9. The polytope &(�) described by the inequalities below:

G(�(E)) = 1 ∀E ∈ +
G(�(*)) ≥ 1 ∀* ⊂ +, |* | ≥ 3, |* |>33

G(4) ≥ 0 ∀4 ∈ �
(10.5)

is the convex hull of the perfect matchings in �.

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 130

Proof. The algorithm shows that for any given weights F : �→ ℛ+, the linear
program min{F · G | G ∈ &(�)} has an integral optimum solution whenever

&(�) ≠ ∅. Since F ≥ 0 can be assumed w.l.o.g. so &(�) is an integral

polyhedron. �

Remark 10.3. We observe that the dual update increases the value of the dual.

To see this recall that if " is maximummatching in �′ and is not perfect then

|�(�′)| > |�(�′)| since �(�′) is a Tutte-Berge witness set. The dual update

increase the dual value for each vertex in �(�′) by & and decreases the value for

each vertex in �(�′) by &. Hence the dual value increases. Note, however, that

the dual constructed by the algorithm is not necessarily integer valued even if F

is integer valued (recall the example we saw).

Now we finish the proof of the key lemma on termination. First we observe

the following.

Proposition 10.4.1. In any iteration, the number of "-exposed nodes in �′ does not
increase and all edges of " remain tight in ��. Thus the matching size in � does not

decrease.

Proof. It is easy to see that steps (1) - (4) of the algorithm do not increase the

number of "-exposed nodes in �′. The only non-trivial case is step (5) in

which the dual value is changed. Now in this step, recall the Edmonds-Gallai

decomposition and notice that �(�′) is matched only to �(�′). The dual update
in this step leaves any edge DE between �(�′) and �(�′) tight and so all the

"-edges remain tight in this step. �

Lemma 10.3. If a set* is added toΩ in some iteration (“shrinking") then it is removed

from Ω (“deshrinking") only after the matching size in � has increased.

Proof. When * is added to Ω, it corresponds to the blossom of an "-flower

where " is the current matching in �′. Let E be the node in �′ corresponding
to* after it is shrunk. If - is the set of "-exposed nodes then there is an - − E,
"-alternating even length path. If there is no matching augmentation then E

continues to have an --E, "−alternating even length path or E is swallowed by

a larger set*′ that is shrunk. In the former case, E cannot be in �(�′) and hence

cannot be “deshrunk". In the latter case,*′ is not deshrunk before a matching

augmentation and hence * , which is inside *′, cannot be deshrunk before a

matching augmentation. �

Claim 10.4.3. Suppose iteration 8 has a matching augmentation and iteration 9 > 8 is

the next matching augmentation. Then between 8 and 9, there are at most |+ | shrinkings
and at most |+ | deshrinkings.

CHAPTER 10. PRIMAL-DUAL FOR WEIGHTED MATCHING 131

Proof. LetΩ be the laminar family of shrunk sets at the end of iteration 8. By the

previous claim, before iteration 9, we can only deshrink sets inΩ. Hence number

of deshrinkings is ≤ |Ω| − |+ | since we cannot deshrink singletons. Thus the

number of deshrinkings is ≤ |+ |.
Similarly number of of shrinkings is at most |Ω′ | − |+ |whereΩ′ is the laminar

family just before iteration 9. This gives an upper bound of |+ | on the number of

shrinkings. �

We now examine whan can happen in an iteration other than augmentation,

shrinking, and deshrinking. In step (5), an edge DE ∈ �\�� can become tight

and join ��. One of the following two cases must happen since dual values are

increased for nodes in �(�′), decreased for nodes in �(�′), and unchanged for

�(�′):

1. D, E ∈ �(�′).

2. D ∈ �(�′), E ∈ �(�′).

The following two claims take care of these cases.

Claim 10.4.4. If edge DE becomes tight in an iteration and D, E ∈ �(�′) then the next

iteration is either a shrinking iteration or an augmentation iteration.

Proof. Let - be the set of "-exposed nodes in �′. If D, E ∈ �(�′) then �′ + DE
creates an --- "-alternating walk of odd length because �(�′) consists of all
the vertices reachable by a walk of even length from -. This implies that in

the next iteration we have a non-empty walk leading to an augmentation or

shrinking. �

Claim 10.4.5. If D ∈ �(�′) and E ∈ �(�′) then in �′′ = �′ + DE, E is reachable from

- by an "-alternating path and hence �(�′) decreases.

With the above inplacewe canupper bound the total number of iterations. We

have a total of
|+ |
2

augmentation iterations. Between consecutive augmentation

iterations, there are at most 2|+ | shrinking and deshrinking iterations. Each

other iteration is an edge becoming tight. The number of Case 1 iterations (DE

added to �� where D, E ∈ �(�′)) can be charged to shrinking iterations. Total

number of Case 2 iterations (DE added to �� where D ∈ �(�′), E ∈ �(�′)) is at
most |+ | since each such iteration increases by 1, the number of nodes reachable

from - with an "-alternating path. No other iteration decreases the number of

nodes reachable before a matching augmentation. Thus the number of iterations

between augmentation is $(|+ |). Hence total number of iterations is $(|+ |2).

Chapter 11

Total Dual Integrality and
Cunningham-Marsh Theorem1

Recall that if � is TUM and 1, 2 are integral vectors, then max{2G : �G ≤ 1} and
min{H1 : H ≥ 0, H� = 2} are attained by integral vectors G and H whenever the

optima exist and are finite. This gives rise to a variety of min-max results. For

example we derived König’s theorem on bipartite graphs. There are several

examples where we have integral polyhedra defined by a system �G ≤ 1 but �
is not TUM; the polyhedron is integral only for some specific 1. We may still

ask for the following. Given an integral vector 2, consider the maximization

problem max{2G : �G ≤ 1}; is it the case that the dual minimization problem

min{H1 : H ≥ 0, H� = 2} has an integral optimal solution whenever a finite

optimum exists?

This motivates the following definition:

Definition 11.1. A rational system of inequalities �G ≤ 1 is totally dual integral

(TDI) if, for all integral 2, min{H1 : H ≥ 0, H� = 2} is attained by an integral vector

H∗ whenever the optimum exists and is finite.

Remark 11.1. If � is TUM, �G ≤ 1 is TDI for all 1.

This definition was introduced by Edmonds and Giles [23] who derived the

following theorem:

Theorem 11.2. If �G ≤ 1 is TDI and 1 is integral, then {G : �G ≤ 1} is an integral

polyhedron.

This is useful because �G ≤ 1 may be TDI even if � is not TUM; in other

words, this is a weaker sufficient condition for integrality of {G : �G ≤ 1} and

1Based on notes scribed by Bill Kinnersley in 2010.

132

CHAPTER 11. TDI AND CUNNINGHAM-MARSH THEOREM 133

moreover guarantees that the dual is integral whenever the primal objective

vector is integral.

Proof sketch. Let % = {G : �G ≤ 1}. Recall that we had previously shown that the

following are equivalent:

(i) % is integral.

(ii) Every face of % contains an integer vector.

(iii) Every minimal face of % contains an integer vector.

(iv) max{2G : G ∈ %} is achieved by an integral vector whenever the optimum

is finite.

Edmonds and Giles proved two more equivalent conditions:

(v) Every rational supporting hyperplane of % contains an integer vector.

(vi) If 2 is integral, then max{2G : G ∈ %} is an integer whenever the optimum

exists and is finite.

Condition (vi) implies the theorem as follows. If �G ≤ 1 is TDI and 1 is integral,

max{2G : G ∈ %} is an integer for all integral 2 whenever it is finite; this is

because the dual optimum is achieved by an integral vector H∗ (TDI property)

and the objective function 1H∗ is integral because 1 is integral. This implies that

% is integral. �

There is an important subtlety to the definition of total dual integrality: being

TDI is a property of a system of inequalities, not a property of the corresponding

polyhedron.

CHAPTER 11. TDI AND CUNNINGHAM-MARSH THEOREM 134

H

G

(2, 2)

(1, 2)

(2, 1)
(1, 1)

G ≥ 0, H ≥ 0

G + 2H ≤ 6

2G + H ≤ 6

H

G

(2, 2)

(1, 2)

(2, 1)
(1, 1)

G ≥ 0, H ≥ 0

G + 2H ≤ 6

2G + H ≤ 6

G + H ≤ 4

G ≤ 3, H ≤ 3

We will illustrate this with an example from notes of Michel Goemans.

Consider the system �G ≤ 1 drawn above on the left. If we take the cost vector

2 to be (1, 1), then the primal has an optimum at (2, 2) with value 4. The tight

constraints at this vertex have normal vectors (2, 1) and (1, 2) (these are rows of

�). Therefore, in order for the dual H� = 2 to have an integer solution, we must

be able to express (1, 1) as an integer combination of (2, 1) and (1, 2). Since this is
impossible, �G ≤ 1 is not TDI.

However, suppose we add more constraints to obtain the system �′G ≤ 1′
drawn above on the right. Note that this system corresponds to the same

polyhedron as �G ≤ 1. However, now we have an additional normal vector at

(2, 2), namely, (1, 1). Thus (1, 1) is now an integer combination of the normal

vectors at (2, 2). The system �′G ≤ 1′ is in fact TDI, even though it corresponds

to the same polytope as the (non-TDI) system �G ≤ 1.
The example demonstrates a necessary condition for a system to be TDI. We

explain this in the general context. Consider the problem max{2G : �G ≤ 1}
with 2 integral, and assume it has a finite optimum �. Then it is achieved by

some vector G∗ in the face � defined by the intersection of {G : �G ≤ 1} with

the hyperplane 2G = �. For simplicity assume that the face � is an extreme

point/vertex of the polyhedron and let �′G∗ = 1′ be the set of all inequalities

in �G ≤ 1 that are tight at G∗. The dual is min{H1 : H ≥ 0, H� = 2}. By LP

duality theory, any dual optimum solution H corresponds to 2 being expressed a

CHAPTER 11. TDI AND CUNNINGHAM-MARSH THEOREM 135

non-negative combination of the row vectors of �′, in other words 2 is in the

cone of the row vectors of �′. If �G ≤ 1 is TDI then we ask for an integral dual

optimum solution; this requires that there is an integer solution to H�′ = 2, H ≥ 0.

This motivates the following definition.

Definition 11.3. A set {01 , . . . , 0:} of vectors in '= is aHilbert basis if every integral

vector G ∈ Cone({01 , . . . , 0:}) can be written as G =
∑:
8=1

�808 , �8 ≥ 0, �8 ∈ Z (that is,

G is a non-negative integer combination of 01 , . . . , 0:). If the 08 are themselves integral,

we call {01 , . . . , 0:} an integral Hilbert basis.

The following theorem is not difficult to prove with the background that we

have developed.

Theorem 11.4. The rational system �G ≤ 1 is TDI if and only if the following property

is true for each face � of %; let �′G = 1′ be the set of all inequalities in �G ≤ 1 that are
tight/active at �, then the rows vectors of �′ form a Hilbert basis.

Corollary 11.5. If the system �G ≤ 1,
G ≤ � is TDI then �G ≤ 1,
G = � is also

TDI.

The example above raises the question of whether one can take any ratio-

nal system �G ≤ 1 and make it TDI by adding sufficiently many redundant

inequalities. Indeed that is possible, and is based on the following theorem.

Theorem 11.6. Every rational polyhedral cone has a finite integral Hilbert basis.

Theorem 11.7 (Giles-Pulleyblank). Any rational polyhedron % has a representation

�G ≤ 1 such that

(i) % = {G : �G ≤ 1},

(ii) � is integral, and

(iii) �G ≤ 1 is TDI.

Moreover, 1 is integral if and only if % is integral.

11.1 The Cunningham-Marsh Theorem

Suppose we have a graph � = (+, �). Let %>33(+) denote the family of all odd

subsets of + with size at least 3. Recall that in our study of matchings, we have

examined three different systems of inequalities.

CHAPTER 11. TDI AND CUNNINGHAM-MARSH THEOREM 136

G(�(E)) = 1 ∀E ∈ +
%1 : G(�(*)) ≥ 1 * ∈ %>33(+)

G ≥ 0

G(�(E)) ≤ 1 ∀E ∈ +
%2 : G(�[*]) ≤ b 1

2
|* |c * ∈ %>33(+)

G ≥ 0

G(�(E)) = 1 ∀E ∈ +
%3 : G(�[*]) ≤ b 1

2
|* |c * ∈ %>33(+)

G ≥ 0

Here %2 determines the matching polytope for �, while %1 and %3 determine

the perfect matching polytope.

It is not hard to see that %1 is not TDI. Consider 4 with F(4) = 1 for every

edge 4. In this case, the unique optimal dual solution is HE =
1

2
for each vertex E.

On the other hand, %2 and %3 are TDI; this was proven by Cunningham and

Marsh [19]. Consider the primal maximization and dual minimzation problems

for %2 below:

maxFG

G(�(E)) ≤ 1 ∀E ∈ +
G(�[*]) ≤ b 1

2
|* |c ∀* ∈ %>33(+)

G ≥ 0

min

∑
E∈+

HE +
∑

*∈%>33(+)
I* · b

1

2

|* |c

H0 + H1 +
∑

*∈%>33(+)
0,1∈*

I* ≥ F(01) ∀01 ∈ �

H ≥ 0, I ≥ 0

By integrality of the matching polytope, the maximum value of the primal

is the maximum weight of a matching under F; by duality, this equals the

minimum value of the dual. The Cunningham-Marsh Theorem tells us that this

minimum value is achieved by integral dual vectors H∗ , I∗ with the additional

condition that the sets {* : I∗
*
> 0} form a laminar family.

Theorem 11.8 (Cunningham-Marsh). The system %2 is TDI (as is %3). More precisely,

for every integral F, there exist integral vectors H and I that are dual feasible such that

{* : I* > 0} is laminar and∑
E∈+

HE +
∑

*∈%>33(+)
I* · b

1

2

|* |c = �(F)

where �(F) is the maximum weight of a matching under F.

CHAPTER 11. TDI AND CUNNINGHAM-MARSH THEOREM 137

Exercise 11.1. Show that the Tutte-Berge Formula can be derived from the

Cunningham-Marsh Theorem.

Cunningham and Marsh originally proved this theorem algorithmically, but

we present a different proof from [57] (Chapter 25); the proof relies on the fact

that %2 is the matching polytope. A different proof is given in [S] that does not
assume this and in fact derives that %2 is the matching polytope as a consequence.

Proof. We will use induction on |� | + F(�) (which is legal because F is integral).

Note that if F(4) ≤ 0 for some edge 4, we may discard it; hence we may assume

that F(4) ≥ 1 for all 4 ∈ �.
Case I: Some vertex v belongs to every maximum-weight matching under

w.
Define F′ : �→ Z+ by

F′(4) = F(4) − 1 if 4 ∈ �(E)
F′(4) = F(4) if 4 ∉ �(E)

Now induct on F′. Let H′, I′ be an integral optimal dual solution with respect to

F′ such that {* : I′
*
> 0} is laminar; the value of this solution is �(F′). Because

E appears in every maximum-weight matching under F, �(F′) ≤ �(F) − 1; by

definition of F′, �(F′) ≥ �(F) − 1. Thus �(F′) = �(F) − 1. Let H∗ agree with

H′ everywhere except E, and let H∗E = H′E + 1. Let I∗ = I′. Now H∗ , I∗ is a dual

feasible solution with respect to F, the solution is optimal since it has weight

�(F′) + 1 = �(F), and {* : I∗
*
> 0} is laminar since I∗ = I′.

Case II: No vertex belongs to every maximum-weight matching under w.
Let H, I be a fractional optimal dual solution. Observe that H = 0, since HE > 0

for some vertex E, together with complementary slackness, would imply that

every optimal primal solution covers E, i.e. E belongs to every maximum-weight

matching under F. Among all optimal dual solutions H, I (with H = 0) choose

the one that maximizes

∑
∈%>33(+) I b

1

2
|* |c2. To complete the proof, we just

need to show that I is integral and {* : I* > 0} is laminar.

Suppose {* : I* > 0} is not laminar; choose ,, - ∈ %>33(+) with I, >
0, I- > 0, and, ∩- ≠ ∅. We claim that |, ∩ - | is odd. Choose E ∈, ∩-, and

let" be a maxmimum-weight matching under F that misses E. Since I, > 0, by

complementary slackness, " contains b 1

2
|, |c edges inside, ; thus E is the only

vertex in, missed by". Similarly, E is the only vertex in - missed by". Thus

" covers, ∩- − {E} using only edges inside, ∩- − {E}, so |, ∩ - − {E}| is
even, and so |, ∩ - | is odd. Let & be the smaller of I, and I- ; form a new dual

solution by decreasing I, and I- by & and increasing I,∩- and I,∪- by & (this
is an uncrossing step).

We claim that this change maintains dual feasibility and optimality. Clearly

I, and I- are still nonnegative. If an edge 4 is contained in , and -, then

CHAPTER 11. TDI AND CUNNINGHAM-MARSH THEOREM 138

the sum in 4’s dual constraint loses 2& from I, and I- , but gains 2& from

I,∩- and I,∪- , and hence still holds. Likewise, if 4 is contained in , but

not - (or vice-versa), the sum loses & from I, but gains & from I,∪- . Thus

these changes maintained dual feasibility and did not change the value of the

solution, so we still have an optimal solution. However, we have increased∑
∈%>33(+) I b

1

2
|* |c2 (the reader should verify this), which contradicts the choice

of I. Thus {* : I* > 0} is laminar.

Suppose instead that I is not integral. Choose a maximal* ∈ %>33(+) such
that I* is not an integer. Let *1 , . . . , *: be maximal odd sets contained in *

such that each I*8 > 0. (Note that we may have : = 0.) By laminarity,*1 , . . . , *:

are disjoint. Let
 = I* − bI*c. Form a new dual solution by decreasing I* by

 and increasing each I*8 by
.
We claim that the resulting solution is dual feasible. Clearlywe still have I* ≥

0, and no other dual variable was decreased. Thus we need only consider the

edge constraints; moreover, the only constraints affected are those corresponding

to edges contained within* . Let 4 be an edge contained in* . If 4 is contained

in some*8 , then the sum in 4’s constraint loses
 from I* but gains
 from I*8 ,

so the sum does not change. On the other hand, suppose 4 is not contained in

any *8 . By maximality of * and the *8 , * is the only set in %>33 containing 4.

Thus before we changed I* we had I* ≥ F(4); because F(4) is integral, we must

still have I* ≥ F(4). Hence our new solution is dual feasible.

Since the*8 are disjoint, contained in* , and odd sets, b 1

2
|* |c > ∑:

8=1
b 1

2
|*8 |c.

Thus our new solution has a smaller dual value than the old solution, which

contradicts the optimality of I. It follows that I was integral, which completes

the proof.

To show that the system %3 is TDI, we use Corollary 11.5 and the fact that

system %2 is TDI. �

Chapter 12

Z -joins and Applications1

We borrow mainly from [18] (Chapter 5), and [57] (Chapter 29).

Edmonds was motivated to study)-joins by the Chinese postman problem

which is related to the well-known Traveling Salesman Problem (TSP).

Problem 12.1. Let� = (+, �) be an undirected graph and 2 : �→ ℝ+ be non-negative
edge weights on the edges. A Chinese postman tour is a walk that starts at some arbitrary

vertex and returns to it after traversing each edge of �. Note that an edge may be

traversed more than once. The goal is to find a postman tour of minimum total edge cost.

Proposition 12.0.1. If � is Eulerian then the optimal postman tour is an Eulerian tour

of � and has cost equal to

∑
4∈� 2(4).

Thus the interesting case is when � is not Eulerian. Let) ⊆ + be the nodes

with odd degree in �.

Fact 12.1. |) | is even.

Consider a postman tour and say it visits an edge G(4) times, where G(4) ≥ 1

is an integer. Then, it is easy to see that the multigraph induced by placing G(4)
copies of 4 is in fact Eulerian. Conversely if G(4) ≥ 1 for each edge and G(4) ∈ ℤ+
such that the multigraph is Eulerian, then it induces a postman tour of cost∑
4∈� 2(4)G(4).
We observe that if G(4) > 2 then reducing G(4) by 2 maintains feasibility.

Thus G(4) ∈ {1, 2} for each 4 in any minimal solution. If we consider the graph

induced by
′(4) = G(4) − 1 we see that each node in) has odd degree and every

other node has even degree. This motivates the definition of)-joins.

Definition 12.2. Given a graph, � = (+, �), and a set,) ⊆ + , a)-join is a subset

� ⊆ � such that in the graph (+, �),) is the set of nodes with odd degree.

1Based on notes scribed by Ben Raichel in 2010.

139

CHAPTER 12.)-JOINS AND APPLICATIONS 140

Proposition 12.0.2. There is a)-join in � iff | ∩) | is even for each connected

component K of �. In particular, if � is connected then there exists a)-join iff |) | is
even.

Proof. Necessity is clear. For sufficiency, assume � is connected, otherwise we

can work with each connected component separately. Let) = {E1 , E2 , . . . , E2:}.
Let %8 be an arbitrary path joining E8 and E8+: . Then the union of the paths

%1 , %2 , . . . , %: induces a multigraph in which the nodes in) are the only ones

with odd degree. Let G(4) be the number of copies of 4 in the above union. Then

G′(4) = G(4) <>3 2, is the desired)-join. (Note that the pairing of the vertices

was arbitrary and hence any pairing would work.) �

We leave the proof of the following proposition as an exercise.

Proposition 12.0.3. � is a)-join iff � is the union of edge disjoint cycles and
1

2
|) | paths

connecting disjoint pairs of nodes in).

12.1 Algorithms for Min-cost Z -joins

Given � = (+, �), 2 : � → ℝ and) ⊆ + , where |) | even, we want to find the

min-cost)-join. If all edge costs are non-negative then one can easily reduce the

problem to a matching problem as follows. Assume without loss of generality

that � is connected.

1. For each pair D, E ∈) let F(DE) be the shortest path distance between D

and E in �, with edge lengths given by 2. Let %DE be the shortest path

between D and E.

2. Let � be the complete graph on) with edge weights F(DE).

3. Compute a minimum weight perfect matching " in �.

4. Let � = {4 | 4 occurs in an odd number of paths %DE , DE ∈ "}. Output �.

Theorem 12.3. There is a strongly polynomial time algorithm to compute a min-cost

)-join in a graph, � = (+, �) with 2 ≥ 0.

Proof. To see the correctness of this algorithm first note that it creates a)-join

since it will return a collection of
1

2
|) | disjoint paths, which by Proposition 12.0.3

is a)-join (Note the fourth step in the algorithm is required to handle zero

cost edges, and is not necessary if 2 > 0). It can be seen that this)-join is of

min-cost since the matching is of min-cost (and since, ignoring zero cost edges,

the matching returned must correspond to disjoint paths in �). �

CHAPTER 12.)-JOINS AND APPLICATIONS 141

12.1.1 Negative costs

The interesting thing is that min-cost)-joins can be computed even when edge

costs can be negative. This has several non-trivial applications. We reduce the

general case to the non-negative cost case. Recall that if �, � are two sets then

�Δ� = (� − �) ∪ (� − �) is the symmetric difference between � and �.

Idea: Given � = (+, �) and edge costs 2 : �→ ℤ. Let �−1 = {4 ∈ � | 2(4) < 0

be the set of edges with strictly negative costs. Tominimize cost wewould ideally

like to include all edges in �−. Suppose we consider the graph (+, �−) and
consider the odd-degree nodes)′ in this graph; note that |)′ | is even. Suppose
we get (very) lucky and) =)′. Then it is easy to see that �− is the optimal

)-join. However) may not be)′. What do we need to fix? The nodes in) −)′
have even degree in (+, �−) and we need odd degree and)′−) have odd degree

while we need even degree for them. Thus we can fix this by a ()Δ)′)-join. What

is the advantage of this approach? We already included all of �− and hence

we view the problem of computing ()Δ)′)-join as adding edges from � \ �−
and removing some of the added edges from �−. We can model the process of

removing an edge 4 ∈ �− from our existing solution as adding edge 4 with cost

−2(4)which is now positive! Thus we can now compute a join in a graph with

non-negative edge costs which we already know how to solve.

The formal algorithm is described below.

1. Let �− be the set of edges with negative costs in �. Let)′ be the set of

odd-degree nodes in (+, �−).

2. Let 3 : �→ ℤ+ where 3(4) = −2(4) if 4 ∈ �− and 3(4) = 2(4) otherwise.

3. Compute a ()Δ)′)-join �” in � with edge costs 3 (note that 3 ≥ 0).

4. Output � = �”Δ�−.

It is easy to see that the preceding algorithm runs in strongly polynomial

time since we have essentially reduced the problem to non-negative case. We

now prove the correctness of the preceding algorithm.

Fact 12.2. If �,� are two subsets of * then |�Δ�| is even if and only if |�| and |�|
have the same parity (both even or both odd).

Proposition 12.1.1. Let � be a)-join and �′ be a)′-join then �Δ�′ is a ()Δ)′)-join.

Proof. Verify using the above fact that each E ∈)Δ)′ has odd degree and every

other node has even degree in �Δ�′.
Alternatively, consider the multigraph induced by � ∪ �′. A node E has odd

degree in this graph iff E ∈)Δ)′. �Δ�′ is obtained by removing parallel edges

CHAPTER 12.)-JOINS AND APPLICATIONS 142

from � ∪ �′ which does not affect the parity of the node degrees and hence �Δ�′

is a ()Δ)′)-join. �

Corollary 12.4. Suppose �′ is a)′-join and �′′ is a ()Δ)′)-join then �′′Δ�′ is a)-join.

Proof. Note that ()Δ)′)Δ)′ =) and hence the corollary is implied by the

preceding proposition. �

Theorem 12.5. There is a strongly polynomial time algorithm for computing a min-cost

)-join in a graph, even with negative costs on the edges.

Proof. Consider the algorithm that we had described. We first observe that �′ is
a)′-join and moreover �′ is a min-cost)′-join (why?). Since �” is a ()Δ)′)-join
we have � = �”Δ�− is a)-join by Claim 12.4. We now establish that the cost of �

is optimal.

Consider any)-join - in � with costs 2.

2(-) = 2(- − �−) + 2(- ∩ �−)
= 2(- − �−) − 2(�− − -) + 2(�− − -) + 2(- ∩ �−)
= 3(- − �−) + 3(�− − -) + 2(�−)
= 3(-Δ�−) + 2(�−).

Thus the cost of - is the 3-cost of (-Δ�−) plus a constant term 2(�−). Moreover

-Δ�− is a ()Δ)′)-join in �. Thus finding a minimum cost)-join in � with

respect to 2 is equivalent to finding a minimum cost ()Δ)′)-join in � with cost

3. Since �” is a min-cost ()Δ)′)-join in � with cost 3 we have 3(�”) ≤ 3(�∗Δ�−)
where �∗ is a min-cost)-join.

2(�) = 3(�Δ�−) + 2(�−) = 3(�′′) + 2(�′) ≤ 3(�∗Δ�−) + 2(�−) = 2(�∗).

Thus 2(�) ≤ 2(�∗) and � is a)-join. This proves the correctness of the algorithm.

�

12.1.2 Polyhedral aspects

The following set of inequalities can be shown to determine the characteristic

vectors of the set of)-joins in a graph �. As one can see, the odd-set inequalities

are a bit complicated to specify.

0 ≤ G(4) ≤ 1

G(�(*) \ �) − G(�) ≥ 1 − |� | * ⊆ +, � ⊆ �(*), |* ∩) | + |� | is odd

CHAPTER 12.)-JOINS AND APPLICATIONS 143

Another useful polytope that comes up in applications of)-joins is the

dominant of a the)-joint polytope. The dominant of a polyhedron % ∈ ℝ=
is the

set {H ∈ ℝ= | ∃G ∈ %, G ≤ H}. Alternatively it is the polyhedron % +ℝ=
+ written

as the Minkowski sum of % and the positive orthant. The dominant is also

referred to as the up hull. The dominant of the)-join polytope has a particularly

simple form.

G(4) ≥ 0

G(�(*)) ≥ 1 |* ∩) | is odd

A set* such that |* ∩) | is odd is called a)-cut.)-cuts are closely related

to)-joins and matchings. Recall that we saw the separation oracle for finding

the minimum cost)-cut in a graph via the Gomory-Hu tree.

Properties of)-join polytope have found important applications in approxi-

mation algorithms for Metric-TSP (see [38] and references).

12.2 Applications

12.2.1 Chinese Postman

We saw earlier that a min-cost postman tour in � is the union of � and a)-join

where) is the set of odd degree nodes in �. Hence we can compute a min-cost

postman tour.

12.2.2 Shortest Paths and Negative lengths

In directed graphs the well known Bellman-Ford algorithm can be used to check

whether a given directed graph, � = (+, �), has negative length cycles in $(<=)
time. Moreover, if there is no negative length cycle then the shortest B-C path can

be found in the same time. However, one cannot use directed graph algorithms

for undirected graphs when there are negative lengths, since bi-directing an

undirected edge creates a negative length cycle. However, we can use)-join

techniques.

Claim 12.2.1. An undirected graph, � = (+, �), with 2 : �→ ℝ has a negative length

cycle iff an ∅-join has negative cost.

Proof. An ∅-join is a subgraph of � in which all degree are even (Eulerian

subgraph). A negative length cycle is an ∅-join of negative cost. Conversely,

suppose there � is a negative cost ∅-join. We can decompose � into a collection of

edge-disjoint cycles. One of these cycles must have negative cost if � has negative

cost. �

CHAPTER 12.)-JOINS AND APPLICATIONS 144

2 1 1

-5 -10

s t

Figure 12.1: An example of a graph with a negative cost ∅-join

Claim 12.2.2. If � has no negative length cycle then the min-cost {B, C}-join gives an

B-C shortest path.

Remark 12.1. It is important to first check for negative length cycles before finding

an {B, C}-join since the shortest B-C path can have negative length even when

there is no negative length cycle. For instance, in the example in Fig ?? the
min-cost)-join consists of all edge other than the cost 1 edge in the triangle but

the graph has a negative length cycle.

Theorem 12.6. There is a strongly polynomial time algorithm that given an undirected

graph, �(+, �), with 2 : �→ ℝ, either outputs a negative length cycle or an B-C shortest

path.

Proof sketch. We first compute a min-cost ∅-join. From Claim 12.2.1, if the ∅-join
has negative cost then we can produce a negative length cycle. Otherwise,

we know there is no negative length cycle and from Claim 12.2.2 the min-cost

{B, C}-join yields an B-C shortest path. In each case the)-join can be computed

using the algorithm from the previous section. �

12.2.3 Max-cut in planar graphs

Since one can compute min-cost)-joins with negative costs, one can compute

max-cost)-joins as well. The max-cut problem is the following.

Problem 12.7. Given an undirected graph � = (+, �) with non-negative edge weights
F : �→ ℝ+, find a partition of + into ((, (\+) so as to maximize F(�(()).

Max-cut is NP-hard in general graphs, but Hadlock showed how)-joins can

be used to solve it in polynomial time for planar graphs. A basic fact is that

in planar graphs, cuts in � correspond to collections of edge disjoint cycles in

the dual graph �∗. Thus to find a max-cut in � we compute a max ∅-join in �∗

where the weight of an edge in �∗ is the same as its corresponding edge in the

primal.

CHAPTER 12.)-JOINS AND APPLICATIONS 145

G G*

Figure 12.2: A planar graph, �, in black, and its dual, �∗, in dashed red.

12.2.4 Approximating Metric-TSP

TSP is a well-known NP-Hard problem. Given an undirected graph � = (+, �)
with non-negative edge costs 2 : �→ ℤ+, find a Hamiltonian cycle of minimum

cost. TSP is inapproximable since even deciding whether � has a Hamilton cycle

is NP-Complete. However, an important special case is Metric-TSP. Here we

assume that � is a complete graph and 2 satisfies triangle inequality: 2(D, F) ≤
2(D, E) + 2(E, F) for all D, E, F ∈ + . Alternatively, we are interested in a shortest

spanning tour rather than in a Hamilton cycle; that is, the tour should visit each

vertex and return to the starting point and can visit a vertex multiple times.

In this view what we seek is a minimum cost spanning connected Eulerian

muligraph in �. This view allows us to retain the structure of � while the metric

view requires us to compute the shortest path distances in � to make it complete

and potentially loses the sparsity structure as well as topology of �. However,

both view points are useful.

Metric-TSP is well-studied and one can find good approximation algorithms

in various setting. A very simple 2-approximation is the following. Compute

an MST � = (+, ��) of �. It is easy to see that 2(��) ≤ OPT since any TSP tour

contains a connected subgraph of �; here OPT is the cost of an optimum TSP

tour in �. Once � is computed we can make two copies of each edge in � which

makes it Eulerian and connected and the cost of 2� is 22(��) ≤ 2 OPT.

Christofides’s heuristic from late 1970’s obtained a 3/2-approximation by

refining the above simple heuristic. Let � be an MST as before. Note that we

wish to make � Eulerian. For this let) be the set of odd-degree nodes in �.

Thus it suffices to compute a)-join � and add � to � to obtain an Eulerian graph.

Christofides’s main objservation is the following.

CHAPTER 12.)-JOINS AND APPLICATIONS 146

Lemma 12.1. Let) be any even subset of nodes. Then there is a)-join in � whose

cost is at most OPT/2.

Proof sketch. Consider the metric-view of TSP. Let � be the optimum Hamilton

cycle whose cost is OPT. Consider the vertices of) on �. Note that |) |
is even. One can partition � into two)-joins. If E1 , E2 , . . . , E2:−1 , E2: are

the vertices in) along cycle � we consider one)-join by considering the

pairing E1E2 , E3E4 , . . . , E2:−1E2: and another)-join by considering the pairing

E2E3 , E4E5 , . . . , E2:E1. One of these)-joins has cost at most 2(�)/2 since the edge

set of � is partitioned between these two joins. �

This immediately implies a 3/2 approximation since we can compute a

min-cost)-join in � and the graph with edge-set �� ∪ � is an Eulerian and

connected spanning subgraph.

LP Relaxation and the 4/3-conjecture: There is a natural LP relaxation for

TSP that was first considered by Dantzig, Fulkerson and Johnson. Held and

Karp developed an iterative combinatorial algorithm that converges to the lower

bound provided by the LP relaxation which is well-known and for this reason

the LP relaxation is sometimes referred to as the Held-Karp LP even though

it was developed earlier. Wolsey [69] showed that the integrality gap of this

LP-relaxation is at most 3/2 by mimicking the analysis of Christofides’s heuristic

with respect to the lower bound provided by the LP relaxation. For this one

needs to understand the polyhedral aspects of spanning trees,)-joints and the

TSP LP. There is a class of examples which show a lower bound of 4/3 on the

integrality gap. A well-known open problem in the literature is to determine

the worst-case integrality gap of the LP relaxation. It is conjectured that it is 4/3.
Randomizedvariants ofChristofides andprogress: Thefirst importantprogress

in improving the 3/2-approximation for Metric-TSP in general instances (im-

proved results are known for various special cases) came about from the work of

Oveis-Gharan, Saberi and Singh [27] which itself derived its inspiration from a

work on theATSP problem (assymetric TSP problemwhich is on directed graphs)

[4]. This approach is based on adapting the Christofides heuristic by picking a

random spanning tree according to the LP solution and then augmenting with a

)-join. The key to the analysis is understanding the expected cost of the)-join

and this requires rather sophisticated techniques. It is only very recently that

the 3/2 approximation and integrality gap have been improved for all instances

(by a tiny but fixed &) in the work of Karlin, Klein and Oveis-Gharan [38]; the

paper has pointers to the considerable amount of literature on this topic.

Chapter 13

Matroids1

13.1 Introduction to Matroids

Matroids (formally introduced by Whitney in 1935) are combinatorial structures

that capture the abstract properties of linear independence defined for vector

spaces and borrow from graph theory. The power and utitlity of matroids

is because of the numerous settings in which they arise naturally (and some-

times surprisingly), and their connection to several areas of mathematics and

optimization.

Definition 13.1. A matroidℳ is a tuple ((,ℐ), where (is a finite ground set and

ℐ ⊆ 2
(
(the power set of () is a collection of independent sets which satisfy the

following properties.

1. ℐ is nonempty, in particular, ∅ ∈ ℐ.

2. ℐ is downward closed, that is, if - ∈ ℐ and . ⊆ -, then . ∈ ℐ.

3. If -,. ∈ ℐ, and |- | < |. |, then ∃H ∈ .\- such that - + H ∈ ℐ.

Exercise 13.1. Show that the third property in Definition 13.1 can be replaced

by the following: if -,. ∈ ℐ, |. | = |- | + 1, then ∃H ∈ .\- such that - + H ∈ ℐ.

Example 13.1 (Vector Matroid (Linear Matroid)). Let " be a < × = matrix

with entries in some field F and E8 be the 8Cℎ column of ", viewed as a

vector in the vector space F< . Let (= {1, 2, . . . , =} and ℐ = {� : � ⊆
(, {E8}8∈� are linearly independent} (under the usual definition of linear in-

dependence in linear algebra). Thenℳ = ((,ℐ) is a matroid. To see this, notice

that properties 1 and 2 of Definition 13.1 are trivially satisfied. To show property

1Based on notes scribed by Vineet Abhishek, Sreeram Kannan, and Alina Ene in 2010.

147

CHAPTER 13. MATROIDS 148

3, suppose -,. ∈ ℐ and |- | < |. |. If there is no H ∈ .\- such that - + H ∈ ℐ,
then . is in the span of {EG}G∈- . Hence, |. | ≤ |- | which is a contradiction.

Example 13.2 (Graphic Matroid). Let G = (+, �) be an undirected multi-graph

(loops allowed). Let ℐ = {� : � ⊆ �, I induces a forest in G}. Thenℳ = (�,ℐ)
is a matroid. Again, the first two properties of Definition 13.1 are easy to verify.

To show property 3, suppose -,. ∈ ℐ such that |- | < |. |. Both - and .

induce forests in G. Let +1 , +2 , . . . , +:(-) be the vertex sets of the connected

components in �[-] (G restricted to the edge set -). Here, :(-) denotes the
number of connected components in �[-]. Each connected component is a

tree. Hence, if there is an edge H ∈ . that connects two different components

of G[-] then G[- + H] is again a forest and we are done. If not, then every

edge H ∈ . have its both ends in the same component of G[-]. Thus, the

number of connected components in G[.], denoted by :(.), is at least :(-).
Thus, |- | = |+ | − :(-) ≥ |+ | − :(.) = |. |, which is a contradiction.

Graphic matroids are also referred to as the Cycle matroid.

Example 13.3 (UniformMatroid). Letℳ = ((,ℐ), where (is any finite nonempty

set, and ℐ = {� : � ⊆ (, |� | ≤ :} for some positive integer :. Thenℳ is a matroid.

Example 13.4 (Partition Matroid). Let (1 , (2 , . . . , (ℎ be a partition of (and

:1 , :2 , . . . , :ℎ be positive integers. Let ℐ = {� : � ⊆ (, |� ∩ (8 | ≤ :8 for all 1 ≤ 8 ≤
ℎ}. Thenℳ = ((,ℐ) is a matroid.

Example 13.5 (Laminar Matroid). Let ℱ be a laminar family on ((i.e., if -,. ∈ ℱ
then -,. ⊆ (; and either - ∩. = ∅, or - ⊆ ., or . ⊆ -) such that each G ∈ (is

in some set - ∈ ℱ . For each - ∈ ℱ , let :(-) be a positive integer associated

with it. Let ℐ = {� : � ⊆ (, |� ∩ - | ≤ :(-) ∀- ∈ ℱ }. Thenℳ = ((,ℐ) is a
matroid. Notice that laminar matroids generalize partition matroids, which in

turn generalize uniform matroids.

Exercise 13.2. Verify Example 13.5.

Example 13.6 (Transversal Matroid). Let G = (+, �) be a bipartite graph with

bipartition +1 and +2. let ℐ = {� : � ⊆ +1 , ∃ a matching " in G that covers �}.
Thenℳ = (+1 ,ℐ) is a matroid.

Example 13.7 (Matching Matroid). Let G = (+, �) be an undirected graph. Let

ℐ = {� : � ⊆ +, ∃ a matching " in G that covers �}. Then ℳ = (+,ℐ) is a

matroid.

Exercise 13.3. Verify Examples 13.6 and 13.7.

13.1.1 Representation of Matroids

As we discussed, matroids were defined by Whitney to abstractly define inde-

pendence. A vector matroid (also called linear matroid) is defined by a collection

CHAPTER 13. MATROIDS 149

of = vectors from a vector space over a finite field where independence in the

matroid is defined via linear independence in the vector space. A matroid

ℳ = ((,ℐ) is representable over a field F if there exist a vector matroid ((′,ℐ′)
over F and a bĳection 5 : (→ (′ such that 5 (�) ∈ ℐ′ iff � ∈ ℐ. Such a matroid

is F -representable.

We note that all the matroids we discussed so far are representable. We

show that graphic matroid can be represented over any field. Given a graph

� = (+, �) let |+ | = = and |� | = <. Note that the ground set of the the graphic

matroid is the set of edges �. We stick to the usual graph notation even though

we have been using = to represent the size of the ground set for a matroid. Let

+ = {1, 2, . . . , =}. We arbitrarily orient the edges of � to obtain a directed graph

�′ where each 4 ∈ � is now an oriented arc. Suppose 4 = (8 , 9)where we think

of 4 as oriented from 8 to 9. We create a =-dimensional vector E4 for 4 where

E4(8) = −1, E4(9) = 1 and E4(:) = 0 if : ∉ {8 , 9}. Note that 1 is the multiplicative

identity in F and hence this works over any field. We leave it as an exercise

to verify that if a set of edges form a forest iff their corresponding vectors are

linearly independent.

A matroid is binary if it can be represented over the two element binary field

{0, 1}. A matroid is regular if it can be represented over any field. We just saw

that graphic matroids are regular. An important connection of matroid theory to

TU matrices is the following. Call a matroidℳ unimodular if it can be presented

by a TU matrix � over the fields of real numbers. Then one can show that a

matroid is unimodular iff it is regular.

A natural question is whether every matroid is representable over some field.

The answer is nowhichmakesmatroids interesting as a concept that is motivated

by linear independence but is not subsumbed by it. Such matroids are called

non-representable and the smallest one is the Vámost matroid over 8 elements.

Algebraic matroids generalize linear matroids and there are non-algebraic

matroids such as the Vámos matroid.

13.1.2 Base, Circuit, Rank, Span and Flat

Letℳ = ((,ℐ) be a matroid.

Definition 13.2. A set - ⊆ (such that - ∉ ℐ is called a dependent set ofℳ.

Definition 13.3. A loop is an element G ∈ (such that {G} is dependent.

Notice that a loop cannot appear in any sets in ℐ and can be effectively

removed from (.

Definition 13.4. A base is an inclusion wise maximal set in ℐ.

CHAPTER 13. MATROIDS 150

Proposition 13.1.1. If � and �̂ are bases ofℳ then |�| = |�̂|.

Proof. If |�| < |�̂| then from Definition 13.1, ∃G ∈ �̂ \ � such that � + G ∈ ℐ,
contradicting the maximality of �. �

Notice that the notion of base here is similar to that of a basis in linear algebra.

Lemma 13.1. Let � and �̂ be bases ofℳ and G ∈ �̂ \ �. Then ∃H ∈ � \ �̂ such that

�̂ − G + H is a base ofℳ.

Proof. Since �̂ − G ∈ ℐ and |�̂ − G | < |�|, ∃H ∈ � \ �̂ such that �̂ − G + H ∈ ℐ.
Then |�̂ − G + H | = |�|, implying that �̂ − G + H is a base ofℳ. �

Definition 13.5. Letℳ = ((,ℐ) be a matroid. Given (̂ ⊆ (, let ℐ̂ = {� : � ⊆ (̂, � ∈
ℐ}. Then ℳ̂ = ((̂, ℐ̂) is also a matroid and is referred to as the restriction ofℳ to (̂.

Definition 13.6. Givenℳ = ((,ℐ) and (̂ ⊆ (, �̂ is a base for (̂ if �̂ is a base of ℳ̂,

where ℳ̂ is a restriction ofℳ to (̂.

Proposition 13.1.2. Givenℳ = ((,ℐ), let � ⊆ - be a base for -. Then for any

. ⊇ -, there exist a base �̂ for . that contains �.

Proof. Notice that � is independent in the restriction of ℳ to . (henceforth

independent in .). Let �̂ be the maximal independent set in . that contains �.

Since all maximal independent sets have same size, �̂ is a base of .. �

Definition 13.7. Givenℳ = ((,ℐ), a circuit is a minimal dependent set (i.e., an

inclusion wise minimal set in 2
(\ ℐ). Thus, if � is a circuit then ∀G ∈ �, � − G ∈ ℐ.

The definition of a circuit is related to graph theory in the following sense: if

ℳ is the graphic matroid of a graph G, then the circuits ofℳ are the cycles of

G. Single element circuits of a matroid are loops; ifℳ is a graphic matroid of a

graph G, then the set of loops ofℳ is precisely the set of loops of G.

Lemma 13.2. Let �1 and �2 be two circuits such that �1 ≠ �2 and G ∈ �1 ∩�2. Then

for every G1 ∈ �1 \ �2 there is a circuit � such that G1 ∈ � and � ⊆ �1 ∪ �2 − G. In
particular, �1 ∪ �2 − G contains a circuit.

Proof. Notice that �1 \ �2 is nonempty (and so is �2 \ �1), otherwise, �1 ⊆ �2.

Since �1 ≠ �2, �1 is a strict subset of �2, contradicting the minimality of �2.

Let �1∪�2 − G contain no circuits. Then � = �1∪�2 − G is independent, and
hence, a base for �1 ∪ �2 (since it is maximal). Also, |�| = |�1 ∪ �2 | − 1. Since

�1∩�2 is an independent set (otherwise �1 , �2 are not minimal dependent sets),

we can find a base �̂ for�1∪�2 that contains�1∩�2. Then |�̂| = |�| = |�1∪�2 |−1.

CHAPTER 13. MATROIDS 151

Since �1 \ �2 and �2 \ �1 are both non-empty, this is possible only if either

�1 ⊆ �̂ or �2 ⊆ �̂, contradicting that �̂ is a base. Hence, �1∪�2− G must contain

a circuit.

Now let G1 ∈ �1 \ �2. Let �1 be a base for �1 ∪ �2 that contains �1 − G1,

and �2 be a base for �1 ∪ �2 that contains �2 − G. Clearly, G1 ∉ �1 and G ∉ �2.

If G1 ∉ �2 then �2 + G1 must have a circuit and we are done. If G1 ∈ �2, then

from Lemma 13.1, there exists Ĝ ∈ �1 \ �2 such that �̂ = �2 − G1 + Ĝ is a base for

�1 ∪ �2. Notice that Ĝ ≠ G, otherwise �2 ⊆ �̂. Thus, G1 ∉ �̂ and �̂ + G1 contains

the circuit satisfying the condition of Lemma 13.2. �

Corollary 13.8. Let ℳ = ((,ℐ) be a matroid. If - ∈ ℐ and H ∉ - then either

- + H ∈ ℐ or there is a unique circuit � in - + H. Moreover, for each Ĥ ∈ �,
- + H − Ĥ ∈ ℐ.

Proof. If - + H ∉ ℐ, then it must contain a circuit �1. Assume there is another

circuit �2 ⊆ - + H, and �1 ≠ �2. Since - ∈ ℐ, both �1 and �2 must contain H.

From Lemma 13.2, �1 ∪�2 − H contains a circuit. But this is a contradiction since

�1 ∪ �2 − H ⊆ -. Hence, - + H contains a unique circuit, call it �. Now, if for

some Ĥ ∈ �, - + H − Ĥ ∉ ℐ, then - + H − Ĥ is dependent and contains a circuit �̂.

However, �̂ ≠ � since Ĥ ∉ �̂, contradicting that � is unique. �

Corollary 13.9. If � and �̂ are bases. Let Ĝ ∈ �̂ \ �, then ∃G ∈ � \ �̂ such that

� + Ĝ − G is a base.

Proof. Follows from Corollary 13.8. �

Definition 13.10. Letℳ = ((,ℐ) be a matroid. The rank function, denoted by Aℳ ,

ofℳ is Aℳ : 2
(↦→ ℤ+, where for - ⊆ (, Aℳ(-) is the size of a maximum independent

set contained in -.

Note that the above definition assigns a unique number to each set - since

all maximal independent sets contained in - have the same cardinality.

Proposition 13.1.3. Given a matroid ℳ = ((,ℐ), the rank function Aℳ has the

following properties:

1. 0 ≤ Aℳ(-) ≤ |- | for all - ⊆ (.

2. Aℳ is submodular; i.e., for any -,. ⊆ (, Aℳ(- ∪.) + Aℳ(- ∩.) ≤ Aℳ(-) +
Aℳ(.).

Proof. Property 1 is by the definition of Aℳ . To show the second property, we

use the equivalent definition of submodularity; i.e., we show that if - ⊆ . and

I ∈ (, then Aℳ(- + I) − Aℳ(-) ≥ Aℳ(. + I) − Aℳ(.). First notice that for any

CHAPTER 13. MATROIDS 152

- ⊆ (and I ∈ (, Aℳ(- + I) ≤ Aℳ(-) + 1. Thus, we only need to show that if

Aℳ(. + I) − Aℳ(.) = 1 then Aℳ(- + I) − Aℳ(-) = 1 for any - ⊆ ..
If Aℳ(. + I) − Aℳ(.) = 1, then every base � of . + I contains I. Let �̂ be a

base of -. Since - ⊆ . + I, from Proposition 13.1.2, there exists a base �̄ of . + I
such that �̄ ⊇ �̂. Then �̂ + I is independent, implying Aℳ(- + I) − Aℳ(-) = 1 as

�̂ + I is a base in - + I. �

Definition 13.11. Let ℳ = ((,ℐ) be a matroid. For any - ⊆ (, the span of -,

denoted by span"(-), is defined as span"(-) = {H : H ∈ (, Aℳ(- + H) = Aℳ(-)}. A
set - ⊆ (is spanning if span"(-) = (.

Exercise 13.4. Prove the following properties about the span function span" :

2
(→ 2

(
.

• If),* ⊆ (and* ⊆ span"()) then span"(*) ⊆ span"()).

• If) ⊆ (, C ∈ (\) and B ∈ span"() + C) \ span"()) then C ∈ span"() + B).

Definition 13.12. Letℳ = ((,ℐ) be a matroid. A subset - ⊆ (is a flat ofℳ iff

span"(-) = -.

Exercise 13.5. Prove the following properties about flats.

• If �1 and �2 are flats then �1 ∩ �2 is a flat.

• If � is a flat and C ∈ (\ � and �′ is a smallest flat containing � + C then
there is no flat �′′ with � ⊂ �′′ ⊂ �′.

Exercise 13.6. Show that a set � ⊆ (is independent in a matroidℳ iff ∀H ∈ �,
there exists a flat � such that � − H ⊆ � and H ∉ �.

Remark 13.1. We showed basic properties of bases, circuits, rank, span and flats

of a matroid. One can show that a matroid can alternatively be specified by

defining its bases or circuits or rank or span or flats that satisfy these properties.

We refer the reader to [57].

13.1.3 Operations on a Matroid

Definition 13.13. A matroidℳ = ((,ℐ) is defined as connected if Aℳ(*) + Aℳ((\
*) > Aℳ(() for each * ⊆ (,* ≠ ∅. Equivalently, for each B, C ∈ (, B ≠ C, there is a
circuit containing both B, C.

CHAPTER 13. MATROIDS 153

Dual

Given a matroidℳ = ((,ℐ) its dual matroidℳ∗ = ((,ℐ∗) is defined as follows:

ℐ∗ = {� ∈ (| (\ � is spanning inℳ , i.e., Aℳ((\�) = Aℳ(()}.
Exercise 13.7. Verify that ((,ℐ∗) is indeed a matroid.

The following facts are easy to prove:

1. ℳ∗∗ =ℳ.

2. � is a base ofℳ∗ iff (\� is a base ofℳ.

3. Aℳ∗(*) = |* | + Aℳ((*) − Aℳ(()
Remark 13.2. Having an independence or rank oracle forℳ implies one has it

forℳ∗ too.
Exercise 13.8. Prove thatℳ is connected if and only ifℳ∗ is.

Deletion

Definition 13.14. Given a matroid ℳ = ((,ℐ) and 4 ∈ (, deleting 4 from ℳ
generates a new matroid

ℳ′ =ℳ\4 = ((− 4 ,ℐ′), (13.1)

where ℐ′ = {� − 4 |� ∈ ℐ}. For / ⊆ (, the matroidℳ\/ is obtained similarly by

restricting the matroidℳ to (\/.

Contraction

Definition 13.15. Given a matroidℳ = ((,ℐ) and 4 ∈ (, the contraction of the

matroid with respect to 4 is defined asℳ/4 = (ℳ∗\4)∗, i.e., it is obtained by deleting
4 in the dual and taking its dual. Similarly for a set / ⊆ (, we can similarly define

ℳ// = (ℳ∗\/)∗

One can also define contraction in a different way which is perhaps more

natural. It is instructive to consider it from a graph theoretic perspective. If 4 is

a loop,ℳ/4 =ℳ\4, elseℳ/4 = ((− 4 ,ℐ′)where

ℐ′ = {� ∈ (− 4 |� + 4 ∈ ℐ}.
For the case of contracting a subset /, we can take a base - ⊆ / and "// =
((\/,ℐ′), where

ℐ′ = {� ∈ (\/ |� ∪ / ∈ ℐ}.
Also

Aℳ//(-) = Aℳ(- ∪ /) − Aℳ(/)

CHAPTER 13. MATROIDS 154

Exercise 13.9. Show that

ℳ/{41 , 42} = (ℳ/41)/42 = (ℳ/42)/41. (13.2)

Minor

Similar to graph minors, matroid minors can be defined, and they play an

important role in characterizing the type of matroids.

Definition 13.16. A matroidℳ′ is a minor of a matroidℳ ifℳ′ is obtained from

ℳ by a sequence of contractions and deletions.

13.2 MaximumWeight Independent Set in a Matroid

Matroids have some important algorithmic properties, the simplest one being

that the problem of determining the maximum weight independent set in

a matroid can be solved using a greedy algorithm. The maximum weight

independent set problem is stated as follows: Givenℳ = ((,ℐ) and F : (→ ',

output

arg max

�∈ℐ
F(�). (13.3)

13.2.1 Greedy Algorithm

The greedy algorithm can be stated as follows:

1. Discard all 4 ∈ (where F(4) ≤ 0 or 4 is a loop.

2. Let (= {41 , ..., 4=} such that F(41) ≥ F(42)... ≥ F(4=).

3. - ← ∅.

4. For 8 = 1 to = do

if (- + 48 ∈ ℐ) then - ← - + 48 .

5. Output -.

The above algorithm had to specifically take care of loops and edges with

non-negative weights. An equivalent algorithm is the following.

1. Let (= {41 , ..., 4=} such that F(41) ≥ F(42)... ≥ F(4=).

2. - ← ∅.

3. For 8 = 1 to =, do

if (- + 48 ∈ ℐ) and F(- + 48) ≥ F(-), then - ← - + 48 .

CHAPTER 13. MATROIDS 155

4. Output -.

Theorem 13.17. The greedy algorithm outputs an optimum solution to the maximum

weight independent set problem.

Proof. Without loss of generality, assume F(4) > 0,∀4 ∈ (and that there are no

loops.

Claim 13.2.1. There exists an optimum solution that contains 41.

Assuming this claim is true, we can use induction to show that greedy

algorithmhas to yield an optimumsolution. This is because the greedy algorithm

is recursively finding an optimum solution in the matroidℳ′ which is obtained

by contracting 41; formallyℳ′ = ((− 4 ,ℐ′)where ℐ′ = {� ∈ (− 4 | � + 41 ∈ ℐ}.
To prove the claim, let �∗ be an optimum solution. If 41 ∈ �∗, we are done,

else, we can see that �∗ + 41 is not independent, otherwise F(�∗ + 41) > F(�∗)
contradicting optimality of �∗. Thus �∗ + 41 contains a circuit, and hence, from

Corollary 13.8, ∃4 ∈ �∗ such that �∗ − 4 + 41 ∈ ℐ. F(�∗ − 4 + 41) ≥ F(�∗) since
F(41) has the largest weight among all the elements in the set. Thus there is an

optimum solution �∗ − 4 + 41 that contains 41. �

Remark 13.3. If all weights are non-negative then it is easy to see that the greedy

algorithm outputs a base ofℳ. We can adapt the greedy algorithm to solve the

maximum weight base problem by making all weights non-negative by adding

a large constant to each of the weights. Thus max-weight base problem, and

equivalently min-cost base problem can be solved (by taking the weights to be

the negative of the costs).

Remark 13.4. Kruskal’s algorithm for finding the maximum weight spanning

tree can be interpreted as a special case of the greedy algorithm for matroids

when applied to the graphic matroid corresponding to the graph.

Oracles for a Matroid

Since the set of all independence sets could be exponential in |(|, it is infeasible
to use this representation. Instead we resort to one of the two oracles in order to

efficiently solve optimization problems:

• An independence oracle that given � ⊆ (, returns whether � ∈ ℐ or not.

• A rank oracle that given � ⊆ (, returns Aℳ(�).

These two oracles are equivalent in the sense that one can be recovered from

the other in polynomial time.

CHAPTER 13. MATROIDS 156

13.3 Matroid Polytope

Edmonds utilized the Greedy algorithm in proving the following theorem:

Theorem 13.18. The following polytope is the convex hull of the characteristic vectors

of the independent sets of a matroidℳ = ((,ℐ) with rank function Aℳ : 2
(→Z+,

G(�) ≤ Aℳ(�) ∀� ⊆ (,
G(�) ≥ 0.

Also, the system of inequalities described above is TDI.

Proof. We will show that the above system of inequalities is TDI (Totally Dual

Integral), which will in turn imply that the polytope is integral since Aℳ(.) is
integer valued.

Let us consider the primal and dual linear programs for some integral weight

vector F : (→Z. We will show that the solution picked by Greedy algorithm

is the optimal solution for primal by producing a dual solution that attains the

same value. Alternately we could show that the dual solution and the primal

solution picked by Greedy satisfy complementary slackness.

Primal: max

∑
4∈(

F(4)G(4)

G(�) ≤ A(�), ∀ � ⊆ (
G ≥ 0

Dual: min

∑
�⊆(

A(�)H(�)∑
�:4∈�

H(�) ≥ F(4), ∀4 ∈ (

H ≥ 0

Let (= {41 , ..., 4=} such that F(41) ≥ F(42)... ≥ F(4=) ≥ 0, since setting

F(48) = 0 whenever F(48) < 0 does not alter the solution to the primal or dual.

Define � 9 = {41 , ..., 4 9} with �0 = ∅. It is easy to see that A(� 9) = A(� 9−1) + 1 iff

4 9 is picked by Greedy. Consider the following dual solution

H(� 9) = F(4 9) − F(4 9+1), 9 < =

= F(4=), 9 = =
H(�) = 0, if � ≠ � 9 for some 9

Claim 13.3.1. H is dual feasible.

CHAPTER 13. MATROIDS 157

Clearly, H ≥ 0 since F(4 9) ≤ F(4 9−1) for all 9 ≤ =. Consider any 8.∑
�:48∈�

H(�) =

∑
9≥8

H(�8)

=
©­«
=−1∑
9=8

(F(4 9) − F(4 9+1)
ª®¬ + H(�=)

=
©­«
=−1∑
9=8

(F(4 9) − F(4 9+1)
ª®¬ + F(4=)

= F(48).

Define � = {8 | 48 is picked by Greedy}. As we noted earlier, 8 ∈ � ⇐⇒
A(�8) = A(�8−1) + 1.

Claim 13.3.2. ∑
8∈�

F(48) =
∑
�⊆(

A(�)H(�)

Proof. ∑
8∈�

F(48) =

∑
8∈�

F(48)(A(�8) − A(�8−1))

=

=∑
9=1

F(4 9)(A(� 9) − A(� 9−1))

= F(4=)H(�=) +
=−1∑
9=1

(F(4 9) − F(4 9+1))A(� 9)

=

=∑
9=1

H(� 9)A(� 9)

=

∑
�⊆(

A(�)H(�).

�

Thus H is dual optimal, and the solution produced by Greedy is primal

optimal. Further, we have an integral dual optimal solution whenever F is

integral, and therefore the system is TDI. �

CHAPTER 13. MATROIDS 158

Corollary 13.19. The base polytope ofℳ = ((, �), i.e., the convex hull of the bases of
ℳ is determined by

G(�) ≤ A(�),∀� ⊆ (,
G(() = A(()
G ≥ 0

13.3.1 Spanning Set Polytope

Another polytope associated with a matroid is the spanning set polytope, which

is the convex hull of the incidence vectors of all spanning sets.

Theorem 13.20. The spanning set polytope of a matroidℳ = ((, �) with rank function
Aℳ is determined by

0 ≤ G(4) ≤ 1, ∀4 ∈ (
G(*) ≥ Aℳ(() − Aℳ((*), ∀* ⊆ (.

Proof. A given set � ⊆ (is spanning inℳ iff (\� is independent inℳ∗. Thus
G ∈ Pspanning(ℳ) iff 1 − G ∈ Pindependence(ℳ∗). Now, by the relation between the

ranks of dual matroids,

Aℳ∗(*) = |* | + Aℳ((*) − Aℳ(().

Thus 1 − G ∈ Pindependence(ℳ∗) iff

1 − G ≥ 0,

|* | − G(*) ≤ Aℳ∗(*) = |* | + Aℳ((*) − Aℳ((),

which matches the statement of the theorem. �

13.3.2 Separation Oracle

We have now determined that the independence polytope of a matroid is

given by the linear conditions G ≥ 0 and G(*) ≤ Aℳ(*), * ⊆ (. The greedy

algorithm allows us to optimize over the polytope and by the equivalence

between optimization and separation, there is a polynomial time separation

oracle for the polytope. It is instructive to consider it explicitly.

For the separation problem, given a test vector I : (→ ℝ, we need to find

out if I ∈ Pindependence(ℳ). We can easily test for non-negativity. To test the

second condition, it is sufficient to check that min�⊆((Aℳ(�) − I(�)) ≥ 0. In fact

any violated inequality in the linear system can be found by constructing the set

* = arg min

�⊆(
(Aℳ(�) − I(�)).

CHAPTER 13. MATROIDS 159

Define 5 : 2
(→ ℝ, where 5 (�) = Aℳ(�) − I(�). 5 is a submodular set

function since A(·) is the submodular rank function and −I(·) is modular. Thus

if we can minimize an arbitrary submodular function specified by a value oracle,

we can use the same for separating over a matroid polytope. However, there is a

more efficient algorithm for separating over the independence polytopes given

by Cunningham. See [57] for details.

13.3.3 Primal proof for Matroid Polytope

For a matroid " = ((,ℐ) the following system of inequalities determines the

convex hull of the independent sets of " (i.e., sets in ℐ):

G(*) ≤ A"(*) * ⊆ (
G(4) ≥ 0 4 ∈ (

where A"(·) is the rank function of". The first proof was based on a dual fitting

technique via the Greedy algorithm for a maximum weight independent set

problem.

We give a different primal proof that is built on uncrossing. This is based on

[40].

Theorem 13.21. Let G be an extreme point of the polytope

(∗)
{
G(*) ≤ A"(*) * ⊆ (
G(4) ≥ 0 4 ∈ (

Then there is some 4 ∈ (such that G(4) ∈ {0, 1}.
The following corollary follows by induction from Theorem 13.21. We leave a

formal proof as an exercise.

Corollary 13.22. The system of inequalities (∗) determine the independent set polytope

of " = ((,ℐ).
Now we turn our attention to the proof of Theorem 13.21.

Proof. Proof of Theorem 13.21 Let G be an extreme solution for the polytope (∗).
Suppose that " has a loop 4. Since A"({4}) = 0, it follows that G(4) = 0 and

we are done. Therefore we may assume that " does not have any loops and

thus the polytope (∗) is full dimensional2. Now suppose that G(4) ∈ (0, 1) for all
2A polytope is full dimensional if it has an interior point, i.e., a point G that does not satisfy any

of the constraints with equality. Consider G such that, for all 4, G(4) = & for some 0 < & < 1/|(|.
Clearly, G(4) > 0 for any 4. For any set* , we have G(*) = & |* | < 1. If " does not have any loops,

A" (*) ≥ 1 for all sets* . Thus " is full-dimensional if there are no loops.

CHAPTER 13. MATROIDS 160

elements 4 ∈ (. Let = denote the number of elements in (. Let

ℱ = {* | * ⊆ (, G(*) = A"(*)}

Differently said, ℱ is the set of all sets whose constraints are tight at G (i.e., sets

whose constraints are satisfied with equality by the solution G).

Before proceeding with the proof, we note that the submodularity for the

rank function A"(·) implies that ℱ has the following “uncrossing” property.

Lemma 13.3. If �, � ∈ ℱ then � ∩ � and � ∪ � are in ℱ .

Proof. Let � and � be two sets in ℱ ; thus G(�) = A"(�) and G(�) = A"(�). It
follows from the submodularity of the rank function that

G(�) + G(�) = A"(�) + A"(�) ≥ A"(� ∩ �) + A"(� ∪ �)

Additionally,

G(�) + G(�) = G(� ∩ �) + G(� ∪ �)
Therefore G(� ∩ �) + G(� ∪ �) ≥ A"(� ∩ �) + A"(� ∪ �). Since G(� ∩ �) ≤
A"(� ∩ �) and G(� ∪ �) ≤ A"(� ∪ �), it follows that G(� ∩ �) = A"(� ∩ �) and
G(� ∪ �) = A"(� ∪ �). Thus � ∩ � and � ∪ � are also in ℱ . �

Let "(*) denote the characteristic vector of* . Since G is a vertex solution, (∗) is
full dimensional, and G(4) ≠ 0 for all 4, there is a collection {*1 , *2 , . . . , *=} of
= sets such that G satisfies the constraint corresponding to each*8 with equality

(i.e., G(*8) = A"(*8) for 1 ≤ 8 ≤ =) and the vectors "(*1), . . . , "(*=) are linearly
independent. Therefore the set {"(*) | * ∈ ℱ } has = linearly independent

vectors.

For a setA ⊆ 2
(
, let B?0=(A) denote B?0=({"(*) | * ∈ A}), where "(*) is

the characteristic vector of* .

Lemma 13.4. There exists a laminar family C ⊆ ℱ such that B?0=(C) = B?0=(ℱ).
Moreover, C is a chain, i.e., for any two sets �, � ∈ C, either � ⊆ � or � ⊆ �.
Assuming Lemma 13.4, we can complete the proof of Theorem 13.21 as follows.

Let C be the chain guaranteed by Lemma 13.4. Since B?0=(C) = B?0=(ℱ), there
exists a chain C′ ⊆ C such that |C′ | = = and G is the unique solution to the

system

G(*) = A"(*) * ∈ C′

Let C′ = {�1 , �2 , . . . , �=}; wlog, �1 ⊂ �2 ⊂ · · · ⊂ �= . Let �0 = ∅. Suppose that
there exists an 8 such that |�8 \ �8−1 | = 1, and let 4 ∈ �8 \ �8−1. Now we claim

that we must have G(4) ∈ {0, 1}. To see why this is true, note that we have

G(4) = G(�8) − G(�8−1) = A"(�8) − A"(�8−1)

CHAPTER 13. MATROIDS 161

Since A"(�8) − A"(�8−1) is an integer and A"(�8−1) ≤ A"(�8) ≤ A"(�8−1) + 1,

it follows that A"(�8) − A"(�8−1) ∈ {0, 1}. But this contradicts the fact that

G(4) ∈ (0, 1). Therefore we may assume that |�8 \ �8−1 | ≥ 2. But then |(| ≥ 2=,

which is a contradiction.

Finally, we turn our attention to the proof of Lemma 13.4.

Proof of Lemma 13.4. Let C be a chain in ℱ that is maximal with respect

to inclusion (i.e., C is not a proper subset of any chain in ℱ). We claim

that B?0=(C) = B?0=(ℱ). Suppose not and let � ∈ ℱ be such that "(�) ∈
B?0=(ℱ)\B?0=(C). If there are several such sets�, we choose one thatminimizes

the number of sets in C that it properly intersects3.

Now suppose that � does not properly intersect any set in C. Clearly, C + �
is not a chain, since this contradicts the maximality of C. Therefore there exist
�, �′ ∈ C such that � is the minimal set in C that contains � and �′ is the

maximal set in C that is contained in �. By Lemma 13.3, �∪ �′ is in ℱ . If �∪ �′
is a proper subset of �, C + (� ∪ �′) is a chain, which contradicts the maximality

of C. Therefore we must have � ∪ �′ = �. Since � and �′ are disjoint, we

have "(�) + "(�′) = "(�) and thus "(�) is in the span of "(�) and "(�′), which

contradicts the fact that "(�) ∉ B?0=(C).
Therefore we may assume that � properly intersects a set � in C. By

Lemma 13.3, � ∪ � and � ∩ � are in ℱ .

Proposition 13.3.1. Each of � ∪ �, � ∩ � properly intersects fewer sets in C than �.

Assuming Proposition 13.3.1, we can complete the proof as follows. It fol-

lows from our choice of � that � ∪ � and � ∩ � are both in B?0=(C). Since

"(�) + "(�) = "(� ∪ �) + "(� ∩ �), it follows that "(�) is in B?0=(C) as well,

which is a contradiction. Therefore it suffices to prove Proposition 13.3.1.

Proof of Proposition 13.3.1. Since each of�∪�, �∩� does not properly intersect

�, it suffices to show that if a set �′ ∈ C properly intersects �∪ � (or �∩ �) then
it properly intersects � as well.

Let �′ ∈ C be a set that properly intersects � ∪ �. Since � and �′ are both in

�, it follows that one of �, �′ is a subset of the other. If �′ is a subset of �, �′ is
contained in � ∪ � (and thus does not properly intersect � ∪ �). Therefore �
must be a proper subset of �′. Clearly, �′ intersects � (since � ∩ � is nonempty).

If �′ does not properly intersect �, it follows that one of �, �′ is a subset of the
other. If � ⊆ �′, it follows that � ∪ � ⊆ �′, which is a contradiction. Therefore

we must have � ⊂ �′ ⊆ �, which is a contradiction as well. Thus �′ properly
intersects �.

3Two sets - and . properly intersect if - ∩ ., - − .,. − - are all non-empty.

CHAPTER 13. MATROIDS 162

Let �′ ∈ C be a set that properly intersects �∩ �. Clearly, �′ intersects � and

thus it suffices to show that �′ \� is nonempty. As before, one of �, �′ is a subset
of the other. Clearly, �′ must be a subset of � (since otherwise � ∩ � ⊆ � ⊆ �′).
Now suppose that �′ ⊆ �. Since �′ is a subset of �, it follows that �′ ⊆ � ∩ �,
which is a contradiction. Therefore �′ \ � is non-empty, as desired. �

13.4 Facets and Edges of Matroid Polytopes

Recall that the following system of inequalities determines the matroid polytope.

(∗)
{
G(*) ≤ A"(*) * ⊆ (
G(4) ≥ 0 4 ∈ (

Throughout this section, we assume that the matroid has no loops and thus the

polytope is full dimensional.

It is useful to knowwhich inequalities in the above system are redundant. As

we will see shortly, for certain matroids, the removal of redundant inequalities

gives us a system with only polynomially many constraints.

Recall that a flat is a subset* ⊆ (such that* = B?0=(*). Consider a set*

that is not a flat. Since A"(*) = A"(B?0=(*)) and* ⊂ B?0=(*), any solution G

that satisfies the constraint

G(B?0=(*)) ≤ A"(B?0=(*))

also satisfies the inequality

G(*) ≤ A"(*)
Therefore we can replace the system (∗) by

(∗∗)
{
G(�) ≤ A"(�) � ⊆ (, � is a flat

G(4) ≥ 0 4 ∈ (

Definition 13.23. A flat � is separable if there exist flats �1 , �2 such that �1 and �2

partition � and

A"(�1) + A"(�2) = A"(�)

If � is a separable flat, any solution G that satisfies the constraints

G(�1) ≤ A"(�1)

G(�2) ≤ A"(�2)

CHAPTER 13. MATROIDS 163

also satisfies the constraint

G(�) ≤ A"(�)
since G(�) = G(�1)+G(�2) and A"(�) = A"(�1)+A"(�2). Thereforewe can remove

the constraint G(�) ≤ A"(�) from (∗∗). Perhaps surprisingly, the resulting system

does not have any redundant constraints. The interested reader can consult

Chapter 40 in [57] for a proof.

Theorem 13.24. The system of inequalities

G(�) ≤ A"(�) � ⊆ (, � is an inseparable flat

G(4) ≥ 0 4 ∈ (

is a minimal system for the independent set polytope of a loopless matroid ".

As an example, consider the uniform matroid. The independent set polytope for

the uniform matroid is determined by the following constraints:∑
4∈(

G(4) ≤ :

G(4) ≥ 0 4 ∈ (
Similarly, the independent set polytope for the partition matroid induced by the

partition (1 , . . . , (ℎ of (and integers :1 , . . . , :ℎ is determined by the following

constraints: ∑
4∈(8

G(4) ≤ :8 1 ≤ 8 ≤ :

G(4) ≥ 0 4 ∈ (
Finally, consider the graphic matroid induced by a graph � = (+, �). The base
polytope of a graphic matroid corresponds to the the spanning tree polytope,

which is determined by the following constraints:

G(�[*]) ≤ |* | − 1 * ⊆ +
G(�) = |+ | − 1

G(4) ≥ 0 4 ∈ �

where �[*] is the set of edges inside the vertex set* ⊆ + .

Definition 13.25. Two vertices G, G′ of a polyhedron % are adjacent if they are contained

in a face � of % of dimension one, i.e., a line.

Theorem 13.26. Let " = ((,ℐ) be a loopless matroid. Let � , � ∈ ℐ, � ≠ �. Then

"(�) and "(�) are adjacent vertices of the independent set polytope of " if and only if

|�4� | = 1 or |� \ � | = |� \ � | = 1 and A"(�) = A"(�) = |� | = |� |.
The interested reader can consult [57] for a proof.

CHAPTER 13. MATROIDS 164

13.5 Further Base Exchange Properties

We saw earlier the following base exchange lemma.

Lemma 13.5. Let � and �′ be two bases of a matroid ", and let H be an element of

�′ \ �. Then

1. there exists G ∈ � \ �′ such that �′ − H + G is a base

2. there exists G ∈ � \ �′ such that � + H − G is a base

We will prove a stronger base exchange theorem below and derive some corol-

laries that will be useful in matroid intersection and union.

Theorem 13.27 (Strong Base Exchange Theorem). Let �, �′ be two bases of a matroid

". Then for any G ∈ � \�′ there exists an H ∈ �′ \� such that �− G+ H and �′− H+ G
are both bases.

Proof. Let G be any element in � \ �′. Since �′ is a base, �′ + G has a unique

circuit �. Moreover, for any H ∈ � − G we have �′ − H + G is a base. However, we

want to find a H such that � − G + H is also a base and for this we need to choose

a H ∈ � − G carefully — not all H ∈ � − G are suitable (consider the case of two

spanning trees in a graph as an example).

Let � = (� ∪ �) − G. Since G ∈ B?0=(� − G) it follows that B?0=(�) =
B?0=(�) = (and hence � contains a base. Let �′′ be a base from � that contains

� − G. We have �′′ = � − G + H, for some H ∈ � − G. This is the desired H. �

In fact, Theorem 13.27 holds when �, �′ are independent sets of the same size

instead of bases.

Corollary 13.28. Let � , � be two independent sets of a matroid " = ((,ℐ) such that
|� | = |� |. Then for any G ∈ � \ � there exists an H ∈ � \ � such that � − G+ H and � − H+ G
are both independent sets.

Proof. Let : = |� | = |� |. Let "′ = ((,ℐ′), where

ℐ′ = {� | � ∈ ℐ and |� | ≤ :}

It is straightforward to verify that "′ is a matroid as well. Additionally, since

every independent set in"′ has size at most :, � and � are bases in"′. It follows

from Theorem 13.27 that for any G ∈ � \ � there exists an H ∈ � \ � such that

� − G + H and � − H + G are both bases in"′, and thus independent sets in". �

CHAPTER 13. MATROIDS 165

Let " = ((,ℐ) be a matroid, and let � ∈ ℐ. We define a directed bipartite

graph �"(�) as follows. The graph �"(�) has vertex set (; more precisely, its

bipartition is (� , (\ �). There is an edge from H ∈ � to I ∈ (\ � iff � − H + I is an
independent set.

Lemma 13.6. Let " = ((,ℐ) be a matroid, and let � , � be two independent sets in "

such that |� | = |� |. Then �"(�) has a perfect matching on �4� 4.

Proof. We will prove the lemma using induction on |�4� |. If |�4� | = 0, the

lemma is trivially true. Therefore we may assume that |�4� | ≥ 1. It follows

from Corollary 13.28 that there exists an H ∈ � and I ∈ � such that �′ = � − H + I
and �′ = � + H − I are independent sets. Note that |�′4�′ | < |�4� | and |�′ | = |�′ |.
It follows by induction that �"(�) has a perfect matching # on �′4�′. Then

∪ {(H, I)} is a perfect matching on �4�. �

Lemma 13.7. Let " = ((,ℐ) be a matroid. Let � be an independent set in ", and let

� be a subset of (such that |� | = |� |. If �"(�) has a unique perfect matching on �4�
then � is an independent set.

Before proving the lemma, we note the following useful property of unique

perfect matchings.

Proposition 13.5.1. Let � = (-,., �) be a bipartite graph such that � has a unique

perfect matching # . Then we can label the vertices of - as G1 , . . . , GC , and we can label

the vertices of . as H1 , . . . , HC such that

= {(G1 , H1), . . . , (GC , HC)}

and (G8 , H9) ∉ � for all 8 , 9 such that 8 < 9.

Proof. We start by noting that there is an edge GH ∈ # such that one of G, H has

degree one. We construct a trail5 by alternately taking an edge in # and an edge

not in # , until either we cannot extend the trail or we reach a previously visited

vertex. Now suppose that the trail has a cycle �. Since � is bipartite, � has

even length. Thus we can construct a perfect matching from # by removing the

edges of � that are in # and adding the edges of � that are not in # , which

contradicts the fact that � has a unique perfect matching. Therefore we may

assume that the trail is a path. If the last edge of the trail is not in # , we can

extend the trail by taking the edge of # incident to the last vertex. Therefore the

last edge must be in # . Then the last vertex on the trail has degree one, since

4A perfect matching on a set* is a matching such that (is the set of endpoints of the edges in

the matching.

5A trail is a walk in which all edges are distinct.

CHAPTER 13. MATROIDS 166

otherwise we could extend the trail using one of the edges incident to it that are

not in # . It follows that the last edge of the trail is the desired edge.

Now let GH be an edge in # such that one of its endpoints has degree one in

�. Suppose that G has degree one. We let G1 = G, H1 = H, and we remove G and

H to get a graph �′. Since # − GH is the unique perfect matching in �′, it follows

by induction that we can label the vertices of �′ such that

− GH = {(G2 , H2), . . . , (GC , HC)}

such that (G8 , H9) is not an edge in �′, for all 2 ≤ 8 < 9 ≤ C. Since G1 has degree

one in �, we are done. Therefore we may assume that H has degree one. We let

GC = G, HC = H, and we remove G and H to get a graph �′. As before, it follows by

induction that we can label the vertices of �′ such that

− GH = {(G1 , H1), . . . , (GC−1 , HC−1)}

such that (G8 , H9) is not an edge in �′, for all 1 ≤ 8 < 9 ≤ C − 1. Since HC has degree

one in �, we are done. �

Proof of Lemma 13.7. Let � denote the (undirected) subgraph of �"(�) induced
by �4�, and let # denote the unique perfect matching in �. Since � is a bipartite

graph, it follows from Proposition 13.5.1 that we can label the vertices of � \ � as
H1 , . . . , HC , and we can label the vertices of � \ � as I1 , . . . , IC such that

= {(H1 , I1), . . . , (HC , IC)}

and (H8 , I 9) ∉ �(�), for all 1 ≤ 8 < 9 ≤ C.
Now suppose that � is not independent, and let � be a circuit in �. Let 8 be

the smallest index such that I8 ∈ �. Consider any element I 9 in � − I8 . Since
9 > 8, it follows that (H8 , I 9) ∉ �"(�). Therefore any element I in � − I8 is in
B?0="(� − H8), since for any I ∈ � − I8 , either I is in � ∩ � or I = I 9 for some 9.

Hence � − I8 is a subset of B?0=(� − H8). Since � is a circuit,

� ⊆ B?0=(� − I8) ⊆ B?0=(� − H8)

Thus I8 ∈ B?0=(�−H8), which contradicts the fact that �−H8+I8 is independent. �

Corollary 13.29. Let " = ((,ℐ) be a matroid, and let � ∈ ℐ. Let � be a subset of (
with the following properties:

1. |� | = |� |

2. A"(� ∪ �) = |� |

3. �"(�) has a unique perfect matching on �4�

CHAPTER 13. MATROIDS 167

Let 4 be any element not in � ∪ � such that � + 4 ∈ ℐ. Then � + 4 ∈ ℐ.

Proof. It follows from Lemma 13.7 that � is independent. Since A"(� ∪ �) = |� |,
both � and � are maximal independent sets in � ∪ �. Thus � ⊆ B?0=(�) and
� ⊆ B?0=(�). Since � + 4 is independent, 4 ∉ B?0=(�). As we have seen in

Lecture 14, since � ⊆ B?0=(�), it follows that B?0=(�) ⊆ B?0=(�). Therefore

4 ∉ B?0=(�) and thus � + 4 is independent. �

Chapter 14

Matroid Intersection1

One of several major contributions of Edmonds to combinatorial optimization

is algorithms and polyhedral theorems for matroid intersection, and more

generally polymatroid intersection.

From an optimization point of view, the matroid intersection problem is

the following: Let "1 = ((,ℐ1) and "2 = ((,ℐ2) be two matroids on the same

ground set (. Then ℐ1 ∩ ℐ2 is the collection of all sets that are independent in

both matroids.

One can ask the following algorithmic questions:

1. Is there a common base in the two matroids? That is, is there ℐ ∈ ℬ1 ∩ ℬ2

where ℬ1 and ℬ2 are the bases of "1 and "2.

2. Output a maximum cardinality set in ℐ1 ∩ ℐ2.

3. Given F : (→<, output a maximum weight set in ℐ1 ∩ ℐ2. Or output a

maximum weight common base, if it exists.

Remark 14.1. It is easy to see that the intersection of twomatroids, i.e., ((,ℐ1∩ℐ2),
is not necessarily a matroid.

Exercise 14.1. If "1 = ((,ℐ1) is a matroid and "2 = ((,ℐ2) is the uniform

matroid, then "3 = ((,ℐ1 ∩ ℐ2) is a matroid.

As one can imagine, matroid intersection can capture several additional

optimization problems beyondmatroids. We give some canonical and illustrative

examples.

1Based on notes scribed by Jason Sauppe in 2010.

168

CHAPTER 14. MATROID INTERSECTION 169

Figure 14.1: Example of a branching

Example 14.1. Bipartite Matching Let � = (+, �) be a bipartite graph with

bipartition � ∪ �. Let "1 = (�,ℐ1) and "2 = (�,ℐ2) be two partition matroids

on �, where

ℐ1 = {�′ ⊆ � | |�(E) ∩ �′ | ≤ 1, E ∈ �}
ℐ2 = {�′ ⊆ � | |�(E) ∩ �′ | ≤ 1, E ∈ �}.

Then it is easy to see that � ∈ ℐ1 ∩ ℐ2 if and only if � induces a matching in

�. Thus bipartite matching problems are special cases of matroid intersection

problems.

Example 14.2. Branchings and Arborescences Let � = (+, �) be a directed graph.

A branching in� is a set of edges �′ ⊆ � such that the in-degree of each node is at

most one and the edges in � form a forest. (An example is shown in Figure 14.1.)

An arborescence rooted at a node A ∈ + is a directed out-tree such that A has a

path to each node E ∈ + . Thus an arborescence is a branching in which A is the

only node with in-degree 0.

Consider two matroids "1 = (�,ℐ1) and "2 = (�,ℐ2) where "1 = (�,ℐ1) is
a partition matroid:

ℐ1 = {�′ ⊆ � | |�−(E) ∩ �′ | ≤ 1, E ∈ +}

and "2 is a graphic matroid on � = (+, �D) obtained by making an undirected

graph on + by removing directions from arcs in � with:

ℐ2 = {�′ ⊆ � | �′ induces a forest in �D}

It is easy to see that ℐ1 ∩ ℐ2 is the set of all branchings, and a common basis

corresponds to arborescences.

Example 14.3. Colorful Spanning Trees Let � = (+, �) where edges in � are

colored with : colors. That is, � = �1] �2] . . .] �: . Suppose we are given

integers ℎ1 , ℎ2 , . . . , ℎ: and wish to find a spanning tree that has at most ℎ8
edges of color 8 (i.e., from �8). Observe that this can be phrased as a matroid

intersection problem: it is the combination of a spanning tree matroid and a

partition matroid.

CHAPTER 14. MATROID INTERSECTION 170

14.1 Min-max Theorem for Maximum Cardinality Inde-
pendent Set

We now state a min-max theorem for the size of the maximum cardinality set in

the intersection of two matroids.

Theorem14.1. Let"1 = ((,ℐ1) and"2 = ((,ℐ2) be twomatroids with rank functions

A1 and A2. Then the size of the maximum cardinality set in ℐ1 ∩ ℐ2 is given by:

min

*⊆(
A1(*) + A2((*)

Proof. Let � ∈ ℐ1 ∩ ℐ2. Take any set* ⊆ (. Then

� = |� ∩* | + |� * | ≤ A1(*) + A2((*)

since � ∩* ∈ ℐ1 and � * ∈ ℐ2. �

We prove the difficult direction algorithmically. That is, we describe an

algorithm for the maximum cardinality set in ℐ1∩ℐ2 that, as a byproduct, proves
the other direction.

The algorithm is an “augmenting” path type algorithm inspired by bipartite

matching andmatroid base exchange properties that we discussed earlier. Given

� ∈ ℐ1 ∩ ℐ2, the algorithm outputs a � ∈ ℐ1 ∩ ℐ2 such that |� | = |� | + 1, or certifies

correctly that � is a maximum cardinality set in ℐ1 ∩ ℐ2 by exhibiting a set* ⊆ (
such that |� | = A1(*) + A2((*).

Recall that for a matroid " = ((,ℐ) and � ∈ ℐ, we defined a directed graph

�"(�) = ((, �(�))where

�(�) = {(H, I) | H ∈ � , I ∈ (\ � , � − H + I ∈ ℐ}

as a graph that captures exchanges for �.

Now we have two matroids "1 and "2 and � ∈ ℐ1 ∩ ℐ2 and we wish to

augment � to another set � ∈ ℐ1 ∩ ℐ2 if possible. For this purpose we define a

graph �"1 ,"2
(�) = ((, �(�))where

�(�) = {(H, I) | H ∈ � , I ∈ (\ � , � − H + I ∈ ℐ1}
∪ {(I′, H′) | I′ ∈ (\ � , H′ ∈ � , � − H′ + I′ ∈ ℐ2}

In otherwords,�"1 ,"2
(�) is the union of�"1

(�) and the reverse of�"2
(�). In this

sense there is asymmetry in "1 and "2. (An example is shown in Figure 14.2.)

(H, I) ∈ �(�) ⇒ � − H + I ∈ ℐ1
(I′, H′) ∈ �(�) ⇒ � − H′ + I′ ∈ ℐ2

CHAPTER 14. MATROID INTERSECTION 171

y’

z

z’

y

S\II

Figure 14.2: Exchange Graph �"1 ,"2
(�)

Let -1 = {I ∈ (\ � | � + I ∈ ℐ1} and -2 = {I ∈ (\ � | � + I ∈ ℐ2}, and let %

be a shortest path from -1 to -2 in �"1 ,"2
(�). Note that the shortest path could

consist of a single I ∈ -1 ∩ -2. There may not be any path % between -1 and -2.

Lemma 14.1. If there is no -1−-2 path in�"1 ,"2
(�), then � is a maximum cardinality

set in ℐ1 ∩ ℐ2.

Proof. Note that if -1 or -2 are empty then � is a base in one of "1 or "2 and

hence a max cardinality set in ℐ1 ∩ ℐ2. So assume -1 ≠ ∅ and -2 ≠ ∅. Let* be

the set of nodes that can reach -2 in �"1 ,"2
(�). No -1 − -2 path implies that

-1 ∩* = ∅, -2 ⊆ * , and �−(*) = ∅ (i.e., no arcs enter *). Then we have the

following:

Claim 14.1.1. A1(*) ≤ |� ∩* |

Proof. If A1(*) > |� ∩* |, then ∃I ∈ * \ (� ∩*) such that (� ∩*) + I ∈ ℐ1 with

� + I ∉ ℐ1. If � + I ∈ ℐ1, then I ∈ -1 and -1 ∩* ≠ ∅, contradicting the fact that

there is no -1 − -2 path. Since (� ∩*) + I ∈ ℐ1 but � + I ∉ ℐ1, there must exist a

H ∈ � * such that � − H + I ∈ ℐ1. But then (H, I) ∈ �(�), contradicting the fact

that �−(*) = ∅ (shown in Figure 14.3).

�

Claim 14.1.2. A2((*) ≤ |� * | (The proof is similar to the previous proof.)

Thus |� | = |� ∩ * | + |� \ * | ≥ A1(*) + A2((\ *), which establishes that

|� | = A1(*) + A2((*). Therefore, � is a max cardinality set in ℐ1 ∩ ℐ2. �

Lemma 14.2. If % is a shortest -1 − -2 path in �"1 ,"2
(�), then �′ = �Δ+(%) is in

ℐ1 ∩ ℐ2.

CHAPTER 14. MATROID INTERSECTION 172

X
1

X
2

S\II

z

y

U

Figure 14.3: Exchange Graph with a (H, I) arc entering*

y
1

y
2

y
t

z
0

z
1

z
t

S\II

Figure 14.4: A path % in �"1 ,"2
(�)

Proof. Recall the following lemma from the previous lecture which we will use

here:

Lemma 14.3. Let" = ((,ℐ) be a matroid. Let � ∈ ℐ and � ⊆ (such that |� | = |� |. If
there is a unique perfect matching on �Δ� in �(�), then � ∈ ℐ.

Let % = I0 , H1 , I1 , . . . , HC , IC (shown in Figure 14.4) be a shortest path from -1

to -2. Let � = {I1 , . . . , IC} ∪ (� \ {H1 , . . . , HC}). Then � ⊆ (, |� | = |� |, and the arcs

from {H1 , . . . , HC} to {I1 , . . . , IC} form a unique perfect matching from � \ � to � \ �
(otherwise % has a short cut and is not a shortest path). Then by Lemma 14.3,

� ∈ ℐ1.
Also, I8 ∉ -1 for 8 ≥ 1, otherwise % would not be the shortest possible

CHAPTER 14. MATROID INTERSECTION 173

-1 − -2 path. This implies that I8 + � ∉ ℐ1, which implies that A1(� ∪ �) =
A1(�) = A1(�) = |� | = |� |. Then since � + I0 ∈ ℐ1, it follows that � + I0 ∈ ℐ1 (i.e.,

�′ = (� \ {H1 , . . . , HC}) ∪ {I0 , I1 , . . . , IC} ∈ ℐ1).
By symmetry, �′ ∈ ℐ2. This implies that �′ ∈ ℐ1 ∩ ℐ2. �

Theorem 14.2. There is a polynomial time algorithm to find a maximum cardinality

set in the intersection of two matroids.

Algorithm 5 computes a maximum cardinality independent set in the

intersection of two matroids "1 and "2 in polynomial time.

Algorithm 5 Algorithm for Maximum Cardinality Independent Set in Intersec-

tion of Two Matroids

1: procedure maxIndepSet("1 = ((,ℐ1), "2 = ((,ℐ2))
2: � ← ∅
3: repeat
4: Construct �"1 ,"2

(�)
5: -1 ← {I ∈ (\ � | � + I ∈ ℐ1}
6: -2 ← {I ∈ (\ � | � + I ∈ ℐ2}
7: Let % be a shortest -1 − -2 path in �"1 ,"2

(�)
8: if % is not empty then
9: � ← �Δ+(%) ⊲ �′ = (� \ {H1 , . . . , HC}) ∪ {I0 , I1 , . . . , IC}
10: end if ⊲ Else % is empty and � is maximal

11: until � is maximal

12: end procedure

14.2 Weighted Matroid Intersection

We saw an algorithm for finding a maximum cardinality set in the intersection

of two matroids. The algorithm generalized in a straightforward fashion to the

weighted case. The correctness is more complicated and we will not discuss it

here. See [57].

The algorithm for the weighted case is also an augmenting path algorithm.

Recall the cardinality algorithm 5: The weighted case differs only in finding %.

Let F : (→ <+ be the weights. Then in computing % we assign weights to

each vertex G ∈ �"1 ,"2
(�) as F(G) if G ∈ � and −F(G) to G ∉ �. The desired path

% should now be a minimum length path according to the weights; further, %

should have the smallest number of arcs among all minimum length paths.

Theorem14.3. There is a strongly polynomial time combinatorial algorithm forweighted

matroid intersection.

CHAPTER 14. MATROID INTERSECTION 174

14.3 Matroid Intersection Polytope

Edmonds proved the following theorem about the matroid intersection polytope:

Theorem 14.4. Let "1 = ((,ℐ1) and "2 = ((,ℐ2) be two matroids on (. Then the

convex hull of the characteristic vectors of sets in ℐ1 ∩ ℐ2 is determined by the following

set of inequalities:

G ≥ 0

G(*) ≤ A1(*) ∀* ⊆ (
G(*) ≤ A2(*) ∀* ⊆ (

where A1 and A2 are the rank functions of"1 and"2, respectively. Moreover, the system

of inequalities is TDI. In other words,

%common indep. set("1 , "2) = %indep. set("1) ∩ %indep. set("2).

Proof. Consider the primal-dual pair

max

∑
4∈(

F(4)G(4)

subject to G(*) ≤ A1(*) ∀* ⊆ (
G(*) ≤ A2(*) ∀* ⊆ (

G ≥ 0

min

∑
*⊆(

(
A1(*)H1(*) + A2(*)H2(*)

)
subject to

∑
*⊆(
*34

(
H1(*) + H2(*)

)
≥ F(4) ∀ 4 ∈ (

H1 ≥ 0

H2 ≥ 0

We will prove that the dual has an integral optimum solution whenever F is

integral. We can assume that F(4) ≥ 0 for each 4 without loss of generality.

Lemma 14.4. There exists an optimum solution H∗
1
, H∗

2
to the dual such that

ℱ1 = {* ⊆ (| H∗
1
(*) > 0}

ℱ2 = {* ⊆ (| H∗
2
(*) > 0}

are chains.

CHAPTER 14. MATROID INTERSECTION 175

Proof. Choose an optimum H∗
1
, H∗

2
with ℱ1 = {* ⊆ (| H∗

1
(*) > 0} and ℱ2 = {* ⊆

(| H∗
2
(*) > 0} such that the number of proper intersections plus the number of

disjoint sets in ℱ1 and ℱ2 is minimal.

Then for �, � ∈ ℱ1, if � and � properly intersect or are disjoint, we can

increase H∗
1
(�∩�) and H∗

1
(�∪�) by & and decrease H∗

1
(�) and H∗

1
(�) by & to create

a new dual solution. This new solution is still dual feasible since

"(� ∪ �) + "(� ∩ �) = "(�) + "(�).

and the dual objective value changes by

−&
(
A1(�) + A1(�)

)
+ &

(
A1(� ∪ �) + A1(� ∩ �)

)
.

By the submodularity of A1, this is ≤ 0. If this value is < 0, then this contradicts

the optimality of the original solution H∗
1
, H∗

2
. On the other hand, if this value

equals 0, then we have a new optimum solution for the dual. Increasing & by
the largest amount without violating non-negativity of the H1 values will ensure

that H∗
1
(�) or H∗

1
(�) becomes 0. The new dual solution has a smaller number of

proper intersections plus disjoint sets in ℱ1 , ℱ2, contradicting the choice of H∗
1
, H∗

2
.

This follows similarly for �, � ∈ ℱ2.

Another way to do the above argument is to choose among all optimum dual

solutions H1 , H2 the one that minimizes

∑
⊆((H1() + H2(*))|* | |(* |. One can

show that uncrossing as above strictly reduces this value while maintaining the

optimality of the solution. �

The following very useful lemma was shown by Edmonds.

Lemma 14.5. Let (be a set and ℱ1 and ℱ2 be two laminar families on (. Let

ℱ = ℱ1 ∪ ℱ2 and let � be the (× ℱ incidence matrix. Then � is the transpose of a

network matrix and hence is a TUM.

Proof sketch. Each laminar family is naturally associated with a rooted forest

where each set - of the laminar family becomes a node E- and the parent of E-
is E. iff . is the inclusion-wise minimal set in the family that contains - and is

not -. The roots of the forest are the maximal sets in the laminar family. Given

ℱ1 and ℱ2 we create the rooted forests, one for each of them, and create a single

directed tree) as follows. We add a new root vertex A and connect the roots of

both forests to A. We direct all edges in the forest for ℱ1 towards A and all edges

in the forest for ℱ2 away from A. This creates the directed tree) for the network

matrix. We will now create the directed graph for the network matrix — note

that the directed graph will have have the same vertex set as the directed tree)

we created. Now consider any element 4 ∈ (. If 4 does not belong to any set in

ℱ1 or ℱ2 then we can ignore it since its row in the matrix � is an all 0 row. First

CHAPTER 14. MATROID INTERSECTION 176

assume that 4 belongs to at least one set in ℱ1 and at least one set in ℱ2. Let -

be the minimal set in ℱ1 that contains 4 and let . be the minimal set in ℱ2 that

contains 4. We add the arc (E- , E.) to the directed graph. One can see that the

directed path in) from E- to E. goes from E- to A in the forest corresponding to

ℱ1 and then from A to E. in the forest corresponding to the ℱ2 and the alignment

of the arcs implies that all corresponding entries in the network matrix will be 0

or 1 (we do not get any −1 entries). If 4 belongs to only a set in ℱ1, say -, then

we add the arc (E- , A) to the directed graph. Similarly if it belongs only to a set

. in ℱ2 then we add the arc (A, E.) to the directed graph. See Fig 14.5.

We leave it as an exercise to verify that the resulting network matrix is

precisely the incidence matrix � that we seek. �

Let H∗
1
, H∗

2
be an optimum dual solution such that ℱ1 and ℱ2 are chains. Let

ℱ ⊆ ℱ1 ∪ ℱ2. Thus there is an optimum dual solution when restricted to sets

* ⊆ ℱ . Hence an optimum solution to the following system is an optimum

solution to the original dual.

min

∑
*∈ℱ

(
A1(*)H1(*) + A2(*)H2(*)

)
∑
*∈ℱ
*34

(
H1(*) + H2(*)

)
≥ F(4) ∀ 4 ∈ (

H1 , H2 ≥ 0

Then by Lemma 14.5, the constraint matrix for the above system corresponds

to a TUMmatrix. This implies that there is an integral solution H1 , H2 for integral

F. From this we can conclude that the dual LP has an integral optimum solution

whenever F is integral, and therefore the system of inequalities for the matroid

intersection polytope is TDI. �

CHAPTER 14. MATROID INTERSECTION 177

EE

R R
Ru BI

Az

R R R Ru B B D

f

e I 0 1 0 I 1 O

e 0100 1 1 of

ex 0 0 0 1 0 0 l

et O 0 0 I 0 I 0

8 0 0 0 I 0 0

EE

R R
Ru BI

Az

R R R Ru B B D

f

e I 0 1 0 I 1 O

e 0100 1 1 of

ex 0 0 0 1 0 0 l

et O 0 0 I 0 I 0

8 0 0 0 I 0 0

É
T

Figure 14.5: Proof of Lemma 14.5. Two laminar families over a ground set of

seven elements and the corresponding incidence matrix. Third figure shows the

construction to prove that the incidence matrix is a network matrix. The red and

blue edges correspond to the two laminar families that form the directed tree).

The green edges, one per element of (, form the directed graph for the network

matrix.

Chapter 15

Matroid Union1

Matroid union and matroid intersection are closely related in the sense that one

can be derived from the other. However they are from different perspectives

and have different applications.

15.1 Motivation

To motivate matroid union theorem we state a well known theorem of Tutte and

Nash-Williams on packing disjoint spanning trees in graphs.

Theorem 15.1 (Nash-Williams and Tutte). An undirected multi-graph � = (+, �)
contains : edge-disjoint spanning trees iff for every partition % of + into ℓ sets,

+1 , +2 , . . . , +ℓ , the number of edges crossing the partition % is at least :(ℓ − 1).

It is easy to see that the condition is necessary; if)1 , . . . ,): are the edge-

disjoint spanning trees then each)8 has to contain at least ℓ − 1 edges across the

partition % to connect them. A useful corollary of the above was observed by

Gusfield. It is an easy exercise to derive this from the above theorem.

Corollary 15.2. If a multi-graph � = (+, �) is 2:-edge-connected then � contains :

edge-disjoint spanning trees.

Nash-Williams proved a related theorem on covering the edge-set of a graph

by forests.

Theorem 15.3 (Nash-Williams). Let � = (+, �) be an undirected multi-graph. Then

� can be partitioned into : forests iff for each set* ⊆ + ,

|�[*]| ≤ :(|* | − 1). (15.1)

1Based on notes scribed by Quan Geng in 2010.

178

CHAPTER 15. MATROID UNION 179

Again, necessity is easy to see; any forest can contain at most |* | − 1 edges

from �[*]. The above two theorems were first shown via graph theoretica

arguments but turn out to be special cases of the matroid union theorem, and

hence are properly viewed as matroidal results.

15.2 A Lemma of Nash-Williams

We start with a basic result of Nash-Williams that gives a clean proof of the

matroid union theorem to follow.

Theorem 15.4 (Nash-Williams). Letℳ′ = ((′,ℐ′) be a maroid with rank function

A′. Let 5 : (′ → (be a function mapping (′ to (. Let ℳ = ((,ℐ) , where
ℐ = { 5 (�′) | �′ ∈ ℐ′}. Thenℳ is a matroid with rank function A, where

A(*) = min

)⊆*
(|* \) | + A′(5 −1()))). (15.2)

Before we proceed with the proof we interpret the theorem. The mapping 5

when viewed from the side of (′ partitions (′: each part corresponds to 5 −1(D)
for some D ∈ (. Thus 5 can be viewed as starting with a partition of (′ and
naming each part by an element of (.

Proof. We start with a simple observation. Suppose � ∈ ℐ. Then there is an

�′ ∈ ℐ′ such that 5 (�′) = �. Suppose we choose �′minimal such that 5 (�′) = �;
then it follows that for all D ∈ �, �′∩ 5 −1(D) is a singleton since ℐ′ is downclosed.

This also implies that |�′ | = |�|.
We verify the three axioms to prove thatℳ is a matroid.

1. 5 (∅) = ∅ and hence ∅ ∈ ℐ.

2. Say � ∈ ℐ and � ⊆ �. Then

� ∈ ℐ ⇒ ∃�′ ∈ ℐ′, s.t. 5 (�′) = �
⇒ ∀D ∈ �, 5 −1(D) ∩ �′ ≠ ∅.

Let �′ = {D′ ∈ �′ | 5 (D′) ∈ �}, then � = 5 (�′) and since �′ ⊆ �′, �′ ∈ ℐ′
and hence � ∈ ℐ.

3. Say �, � ∈ ℐ and |�| > |�|. Let �′ be minimal s.t. 5 (�′) = �. Similarly let

�′ be minimal s.t. 5 (�′) = �. As we noted before, due to minimality, we

have |�′ | = |�| and |�′ | = |�|. Since |�| > |�| it follows that |�′ | > |�′ |. This
implies that there is 4′ ∈ �′\�′ such that�′+ 4′ ∈ ℐ′. Suppose 5 (4′) ∈ �\�
then 5 (�′+4′) = �+ 5 (4′) andwe are done. However it may be the case that

5 (4′) ∈ �. If this happens then there is 4′′ ∈ �′ − �′ such that 5 (4′′) = 5 (4′).

CHAPTER 15. MATROID UNION 180

However, if this happens, we can consider �′′ = � + 4′ − 4′′. Notice that

5 (�′′) = � and �′′ ∈ ℐ′. We also observe that |�′′ ∩ �′ | > |�′ ∩ �′ |. Thus,
to make the argument work we choose �′, �′ minimal such that 5 (�′) = �
and 5 (�′) = � and among all such �′, �′ the pair that maximize |�′ ∩ �′ |.
It then follows, from the preceding argument, that for any 4′ ∈ �′ \ �′,
5 (4′) ∈ � \ �.

Thereforeℳ is a matroid.

We now derive the rank formula forℳ. Although one can derive it from

elementary methods, it is easy to obtain it from the matroid intersection theorem.

Recall that ifℳ1 = (#,ℐ1) andℳ2 = (#,ℐ2) are two matroids on # , then the

max cardinality of a common independent set in ℐ1 ∧ ℐ2 is given by

min

-⊆#
A1(-) + A2(#\-).

Now consider * ⊆ (. Let *′ = 5 −1(*). We observe that � ⊆ * is

independent in ℐ iff there is an �′ ⊆ 5 −1(*) such that |�′ | = |�|, 5 (�′) = � and

�′ is independent in ℐ′.
Define a matroidℳ′′ = ((′,ℐ′′), where

ℐ′′ = {� ⊆ 5 −1(*) | |� ∩ 5 −1(*)| ≤ 1, D ∈ *}.

Note thatℳ′′ is a partition matroid. Let A′′ be the rank ofℳ′′. We leave the

following claim as an exercise.

Claim 15.2.1. A(*) is the size of a maximum cardinality independent set inℳ′∧ℳ′′.
Therefore, by the matroid intersection theorem we have that

A(*) = min

)⊆*′
(A′()) + A′′(*′ \))) = min

)⊆*
(A′(5 −1())) + |* \) |),

using the fact thatℳ′′ is a partition matroid. We leave it to the reader to verify

the second equality in the above. �

Remark 15.1. The proof of the preceding lemma shows that the rank function of

ℳ can be efficiently evaluated via an efficient algorithm for matroid intersection

(and oracle access to A′). Having an algorithm for evaluating A allows us to

optimize overℳ via the greedy algorithm.

CHAPTER 15. MATROID UNION 181

15.3 Matroid Union Theorem and Applications

We now formally define the notion of matroid union and the theorem formulated

by Edmonds.

Letℳ1 = ((1 ,ℐ1), . . . ,ℳ: = ((: ,ℐ:) be matroids. Define

ℳ =ℳ1 ∨ℳ2 ∨ · · · ∨ℳ: = ((1 ∪ (2 ∪ · · · ∪ (: ,ℐ),

where

ℐ = ℐ1 ∨ ℐ2 ∨ · · · ∨ ℐ: := {�1 ∪ �2 ∪ · · · ∪ �: | �8 ∈ ℐ8 , 1 ≤ 8 ≤ :}.

Theorem 15.5 (Matroid Union). Letℳ1 = ((1 ,ℐ1), . . . ,ℳ: = ((: ,ℐ:) be matroids.

Then

ℳ =ℳ1 ∨ℳ2 ∨ · · · ∨ℳ: (15.3)

is a matroid. The rank function ofℳ is given by A, where

A(*) = min

)⊆*
(|*\) | + A1() ∩ (1) + · · · + A:() ∩ (:)). (15.4)

Remark 15.2. Note that the interesting case is when (1 , (2 , . . . , (: are not nec-

essarily disjoint. If they are then the theorem is straight forward. In fact even

: = 2 the fact thatℳ1 ∨ℳ2 is a matroid is not obvious. The reader may want

to try the obvious proof strategy and see why it does not quite work while it is

easy to see it when (1 , (2 are disjoint.

Remark 15.3. The preceding theorem is also referred to as the matroid partition

theorem for the following reason. A set * ∈ (is independent inℳ iff * can

be partitioned into*1 , . . . , *: , such that for 1 ≤ 8 ≤ :,*8 is independent in ℐ8 ;
note that*8 are allowed to be ∅.

Proof. Let (′
1
, . . . , (′

:
be copies of (1 , . . . , (: , such that

(′8 ∩ (′9 = ∅, 8 ≠ 9.

Letℳ′
8
= ((′

8
,ℐ′
8
), where ℐ′

8
corresponds to ℐ8 . Let (′ = (′

1
] (′

2
] · · ·] (′

:
and

defineℳ′ = ((′,ℐ′), where

ℐ′ = {�′
1
∪ �′

2
∪ · · · ∪ �′: | �

′
8 ∈ ℐ8}.

It is easy to verify thatℳ′ is a matroid since it is disjoint union of matroids.

Moreover, it is also easy to see that the rank function ofℳ′ is the following:

A′()′) = ∑:
8=1
A′
8
()′ ∩ (′

8
) for any)′ ⊆ (′.

Now define 5 : (′ → (where (= (1 ∪ (2 ∪ · · · ∪ (: , and 5 (B′) = B if B′ is
the copy of B. Thenℳ is obtained fromℳ′ by 5 , and hence by Theorem 15.4,

CHAPTER 15. MATROID UNION 182

ℳ is a matroid. Recall that the rank function of ℳ, via the same theorem,

is given by A(*) = min)⊆* |* \) | + A′(5 −1())). Let)′ = 5 −1()). We have

seen that A′()′) = ∑:
8=1
A′
8
((′
8
∩)′). We leave it as an exercise to verify that∑:

8=1
A′
8
((′
8
∩)′) = ∑:

8=1
A8((8 ∩)). This gives the desired formula for the rank

function ofℳ. �

Remark 15.4. The proof of the preceding theorem shows that the rank function of

ℳ can be efficiently evaluated via an efficient algorithm for matroid intersection

and oracle access to A1 , A2 , . . . , A: . Having an algorithm for evaluating A allows

us to optimize overℳ via the greedy algorithm.

We state a useful corollary.

Corollary 15.6. Letℳ = ((,ℐ) be a matroid and : be an integer. Then the maximum

rank of the union of : independent sets ofℳ is equal to

min

*⊆(
(|(* | + : · A(*)). (15.5)

Proof. Takeℳ′ to be union ofℳ1 ∨ℳ2 ∨ · · · ∨ℳ: , whereℳ8 =ℳ. Then the

union of : independent sets inℳ is an independent set inℳ′. Thus we are

asking for the maximum possible rank inℳ′. (achieves the maximum rank

and by the previous theorem

A′(() = min

*⊆(
(|(* | + : · A((∩*)) (15.6)

= min

*⊆(
(|(* | + : · A(*)). (15.7)

�

We now easily derive two important theorems that were first stated by

Edmonds.

Theorem 15.7 (Matroid base covering theorem). Letℳ = ((,ℐ) be a matroid.

Then (can be covered by : independent sets iff

|* | ≤ : · A(*),∀* ⊆ (. (15.8)

Proof. (can be covered by : independent sets iff the rank of (in the union of

ℳ1 ∨ℳ2 ∨ · · · ∨ℳ: , whereℳ8 =ℳ, is equal to |(|. By Corollary 15.6, this is

equivalent to

|(* | + : · A(*) ≥ |(|,∀* ⊆ (
⇒ : · A(*) ≥ |* |,∀* ⊆ (.

�

CHAPTER 15. MATROID UNION 183

Exercise 15.1. Derive Nash-Williams forest-cover theorem (Theorem 15.3) as a

corollary.

Now we derive the matroid base packing theorem, also formulated by

Edmonds.

Theorem 15.8 (Matroid Base Packing Theorem). Letℳ = ((,ℐ) be a matroid.

Then there are : disjoint bases inℳ iff

:(A(() − A(*)) ≤ |(* |,∀* ⊆ (. (15.9)

Proof. To see necessity, consider any set * ⊆ (. Any base � has the property

that A(�) = A((). And A(� ∩*) ≤ A(*). Thus

� ∩ ((*) ≥ A(() − A(*).

Therefore if there are : disjoint bases then each of these bases requires

A(() − A(*) distinct elements from (* , and hence

:(A(() − A(*)) ≤ |(* |.

For sufficiency, we take the :-fold union ofℳ and there are : disjoint bases

if A′(() in the union matroidℳ′ satisfies the equation

A′(() = : · A(()

in other words,

min

*⊆(
|(* | + : · A(*) = : · A(()

⇒ |(* | + : · A(*) ≥ : · A(()|
�

Exercise 15.2. Derive Nash-Williams-Tutte theorem on packing spanning trees

(Theorem 15.1) as a corollary.

15.4 Algorithmic and Polyhedral Aspects

Let ℳ = ℳ1 ∨ ℳ2 ∨ · · · ∨ ℳ: . Algorithmic results for ℳ follow from an

independence oracle or rank oracle forℳ. Recall that a set � ∈ ℐ is independent

in ℳ iff � an be partitioned into �1 , �2 , . . . , �: such that for 1 ≤ 8 ≤ :, �8 is

independent in ℐ8 . Note that this is non-trivial to solve.

Theorem 15.9. Given rank functions A1 , . . . , A: forℳ1 , . . . ,ℳ: , as polynomial time

oracles, there is a polynomial time algorithm to implement the rank function oracle A for

ℳ =ℳ1 ∨ℳ2 ∨ · · · ∨ℳ: .

CHAPTER 15. MATROID UNION 184

We sketch the proof of the above theorem. Recall the construction in

Theorem 15.5 that showedℳ is a matroid. We first constructed an intermediate

matroidℳ′ by taking copies ofℳ1 , . . . ,ℳ: and then applied Theorem 15.4 to

mapℳ′ toℳ.

For the matroidℳ′, one easily obtains an algorithm to implement A′ from
A1 , . . . , A: , i.e.

A′(*) =
:∑
8=1

A8(* ∩ (′8).

Recall that we obtained the rank function A for ℳ from A′ for ℳ′ using
matroid intersection (see proof of Theorem 15.4). Thus, one can verify that an

algorithm for matroid intersection implies an algorithm for A using algorithms

for A1 , . . . , A: . There is also a direct algorithm that avoids using the matroid

intersection algorithm— see [57] for details.

Polyhedrally, the base covering and packing theorems imply and are implied

by the following

Theorem 15.10. Given a matroidℳ = ((,ℐ), the independent set polytope and base
polytope ofℳ have the integer decomposition property.

Exercise 15.3. Prove the above theorem using Theorem 15.7 and 15.8.

Capacitated case and algorithmic aspects of packing and covering: The ma-

troid union algorithm allows us to obtain algorithmic versions of the matroid

base covering and base packing theorems. As a consequence, for example, there

is a polynomial time algorithm that given a multi-graph � = (+, �), outputs the
maximum number of edge-disjoint spanning trees in �. It is also possible to

solve the capacitated version of the problems in polynomial time. More precisely,

letℳ = ((,ℐ) and let 2 : (→ Z+ be integer capacities on the elements of (.

The capacitated version of the base packing theorem is to ask for the maximum

number of bases such that no element 4 ∈ (is in more than 2(4) bases. Similarly,

for the base covering theorem, one seeks a minimum number of independent

sets such that each element 4 is in at least 2(4) independent sets. The capacitated
case be handled by making 2(4) copies of each element 4, however, this would

give only a pseudo-polynomial time algorithm.

Assuming we have a polynomial time rank oracle for ℳ, the following

capaciatated problems can be solved in polynomial time. To solve the capacitated

versions, one needs polyhedral methods; see [57] for more details.

1. fractional packing of bases, i.e., let ℬ denote the set of bases ofℳ,

CHAPTER 15. MATROID UNION 185

max

�∈ℬ
��∑

�34
�� ≤ 2(4),∀4 ∈ (

�� ≥ 0

2. integer packing of bases, same as above but �� are restricted to be integer.

3. fractional covering by independent sets, i.e.

min

�∈ℐ
��∑

�34
�� ≥ 2(4),∀4 ∈ (

� ≥ 0

4. integer covering by independent sets, same as above but �� are constrained
to be integer.

Matroid Intersection from Matroid Union: We have seen that the matroid

union algorithm follows from an algorithm for matroid intersection. The

converse can also be shown. To see this, letℳ1 andℳ2 be two matroids on

the same ground set (. Then, one can find the maximum cardinality common

independent set inℳ1 ∧ℳ2 be consideringℳ1 ∨ℳ∗
2
whereℳ∗

2
is the dual of

ℳ2.

Chapter 16

Spanning Trees and
Arborescences1

16.1 Spanning Trees

Let� = (+, �) be an undirected graph and let 2 : �→ ' be an edge-cost function.

Efficient polynomial time algorithms for computing a minimum cost spanning

tree (MST) are standard. Spanning trees in � are bases in the associated graphic

matroid and Kruskal’s algorithm for MST is the essentially the greedy algorithm

for computing a minimum cost base in a matroid. From polyhedral results on

matroids we obtain corresponding results for spanning trees.

The spanning tree polytope of � = (+, �) is the polytope formed by the

convex hull of the characteristic vectors of spanning trees of �, and is determined

by the following inequalities. We have a variable G(4) for each 4 ∈ � and for a

set* ⊆ + , �[*] is the set of edges with both end points in* .

G(�) = = − 1

G(�[*]) ≤ |* | − 1 * ⊆ +
G ≥ 0

If we drop the constraint G(�) = = − 1, then we obtain the convex hull of the

characterstic vectors of forests in �, called the forest polytope of �; note that

forests are the independent sets in the graphic matroid of �. Note that the set of

constraints in the above system do not include all the constraints that we would

include if we view the spanning tree as a matroid polytope: we would have

1Based on notes scribed by Jing Gao in 2010. Mohit Singh pointed out some errors in the

previous version of the notes.

186

CHAPTER 16. SPANNING TREES AND ARBORESCENCES 187

inequalities of the form G(() ≤ rank(() for each (⊆ �. However, we argued in

Section 13.4 that we can drop some redundant constraints.

A natural cut-based formulation for spanning trees is the following:

G(�(*)) ≥ 1 ∀∅ ⊂ * ⊂ (

G ≥ 0

It is easy to check that every spanning tree satisfies the above constraints, but

the following example shows that the constraints do not determine the spanning

tree polytope. Take � to the =-cycle �= and set G(4) = 1

2
on each edge; satisfies

the cut-constraints but cannot be written as a convex combination of spanning

trees. In fact, it does not even satisfy the constraint that G(�) = = − 1.

1/2

1/2 1/2

1/2

1/2

1/21/2

1/2

Figure 16.1: Cut LP is not integral for spanning tree.

Exercise 16.1. Show that even if we add the constraint G(�) = = − 1 to the

cut-constraints, it still does not determine the spanning tree polytope.

We have seen Tutte-Nash-Williams Theorem on maximum number of edge-

disjoint spanning trees. Matroid union theorem gives polynomial-time algo-

rithms to find a maximum number of edge-disjoint spanning trees in a given

graph. We have also seen Nash-Williams forest cover theorem and again matroid

union algorithm can be used to obtain the minimum number of forests that

cover �.

16.2 Branchings and Arborescences

Let � = (+, �) be a directed graph. Recall that a branching is a set of edges

�′ ⊆ � such that

1. �−1

�′ (E) ≤ 1 ∀E ∈ + , i.e., at most one edge in �′ enters any node E;

2. �′ when viewed as undirected edges induces a forest on + .

CHAPTER 16. SPANNING TREES AND ARBORESCENCES 188

Figure 16.2: Example of a Branching

An arborescence is a branching that has in-degree 1 for all nodes except one,

called the root. An arborescence has a directed path from the root to each node

E ∈ + .

Proposition 16.2.1. Let � = (+, �) be a directed graph and let A ∈ + . If A can reach

every node E ∈ + , then there is an arborescence in � rooted at A. If � is strongly

connected, then for every E ∈ + , there is an arborescence rooted at E.

Branchings and Matroid Intersection: We saw earlier that branchings in a

directed graph � = (+, �) can be viewed as the common independent sets in

the intersection of two matroids on �. Let "1 = (�,ℐ1) where ℐ1 = {�′ ⊆ �
| |�′ ∩ �−1(E)| ≤ 1 ∀E ∈ +}. "1 is a partition matroid. "2 = (�,ℐ2) where

ℐ2 = {�′ ⊆ � | �′ when viewed as undirected edges induces a forest on +}. "2

is a graphic matroid. Thus, one easily sees that ℐ1 ∩ ℐ2 is precisely the set of

branchings. Moreover, for a fixed A, if we modify "1 such that "1 = {�′ ⊆ � |
|�′∩�−1(E)| ≤ 1 ∀E ∈ +\{A} and |�′∩�−1(A)| = 0}, then the set of arborescences

rooted at A are precisely the common bases of ℐ1 and ℐ2.
Using matroid intersection results, one can solve the following problems in

polynomial time:

• given � = (+, �) and F : �→ ', find a maximum weight branching;

• given � and 2 : �→ ', find a min-cost arborescence rooted at A;

• given � and 2 : �→ ', find a max-cost arborescence rooted at A;

Polyhedral results also follow from matroid intersection. However, one can

obtain direct and simple algorithms, and also polyhedral results, for arbores-

cences. We explain them below. We first address algorithms for the optimization

problems discussed above.

Combinatorial Algorithms: Let� = (+, �) and 2 : �→ '+ be a non-negative
cost function on the the arcs. We wish to find a min-cost arborescence rooted

at given node A ∈ + . We observe that a greedy algorithm similar to Prim’s

algorithm for computing an MST does not work.

CHAPTER 16. SPANNING TREES AND ARBORESCENCES 189

4

1

3

r

v u

Figure 16.3: An Example

For the above example, greedy method will pick (A, E) and then has to pick

(A, D) for total cost of 7. However, optimal arborescence is {(A, D), (D, E)} of cost
5.

Algorithm for min-cost r-aroborescence:

1. Let �0 = {0 ∈ � | 2(0) = 0} be the set of zero-cost arcs. If there is an

A-arborescence in �0 (of cost 0), output it as the min-cost arborescence.

2. Else, let (1 , . . . , (: be the vertex sets of the strong connected components

of �[�0]. Let
8 = min0∈�−1((8) 2(0), that is
8 is the cost of the min-cost

edge entering (8 .

for 8 = 1 to : do

for each 0 ∈ �−1((8)
2′(0) = 2(0) −
8

3. Recursively compute a min-cost arborescence in � = (+, �)with edge-cost

function 2′. Output the solution of recursive call.

First, we argue that the algorithm terminates in polynomial time. If �0 does

not contain an A-arborescence then at least one (8 has all incoming edges of

strictly positive cost (why?) and hence in step 2, at least one additional arc

has its cost reduced to zero; thus the size of �0 increases and hence at most

$(<) recursive calls suffice. In fact, if we shrink each (8 to a single vertex, one

can show that the number of vertices reduces by at least one and hence $(=)
recursive calls suffice. Since strong connected components can be found in $(<)
time, this leads to an $(<=) running time.

Now we argue correctness. It is easy to see that step 1 is correct. To argue

correctness of step 3, we have the following lemma.

Lemma 16.1. Let (1 , . . . , (: be vertex sets of the strong connected components of

�[�0]. Then there exists a min-cost arborescence �∗ in � s.t. |�−1((8) ∩ �∗ | = 1.

CHAPTER 16. SPANNING TREES AND ARBORESCENCES 190

Proof. Say �∗ is an optimal arborescence and |�∗ ∩ �−1((8)| ≥ 2. Let 0 =

arg min0′∈�∗∩�−1((8) 2(0
′) be the least cost arc entering (8 in �

∗
. Then let �′ =

(�∗ \ �−1((8)) ∪ {0} ∪ (�0 ∩ �[(8]); �′ is the set of arcs obtained by adding to

�∗ all zero-cost arcs inside (8 (�0 ∩ �[(8]) and removing all arcs from �∗ that
enter (8 other than the least cost arc 0 defined above. It is easy to check that

�′ contains an A-arborescence and moreover its cost is no more than that of

�0. Further, |�−1((8) ∩ �′ | = 1 and |�−1((9) ∩ �′ | = |�−1((9) ∩ �∗ | for all 9 ≠ 8.

Repeating the above process for each (8 gives the desired claim. �

This leads to the following theorem.

Theorem 16.1. There is an$(=<) time algorithm to compute a min-cost A-arborescence

in a directed graph with = nodes and < edges.

There is an $(< + = log =)-time algorithm to find a min-cost A-arboresence

problem [26]. There is also an algorithm that runs in $(< log log =) time for

integerweights [52]. Whether there is an$(<)-time deterministic or randomized

algorithm is an open problem.

Max-weight Arborescences and Branchings. Since any arborescence has ex-

actly =−1 edges, one can solve themax-weight arborescence by negatingweights,

adding a large positive number to make weights positive and then computing a

min-weight arborescence.

One can use the max-weight arborescence algorithm to compute a max-

weight branching. Note that given F : �→ ', we can assume F(0) ≥ 0 ∀0 by
removing all arcs with negative weights. We note that a max-weight branching

may not be maximal even when weights are positive; this is unlike the case of

matroids (in particular, a max-weight forest is a spanning tree if all weights

are non-negative and the input graph is connected). To solve the max weight

branching problem, we add a new vertex A and connect it to each E ∈ + with an

arc (A, E) of weight 0. Now we find a max-weight arborescence rooted at A. We

leave the correctness of this algorithm as an easy exercise.

16.2.1 Polyhedral Aspects

One can obtain polyhedral descriptions for branchings and arborescences via

matroid intersection. However, some natural and direct descriptions exist.

Let PA−0A1>A4B24=24(�) = 2>=E4GℎD;;{"(�) | � is a A-arborescence in �}.
Theorem 16.2. PA−0A1>A4B24=24(�) is determined by

G(0) ≥ 0 0 ∈ �
G(�−1(E)) = 1 E ∈ + \ {A}
G(�−1(*)) ≥ 1 * ⊆ + \ {A}

CHAPTER 16. SPANNING TREES AND ARBORESCENCES 191

One can prove the preceding in several different ways. We give one proof

below and suggest others in exercises and remarks.

Proof. We give an iterated rounding based proof to show that the following set

of inequalities

0 ≤ G(0) ≤ 1 0 ∈ �
G(�−1(*)) ≥ 1 * ⊆ + \ {A}

is the convex hull of the characteristic vectors of arc sets that contain an A-

arborescence. One can easily adapt the proof to show the theorem statement.

Let G be any basic feasible solution to the above system. We claim that ∃0 ∈ �
s.t. G(0) = 0 or G(0) = 1. In either case, we obtain the desired proof by induction

on |�|. If G(0) = 0 we consider �[� \ {0}], if G(0) = 1, we shrink the end points

of 0 into a single vertex and consider the resulting graph.

We now prove that ∃0 ∈ � s.t. G(0) ∈ {0, 1}. Assume not, then G(0) ∈ (0, 1)
∀0 ∈ �. Let ℱ = {* ∈ + \ {A} | G(�−1(*)) = 1} be the collection of tight sets.

Claim 16.2.1. Let -,. ∈ ℱ such that - ∪ . ≠ + . Then - ∩ ., - ∪ . ∈ ℱ .

One can prove the preceding via submodularity of the cut function.

Claim 16.2.2. Let ℒ be a maximal laminar family in ℱ . Then span({X(*) | * ∈
ℒ})=span({X(*) | * ∈ ℱ }).

The above claims are based on uncrossing arguments that we have seen in

several contexts. We leave the formal proofs as an exercise.

Since ℒ is a laminar family on + \ {A}, we have

|ℒ| ≤ 2(|+ | − 1) − 1 ≤ 2|+ | − 3

Since G(�−1(E)) ≥ 1 for each E ∈ + \ {A} and G(0) ∈ (0, 1) for all 0 ∈ �,

|�−1(E) ∩ �| ≥ 2 ∀E ∈ + \ {A}

This implies that |�| ≥ 2|+ | − 2. However, G is a basic feasible solution and ℒ
determines G, and thus |ℒ| = |�|, a contradiction. �

Remark 16.1. In fact, one can show that the system of inequalities is TDI and

this implies a min-max result as well. See [57] for more details. Note that the

arborescence polytope can be derived as a special case of thematroid intersection

polytope. Although the inequalities look a little different, as in the spanning

tree polytope, one can show that these set of inequalities also capture the same

polytope. However, one has to be more careful about the TDI property.

CHAPTER 16. SPANNING TREES AND ARBORESCENCES 192

16.3 Arc-Disjoint Arborescences

A beautiful theorem of Edmonds is the following.

Theorem 16.3. Let � = (+, �) be a digraph and let A ∈ + . � has : arc-disjoint

A-arborescences iff for each E ∈ + \ {A} there are : arc-disjoint paths from A to E.

Proof. If � has : arc-disjoint A-arborescences then clearly for each E ∈ + \ {A},
there are : arc-disjoint A → E paths in �, one in each of the arboresences.

We prove the converse via a proof given by Lovász using induction on :

(proof adapted from [39]). Let C = {* ⊂ + | A ∈ *} be the collection of

all proper subsets of + that contain A. Note that the condition that there are

:-arc-disjoint paths from A to each E is equivalent to, by Menger’s theorem,

|�+(*)| ≥ : ∀* ∈ C.

The idea is to start with the above condition and find an A-arborescence �1

s.t.

|�+(*) \ �1 |≥ : − 1 ∀* ∈ C.
Then, by induction, we will be done. We obtain �1 by growing an A-arborescence

from A as follows. We start with �1 = ∅ and (= {A}; (is the set of vertices

reachable from A via arcs in the current set of arcs �1. We maintain the property

that |�+(*) \ �1 |≥ : − 1 ∀* ⊂ +, A ∈ * . If we reach (= + , we are done.

S

!+(S)

Figure 16.4: (and �+(()

If (≠ + , we wish to find an arc in �+(() to add to �1 and grow (. Call a set

- ⊂ + critical/dangerous if

• - ∈ C and

• |�+(-) \ �1 | = : − 1, and

CHAPTER 16. SPANNING TREES AND ARBORESCENCES 193

• - ∪ (≠ +

Claim 16.3.1. Suppose there are no critical sets. Then any arc 0 ∈ �+(() can be used

to augment �1.

To see the claim, suppose we add 0 = (D, E) ∈ �+(() to �1 and we violate the

invariant; that is there is some* ⊂ +, A ∈ * such that |��−(�1+0)(*)| < :−1. This

implies that (D, E) ∈ ��(*) and |��−�1
(*)| = :−1. Moreover, since (D, E) ∈ �+(()

and (D, E) ∈ �+(*) we have E ∉ (∪* (hence (∪* ≠ +). Therefore* is critical.

If - is critical, then we cannot pick any unused arcs from �+(-) to grow �1.

The goal is to show that there always exists an arc 0 ∈ �+(() such that 0 does not

cross any critical set. We claim the following uncrossing property for critical

sets.

Claim 16.3.2. Let �′ = (+, � \ �1) Suppose -, . are critical and - ∪ . ≠ + , then
|��′(- ∩ .)| = |��′(- ∪ .)| = : − 1. Moreover, if - ∪ . ∪ (≠ + then - ∩ . and

- ∪ . are critical.

Proof. We have, by submodularity of the cut function |�+
�
()|,

|��′(-)| + |��′(.)| ≥ |��′(- ∪ .)| + |��′(- ∩ .)|.

Since A ∈ -∩. and A ∈ -∪. and-∪. ≠ + , we have that |��′(-∩.)| ≥ :−1 and

|��′(- ∪.)| ≥ : − 1. Since -, . are critical, |�+
�′(-)| = : − 1 and |��′(.)| = : − 1.

This implies,

(: − 1) + (: − 1) ≥ |��′(- ∩ .)| + |��′(- ∪ .)| ≥ (: − 1) + (: − 1)

and hence |��′(- ∩.)| = |��′(- ∪.)| = : − 1. If - ∪. ∪ (≠ + then - ∪. and

- ∩ . satisfy the definition of a critical set. �

Let - be a inclusion-wise maximal critical set.

Claim16.3.3. There exists an arc (D, E) ∈ �\�1 such that D ∈ (\- and E ∈ +\((∪-).

Proof. See Fig 16.6. Note that �1 ∩ �+(() = ∅ since (, by defintion, is a set of

reachable nodes in �1. Since - is a critical set we have (∪ - ≠ + , and hence

|�+((∪-)| ≥ : (by assumption on �) and |�+
�−�1

(-)| = : − 1 (since - is critical),

we have an arc as desired. See Figure 16.5. �

Now let �′
1
= �1 + (D, E). The claim is that for all* ∈ C, |�+(*) \�′

1
| ≥ : − 1.

Suppose not. Then let . be such that |�+(.) \ �′
1
| < : − 1 but this implies that

|�+(.) \ �1 | = : − 1, that is . is critical and (D, E) ∈ �+(.). But consider ., -
both critical and . ∪ - ≠ + since E ∉ ., E ∉ -. Moreover, since E ∉ (, we have

- ∪ . ∪ (≠ + . Therefore, - ∪ . is critical, which contradicts maximality of

-. �

CHAPTER 16. SPANNING TREES AND ARBORESCENCES 194

We note that the above theorem shows the integer decomposition property

for the arboresence polytope discussed earlier. The proof can be converted

into a polynomial time algorithm to find a maximum number of arc-disjoint

A-arborescences in a given digraph. First we let : be the minE∈+\{A} ��(A, E)
where ��(A, E) is the arc-connectivity between A and E. The theorem guarantees

: A-aroboresences. In the above proof, the main issue is to find in each iteration

an arc to augment �1 with. We note that given an arc 0, we can check if �1 + 0
satisfies the invariant by checking the min-cut value from A to each node E, in

the graph �′ = �[� \ (�1 + 0)]. The proof guarantees the existence of an arc 0

that can be used to augment �1 and hence one of the < arcs in � will succeed.

It is easy to see that this leads to a polynomial time algorithm. There is also a

polynomial time algorithm for the capacitated case. See [57] for details.

Edmonds derived the arc-disjoint A-arborescences theorem from a more

general theorem on disjoint branchings. We refer the reader to [57].

CHAPTER 16. SPANNING TREES AND ARBORESCENCES 195

rS X

Figure 16.5: All arcs from �1 ∩ �+(-) go from - to (

rS X

u

v

Figure 16.6: Proof of Claim 16.3.3.

Chapter 17

Submodular Set Functions and
Polymatroids1

Submodularity plays an important role in combinatorial optimization. Given a

finite ground set (, a set function 5 : 2
(→ ℝ is submodular2 if

5 (�) + 5 (�) ≥ 5 (� ∩ �) + 5 (� ∪ �) ∀�, � ⊆ ((17.1)

which can be rewritten as

5 (�) − 5 (� ∩ �) ≥ 5 (� ∪ �) − 5 (�) ∀�, � ⊆ (. (17.2)

A different looking definition is the following:

5 (� + 4) − 5 (�) ≥ 5 (� + 4) − 5 (�) ∀� ⊆ � and 4 ∈ (\ �. (17.3)

A seemingly restricted version of the preceding definition is the following:

5 (�+41)− 5 (�) ≥ 5 (�+42+41)− 5 (�+41+42) ∀� ⊆ (and distinct 41 , 42 ∈ (\�.
(17.4)

Definition 17.1. Given a real-valued set function 5 : 2
(→ ℝ the marginal value of

4 ∈ (to a set �, denoted by 5 (4 | �), is 5 (� + 4) − 5 (�). The marginal value of a set

- ⊆ (to another set �, denoted by 5 (- | �), is defined as 5 (- ∪ �) − 5 (�).

We see that (17.3) defines submodularity via the so called diminishing marginal

value/utility property.

1Based on notes scribed by Bolin Ding in 2010.

2A function 5 : 2
(→ ℝ is modular iff 5 (� ∪ �) + 5 (� ∩ �) = 5 (�) + 5 (�). 5 is modular iff

there exists a weight function F : (→ ℝ such that 5 (�) = ∑
4∈� F(4).

196

CHAPTER 17. SUBMODULAR SET FUNCTIONS AND POLYMATROIDS 197

Exercise 17.1. Prove that definitions (17.3) and (17.4) are equivalent. That is, any

set function that satisfies one property satisfies the other.

Exercise 17.2. Suppose 5 satisfies (17.3). Then prove that for all � ⊂ � and

- ⊂ (\ �, 5 (- | �) ≥ 5 (- | �). Use this to argue that (17.3) implies (17.2) and

hence (17.1).

Exercise 17.3. Prove that definitions (17.3) and (17.4) are equivalent. That is, any

set function that satisfies one property satisfies the other.

Exercise 17.4. Prove that (17.2) implies (17.3).

The preceding exercises show the equivalence of the definitions of submodu-

larity.

Additional properties of submodular set functions are useful to keep in mind

when considering specific settings and applications. A set function 5 : 2
(→ ℝ

is non-negative if 5 (�) ≥ 0 ∀� ⊆ (. 5 is symmetric if 5 (�) = 5 ((\ �) ∀� ⊆ (.
5 is monotone (non-decreasing) if 5 (�) ≤ 5 (�) ∀� ⊆ �. 5 is integer-valued if

5 (�) ∈ ℤ ∀� ⊆ (. 5 is normalized if 5 (∅) = ∅.

17.1 Examples of submodular set functions

Cut functions in graphs and hypergraphs. Given an undirected graph � =

(+, �) and a a non-negative edge capacities 2 : � → ℝ+, the cut function

5 : 2
+ → ℝ+ is defined as 5 (*) = 2(�(*)), that is, the sum of capacities of edges

between* and + * . 5 is submodular. It is non-negative, symmetric, but not

monotone.

In an undirected hypergraph � = (+, ℰ) with capacity function 2 : ℰ → ℝ+,
the cut function is defined as 5 (*) = 2(�ℰ(*)), where �ℰ(*) = {4 ∈ ℰ | 4 ∩* ≠

∅ and 4 ∩ ((*) ≠ ∅}. This is also submodular, symmetric and not necessarily

monotone.

In a directed graph � = (+, �) with capacity function 2 : �→ ℝ+, the cut
function is defined as 5 (*) = 2(�out(*)), where �out(*) is the set of arcs leaving
* . This function is submodular and not necessarily symmetric or monotone.

Exercise 17.5. Prove that if the edge capacities are allowed to be negative then

the cut function need not be submodular.

Matroid rank function. Let " = ((,ℐ) be a matroid. Then the rank function

A" : 2
(→ ℤ+ is submodular (also non-negative, integer-valued, and monotone).

In particular a non-negative integer-valued monotone submodular function

which has the property that 5 (4) ≤ 1 for all 4 is the rank function of a matroid.

CHAPTER 17. SUBMODULAR SET FUNCTIONS AND POLYMATROIDS 198

Matroid intersection. Let"1 = ((,ℐ1) and"2 = ((,ℐ2) be twomatroids. Then

the function 5 given by 5 (*) = A"1
(*)+A"2

((*), for* ⊆ (, is submodular, non-

negative and integer-valued. By the matroid intersection theorem, the minimum

value of 5 is equal to the maximum cardinality of a common independent set in

the two matroids.

Coverage in set system. Let)1 ,)2 , . . . ,)= be subsets of a finite set). Let

(= [=] = {1, 2, . . . , =} be the ground set. The coverage function 5 : 2
(→ ℝ+ is

defined as 5 (�) = |∪8∈�)8 |.
A generalization is obtained by introducing the weights F :) → ℝ+ of

elements in), and defining the weighted coverage 5 (�) = F (∪8∈�)8).
Another generalization is to introduce a submodular and monotone weight-

function 6 : 2
) → ℝ+ of subsets of). Then the function 5 is defined as

5 (�) = 6 (∪8∈�)8).
All the three versions of 5 here are submodular, non-negative, andmonotone.

Flows to a sink. Let � = (+, �) be a directed graph with an arc-capacity

function 2 : � → ℝ+. Let a vertex C ∈ + be the sink. Consider a subset

(⊆ + \ {C} of vertices. Define a function 5 : 2
(→ ℝ+ as 5 (*) =max flow from

* to C in the directed graph � with edge capacities 2, for a set of ‘sources’ * .

Then 5 is submodular, non-negative and monotone.

Max element. Let (be a finite set and let F : (→ ℝ. Define a function

5 : 2
(→ ℝ as 5 (*) = max{F(D) | D ∈ *} for nonempty * ⊆ (, and 5 (∅) =

min{F(D) | D ∈ (}. Then 5 is submodular and monotone.

Entropy and Mutual information. Let -1 , -2 , . . . , -= be random variables

over some underlying probability space, and (= {1, 2, . . . , =}. For � ⊆ (,

define -� = {-8 | 8 ∈ �} to be the set of random variables with indices in

�. Then 5 (�) = �(-�), where �(·) is the entropy function, is submodular

(also non-negative and monotone). Also, 5 (�) = �(-�;-(\�), where �(·; ·) is the
mutual information of two random variables, is submodular.

Exercise 17.6. Prove the submodularity of the functions introduced in this

subsection.

17.1.1 Unconstrained Submodular Set Function Optimization

Two fundamental discrete optimization problems related to submodular func-

tions are described below. We will assume that submodular set function

5 : 2
(→ ℝ is provided as a value oracle, that is, given a set � ⊆ (the oracle

returns 5 (�). In some settings it is also necessary to assume that 5 is rational (or

integer) valued.

CHAPTER 17. SUBMODULAR SET FUNCTIONS AND POLYMATROIDS 199

Submodular set function minimization: Given 5 as a value oracle, output

min�⊆(5 (�). The search problem is to find a set � that achieves the minimum.

A fundamental theorem in combinatorial optimization with many applica-

tions is the following.

Theorem17.2. There is a strongly-polynomial time algorithm that solves the submodular

function minimization problem in the value oracle model.

Exercise 17.7. Show how the minimum B-C cut in a capacitated directed graph

can be cast as a special case of submodular set function minimization.

Exercise 17.8. Supposeℳ = ((,ℐ) is a matroid with rank function A. Consider

the matroid polytope described as the set of vectors {G ∈ ℝ(| G ≥ 0, G(*) ≤
A(*), * ⊆ (}. The separation problem for the matroid polytope is: given I ∈ ℝ(

,

is I in the polytope and if not, output a hyperplane separating I from the polytope.

Show how this can be reduced to submodular set function minimization.

Submodular set function maximization: Given 5 as a value oracle, output

max�⊆(5 (�). The search problem is to find a set � that achieves the maximum.

In contrast to the minimization problem we have the following hardness

result.

Claim 17.1.1. The submodular function maximization problem is NP-Complete even

for the special case of Max-Cut where the input in a graph � = (+, �) and the goal is to

find max�⊆+ |�(�)|.

Even though the maximization problem is NP-Hard, a wealth of results are

known about approximation algorithms — see [6].

17.2 Polymatroids

Edmonds wrote a seminal paper on submodular functions [] which he viewed

from a polyhedral viewpoint that he developed initially for matroids. Recall

that the independence polytope of a matroidℳ = ((,ℐ) is given by the system

{G ∈ ℝ(| G ≥ 0, G(*) ≤ A(*) ∀* ⊆ (} where A : 2
(→ ℤ+ is the rank function

ofℳ.

17.2.1 Digression on connection to matroids

Submodular set functions can be negative and non-monotone. However, every

submodular set function 5 : 2
(→ ℝ can be expressed as the sum of a monotone,

normalized, non-negative submodular function 6 : 2
(→ ℝ and a modular

function ℎ : 2
(→ ℝ. A useful way to see it as via the following lemma.

CHAPTER 17. SUBMODULAR SET FUNCTIONS AND POLYMATROIDS 200

Lemma 17.1. Let 5 : 2
(→ ℝ be a normalized submodular set function. For each

4 ∈ (let F(4) = max{0,− 5 (4 | (− 4)}. Let 6 : 2
(→ ℝ where 6(�) = 5 (�) +F(�)

for each � ⊆ (. Then 6 is a normalized monotone submodular set function.

Proof. It is easy to see that 6 is normalized submodular. To verify that 6 is

monotone it suffices to prove that 6(4 | �) = 6(� + 4) − 6(�) ≥ 0 for each � ⊂ (
and 4 ∈ (\ �.

6(4 | �) = 5 (4 | �) + F(4) ≥ 5 (4 | �) − 5 (4 | (− 4) ≥ 0

where the second inequality follows via submodularity. �

Example 17.1. Given graph � = (+, �) let 5 (�) = |�(�)| for � ⊆ + , the cut

function. Then 5 is submodular but not monotone. Let F(E) = �(E) the degree
of E. Then 5 + F is monotone submodular.

Since a matroid rank function is monotone and integer valued it is natural

to wonder if every integer-valued monotone submodular set function can be

thought of as a matroid rank function. Indeed this is true via a construction of

Helgason. To develop some intution consider a monotone submodular function

5 : 2
(→ ℤ+. In general 5 (4) can be some integer larger than one while a matroid

rank function A satisfies A(4) ∈ {0, 1}. Thus, if we want to construct a matroidal

representation of 5 it is natural to associate 5 (4) new elements for each 4. We

formalize the construction. Given (we construct a new set - where - =]4-4
where -4 is a set of 5 (4) elements (-4 and -4′ for 4 ≠ 4′ are disjoint sets). We

define a set function A over ground set - as follows. For* ⊆ - let

A(*) = min

)⊆�
(5 ()) + |* \

⋃
4∈)

-4 |).

One can then prove the following which establishes a connection between 5 and

the rank function of a matroid.

Lemma 17.2. (i) A is the rank function of a matroid over -. (ii) For any) ⊆ �,

5 ()) = A(∪4∈)-4).

Exercise 17.9. Prove the preceding lemma.

Edmonds define two polyhedra associated with a set function 5 on (:

% 5 = {G ∈ ℝ(| G(*) ≤ 5 (*) ∀* ⊆ (, G ≥ 0}

�% 5 = {G ∈ ℝ(| G(*) ≤ 5 (*) ∀* ⊆ (}.
If 5 is a submodular function, then % 5 is called the polymatroid associated with

5 , and �% 5 the extended polymatroid associated with 5 . Note that �% 5 drops the

CHAPTER 17. SUBMODULAR SET FUNCTIONS AND POLYMATROIDS 201

non-negativity constraints. A polyhedron is called an (extended) polymatroid

if it is the (extended) polymatroid associated with some submodular function.

Since 0 ≤ GB ≤ 5 ({B}) for each B ∈ (, a polymatroid is bounded, and hence is a

polytope. On the other hand �% 5 is unbounded if it is non-empty since G ∈ �% 5
implies that G − H ∈ �% 5 for all H ≥ 0.

e1

e2

x1 + x2 = 6

x1 = 3

x2 = 5

e1

e2

x1 + x2 = 6

x1 = 3

x2 = 5

x2 = 0

x1 = 0

Figure 17.1: Example of a polymatroid with two elements: 5 (∅) = 0, 5 (41) =
3, 5 (42) = 5, 5 (41 , 42) = 6. The extended polymatroid, shown in the second figure,

does not have the non-negativity constraints.

Claim 17.2.1. % 5 is non-empty iff 5 ≥ 0, and �% 5 is non-empty iff 5 (∅) ≥ 0.

Remark 17.1. Suppose 5 : 2
(→ ℝ is a normalized submodular function. Let

0 ∈ ℝ=
be weights on the elements which induces a modular function on (.

Consider 6 = 5 +0which is submodular. Then�%6 = �% 5 +0 = {G+0 | G ∈ �% 5 },
in other words the polyhedron for 6 is a translation of the one for 5 .

Remark 17.2. Suppose 5 is the rank function of a matroidℳ, then % 5 is the

independent set polytope ofℳ.

A vector G in�% 5 (or in% 5) is called a base vector of�% 5 (or of% 5) if G(() = 5 (().
A base vector of 5 is a base vector of �% 5 . The set of all base vectors of 5 is called

the base polytope of �% 5 or of 5 . It is a face of �% 5 and denoted by � 5 :

� 5 = {G ∈ ℝ(| G(*) ≤ 5 (*) ∀* ⊆ (, G(() = 5 (()}.

� 5 is a polytope. To see that we first observe that G4 ≤ 5 ({4}) for each 4 ∈ (.
Second, since G(() = 5 (()we have G4 = 5 (()−G((− 4) but G((− 4) ≤ 5 ((− 4) and
hence G4 ≥ 5 (() − 5 ((− 4). Thus for each 4 we have 5 (() − 5 ((− 4) ≤ G4 ≤ 5 (4).

The following claim is about the set of tight constraints in the extended

polymatroid associated with a submodular function 5 .

Claim 17.2.2. Let 5 : 2
(→ ℝ be a submodular set function. For G ∈ �% 5 , define

ℱG = {* ⊆ (| G(*) = 5 (*)} (tight constraints). Then ℱG is closed under taking

unions and intersections.

CHAPTER 17. SUBMODULAR SET FUNCTIONS AND POLYMATROIDS 202

Proof. Consider any two sets*,+ ∈ ℱG , we have

5 (*∪+) ≥ G(*∪+) = G(*)+G(+)−G(*∩+) ≥ 5 (*)+ 5 (+)− 5 (*∩+) ≥ 5 (*∪+).

Therefore, G(* ∪+) = 5 (* ∪+) and G(* ∩+) = 5 (* ∩+). �

17.3 Greedy for optimizing over a polymatroid

Let 5 : 2
(→ ℝ be a submodular function and assume it is given as a value

oracle. Also given a weight vector F : (→ ℝ+, we consider the problem of

maximizing F · G over �% 5 .

maxF · G (17.5)

G ∈ �% 5 .

Edmonds showed that the greedy algorithm for matroids can be generalized to

this setting.

We can assume without loss of generality that F ≥ 0, because otherwise,

the maximum value is unbounded (why?). We we can assume that 5 (∅) = 0:

if 5 (∅) < 0, �% 5 = ∅; and if 5 (∅) > 0, setting 5 (∅) = 0 does not violate the

submodularity.

Greedy algorithm. Consider the following greedy algorithm:

1. Order (= {B1 , B2 , . . . , B=} such that F(B1) ≥ . . . ≥ F(B=). Let �8 =

{B1 , . . . , B8} for 1 ≤ 8 ≤ = and let �0 = ∅.
2. Let G′(B8) = 5 (�8) − 5 (�8−1), for 1 ≤ 8 ≤ =.
3. Output G′.

Why is the above called a greedy algorithm? It corresponds the following

algorithm.

1. Order (= {B1 , B2 , . . . , B=} such that F(B1) ≥ . . . ≥ F(B=).
2. G′ = −∞
3. for 8 = 1 to = do

increase G′
8
as much as possible without violating feasibility of G′

4. Ouput G′

Why are the two algorithms the same? We can estbalish that the second

algorithm sets G′
8
to 5 (�8) − 5 (�8−1) by induction on 8. For the base case we

see that there is a constraint G(B1) ≤ 5 (B1). Moreoever for all 8 > 1 we have

G′(B8) = −∞ and hence the other constraints of the form G(*) ≤ 5 (*) where

B1 ∈ * do not constrain G′(B1). Thus the maximum value that we can increase

CHAPTER 17. SUBMODULAR SET FUNCTIONS AND POLYMATROIDS 203

G′(B1) to is 5 (B1). Given that G′(B1) = 5 (B1), when increasing G′(B2), greedy has

two constraints to worry about. G(B1) + G(B2) ≤ 5 (B1 , B2) and G(B2) ≤ 5 (B2). Note

that G′(B1) = 5 (B1) after first iteration. By submodularity 5 (B1 , B2) − 5 (B1) ≤ 5 (B2),
and hence the maximum we can set G′(B2) is 5 (B1 , B2) − 5 (B1). Thus, inductively
we can prove that G′(B8) = 5 (�8) − 5 (�8−1) is the greedy choice for 8. We leave

the formal proof as an easy exercise.

Note that the greedy algorithm is a strongly polynomial-time algorithm and

calls the value oracle $(=) times.

Lemma 17.3. The output G′ of the Greedy algorithm is a feasible solution when 5 (∅) = 0.

Proof. We need to prove that for all * ⊆ (, G′(*) ≤ 5 (*). If * = ∅ it follows

from 5 (∅) = 0. Suppose* − {B81 , 482 , . . . , B8: } for some : ≥ 1 and 81 < 82 . . . < 8: .

For 9 = 1 to : let � 9 = {B81 , B82 , . . . , B8 9 } and let �0 = ∅. Then

5 (*) =
:∑
9=1

(5 (� 9)− 5 (� 9−1)) =
:∑
9=1

5 (B8 9 | � 9−1) ≥
:∑
9=1

5 (B8 9 | �8 9−1) =
:∑
9=1

G′8 9 = G
′(*).

In the above we used submodularity of 5 to say that 5 (B8 9 mod � 9−1) ≥ 5 (B8 9 |
�8 9 9−1) since � 9−1 ⊆ �8 9−1. �

To show that the greedy algorithm above yields an optimum solution we

consider the dual LP.

min

∑
*⊆(

H(*) 5 (*) (17.6)∑
*3B8

H(*) = F(B8)

H ≥ 0.

Define the dual solution: H′(�=) = H′(() = F(B=), H′(�8) = F(B8) −F(B8+1) for
1 ≤ 8 ≤ = − 1, and H′(*) = 0 for all other* ⊆ (.

The following two claims are easy to verify.

Claim 17.3.1. H′ is dual feasible.

Claim 17.3.2.
∑=
8=1
F(B8)G′(B8) =

∑=
8=1

5 (�8)H(�8) =
∑
⊆(5 ()H′(*).

Thus, we see that G′ and H′ are optimumprimal and dual solutions. Moreover,

H′ is integral if F is integral.

We thus obtain the following.

CHAPTER 17. SUBMODULAR SET FUNCTIONS AND POLYMATROIDS 204

Theorem 17.3. If 5 : 2
(→ ℝ is a submodular function with 5 (∅) = 0, the greedy

algorithm (computing G′) gives an optimum solution to (17.5). Moreover, the system of

inequalities {G ∈ ℝ(| G(*) ≤ 5 (*), ∀* ⊆ (} is totally dual integral (TDI).

Exercise 17.10. Prove that the system {G ∈ ℝ(| G(*) ≤ 5 (*), ∀* ⊆ (} is
box-TDI.

Now consider the case of % 5 . Note that % 5 is non-empty iff 5 ≥ 0. We note

that if 5 is monotone and non-negative, then the solution G′ produced by the

greedy algorithm satisfies G ≥ 0 and hence is feasible for % 5 . So we obtain:

Corollary 17.4. Suppose 5 is a non-negative monotone submodular function on (

with 5 (∅) = 0. Let F : (→ ℝ+, then the greedy algorithm gives an optimum solution

G′ to max{F · G | G ∈ % 5 }. Moreover, the system of inequalities {G ∈ ℝ(
+ | G(*) ≤

5 (*), ∀* ⊆ (} is box-TDI.

Therefore, from Theorem 17.3 and Corollary 17.4, for any integer-valued

submodular function 5 , �% 5 is an integer polyhedron, and if in addition 5 is

non-negative and monotone, % 5 is also an integer polyhedron.

One-to-one correspondence between f and KV f . Theorem 17.3 also implies

5 can be recovered from �% 5 . In other words, for any extended polymatroid %,

there is a unique submodular function 5 satisfying 5 (∅) = 0, with which % is

associated with (that is, �% 5 = %), since:

Claim 17.3.3. Let 5 be a submodular function on (with 5 (∅) = 0. Then 5 (*) =
max{G(*) | G ∈ �% 5 } for each* ⊆ (.

Proof. Let
 = max{G(*) | G ∈ �% 5 }.
 ≤ 5 (*), because G ∈ �% 5 . To prove

 ≥ 5 (*), in (17.5), define F(B8) = 1 iff B8 ∈ * and F(B8) = 0 otherwise. Consider

the greedy algorithm producing G′. We saw that G′(B8) = 5 (�8) − 5 (�8−1. We

have

∑
8 F(B8)G′(B8) = 5 (*) (why?). By the optimality of the greedy algorithm

we see that
 = 5 (*). �

There is a similar one-to-one correspondence between non-empty polyma-

troids and non-negative monotone submodular functions 5 with 5 (∅) = 0. We

can also show that, for any such function 5 , 5 (*) = max{G(*) | G ∈ % 5 } for each
* ⊆ (.

17.4 Operations on Submodular Functions

Sums: It is useful to consider a few basic operations on submodular functions.

First, suppose 5 : 2
(→ ℝ and 6 : 2

(→ ℝ are two submodular set functions

over the same ground set (. Then 5 + 6 is submodular (why?). If
 > 0 is

CHAPTER 17. SUBMODULAR SET FUNCTIONS AND POLYMATROIDS 205

non-negative number than
 5 which is the function that assigns value
 5 (�) to
each set � ⊆ (, is submodular. Thus non-negative combinations of submodular

functions are submodular. Note that negating a submodular function leads to

a supermodular function. A modular function ℎ is both supermodular and

submodular and −ℎ is modular iff ℎ is modular. Thus, if 5 is submodular and 6

is modular then 5 + 6 and 5 − 6 are both submodular.

Restriction and contraction: Given 5 : 2
(→ ℝ and (′ ⊂ (we can restrict 5 to

a subset (′ ⊂ (in the natural way. We obtain 6 : 2
(′ → ℝ where 6(�) = 5 (�).

Clearly 6 is submodular. This can be thought of deleting (\ (′. Similarly, given

- ⊂ (, one can contract 5 to -. More formally we consider 6 : 2
(\- → ℝ where

6(�) = 5 (- ∪ �). It is not difficult to show that 6 is submodular.

Truncation: Given a submodular set function 5 on (and a vector 0 ∈ ℝ(
,

define the set function 5 |0 as

(5 |0)(*) = min

)⊆*
(5 ()) + 0(* \))).

Claim 17.4.1. If 5 is a submodular set function on (, 5 |0 is also submodular.

Proof. Let 6 = 5 |0 for the simplicity of notation. Fix -,. ⊆ (. Let -′ ⊆ - such

that 6(-) = 5 (-′) + 0(- \ -′), and .′ ⊆ . such that 6(.) = 5 (.′) + 0(. \ .′).
Then, from the definition of 6,

6(-∩.)+6(-∪.) ≤
(
5 (-′ ∩ .′) + 0((- ∩ .) \ (-′ ∩ .′))

)
+
(
5 (-′ ∪ .′) + 0((- ∪ .) \ (-′ ∪ .′))

)
.

From the submodularity of 5 ,

5 (-′ ∩ .′) + 5 (-′ ∪ .′) ≤ 5 (-′) + 5 (.′).

And from the modularity of 0,

0((- ∩ .) \ (-′ ∩ .′)) + 0((- ∪ .) \ (-′ ∪ .′)) = 0(- ∩ .) + 0(- ∪ .) − 0(-′ ∩ .′) − 0(-′ ∪ .′)
= 0(-) + 0(.) − 0(-′) − 0(.′).

Therefore, we have

6(- ∩ .) + 6(- ∪ .) ≤ 5 (-′) + 5 (.′) + 0(- \ -′) + 0(. \ .′) = 6(-) + 6(.).

�

What is �% 5 |0 and % 5 |0? We have the following claim.

Claim 17.4.2. If 5 is a submodular set function on (and 5 (∅) = 0, �% 5 |0 = {G ∈
�% 5 | G ≤ 0} and % 5 |0 = {G ∈ % 5 | G ≤ 0}.

CHAPTER 17. SUBMODULAR SET FUNCTIONS AND POLYMATROIDS 206

Proof. For any G ∈ �% 5 |0 and any* ⊆ (, we have that G(*) ≤ (5 |0)(*) ≤ 5 (*) +
0(* *) = 5 (*) implying G ∈ �% 5 , and that G(*) ≤ (5 |0)(*) ≤ 5 (∅)+ 0(* \ ∅) =
0(*), implying G ≤ 0.

For any G ∈ �% 5 with G ≤ 0 and any * ⊆ (, suppose that (5 |0)(*) =
5 ())+0(*\)). Thenwe have, G(*) = G())+G(*\)) ≤ 5 ())+0(*\)) = (5 |0)(*),
implying G ∈ �% 5 |0 .

The proof of % 5 |0 = {G ∈ % 5 | G ≤ 0} is similar. �

A special case of the above claim is that when 0 = 0, then (5 |0)(*) =
min)⊆* 5 ()) and �% 5 |0 = {G ∈ �% 5 | G ≤ 0}.

17.5 Submodular Function Minimization via Ellipsoid

Let 5 : 2
(→ ℝ be a submodular function and assume it is given as a value

oracle, that is, when given * ⊆ (, the oracle returns 5 (*). Our goal is to

find min*⊆(5 (*). We describe an algorithm based on the equivalence of

optimization and separation (the ellipsoid-based method).

We can assume 5 (∅) = 0 (by resetting 5 (*) ← 5 (*) − 5 (∅) for all * ⊆ ().
With the greedy algorithm introduced in Section 17.3, we can optimize over �% 5
in polynomial time (Theorem 17.3). So the separation problem for �% 5 is solvable

in polynomial time, hence also the separation problem for % = �% 5 ∩ {G | G ≤ 0},
and therefore also the optimization problem for %.

Fact 17.1. There is a polynomial-time algorithm to separate over %, and hence to optimize

over %.

Claim 17.5.1. If 5 (∅) = 0, max{G(() | G ∈ %} = min*⊆(5 (*), where % = �% 5 ∩
{G | G ≤ 0}.
Proof. Define 6 = 5 |0, and then we have 6(() = min*⊆(5 (*). Since 6 is

submodular (from Claim 17.4.1) and % = �%6 (from Claim 17.4.2), thus from

Claim 17.3.3, 6(() = max{G(() | G ∈ %}. Therefore, we have max{G(() | G ∈ %} =
min*⊆(5 (*). �

Fact 17.1 andClaim17.5.1 imply thatwe can compute thevalueofmin*⊆(5 (*)
in polynomial time. We still need an algorithm to find *∗ ⊆ (s.t. 5 (*∗) =
min*⊆(5 (*).
Theorem 17.5. There is a polynomial-time algorithm to minimize a submodular

function 5 given by a value oracle.

Proof. To complete the proof, we present an algorithm to find *∗ ⊆ (such

that 5 (*∗) = min*⊆(5 (*). Let
 = min*⊆(5 (*) which can be computed as

described above.

CHAPTER 17. SUBMODULAR SET FUNCTIONS AND POLYMATROIDS 207

• If 5 (() =
 then output (

• Else find an element B ∈ (such that the minimum value of 5 over all

subsets of (\ {B} is equal to
, which implies that there exists an*∗ ⊆ (
with 5 (*∗) =
 and B ∉ *∗. This can be done by trying each possible B and

checking for the minimum value of 5 on a subset of (− B. Recurse on (− B
and 5 restricted to (− B.

It is easy to see that the algorithm finds a minimizer in polynomial number of

calls to an algorithm to find the minimum value. �

Remark 17.3. The Ellipsoid based method can be shown to run in strongly

polynomial time given a value oracle for 5 .

Combinatorial algorithms: A question of interest is whether there is a poly-

nomial time “combinatorial” algorithm for this problem. Although there is

no clear-cut and formal definition of a combinatorial algorithm, typically it

is an algorithm whose operations have some combinatorial meaning in the

underlying structure of the problem. Cunningham [Cunningham] gave a

pseudo-polynomial time algorithm for this problem in 1985. It is only in 2000

that Schrĳver [Schrĳver] and independently Iwata, Fleischer and Fujishige gave

polynomial time combinatorial algorithms for SFM. There have been several

papers that followed these two; we mention the algorithm(s) of Iwata and Orlin

[IwataO] that have perhaps the shortest proofs. All the algorithms follow the

basic outline of Cunningham’s approach which was orginally developed by him

for the special case of SFM that arises in the separation oracle for the matroid

polytope.

See articles on this subject by Fleischer [25], McCormick [50] and Toshev [63]

in addition to the details in Schrĳver’s book [57].

17.6 Submodularity on Restricted Families of Sets

So far we have seen submodular functions on a ground set (. That is 5 : 2
(→ '

and ∀�, � ⊆ (,
5 (�) + 5 (�) ≥ 5 (� ∩ �) + 5 (� ∪ �)

In several applications, one needs to work with restricted families of subsets.

Given a finite set (, a family of sets C ⊆ 2
(
is

• a lattice family if ∀�, � ∈ C, � ∩ � ∈ C and � ∪ � ∈ C.

• an intersecting family if ∀�, � ∈ C and � ∩ � ≠ ∅, we have � ∩ � ∈ C and

� ∪ � ∈ C.

CHAPTER 17. SUBMODULAR SET FUNCTIONS AND POLYMATROIDS 208

• a crossing family if �, � ∈ C and �∩� ≠ ∅ and �∪� ≠ (, we have �∩� ∈ C
and � ∪ � ∈ C.

For each of the above families, a function 5 is submodular on the family if

5 (�) + 5 (�) ≥ 5 (� ∪ �) + 5 (� ∩ �)

whenever � ∩ �, � ∪ � are guaranteed to be in family for �, �. Function 5 is

called intersection submodular and crossing submodular if C is intersecting and

crossing family respectively.

We give some examples of interesting families that arise fromdirected graphs.

Let � = (+, �) be a directed graph.

Example 17.2. C = 2
+ \ {∅, +} is a crossing family.

Example 17.3. Fix B, C ∈ + , C = {* | B ∈ *, C ∉ *} is lattice, intersecting, and
crossing family.

Example 17.4. C = {* ⊂ + | * induces a directed cut i.e. �+(*) = ∅ and ∅ ⊂ * ⊂ +}
is a crossing family.

For the above example, we sketch the proof that C is a crossing family.

If �, � ∈ C and � ∩ � ≠ ∅ and � ∪ � ≠ + , then by submodularity of �+,
|�+(� ∪ �)| + |�+(� ∩ �)| ≤ |�+(�)| + |�+(�)|. Therefore we have �+(� ∪ �) = ∅
and �+(� ∩ �) = ∅ and more over � ∩ � and � ∪ � are non-empty. Hence they

both belong to C as desired.

Various polyhedra associates with submodular functions and the above

special families are known to be well-behaved.

For lattice families the system

G(*) ≤ 5 (*), * ∈ C

is box-TDI. Also, the following system is also box-TDI

G(*) ≤ 51(*), * ∈ C1

G(*) ≤ 52(*), * ∈ C2

where C1 and C2 are lattice families and 51 and 52 are submodular on C∞ and C2

respectively. The above facts also hold for intersecting families and intersecting

submodular functions.

For crossing family C, the system

G(*) ≤ 5 (*)

CHAPTER 17. SUBMODULAR SET FUNCTIONS AND POLYMATROIDS 209

is not necessarily TDI. However, the system

G(*) ≤ 5 (*), * ∈ C
G(() = :

where : ∈ ' is box-TDI. Also, the system

G(*) ≤ 51(*), * ∈ C1

G(*) ≤ 52(*), * ∈ C2

G(() = :

is box-TDI for crossing families C1 and C2 with 51 and 52 crossing supermodular

on C1 and C2 respectively.

Although the polyhedra are well-behaved, the separation problem for them

is not easy since one needs to solve submodular function minimization over a

restricted family C. It does not suffice to have a value oracle for 5 on sets in

C; one needs additional information on the representation of C. We refer the

reader to [57] for more details.

Chapter 18

Continuous Extensions of
Submodular Set Functions

Let 5 : 2
(→ ℝ be a submodular set function. We discuss a connection between

submodular functions and convexity that was shown by Lovász [48]. We first

discuss the notion of a continuous extension of set function, and a generic way

to obtain a convex and concave extension for any set function.

Continuous extensions: Let 5 : 2
(→ ℝ be real-valued set function. Let

= = |(|. Without loss of generality we can assume (= {1, 2, . . . , =} and interpret

5 as providing values to the =-dimensional boolean hypercube {0, 1}= . A

function 6 : [0, 1]# → ℝ is an extension of 5 from {0, 1}# to [0, 1]# iff for

each set (⊆ # , 5 (() = 6(1(). Continuous extensions provide several useful

tools to understand set functions. A natural way to define an extension 6 is to

define it via an interpolation scheme. That is, a fractional point G ∈ [0, 1]# is

expressed as a convex combination G =
∑
(�(1(, and then 6(G) is set to∑

(�(5 (().
The interpolation for G can be usefully interpreted as choosing a probability

distribution �(G) on 2
(
such that the marginal values of the distribution are

precisely given by G; the value of 6(G) is the expected value of 5 (') where '

is a random set drawn from �(G). What are some desiderata for a continuous

extension?

• 6 should be continuous

• 6 should inherit some structural properties of 5

• For computational purposes, an extension 6 should have the property that,

given G, 6(G) can be evaluated efficiently by having access to a value oracle

for 5 .

210

CHAPTER 18. CONTINUOUS EXTENSIONS OF SUBMODULAR SET FUNCTIONS211

• For optimization purposes 6 should be convex or concave depending on

whether we wish to minimize 6 or maximize 6.

18.1 The convex and concave closure

For optimization purposes it is helpful to consider extensions of a set function 5

where the resulting extension is convex (or concave). A canonical construction

called the convex closure 5 − is obtained from 5 via the following definition:

5 −(G) = min{
∑
�⊆(

� 5 (�) :

∑
�

� = 1,
� ≥ 0 & ∀9;
∑
�:9∈�

� = G 9}.

We observe that 5 −(G) is the optimum solution to a linear program in the

variables
(, (⊆ # . The linear program, for a given G, chooses the distribution

�(G) on 2
#
that minimizes the expected value of the function 5 . We use �−(G)

to denote this distribution.

Lemma 18.1. The function 5 − is convex over [0, 1]# .

Proof. Consider G, G′ and let H = �G + (1 − �)G′ where � ∈ (0, 1). Let
,
′ be
optimum solutions to the linear program defining 5 − at G and G′ respectively.
We observe that � = �
 + (1 − �)
′ is a feasible solution to the linear program

for 5 −(H) whose value is � 5 (G) + (1 − �) 5 (G′). Since the value of 5 (H) can only

be lower, 5 (H) ≤ � 5 (G) + (1 − �) 5 (G′), establishing convexity of 5 −. �

The concave closure 5 + of 5 is defined very similarly, the only difference is

that we maximize over all distributions whose marginals equal G. Formally:

5 +(G) = max{
∑
�⊆(

� 5 (�) :

∑
�

� = 1,
� ≥ 0 & ∀9;
∑
�:9∈�

� = G 9}.

Lemma 18.2. The function 5 + is concave over [0, 1]# .

One can find a set (minimizing 5 by minimizing 5 − over [0, 1]# . Similarly,

for finding a set (maximizing 5 , it suffices to maximize 5 + over [0, 1]# . This
can be seen from the following lemma whose proof we leave as an exercise.

Lemma 18.3. Let G be a minimizer of 5 − over [0, 1]# . Then for any set � in the

support of �−(G) we have 5 (�) = 5 −(G). Similarly, if G is a maximizer of 5 + over

[0, 1]# then for any set � in the support of �+(G) we have 5 (() = 5 +(G).

CHAPTER 18. CONTINUOUS EXTENSIONS OF SUBMODULAR SET FUNCTIONS212

Note that the above holds for any set function 5 . Thus, unconstrained

minimization of 5 can be reduced to minimizing the continuous convex function

5 −. Similarly, maximizing 5 can be reduced to maximizing the concave function

5 +. The catch is that we need (at least) the ability to efficiently evaluate the

extension at a given G assuming oracle access to 5 . Interestingly, when 5

is a submodular function, the extension 5 − can be evaluated in polynomial

time for any given G. We will see a proof of this via the equivalence of 5 −

and the Lovász-extension. This, perhaps, is a high-level explanation as to

why there is a polynomial-time algorithm for unconstrained submodular set

function minimization. In contrast, there are explicit non-negative submodular

functions 5 for which evaluating 5 + is NP-Hard. This is not surprising given

that unconstrained submodular set function maximization is NP-Hard even for

non-negative functions.

18.2 The Lovász extension and convexity for submodular
set functions

The Lovász-extension 5̂ of a set function 5 is defined as follows. Let G ∈ [0, 1](.
Let 81 , 82 , . . . , 8= be a permutation of {1, 2, . . . , =} such that G81 ≥ G82 ≥ . . . ≥ G8= .
For ease of notation we define G8=+1

to be 0. For 1 ≤ 9 ≤ = let � 9 = {81 , 82 , . . . , 8 9}.
Thus, �1 = {81}, �2 = {81 , 82}, and �= = {81 , 82 , . . . , 8=}. We let �0 = ∅. Then,

5̂ (G) = (1 − G81) 5 (∅) +
=∑
9=1

(G8 9 − G8 9+1
) 5 (� 9) (18.1)

As an example, if (= {1, 2, 3, 4, 5} and G = (0.75, 0.3, 0.2, 0.3, 0) then

5̂ (G) = 0.25 · 5 (∅) + 0.45 · 5 ({1}) + 0.1 · 5 ({1, 2, 4}) + 0.2 · 5 ({1, 2, 3, 4, 5})

Thus, the distribution �!(G) that defines 5̂ (G) has as its support the sets

∅, �1 , . . . , �= and these sets form a chain.

One can rewrite the expression in (18.1) as follows:

5̂ (G) =
=∑
9=1

G8 9 (5 (� 9) − 5 (� 9−1). (18.2)

One can see that the preceding form implies the following via the analysis of

the Greedy algorithm for optimizing of the a polymatroid.

Lemma 18.4. If 5 is submodular then 5̂ (G) = max{GH | H ∈ �% 5 }.

CHAPTER 18. CONTINUOUS EXTENSIONS OF SUBMODULAR SET FUNCTIONS213

Recall that we saw that if 5 is submodular then 5 (*) = max{H(*) | H ∈ �% 5 }.
Thus the interpretation of the extension via (18.2) is natural generalization of

this.

Another useful and important view of the extension is via a probabilistic

definition.

5̂ (G) = E�∈[0,1]
[
5 (G�)

]
=

∫
1

0

5 (G�)3� (18.3)

where G� ∈ {0, 1}= for a given vector G ∈ [0, 1]= is defined as: G�
8
= 1 if G8 ≥ �

and G�
8
= 0 otherwise. Here � is chosen uniformly at random from the interval

[0, 1]. This randomized interpretation is useful when using the extension in

constrained optimization and approximation algorithms — see [].

Exercise 18.1. Prove that the definition of the extension via expectation is

equivalent to the first definition.

It is easy to see that for any G and any set function 5 , 5 −(G) ≤ 5̂ (G) since 5 −(G)
finds the best distribution to minimize the expected value while the distribution

�!(G) is a specific distribution that is in fact oblivious to the underlying function.

For submodular functions 5 − and 5̂ coincide. We first give a direct proof of the

following.

Theorem 18.1 (Lovász). A set function 5 : 2
(→ ℝ with 5 (∅) = 0 is submodular iff

5̂ is convex.

Proof. Suppose 5 is submodular. Let G, G′ ∈ [0, 1]= and C ∈ [0, 1] and let I = CG +
(1− C)G′. To show that 5̂ is convexwe need to show that 5̂ (I) ≤ 5̂ (CG)+ 5̂ ((1− C)G′).
We use Lemma 18.4. Let H∗ ∈ �% 5 be such that 5̂ (I) = I · H∗ = CG · H∗+(1− C)G′ · H∗.
Then 5̂ (CG) ≥ CG · H∗ and 5̂ ((1 − C)G′) ≥ (1 − C)G′ · H∗ (why?), and we have the

desired claim.

Now suppose 5̂ is convex. Let �, � ⊆ (. From the definition of 5̂ we note that

5̂ (("(�) + "(�))/2) = 5̂ ("(� ∪ �)/2) + 5̂ ("(� ∩ �)/2) (the only reason to divide

by 2 is to ensure that we stay in [0, 1]=). On the other hand, by convexity of 5̂ ,

5̂ (("(�) + "(�))/2) ≤ 5̂ ("(�)/2) + 5̂ ("(�)/2). Putting together these two facts,

we have 5 (�) + 5 (�) ≥ 5 (� ∪ �) + 5 (� ∩ �), and hence 5 is submodular. �

Corollary 18.2. If 5 is submodular then min*⊆(5 (() = minG∈[0,1]= 5̂ (G).

Proof. ClearlyminG∈[0,1]= 5̂ (G) ≤ min*⊆(5 ((). To see the converse, let G∗ ∈ [0, 1]=
achieve the minimum of minG∈[0,1]= 5̂ (G). Then one of the sets in the convex

combination of G∗ in the definition of the extension achieves a value equal to

5̂ (G∗). �

CHAPTER 18. CONTINUOUS EXTENSIONS OF SUBMODULAR SET FUNCTIONS214

The above shows that submodular function minimization can be reduced

to convex optimization problem in a natural fashion. One advantage of an

extension as above is that one can use it as a relaxation in optimization problems

involving submodular functions and additional constraints. For example wemay

want to solve min*⊆(5 (() subject to * satisfying some additional constraints

that could perhaps be modeled as G(() ∈ % for some convex set %. Then we

could solve min{ 5̂ (G) | G ∈ %} as a relaxation and round the solution in some

fashion. There are several examples of this in the literature.

Theorem 18.3. For a submodular set function 5 , the Lovász-extension 5̂ and the convex

closure 5 − coincide.

We briefly sketch two proofs of the equivalence of 5̂ and 5 − for submodular

5 . Fix a point G and let �−(G) be the distribution corresponding to the value

5 −(G). We claim that the support of �−(G) can be chosen to be a chain. To see

this, suppose �, � are in the support and neither � ⊂ � nor � ⊂ �. Since 5

is submodular we have 5 (�) + 5 (�) ≥ 5 (� ∩ �) + 5 (� ∪ �) and hence we can

uncross and replace �, � by �∩ � and �∪ � so that the expected value does not

decrease. Repeated application of this uncrossing operation gives the desired

claim. There is a unique chain distribution whose marginal values are G which

is precisely the one that defines 5̂ (G).
Here is another proof. We already have 5 −(G) ≤ 5̂ (G). We will show the

reverse inequality which will prove that the two quantities are equal. Let ' be a

random set chosen according to the distribution�−(G); we have 5 −(G) = E[5 (')].
As in the definition of the Lovász-extension, let 81 , 82 , . . . , 8= be a permutation

of {1, 2, . . . , =} such that G81 ≥ G82 ≥ . . . ≥ G8= and let � 9 = {81 , . . . , 8 9}. Let .9 be

CHAPTER 18. CONTINUOUS EXTENSIONS OF SUBMODULAR SET FUNCTIONS215

the indicator variable for 8 9 to be present in '; we have E[.9] = G8 9 .

E[5 (')] = E
 5 (∅) +

=∑
9=1

.9 · 58 9 (� 9−1 ∩ ')


≥ E
 5 (∅) +

=∑
9=1

.9 · 58 9 (� 9−1)


= 5 (∅) +
=∑
9=1

E[.9] · 58 9 (� 9−1)

= 5 (∅) +
=∑
9=1

G8 9 (5 (� 9) − 5 (� 9−1))

= (1 − G81) 5 (∅) +
=∑
9=1

(G8 9 − G8 9+1
) 5 (� 9)

= 5̂ (G).

Submodularity is used in the second step.

18.3 Submodular set functionmaximization and theMul-
tilinear extension

There are several applications for submodular set function maximization in the

unconstrained and in the constrained settings. However, as we saw previously,

submodular set function maximization even in the unconstrained setting is

NP-Hard; a canonical example is to find the maximum cut in a given graph.

Therefore the focus has been on polynomial-time approximation algorithms.

Approximation algorithms based on greedy and local search methods were

dominant for these problems based on the early work of Cornuejols, Fisher,

Nemhauser, Wolsey and others. An approach based on continuous extensions

was introduced in [9]. Since maximization is NP-Hard we cannot hope to use a

concave extesion such as 5 +, at least directly. The key idea was to introduce the

multilinear extension.

The multilinear extension � for a set function 5 can be defined algebraically

as:

�(G) =
∑
�⊆#

5 (�)
∏
8∈�

G8

∏
9∈(\�
(1 − G 9).

CHAPTER 18. CONTINUOUS EXTENSIONS OF SUBMODULAR SET FUNCTIONS216

Alternatively,

�(G) = E'∼G[5 (')]
where ' is a random set obtained by sampling each 8 ∈ (independently with

probability G8 . In other words the distribution��(G) defining �(G) is the product
distribution.

We observe that �(G) is defined via a formula that is of exponential size, hence

it is not feasible to directly evaluate it. However, one can use random sampling

to estimate �(G) arbitrarily well — take many random sets '1 , '2 , . . . , 'ℎ where

each '8 is sampled from G and estimate �(G) as 1

ℎ

∑ℎ
ℓ=1

5 ('8). Via concentration

properties and related standard tools, it is possible to obtain an accurate estimate

of �(G) in most algorithmic applications of interest. One can also estimate the

gradient ∇�(G) in this way.

The multilinear extension � of a submodular set function is neither convex

nor concave. Despite this, the extension has useful mathematical properties and

these can be exploited algorithmically. Here we list a few properties and state a

few theorems, and refer the reader to other articles for more details.

Structural properties of L : The algebraic formulation allows us to prove the

following properties.

Lemma 18.5. Let � : [0, 1](→ ℝ be the multilinear extension of a set function

5 : 2
(→ ℝ.

• If 5 is submodular, then
%2�

%G8%G 9
≤ 0 for all 8 , 9 ∈ (, everywhere in [0, 1](.

• If 5 is non-decreasing, then %�
%G8
≥ 0 for all 8 ∈ (, everywhere in [0, 1](.

Corollary 18.4. Let � : [0, 1](→ ℝ be the multilinear extension of a set function

5 : 2
→ ℝ. Then

• If 5 is non-decreasing, then � is non-decreasing along any line of direction 3 ≥ 0.

• If 5 is submodular, then � is concave along any line of direction 3 ≥ 0.

• If 5 is submodular, then � is convex along any line of direction 3 = 48 − 4 9 for
8 , 9 ∈ (.

Algorithmic aspects: We note that the structural properties of � did not rely

on non-negativity. On the other hand most of the algorithmic results on

submodular set function maximization are primarily for non-negative functions

(in particular normalized non-negative functions). Since � is not concave we

settle for relative approximation results. Consider a polytope % ⊆ [0, 1](which

represents a relaxation of constraints. One would seek to solve the mathematical

CHAPTER 18. CONTINUOUS EXTENSIONS OF SUBMODULAR SET FUNCTIONS217

programming relaxation maxG∈% �(G). We say that % is a solvable polytope if there

is an efficient algorithm to do linear optimization over %, that is maxFG, G ∈ %
admits an efficient algorithm.

Theorem18.5 ([8, 24]). Let � be themutilinear relaxation of a non-negative submodular

set function 5 : 2
(→ ℝ+ and let % ⊆ [0, 1](be a solvable polytope. Then there is

an efficient randomized algorithm that outputs a (1 − 1/4)-approximation with high

probability for the problem maxG∈% �(G) when 5 is monotone. For non-negative � there

is 1/4-approximation.

The second aspect of using the multilinear relaxation is to round a fractional

solution. One structural result specific to matroids is the following.

Theorem 18.6 ([8]). Let � be the mutilinear relaxation of a submodular set function

5 : 2
(→ ℝ. Letℳ = ((,ℐ) be a matroid and let % be the matroid independence

polytope. Then, given any fractional point G ∈ % there is an efficient randomzed

algorithm that output an independent set � ∈ ℐ such that E[5 (�)] = �(G). In other

words there is no loss with resepct to � in rounding the fractional solution in a matroid

polytope.

For other constraints a framework based on contention resolution schemes has

been the main technique. We refer the reader to [6, 16].

Bibliographic Remarks: Lovasz’s influential paper on the connection of con-

vexity to submodularity is [48]. There have been several recent applications

of the Lovasz-extension in mathematical programming based algorithms for

problems involving submodular and supermodular functions — we refer the

reader to some of these [11–14, 28, 35, 55, 56]. Dughmi’s survey [22] discusses

continuous extensions and most of this chapter is based on it. The mutilinear

relaxation for submodular set function maximization was introduced in [9]

and was inspired by previous work of Ageev and Sviridenko [2]. See [6] for

a survey on approximation algorithms for recent progress on approximation

algorithms for submodular set function maximization including several that are

based on the multilinear extensions. Jan Vondrak’s thesis [66] discusses and

proves several properties of the multilinear relaxation that we mentioned.

Chapter 19

Two Theorems Related to
Directed Graphs1

We describe two well known theorems in combinatorial optimization related to

directed graphs. We prove the theorems using submodular flows later.

19.1 Nash-Williams Graph Orientation Theorem

Definition 19.1. Let � = (+, �) be an undirected graph. For D, E ∈ + , we denote by

��(D, E) the edge-connectivity between D and E in �, that is, the maximum number

of edge-disjoint paths between D and E. Similarly for a directed graph � = (+, �),
��(D, E) is the maximum number of arc-disjoint paths from D to E.

Note that for an undirected graph �, ��(D, E) = ��(E, D) but it may not be

the case that ��(D, E) = ��(E, D) in a directed graph �.

Definition 19.2. � is :-edge-connected if ��(D, E) ≥ : ∀D, E ∈ + . Similarly, � is

:-arc-connected if ��(D, E) ≥ : ∀D, E ∈ + .

Proposition 19.1.1. � is :-edge-connected iff |�(()| ≥ : ∀(⊂ + . � is :-arc-connected

iff |�+(()| ≥ : ∀(⊂ + .

Proof. By Menger’s theorem. �

Definition 19.3. � = (+, �) is an orientation of � = (+, �) if � is obtained from �

by orienting each edge DE ∈ � as an arc (D, E) or (E, D).

Theorem 19.4 (Robbins 1939). � can be oriented to obtain a strongly-connected

directed graph iff � is 2-edge-connected.

1Based on notes scribed by Zhenhui Li in 2010.

218

CHAPTER 19. TWO THEOREMS RELATED TO DIRECTED GRAPHS 219

Proof. “⇒” Suppose � = (+, �) is a strongly connected graph obtained as an

orientation of � = (+, �). Then, since ∀(⊂ + , |�+
�
(()| ≥ 1 and |�−

�
(()| ≥ 1, we

have |��(()| ≥ 2. Therefore, � is 2-edge-connected.

“⇐” Let � be a 2-edge-connected graph. Then � has an ear-decomposition.

In other words, � is either a cycle � or � is obtained from a 2-edge-connected

graph �′ by adding an ear % (a path) connecting two not-necessarily distinct

vertices D, E ∈ + .

or

C G’

u v

P

Figure 19.1: � is either a cycle � or is �′ plus an ear %.

If � = �, orient it to obtain a directed cycle which is strongly-connected.

Otherwise, inductively, �′ has an orientation that is strongly-connected. Extend

the orientation of �′ to � by orienting % from D to E (or E to D). It is easy to

check that this orientation results in strongly-connected graph. �

An alternative proof is as follows. Do a depth-first-search (DFS) of � starting

at some node A. One obtains a DFS tree). Orient all edges of) away from A to

obtain an arborescence. Every other edge is a back-edge, that is if DE ∈ �(�)\�()),
then, either D is the ancestor of E in) or E is an ancestor of D in). Orient DE

from the descendant to the ancestor. We leave it as an exercise to argue that this

is a strongly-connected orientation of � iff � is 2-edge-connected. Note that this

is an easy linear time algorithm to obtain the orientation.

Nash-Williams proved the following generalization.

Theorem 19.5 (Nash-Williams). If � is 2:-edge-connected, then it has an orientation

that is :-arc-connected.

In fact, he proved the following deep result, of which the above is a corollary.

Theorem 19.6 (Nash-Williams). � has an orientation � in which ��(D, E) ≥
b��(D, E)/2c for all D, E ∈ + .

CHAPTER 19. TWO THEOREMS RELATED TO DIRECTED GRAPHS 220

dashed edges are back edges

Figure 19.2: Orientation of a 2-edge-connected graph via a DFS tree.

The proof of the above theorem is difficult — see [57]. Frank showed that

Theorem ?? can be derived from submodular flows and we will see this later.

19.2 Directed Cuts and Lucchesi-Younger Theorem

Definition 19.7. Let � = (+, �) be a directed graph. We say that � ⊂ � is a directed

cut if ∃(⊂ + such that �+(() = ∅ and � = �−(().

C

S

Figure 19.3: A directed cut � = �−(().

If � has a directed cut then � is not strongly-connected.

Definition 19.8. A dĳoin (also called a directed cut cover) in � = (+, �) is a set of
arcs in � that intersect each directed cut of �.

It is not difficult to see that the following are equivalent:

• � ⊆ � is a dĳoin.

• shrinking each arc in � results in a strongly-connected graph.

• adding all reverse arcs of � to � results in a strongly-connected graph.

CHAPTER 19. TWO THEOREMS RELATED TO DIRECTED GRAPHS 221

Given � ⊆ �, it is therefore, easy to check if � is a dĳoin; simply add the

reverse arcs of � to � and check if the resulting digraph is strongly connected or

not.

Definition 19.9. A digraph � is weakly-connected if the underlying undirected graph

is connected.

Theorem 19.10 (Lucchesi-Younger). Let � = (+, �) be a weakly-connected digraph.

Then the minimum size of a dĳoin is equal to the maximum number of disjoint directed

cuts.

A dĳoin intersects every directed cut so its size is at least the the maximum

number of disjoint directe cuts. The above theorem is yet another example of

a min-max result. We will prove this later using submodular flows. One can

derive easily a weighted version of the theorem.

Corollary 19.11. Let � = (+, �) be a digraph with ℓ : �→ ℤ+. Then the minimum

length of a dĳoin is equal to the maximum number of directed cuts such that each arc 0

is in at most ℓ (0) of them (in other words a maximum packing of directed cuts in ℓ).

Proof. If ℓ (0) = 0, contract it. Otherwise replace 0 by a path of length ℓ (0). Now

apply the Lucchesi-Younger theorem to the modified graph. �

As one expects, a min-max result also leads to a polynomial time algorithm

to compute a minimum weight dĳoin and a maximum packing of directed cuts.

We describe an implication of Lucchesi-Younger theorem.

Definition 19.12. Given a directed graph � = (+, �), �′ ⊆ � is called a feedback arc

set if �[� \ �′] is acyclic, that is, �′ intersects each directed cycle of �.

Computing aminimumcardinality feedback arc set isNP-hard. Nowsuppose

� is a plane directed graph (i.e., a directed graph that is embedded in the plane).

Then one defines its dual graph �∗ as follows. For each arc (F, G) of �, we have

a dual arc (H, I) ∈ �∗ that crosses (F, G) from “left” to “right”. See example

below.

Proposition 19.2.1. The directed cycles of � correspond to directed cuts in �∗ and
vice versa.

Thus, a feedback arc set of � corresponds to a dĳoin in �∗. Via Lucchesi-

Younger theorem, we have the following corollary.

Corollary 19.13. For a planar directed graph, the minimum size of a feedback arc set is

equal to the maximum number of arc-disjoint directed cycles.

Using the algorithm to compute a minimum weight dĳoin, we can compute

a minimum weight feedback arc set of a planar digraph in polynomial time.

CHAPTER 19. TWO THEOREMS RELATED TO DIRECTED GRAPHS 222

Figure 19.4: A planar digraph and its dual.

Packing dĳoins: Woodall conjectured the following, which is still open.

Conjecture 19.14 (Woodall). For every directed graph, the minimum size of a directed

cut equals to the maximum number of disjoint dĳoins.

Some special cases of the preceding conjecture have been solved but the

conjecture is still open even in planar digraphs. See [1, 57, 60] for known results,

progress and some relaxations of the conjecture that are also open.

Chapter 20

Polymatroid Intersection1

Recall the definition of total dual integrality of a system of inequalities.

Definition 20.1. A rational system of inequalities �G ≤ 1 is TDI if for all integral 2,

min{H1 | H ≥ 0, H� = 2} is attained by an integral vector H∗ whenever the optimum

exists and is finite.

Definition 20.2. A rational system of inequalities �G ≤ 1 is box-TDI if the system

3 ≤ G ≤ 2, �G ≤ 1 is TDI for each 3, 2 ∈ ℛ= .

Inparticular, wehave the following. If�G ≤ 1 is box-TDI, then thepolyhedron

{G | �G ≤ 1, 3 ≤ ℓ ≤ D} is an integer polyhedron whenever 1, ℓ , D are integer

vectors.

Recall that if 5 : 2
(→ ℛ is a submodular function, �% 5 is the extended

polymatroid defined as

{G ∈ ℛ(|G(*) ≤ 5 (*), * ⊆ (}

We showed that the system of inequalities G(*) ≤ 5 (*), * ⊆ (is TDI. In

fact, one can show that the system is also box-TDI. Polymatroids generalize

matroids. One can also consider polymatroid intersection which generalizes

matroid intersection.

Let 51, 52 be two submodular functions on (. Then the polyhedron �% 51∩�% 52
described by

G(*) ≤ 51(*) * ⊆ (
G(*) ≤ 52(*) * ⊆ (

is an integer polyhedron whenever 51 and 52 are integer valued. We sketch a

proof of the following theorem.

1Based on notes scribed by Zhenhui Li in 2010.

223

CHAPTER 20. POLYMATROID INTERSECTION 224

Theorem 20.3 (Edmonds). Let 51 , 52 be two submodular set functions on the ground

set (. The system of inequalities

G(*) ≤ 51(*) * ⊆ (
G(*) ≤ 52(*) * ⊆ (

is box-TDI.

Proof. (Sketch) The proof is similar to that of matroid intersection. Consider

primal-dual pair below

maxFG

G(*) ≤ 51(*) * ⊆ (
G(*) ≤ 52(*) * ⊆ (

ℓ ≤ G ≤ D

min

∑
⊆((51()H1(*) + 52(*)H2(*)) +

∑
0∈(D(0)I1(0) −

∑
0∈(ℓ (0)I2(0)∑

0∈* (H1(*) + H2(*)) + I1(0) − I2(0) = F(0), 0 ∈ (
H ≥ 0, I1 , I2 ≥ 0

Claim 20.0.1. There exists an optimal dual solution such that ℱ1 = {* | H1(*) > 0}
and ℱ2 = {* | H2(*) > 0} are chains.

The proof of the above claim is similar to that in matroid intersection.

Consider ℱ1 = {* | H1(*) > 0}. If it is not a chain, there exist �, � ∈ ℱ1 such

that � ⊄ � and � ⊄ �. We change H1 by adding & to H1(� ∪ �) and H1(� ∩ �)
and subtracting & from H1(�) and H1(�). One observes that the feasibility of the

solution is maintained and that the objective function can only decrease since

51 is submodular. Thus, we can uncross repeatedly to ensure that ℱ1 is a chain,

similarly ℱ2.

Let H1 , H2 , I1 , I2 be an optimal dual solution such that ℱ1 and ℱ2 are chains.

Consider ℱ = ℱ1 ∪ ℱ2 and the (× ℱ incidence matrix ". As we saw earlier

in the proof for matroid intersection, " is TUM. We then have H1 , H2, I1, I2

are determined by a system [H1 H2 I1 I2][" � −�] = F, where F is

integer and" is TUM. Since [" � −�] is TUM, there exists integer optimum

solution. �

Note that, one can separate over �% 51 ∩ �% 52 via submodular function

minimization and hence one can optimize �% 51 ∩ �% 52 in polynomial time via

the ellipsoid method. Strongly polynomial time algorithm can also be derived.

See [57] for details.

Chapter 21

Submodular Flows and
Applications1

Network flows are a fundamental object and tool in combinatorial optimization.

We have also seen submodular functions and their role in matroids, matroid

intersection, polymatroids and polymatroid intersection. Edmonds and Giles

developed the framework of submodular flows to find a common generalization

of network flowandpolymatroid intersection; theywere inspired by the Lucceshi-

Younger theorem. A seemingly different model was independently studied by

Hassin [33] and Lawler and Martel [41]. These models can be shown to be

equivalent (see [57]). However, depending on the application, one or the other

model is more convenient and intuitive. We mainly discuss the Edmonds-Giles

model in this chapter and briefly discuss the Hassin and Lawler-Martel model

in a later section.

Definition 21.1 (Crossing Family). Let � = (+, �) be a directed graph and let

� ⊆ 2
+
be a family of subsets of V. � is called a crossing family if: �, � ∈ �,

� ∩ � ≠ ∅, � ∪ � ≠ + ⇒ � ∩ � ∈ � and � ∪ � ∈ �.

Definition 21.2 (Crossing Submodular). Let � be a crossing family. A function

5 : �→ ℝ is called crossing submodular on � if it satisfies: �, � ∈ �, � ∩ � ≠ ∅,
� ∪ � ≠ + ⇒ 5 (�) + 5 (�) ≥ 5 (� ∪ �) + 5 (� ∩ �).

Definition 21.3 (Submodular Flow). Let � = (+, �) be a digraph, � be a crossing

family, and 5 be a crossing submodular function on �. A vector G ∈ ℝ�
is called a

submodular flow if

G(�−(*)) − G(�+(*)) ≤ 5 (*), ∀* ∈ � (21.1)

1Based on notes scribed by Peiziang Zhao from 2010.

225

CHAPTER 21. SUBMODULAR FLOWS AND APPLICATIONS 226

Theorem 21.4 (Edmonds-Giles, 1977). The system of inequalities shown in Equa-

tion 21.1 is box-TDI where � is a crossing family on + and 5 is crossing submodular

on �.

Proof. We consider the primal-dual pair of LPs below where F : �→ ℤ+ and
ℓ , D are integer vectors.

max

∑
FG

s.t. G(�−(*)) − G(�+(*)) ≤ 5 (*) * ∈ �
ℓ ≤ G ≤ D

and

min

∑
*∈�

5 (*)H(*) +
∑
0∈�

D(0)I1(0) −
∑
0∈�

ℓ (0)I2(0)

s.t.
∑

* :*∈�,0∈�−(*)
H(*) −

∑
* :*∈�,0∈�+(*)

H(*) + I1(0) − I2(0) = F(0) 0 ∈ �

H, I1 , I2 ≥ 0

A family of sets ℱ ⊆ 2
+
is cross-free if for all �, � ∈ ℱ the following holds:

� ⊆ � or � ⊆ � or � ∩ � = ∅ or � ∪ � = + .

Claim 21.0.1. There exists an optimum solution H, I1 , I2 such that ℱ = {* ∈ � |
H(*) > 0} is cross-free.

Proof. Suppose ℱ is not cross-free. Then let �, � ∈ ℱ, such that H(�) > 0 and

H(�) > 0 and � ∩ � ≠ ∅ and � ∪ � ≠ + . Then add & > 0 to H(� ∪ �), H(� ∩ �)
and subtract & > 0 from H(�) and H(�). By submodularity of 5 , the objective

function increases or remains same. We claim that alterting H in this fashion

maintains dual feasibility; we leave this as an exercise.

By repeated uncrossing we can makeℱ cross-free. Formally one needs to

consider a potential function. For example, among all optimal solutions pick

one that minimizes ∑
*∈�

H(*)|* | |+* |

�

Theorem 21.5. Let ℱ be a cross-free family on 2
+
. Let " be an |�| × |ℱ | matrix

where

"0,* =


1 if 0 ∈ �−(*)
−1 if 0 ∈ �+(*)
0 otherwise

Then " is TUM.

CHAPTER 21. SUBMODULAR FLOWS AND APPLICATIONS 227

The proof of the above theorem proceeds by showing that " is a network

matrix. See Schrĳver Theorem 13.21 for details [57].

By the above one sees that the non-negative components of H, I1 , I2 are

determined by [", �,−�] and integer vector F where " is TUM. From this we

infers that there exists an integer optimum solution to the dual. �

Corollary 21.6. The polyhedron % determined by

G(�−(*)) − G(�+(*)) ≤ 5 (*) * ∈ �

; ≤ G ≤ D
is an integer polyhedron whenever 5 is integer valued and ; , D are integer vectors.

One can show that optimality on % can be done in strongly polynomial time

if one has a value oracle for 5 . This can be done via a reduction to polymatroid

intersection. We refer to Schrĳver, Chapter 60 for more details [57].

21.1 Applications

Submodular flows are a very general framework as they combine graphs and

submodular functions. We describe some applications below.

21.1.1 Circulations

Given a directed graph � = (+, �), G : �→ ℝ is a circulation if

G(�−(E)) − G(�+(E)) = 0, ∀E ∈ +

This can be modeled as a special case of submodular flow by setting � = {{E} |
E ∈ +} and 5 = 0. We get the inequalities

G(�−(E)) − G(�+(E)) ≤ 0, E ∈ +.

One can check that the above inequalities imply that for any ∅ ⊂ * ⊂ + the

inequality G(�−(*)) − G(�+(*)) ≤ 0 holds by adding up the inequalities for each

E ∈ * . Combining this with the inequality G(�−(+ *)) − G(�+(+ *)) ≤ 0, we

have G(�−(*)) − G(�+(*)) = 0 for all ∅ ⊂ * ⊂ + , and in particular for each E ∈ + .

The box-TDI result of submodular flow implies the basic results on circulations

and flows including Hoffman’s circulation theorem and the max-flow min-cut

theorem.

CHAPTER 21. SUBMODULAR FLOWS AND APPLICATIONS 228

21.1.2 Polymatroid Intersection

We saw earlier that the system

G(*) ≤ 51(*) * ⊆ (

G(*) ≤ 52(*) * ⊆ (
is box-TDI whenever 51, 52 are submodular functions on (. We can derive

this from submodular flows as follows. Define (′ and (′′ are copies of (. Let
+ = (′

⊎
(′′ and define � = {*′ | * ⊆ (} ∪ {(′ ∪*′′ | * ⊆ (}, where *′ and

′′ denote the sets of copies of elements of in (′ and (′′.

Claim 21.1.1. � is a crossing family.

Exercise 21.1. Prove Claim 21.1.1.

We further define 5 : �→ ℝ+ by

5 (*′) = 51(*) * ⊆ (

5 (+*′′) = 52(*) * ⊆ (
5 ((′) = min{ 51((), 52(()}

Claim 21.1.2. 5 is crossing submodular on �.

Exercise 21.2. Prove Claim 21.1.2.

Figure 21.1: A Directed Graph Defined on (

Now define � = (+, �)where � = {(B′′, B′)|B ∈ (}, as shown in Figure 21.1.

The submodular flow polyhedron is

G(�−(/)) − G(�+(/)) ≤ 5 (/) / ∈ �

If / = *′where* ⊆ (, thenwe get G(*) ≤ 51(*). And if / = +*′′, as shown in

Figure 21.2, then we get G(*) ≤ 52(*), * ⊆ (. Thus, we recover the polymatroid

intersection constraints. Since the submodular flow constraint inequalities are

box-TDI, it implies that the polymatroid intersection constraints are also box-TDI.

CHAPTER 21. SUBMODULAR FLOWS AND APPLICATIONS 229

Figure 21.2: / = +*′′

21.1.3 Nash-Williams Graph Orientation Theorem

We discussed graph orientation in a previous chapter.

Definition 21.7. � = (+, �) is an orientation of � = (+, �) if � is obtained from �

by orienting each edge DE ∈ � as an arc (D, E) or (E, D).

Theorem 21.8 (Robbins 1939). � can be oriented to obtain a strongly-connected

directed graph iff � is 2-edge-connected.

Nash-Williams proved the following theorem.

Theorem 21.9 (Nash-Williams). � has an orientation � in which ��(D, E) ≥
b��(D, E)/2c for all D, E ∈ + .

The proof of the preceding theorem is difficult — see [57]. An important

corollary is the following theorem.

Theorem 21.10 (Nash-Williams). If � is 2:-edge-connected, then it has an orientation

that is :-arc-connected.

Frank showed that Theorem 21.10 can be derived from submodular flows —

we follow his argument. Consider an arbitrary orientation � of �. Now if � is

:-arc-connected we are done. Otherwise we consider the problem of reversing

the orientation of some arcs of� such that the resulting graph is :-arc-connected.

We set it up as follows.

Let � = (+, �), define a variable G(0), 0 ∈ � where G(0) = 1 if we reverse the

orientation of 0. Otherwise G(0) = 0. For a set* ⊂ + we want : arcs coming in

after applying the switch of orientation, i.e., we want

G(�−(*)) − G(�+(*)) ≤ |�−(*)| − : ∀ ∅ ⊂ * ⊂ +

Note that � = {* | ∅ ⊂ * ⊂ +} is a crossing family and 5 (*) = |�−
�
(*)| − :

is crossing submodular. Hence by Edmonds-Giles theorem, the polyhedron

CHAPTER 21. SUBMODULAR FLOWS AND APPLICATIONS 230

determined by the inequalities

G(�−(*)) − G(�+(*)) ≤ |�−(*)| − : ∅ ⊂ * ⊂ +
G(0) ∈ [0, 1] 0 ∈ �

is an integer polyhedron. Moreover, the polyhedron is non-empty since G(0) =
1/2,∀0 ∈ � satisfies all the constraints. To see this, let ∅ ⊂ * ⊂ + , and let

ℎ = |�−
�
(*)| and ℓ = |�+

�
(*)|, then we have ℎ + ℓ ≥ 2: since � is 2:-edge-

connected. Then by setting G(0) = 1/2,∀0 ∈ �, for* we need

ℎ

2

− ℓ
2

≤ ℎ − : ⇒ ℎ + ;
2

≥ :

which is true. Thus there is an integer vector G in the polyhedron for � if � is

2:-edge-connected. By reversing the arcs �′ = {0 | G(0) = 1} in � we obtain a

:-arc-connected orientation of �.

21.1.4 Lucchesi-Younger theorem

Theorem 21.11 (Lucchesi-Younger). In any weakly-connected digraph, the size of the

minimum cardinality dĳoin equals the maximum number of disjoint directed cuts.

Proof. Let� = (+, �) be a directed graph and let� = {* | ∅ ⊂ * ⊂ +, |�+(*)| =
0}, i.e., * ∈ � iff * induces a directed cut. We had seen that � is a crossing

family. Let 5 : �→ ℝ be 5 (*) = −1,∀* ∈ �, clearly 5 is crossing submodular.

Then by Edmonds-Giles theorem the following set of inequalities is TDI.

G(�−(*)) − G(�+(*)) ≤ −1 * ∈ �
G ≤ 0

We note that �+(*) = ∅ for each* ∈ �. We can rewrite the above polyhedron

as the one below by replacing −G by G.

G(�−(*)) ≥ 1 * ∈ �
G ≥ 0

Note that the above is a “natural" LP relaxation for finding a set of arcs that

cover all directed cuts. The above polyhedron is integral, and hence

min

∑
0∈�

G(0)

G(�−(*)) ≥ 1 * ∈ �
G ≥ 0

CHAPTER 21. SUBMODULAR FLOWS AND APPLICATIONS 231

gives the size of a minimum cardinality dĳoin.

Consider the dual

max

∑
*∈�

H(*)

s.t.
∑

* :0∈�−(*),*∈�
H(*) ≤ 1 0 ∈ �

H ≥ 0

The dual is an integer polyhedron since the primal inequality system is TDI and

the objective function is an integer vector. It is easy to see that the optimum

value of the dual is a maximum packing of arc-disjoint directed cuts. Therefore

by strong duality we obtain the Lucchesi-Younger theorem. �

21.2 The polymatroidal network flow model

Here we discuss a different model of submodular flows that was suggested

independently by Hassin and by Lawler and Martel. We mainly follow the

Lawler-Martel model and notation. The original motivation for this model came

from certain scheduling applications in the work of Martel. Here we describe a

somewhat round about way based on the experience of this author who came to

the polymatroid network flow model via some more recent applications [13].

Consider the standard network flowmodel with a directed graph � = (+, �),
source and sink nodes B, C ∈ + and arc capacities 2 : �→ ℝ+. Recall that a flow

is a vector G : �→ ℝ that satisfies two properties:

• flow conservation at each node E ∈ + − {B, C}: G(�−(E)) − G(�+(E)) = 0

• capacity constraints 0 ≤ G(0) ≤ 2(0) for all 0 ∈ �.

In this model the capacities of each edge are independent. It is interesting

to consider settings in which the capacity of arcs are jointly constrained. Let

5 : � → ℝ+ be a non-negative monotone set function over the arcs. Then we

can ask for the following constraints on flow on the arcs:

G(�) ≤ 5 (�) ∀� ⊆ �.

Note that the standard capacity constraints are induced by the modular set

function 5 : 2
� → ℝ+ where 5 (�) = ∑

0∈� 2(0). What kind of set functions

can we consider? It is natural to consider monotone submodular set functions.

The next question is whether we can solve the maximum flow problem under

the constraint. Indeed we can solve the maximum flow LP under the capacity

constraint G(�) ≤ 5 (�) since the separation oracle for this constraint can be

CHAPTER 21. SUBMODULAR FLOWS AND APPLICATIONS 232

implemented by submodular function minimization. Although the max-flow in

this very general setting can indeed by solved in polynomial time (assuming a

value oracle access to 5), themodel is too general to allow for important properties

that hold in the standard network flow model, namely the maxflow-mincut

duality theorem, and integrality of flows when capacities are integral.

Remark 21.1. Note that the Edmonds-Giles model considers a submodular

function 5 on the vertices which controls the total total capacity of the cuts

induced by vertex subsets.

A local model: Instead of a global function 5 that jointly controls the capacity

of all the arcs wewill now focus on a local model that is more restriced in the joint

capacity constraints that it imposes on the arcs. In a polymatroidal network, each

node E ∈ + has two associated polymatroids �−E and �
+
E with ground sets as �−(E)

and �+(E) respectively. These functions constrain the joint capacity on the edges

incident to E as follows. If (⊆ �−(E), then �−E (() upper-bounds the total capacity
of the edges in (; similarly, if (⊆ �+(E), then �+E (() upper-bounds the total

capacity of the edges in (. We assume that the functions �−E (·), �+E (·), E ∈ + ,
are provided via value oracles. The maximum B-C flow in this polymatroidal

network flow model can be written as the following linear program.

max

∑
0∈�+(B)

G(0) −
∑

0∈�−(B)
G(0)∑

0∈�+(E)
G(0) −

∑
0∈�−(E)

G(0) = 0 ∀E ∈ + − {B, C}

G(() ≤ �−(() ∀(⊆ �−(E), E ∈ +
G(() ≤ �+(() ∀(⊆ �+(E), E ∈ +
G(0) ≥ 0 ∀0 ∈ �

As before we can solve the above LP since the separation oracle for the

capacity constraints reduces to submodular function minimization. We note,

however, that there are combinatorial algorithms that avoid the Ellipsoidmethod.

Unlike the global one we saw before the polymatroidal network flow model

has several nice properties.

• The system of inequalities defining the flow is box-TDI.

• There is a notion of a min-cut and maxflow is equal to mincut

• There is an integral max flow when the polymadroids at each vertex are

integer valued.

CHAPTER 21. SUBMODULAR FLOWS AND APPLICATIONS 233

• The model is equivalent to that of Edmonds and Giles

The polymatroidal network flow model generalizes polymatroid intersection

in an easy fashion and this is more transparent than it is in the Edmonds and

Giles model (in this author’s view). Consider two polymatroids 51 and 52 over

a ground set # . Recall that in polymatroid intersection we are interested in

vectors G ∈ ℝ(, G ≥ 0 that satisfy the constraints G(() ≤ 51(() ∀(⊆ # and

G(() ≤ 52(() ∀(⊆ # . Consider a network � = (+, �) consisting of two nodes

B, C which are connected by |# | parallel arcs: each arc 0 corresponds to an

element 4 ∈ # . Let �+B correspond to 51 and �−C correspond to 52. Then it is easy

to see that the set of feasible flows in the constructed polymatroidal network

is precisely the set of vectors that are feasible for the polymatroid intersection

polyhedron.

The definition of the cut cost: Given a directed graph � = (+, �) and a set of

arcs � ⊆ � we say that the ordered node pair (B, C) is separated by � if there is no

path from B to C in the graph �[� \ �]. A minimal cut will be of the form �+(()
for some (⊂ + with B ∈ (, C ∉ (. It is convenient to label + − (as the set) and

hence � is the set of arcs from (to). In the standard network model the cost

of a cut defined by a set of arcs � is simply

∑
0∈� 2(0)where 2(0) is the cost of 4

(capacity in the primal flow network) . In polymatroid networks the cost of � is

defined in a more involved fashion. Each arc (D, E) in � is assigned to either D or

E; we say that an assignment of edges to nodes 6 : � → + is valid if it satisfies

this restriction. A valid assignment partitions � into sets {6−1(E) | E ∈ +} where

6−1(E) (the pre-image of E) is the set of arcs from � assigned to E by 6. For a

given valid assignment 6 of � the cost of the cut �6(�) is defined as

�6(�) :=

∑
E

(
�−E (�−(E) ∩ 6−1(E)) + �+E (�+(E) ∩ 6−1(E))

)
.

The cost of the cut � is now defined as the minimum �6(�) over all valid
assignments 6. Clearly this seems like an involved computation. Indeed, it is.

Given a partition ((,)) of + with � = �+(() one can compute min6 �6(�) via
polymatroid intersection. One may notice that we can (into a single node and

) into a single node and combine the polymatroids on each side into a single

polymatroid. We leave the formal details as an exercise to the reader.

The interesting fact is that the maximum B-C flow a polymatroid network is

equal to the minimum B-C cut cost as defined above. We refer the reader [42] for

more discussion on how polymatroid optimization problems can be seen via

flow network problems. See [13] for multicommodity flow generalizations of

the polymatroidal network flow model and connections to flow-cut gaps in both

directed and undirected graphs. The same paper has a proof of the flow-cut

equivalence which is new and is perhaps more easy to understand than classical

CHAPTER 21. SUBMODULAR FLOWS AND APPLICATIONS 234

proofs. Schrĳver [57] has proofs of the equivalence of the Edmonds-Giles model

and the polymatroidal network flow model.

Chapter 22

Multiflows1

The maxflow-mincut theorem of Ford and Fulkerson generalizes Menger’s

theorem and is a fundamental result in combinatorial optimization with many

applications.

Theorem 22.1. In a digraph � = (+, �) with arc capacity function 2 : �→ ℝ+, the
maximum B-C flow value is equal to the minimum B-C capacity cut value. Moreover, if 2

is integer valued, then there is an integer valued maximum flow.

In particular, the maximum number of B-C arc-disjoint paths in a digraph

is equal to the minimum number of arcs whose removal disconnects B from

C (Menger’s theorem). When applied to undirected graphs we obtain the

edge-disjoint and node-disjoint path version of Menger’s Thoerem.

In many applications in networks we are interested in multiflows, also

referred to as multi-commodity flows. B − C flows are also referred to as

single-commodity flows.

A multiflow instance in a directed graph consists of a directed “supply" graph

� = (+, �) with non-negative arc capacities 2 : �→ ℝ+ and a demand graph

� = (), ')with) ⊆ + called terminals, and non-negative demand requirements

3 : '→ ℝ+. The arcs in ' are referred to as nets. The demand graph can also

be specified as a set of ordered pairs (B1 , C1), . . . , (B: , C:)with 38 ∈ ℝ+ denoting
the demand for (B8 , C8). This is referred to as the :-commodity flow problem.

A multiflow instance in an undirected graph consists of an undirected supply

graph � = (+, �) and an undirected demand graph � = (), '). The demand

graph can be specified by a collection of unordered pairs B1C1 , . . . , B:C: .

Given a multiflow instance in a directed graph � = (+, �) with demand

graph � = (), '), amultiflow is a collection of flows, 5A , A ∈ ' where 5A is an BA-CA

1Based on notes scribed by Su Lu and Dong Ye from 2010.

235

CHAPTER 22. MULTIFLOWS 236

flow and A = (BA , CA). A multiflow satisfies the capacity constraints of the supply

graph if for each arc 0 ∈ �, ∑
A∈'

5A(0) ≤ 2(0). (22.1)

The multiflow satisfies the demands if for each A = (BA , CA) ∈ ', the 5A flow
from BA to CA is at least 3(A).

For undirected graphs we need a bit more care. We say that 5 : � → ℝ+
is an B − C flow if there is an orientation � = (+, �) of � = (+, �) such that

5 ′ : � → ℝ+ defined by the orientation and 5 : � → ℝ+ is an B − C flow in �.

Thus 5A , A ∈ ' where 5A : � → ℝ+ is a multiflow if each 5A is an BA-CA flow. It

satisfies the capacity constraints if ∀4 ∈ �,∑
A∈'

5A(4) ≤ 2(4). (22.2)

We say a multiflow is integral if each of the flows is integer valued; that is

5A(0) is an integer for each arc 0 and each A ∈ '. Similarly half-integral (i.e., each

flow on an arc is an integer multiple of 1/2).

Proposition 22.0.1. Given amultiflow instance in a directed graph, there is a polynomial

time algorithm to check if there exists a multiflow that satisfies the capacities of the

supply graph and the demand requirements of the demand graph.

Proof. Can be solved by expressing the problem as a linear program. Variables

5A(0) A ∈ ', 0 ∈ �. Write standard flow conservation constraints that ensures

5A : �→ ℝ+ is a flow for each A (flow conservation at each node other than the

source and destination of A). We add the following set of constraints to ensure

capacity constraints of the supply graph are respected.∑
A∈'

5A(0) ≤ 2(0) 0 ∈ �. (22.3)

Finally, we add constraints that the value of 5A (leaving the source of A) should

be at least 3(A). �

Proposition 22.0.2. Given an undirected multiflow instance, there is a polynomial

time algorithm to check if there is a feasible multiflow that satisfies the supply graph

capacities and the demand requirements.

Proof. We reduce it to the directed flow case as follows. Given � = (+, �) obtain
a digraph � = (+, �) by dividing each edge 4 into two arcs

−→4 and
←−4 . Now

we have variable 5A(0), 0 ∈ �, A ∈ ', and write constraints that ensure that

CHAPTER 22. MULTIFLOWS 237

5A : � → ℝ+ is a flow of value 3(A) from BA to CA where A = BACA . The capacity

constraint ensures that the total flow on both
−→4 and

←−4 is at most 2(4), i.e.,∑
A∈'
(5A(−→4) + 5A(←−4)) ≤ 2(4), 4 ∈ �. (22.4)

�

LP duality gives the following useful necessary and sufficient condition; it is

some times referred to as the Japanese theorem.

Theorem 22.2. A multiflow instance in directed graph is feasible iff

:∑
8=1

38ℓ (B8 , C8) ≤
∑
0∈�

2(0)ℓ (0) (22.5)

for all length functions ℓ : �→ ℝ+.

Here ℓ (B8 , C8) is the shortest path distance from B8 to C8 with arc lengths ℓ (0).
For undirected graph the characterization is similar

:∑
8=1

38ℓ (B8 , C8) ≤
∑
4∈�

2(4)ℓ (4) (22.6)

for all ℓ : �→ ℝ+.

Proof. Consider the path formulation we prove it for undirected graphs. Let %8
be the set of B8C8 path in �. Let 58 : %8 → ℝ+ be an assignment of flow values to

paths in %8 . We want feasibility of∑
?∈%8

58(?) ≥ 38 8 = 1 to : (22.7)

:∑
8=1

∑
?∈%8 :4∈?

58(?) ≤ 2(4) 4 ∈ � (22.8)

58(?) ≥ 0, ? ∈ %8 , 1 ≤ 8 ≤ :. (22.9)

We apply Farkas lemma. Recal that �G ≤ 1, G ≥ 0 has a solution iff H1 ≥ 0

for each row vector H ≥ 0 with H� ≥ 0. We leave it as an exercise to derive the

statement from Farkas lemma applied to the above system of inequalities. �

CHAPTER 22. MULTIFLOWS 238

It is useful to interpret the necessity of the condition. Suppose for some

ℓ : �→ ℝ+

:∑
8=1

38ℓ (B8 , C8) >
∑
4∈�

2(4)ℓ (4) (22.10)

we show that there is no feasible multiflow. For simplicity assume ℓ is integer

valued. Then replace an edge 4 = (D, E) with length ℓ (4) by a path between D

and E with ℓ (4) edges and place capacity 2(4) on each edge. Suppose there is a

feasible flow. For each demand pair (B8 , C8), each flow path length is of length

at least ℓ (B8 , C8). Implies that the total capacity used up by flow for (B8 , C8) is
≥ 38ℓ (B8 , C8). But total capacity available is

∑
4 2(4)ℓ (4) (after expansion). Hence

if

∑:
8=1

38ℓ (B8 , C8) >
∑
4∈� 2(4)ℓ (4), there cannot be a feasible multiflow.

To show that a multiflow instance is not feasible it is sufficient to give an

appropriate arc length function that violates the necessary condition above.

22.1 Integer Multiflow and Disjoint Paths

When all capacities are 1 and all demands are 1 the problem of checking if there

exists an integer multiflow is the same as asking if there exist arc-disjoint path

(edge-disjoint path if graph is undirected) connecting the demand pairs.

The edge-disjoint paths problem (EDP) is the following decision problem: given

supply graph � = (+, �) (or � = (+, �)) and a demand graph � = (), '), are
there arc/edge-disjoint paths connecting the pairs in '?

Theorem 22.3 (Fortune-Hopcroft-Wyllie 1980). EDP in directed graphs is NP-

complete even for two pairs.

Theorem 22.4. EDP in undirected graphs is NP-complete when |' | is part of the input,
even when |' | consists of three sets of parallel edges.

A deep, difficult and fundamental result of Robertson and Seymour is that

EDP in undirected graphs is polynomial-time solvable when |' | is fixed. In fact

they prove that the vertex-disjoint path problem (the pairs need to be connected

by vertex disjoint paths) is also tractable.

Theorem 22.5 (Robertson-Seymour). The vertex-disjoint path problem is polynomial-

time solvable if the number of demand pairs is a fixed constant.

The above theorem relies on the work of Robertson and Seymour on graph

minors.

CHAPTER 22. MULTIFLOWS 239

22.2 Cut Condition, Sparsest Cut, and Flow-Cut Gaps

Anecessary condition for the existence of a feasiblemultiflow for a given instance

is the so called cut-condition. In directed graphs it is

2(�+�(*)) ≥ 3(�
+
�(*)) ∀* ⊂ + (22.11)

Demand arcs

Supply arcs

u

where 2(�+
�
(*)) is capacity of all arcs leaving* , and 3(�+

�
(*)) is the demand

of all demand arcs leaving * . It is easy to see that this condition is necessary.

Formally one sees that this condition is necessary by considering the length

function ℓ : �→ ℝ+ where ℓ (0) = 1 if 0 ∈ �+
�
(*) and ℓ (0) = 0.

For undirected graphs the cut condition states

2(��(*)) ≥ 3(��(*)) ∀* ⊂ + (22.12)

Demand arcs

Supply arcs

u

Cut condition is not sufficient in general. Consider the following examples

in directed graphs with two demand pairs.

CHAPTER 22. MULTIFLOWS 240

s1

t2

t1
S2 s1

t2 t1
S2

Cut condition is true for each case but no feasible multiflows exists as can be

seen by considering the length function ℓ (0) = 1 for each arc 0.

For undirected graphs the following example is well known with three

demand pairs. Supply graph is 2,3, a series-parallel graph. Again, cut-condition

is satisfied but ℓ (4) = 1 for each 4 shows no feasible multiflow exists.

Dotted edges are
demand edges

22.3 When is cut condition sufficient?

Given that the cut condition is not sufficient for feasible flow it is natural to

consider cases where it is indeed sufficient. First consider directed graphs.

Suppose we have demand pairs of the form (B, C1), (B, C2), . . . , (B, C:), i.e., all
pairs share a common source. Then it is easy to see that cut condition implies

feasible multiflow by reduction to the single-commodity flow case by connecting

C1 , C2 , . . . , C: to a common sink C. Similarly if the demand pairs are of the form

(B1 , C), (B2 , C), . . . , (B: , C)with a common source.

It turns out that these are the only interesting cases for which cut condition

suffices. See Theorem 70.3 in Schrĳver Book.

For undirected graphs several non-trivial and interesting cases where the

cut-condition is sufficient are known. We list a few below:

• Hu’s 2-commodity theorem shows that if there are only two pairs B1C1 and

B2C2 then cut-condition is sufficient.

• Okamura-Seymour theorem states that if � is a planar graph and) is

vertex set of a single face then cut condition is sufficient. Note that the

theorem implies that when the supply graph is a capacitated ring, the cut

condition is sufficient for routing.

CHAPTER 22. MULTIFLOWS 241

• Okamura’s theorem generalizes Okamura-Seymour Theorem. If � is

planar and there are two faces �1 and �2 such that each BC ∈ ' has both

B, C on one of these two faces then cut condition is sufficient.

• Seymour’s Theorem shows that if � + � is planar then cut condition is

sufficient.

For all of the above cases one has the following stronger result. If � + � is

Eulerian then the flow is guaranteed to be integral. To see that the Eulerian

condition is necessary for integral flow in each of the above cases, consider the

example below where the only feasible multiflow is a half-integral.

s1

s2

t2

t1

Only ½ integral
flow exists

Note that if the supply graph is a tree then cut condition implies feasible

routing, and moreover, integer capacities and integer demands imply integer

routing exists. If the � + � is outerplanar then this property still holds [53].

22.4 Okamura-Seymour Theorem

Theorem 22.6. Let � = (+, �) be a plane graph and let � = (), ') be a demand graph

where) is the set of vertices of a single face of �. Then if � satisfies the cut condition

for � and � + � is eulerian, there is an integral multiflow for � in �.

The proof is via induction on 2|� | − |' |. Note that if � satisfies the cut

condition for �, then |' | ≤ |� | (why?).

There are several “standard” induction steps and observations that are used

in this and other proofs and we go over them one by one. For this purpose we

assume �, � satisfy the conditions of the theorem and is a counter example

with 2|�(�)| − |' | minimal[Lex].

Claim 22.4.1. No demand edge A is parallel to a supply edge 4.

Proof. If A is parallel to 4 then � − 4, � − A satisfy the conditions of the theorem

and by induction � − A has an integral multiflow in � − 4. We can route A via 4.

Thus � has an integral multiflow in �. �

CHAPTER 22. MULTIFLOWS 242

Definition 22.7. A set (⊂ + is said to be tight if |��(()| = |��(()|.

Claim 22.4.2. For every demand edge A ∈ ' there is a tight cut (s.t. A ∈ ��(().

Proof. If A is not in any tight set, then adding two copies of A to � maintains cut

condition and the Eulerian condition. By induction (note that the induction is

on 2|� | − |' |) the new instance is routable. �

Claim 22.4.3. � is 2-node connected.

Proof. Suppose not and let E be a cut vertex of �. Let �1 , �2 , ..., �: be the graphs

obtained by combining E with the components of � − E.

Suppose there is a demand edge A = (B, C) s.t. B ≠ E, C ≠ E and B ∈ �8 and
C ∈ � 9 , 8 ≠ 9. Then we can replace (B, C) by two edges (B, E) and (E, C). The claim
is that this new instance satisfies the cut condition - we leave the formal proof as

an exercise. Clearly Euler condition is maintained. The new instance is routable

by induction which implies that the original instance is also routable.

If no such demand edge exits then all demand edges have both end points in

�8 for some 8. Then let �8 be the demand graph induced on �8 . We can verify

that each �8 , �8 satisfy the cut condition and the Euler condition. By induction

each �8 is routable in �8 which implies that � is routable in �. �

Definition 22.8. A set ∅ ⊂ (⊂ + is central if �[(] and �[+ \ (] are connected.

Lemma 22.1. Let � be a connected graph. Then �, � satisfy the cut condition if and

only if the cut condition is satisfied for each central set (.

Proof. Clearly, if �, � satisfy the cut condition for all sets then it is satisfied for

the central sets. Suppose the cut condition is satisfied for all central sets but there

is some non-central set (′ such that |��(()| < |��(()|. Choose (′ to be minimal

among all such sets. We obtain a contradiction as follows. Let (1 , (2 , . . . , (: be

CHAPTER 22. MULTIFLOWS 243

the connected components in � \ ��((′); since (′ is not central, : ≥ 3. Moreover

each (8 is completely contained in (′ or in + \ (′. We claim that some (9 violates

the cut-condition, whose proof we leave as an exercise. Moreover, by minimality

in the choice of (′, (9 is central, contradicting the assumption. �

One can prove the following corollary by a similar argument.

Corollary 22.9. Let �, � satisfy the cut condition. If (′ is a tight set and (′ is not
central, then there is some connected component (contained in (′ or in + \ (′ such that
(is a tight central set.

Uncrossing:

Lemma 22.2. Let �, � satisfy cut-condition, Let �, � be two tight sets such that

� ∩ � ≠ ∅ and � ∪ � ≠ + . If |��(�)| + |��(�)| ≤ |��(� ∩ �)| + |��(� ∪ �)|, then
� ∩ � and � ∪ � are tight. If |��(�)| + |��(�)| ≤ |��(� − �)| + |��(� − �)|, then
� − � and � − � are tight.

Proof. By submodularity and symmetry of the cut function |�� | : 2
+ → ℝ+, we

have

|��(�)| + |��(�)| ≥ |��(� ∩ �)| + |��(� ∪ �)|
and also

��(�)| + |��(�)| ≥ |��(� − �)| + |��(� − �)|.
Now if

|��(�)| + |��(�)| ≤ |��(� ∩ �)| + |��(� ∪ �)|
then we have

|��(�∩�)|+|��(�∪�)| ≥ |��(�∩�)|+|��(�∪�)| ≥ |��(�)|+|��(�)| = |��(�)|+|��(�)|
where the first inequality follows from the cut-condition, the second from our

assumption and the third from the tightness of � and �. It follows that

|��(� ∩ �)| = |��(� ∩ �)|
and

|��(� ∪ �)| = |��(� ∪ �)|.
The other claim is similar. �

Corollary 22.10. If �, � are tight sets and ��(� − �, � − �) = ∅ then � ∩ � and

� ∪ � are tight.

Proof. We note that

|��(�)| + |��(�)| = |��(� ∩ �)| + |��(� ∪ �)| + 2|��(� − �, � − �)|.
Thus, if ��(�−�, �−�) = ∅we have |��(�)|+ |��(�)| = |��(�∩�)|+ |��(�∪�)|
and we apply the previous lemma. �

CHAPTER 22. MULTIFLOWS 244

Proof. Nowwe come to the proof of the Okamura-Seymour theorem. Recall that

�, � is a counter example with 2|� | − |' | minimal. Then we have established

that:

1. � is 2-connected.

2. every demand edge is in a tight cut.

3. no supply edge is parallel to a demand edge.

Without loss of generality we assume that the all the demands are incident to

the outer/unbounded face of �. Since � is 2-connected the outer face is a cycle

�. Let - ⊂ + be a tight set; a tight set exists since each demand edge is in some

tight set. Then if - ∩ � is not a contiguous segment, - is not a central set as

can be seen informally by the picture below; �[+ \ -] would have two or more

connected components.

X is not central

component of G[V \X]

component of G[V \X]

component of G[V \X]

C

u

w

X is central

C

From Corollary 22.9 we can assume the existence of a tight set - such that

- ∩ � is a contiguous segment. Choose such a tight set with - ∩ � minimal.

Let DF be one of the two edges of the cycle � that crosses -; let F ∈ - and

D ∉ -. Since - is tight, �'(-) ≠ ∅. For each A ∈ �'(-), let BA , CA be the endpoints
of A with BA ∈ - ∩ � and CA ∉ - ∩ �. Choose A ∈ �'(-) such that CA is closest (in

distance along the cycle �) to D in � − -. Note that A is not parallel to DF. So if

BA = F then CA ≠ D and if CA = D then BA ≠ F. Let E ∈ {D, F} \ {BA , CA}, E exists by

above; for simplicity choose E = F if BA ≠ F.

Let '′ = (' \ {BA , CA}) ∪ {BAE, ECA}. That is, we replace the demand edge BACA
by two new demand edges BAE and ECA as shown in the figure.

Claim 22.4.4. � satisfies cut condition for '′ and � + '′ induces an Eulerian graph.

Assuming claim, we are done because 2|� |− |'′ | < 2|� |− |' | and by induction

'′ has an integral multiflow in �, and ' has an integer multiflow if '′ does.

CHAPTER 22. MULTIFLOWS 245

u

w = sr

tr
X

C

u

w

tr
X

sr

C

In the picture on the left E = F and on the right E = D.

u

w = sr

tr
X

C

u

w

tr
X

sr

C

Replacing BACA by new demands BAE and ECA .

Trivial to see � + '′ induces an Eulerian graph. Suppose � does not satisfy

the cut condition for the demand set '′. Let . be a cut that violates the cut

condition for '′. For this to happen . must be a tight set for ' in �; this is the

reason why replacing BACA by BAE and ECA violates the cut condition for . for '′.
By complementing . if necessary we can assume that E ∈ ., BA , CA ∉ .. Further,
by Corollary 22.9, we can assume . is central and hence . ∩ � is a contiguous

segment of �.

By choice of A there is no demand A′ between . − - and - − .. If there was,

then CA′ would be closer to D than CA . We have -,. tight and

�'[- − .,. − -] = ∅.

We consider two cases. First, suppose - ∩ . ≠ ∅ (this is guaranteed if

E = F). Then from Corollary 22.10, - ∩. and - ∪. are tight since - ∩. ≠ ∅ by
assumption and - ∪. ≠ + (since CA ∈ + \ (- ∪.)). - −. ≠ ∅, since BA ∈ - −..
Since - ∩. is a tight set and - ∩. ≠ -, it contradicts the choice of - as the tight

CHAPTER 22. MULTIFLOWS 246

u

w = sr

tr
X

C

u

w

tr

Y

sr

C

Y

Tight set . in the two cases.

set with - ∩ � minimal. If - ∩ . = ∅ then E = D and D ∈ .; again - ∪ . ≠ + .
Note that the edge DF joins - and .. In this case we claim that - ∪ . does not

satisfy the cut condition which is a contradiction. To see this note that

|��(- ∪ .)| ≤ |��(-)| + |��(.)| − 2

since DF connects - to .. However,

|��(- ∪ .)| = |��(-)| + |��(.)| = |��(-)| + |��(.)|

where the first inequality follows since -∩. = ∅ and there are no demand edges

between - − . and . − -. The second inequality follows from the tightness of

- and .. �

22.5 Sparse Cuts, Concurrent Multicomodity Flow and
Flow-Cut Gaps

In traditional combinatorial optimization, the focus has been on understand-

ing and characterizing those cases where cut condition implies existence of

fractional/integral multiflow. However, as we saw, even in very restrictive

settings, cut condition is not sufficient. A theoretical CS/algorithms perspective

has been to quantify the “gap” between flow and cut. More precisely, suppose

� satisfies the cut condition for �. Is it true that there is a feasible multiflow in

� that routes �38 for each pair B8C8 where � is some constant in (0, 1)?
There are two reasons for considering the above. First, it is a mathematically

interesting question. Second, and this was the initial motivation from a computer

science/algorithmic point of view, is to obtain approximation algorithms for

finding “sparse” cuts in graphs; these have many applications in science and

engineering. The following is known.

CHAPTER 22. MULTIFLOWS 247

Theorem 22.11. Given a multiflow instance, it is co-NP complete to check if the

cut-condition is satisfied for the instance.

Definition 22.12. Given a multiflow instance the maximum concurrent flow for the

given instance is the maximum � ≥ 0 such that there is a feasible multiflow if all demand

values are multiplied by �.

Proposition 22.5.1. There is a polynomial time algorithm that, given a multiflow

instance, computes the maximum concurrent flow.

Proof. Write a linear program:

max �
flow for each B8C8 ≥ �38

Flow satisfies capacity constraints. We leave the details to the reader. �

Definition 22.13. Given a multiflow instance on �, �, the sparsity of a cut* ⊂ + is

B?0AB8CH(*) :=
2 (��(*))
3 (��(*))

.

A sparsest cut is* ⊂ + such that B?0AB8CH(*) ≤ B?0AB8CH(*′) for all*′ ⊂ + . We

refer to min*⊂+ B?0AB8CH(*) as the min-sparsity of the given multiflow instance.

Observation 22.14. (�, �) satisfies the cut condition implies sparsity(*) ≥ 1 for all

U ⊂ + .

Proposition 22.5.2. In many multiflow instance, if �∗ is the max concurrent flow then

�∗ ≤ B?0AB8CH(*),∀* ⊂ +.

The ratio
<8=−B?0A8CH

�∗ is the flow cut gap for the given instance.

For example, in the instance shown in the figurewith capacities and demands

Dotted edges are
demand edges

equal to 1, the flow-cut gap is
4

3
. Min-sparsity for the above instance is 1 while

�∗ = 3

4
. In general, we are interested in quantifying flow-cut gaps for classes of

instances rather than a particular instance.

CHAPTER 22. MULTIFLOWS 248

In the sequel, we think of � and � as "topological" graphs in that they are

not endowed with capacities and demands. A multiflow instance on �, � is

defined by 2 : �→ ℝ+ and 3 : '→ ℝ+. Note that by setting 2(4) = 0 or 3(A) = 0,

we can “eliminate” some edges. We define
(�, �), the flow-cut gap for �, �,

as the supremum over all instances on �, � defined by capacities 2 : � → ℝ+
and 3 : '→ ℝ+. We can then define for a graph �:

(�) = sup

�=(),'),)⊆+

(�, �).

Some results that we mentioned on the sufficiency of cut condition for

feasible flow can be restated as follows:
(�, �) = 1 if |' | = 2 (Hu’s theorem),

(�, �) = 1 if� is planar and) is the vertex set of a face of� (Okamura-Seymour

theorem), and so on. What can we say about
(�) for an arbitrary graph?

Theorem 22.15 (Linial-London-Rabinovich [46], Aumann-Rabani [5]).
(�) =
$(log =) where = = |+ | and in particular
(�, �) = $(log |' |) i.e. the flow-cut

gap is $(log :) for k-commodity flow. Moreover there exist graphs �, � for which

(�, �) = Ω(log |' |), in particular there exist graphs � for which
(�) = Ω(log =).

Gupta et al [31] made the following conjecture called now the GNRS conjec-

ture.

Conjecture 22.16.
(�) = $(1) if � is a planar graph.

In fact their conjecture is stronger and applies to any proper minor-closed

family of graphs.

We do know that planar graphs admit a better worst-case flow-cut gap than

general graphs due a result of Satish Rao [54].

Theorem 22.17 (Rao [54]).
(�) = $(
√

log =) for a planar graph �.

For the special case of series-parallel graphs we know that
(�) ≤ 2 [10], and

moreoever this bound is tight in the worst case [15, 43].

Bibliography

[1] Ahmad Abdi, Gérard Cornuéjols, and Michael Zlatin. “On packing dĳoins

in digraphs and weighted digraphs”. In: arXiv preprint arXiv:2202.00392

(2022).

[2] Alexander A Ageev and Maxim I Sviridenko. “Pipage rounding: A new

method of constructing algorithms with proven performance guarantee”.

In: Journal of Combinatorial Optimization 8.3 (2004), pp. 307–328.

[3] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. “Network

flows”. In: (1988).

[4] Arash Asadpour, Michel X Goemans, Aleksander Mądry, Shayan Oveis

Gharan, and Amin Saberi. “An O (log n/log log n)-approximation al-

gorithm for the asymmetric traveling salesman problem”. In: Operations

Research 65.4 (2017), pp. 1043–1061.

[5] Yonatan Aumann and Yuval Rabani. “An O (log k) approximate min-cut

max-flow theorem and approximation algorithm”. In: SIAM Journal on

Computing 27.1 (1998), pp. 291–301.

[6] Niv Buchbinder and Moran Feldman. “Handbook of Approximation

Algorithms and Metaheuristics”. In: ed. by Teofilo Gonzalez. Second

edition. Chapman and Hall/CRC, 2018. Chap. Submodular Functions

Maximization Problems.

[7] Andrei A Bulatov. “Constraint satisfaction problems: complexity and

algorithms”. In: ACM SIGLOG News 5.4 (2018), pp. 4–24.

[8] Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. “Maxi-

mizing a monotone submodular function subject to a matroid constraint”.

In: SIAM Journal on Computing 40.6 (2011), pp. 1740–1766.

[9] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. “Max-

imizing a submodular set function subject to a matroid constraint”. In:

International Conference on Integer Programming and Combinatorial Optimiza-

tion. Springer. 2007, pp. 182–196.

249

BIBLIOGRAPHY 250

[10] Amit Chakrabarti, Alexander Jaffe, James R Lee, and Justin Vincent.

“Embeddings of topological graphs: Lossy invariants, linearization, and

2-sums”. In: 2008 49th Annual IEEE Symposium on Foundations of Computer

Science. IEEE. 2008, pp. 761–770.

[11] Chandra Chekuri and Alina Ene. “Approximation algorithms for sub-

modular multiway partition”. In: 2011 IEEE 52nd Annual Symposium on

Foundations of Computer Science. IEEE. 2011, pp. 807–816.

[12] Chandra Chekuri and Alina Ene. “Submodular cost allocation problem

and applications”. In: International Colloquium on Automata, Languages, and

Programming. Springer. 2011, pp. 354–366.

[13] Chandra Chekuri, Sreeram Kannan, Adnan Raja, and Pramod Viswanath.

“Multicommodity flows and cuts in polymatroidal networks”. In: SIAM

Journal on Computing 44.4 (2015), pp. 912–943.

[14] Chandra Chekuri, Kent Quanrud, and Manuel R Torres. “Densest Sub-

graph: Supermodularity, Iterative Peeling, and Flow”. In: Proceedings of the

2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM.

2022, pp. 1531–1555.

[15] Chandra Chekuri, F Bruce Shepherd, and Christophe Weibel. “Flow-cut

gaps for integer and fractional multiflows”. In: Journal of Combinatorial

Theory, Series B 103.2 (2013), pp. 248–273.

[16] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. “Submodular func-

tion maximization via the multilinear relaxation and contention resolution

schemes”. In: SIAM Journal on Computing 43.6 (2014), pp. 1831–1879.

[17] Hubie Chen. “A rendezvous of logic, complexity, and algebra”. In: ACM

Computing Surveys (CSUR) 42.1 (2009), pp. 1–32.

[18] W.J. Cook,W.H. Cunningham,W.R. Pulleyblank, andA. Schrĳver.Combina-

torial Optimization. Wiley Series in Discrete Mathematics and Optimization.

Wiley, 1998.

[19] WilliamHCunningham and ABMarsh. “A primal algorithm for optimum

matching”. In: Polyhedral Combinatorics. Springer, 1978, pp. 50–72.

[20] Ran Duan and Seth Pettie. “Linear-time approximation for maximum

weight matching”. In: Journal of the ACM (JACM) 61.1 (2014), pp. 1–23.

[21] Ran Duan, Seth Pettie, and Hsin-Hao Su. “Scaling algorithms for weighted

matching in general graphs”. In: ACM Transactions on Algorithms (TALG)

14.1 (2018), pp. 1–35.

[22] Shaddin Dughmi. “Submodular functions: Extensions, distributions, and

algorithms. a survey”. In: arXiv preprint arXiv:0912.0322 (2009).

BIBLIOGRAPHY 251

[23] Jack Edmonds and Rick Giles. “Total dual integrality of linear inequality

systems”. In: Progress in combinatorial optimization. Elsevier, 1984, pp. 117–

129.

[24] Moran Feldman, Joseph Naor, and Roy Schwartz. “A unified continuous

greedy algorithm for submodular maximization”. In: 2011 IEEE 52nd

Annual Symposium on Foundations of Computer Science. IEEE. 2011, pp. 570–

579.

[25] Lisa Fleischer. Recent Progress in Submodular Function Minimization. OP-

TIMA: Mathematical Programming Society Newsletter. Available online

at http://www.mathprog.org/Optima-Issues/optima64.pdf. Sept. 2000.

[26] Harold N Gabow, Zvi Galil, Thomas Spencer, and Robert E Tarjan. “Effi-

cient algorithms for finding minimum spanning trees in undirected and

directed graphs”. In: Combinatorica 6.2 (1986), pp. 109–122.

[27] Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. “A randomized

rounding approach to the traveling salesman problem”. In: 2011 IEEE

52nd Annual Symposium on Foundations of Computer Science. IEEE. 2011,

pp. 550–559.

[28] Gagan Goel, Chinmay Karande, Pushkar Tripathi, and Lei Wang. “Ap-

proximability of combinatorial problems with multi-agent submodular

cost functions”. In: 2009 50th Annual IEEE Symposium on Foundations of

Computer Science. IEEE. 2009, pp. 755–764.

[29] Andrew V Goldberg and Robert E Tarjan. “Finding minimum-cost circu-

lations by canceling negative cycles”. In: Journal of the ACM (JACM) 36.4

(1989), pp. 873–886.

[30] Martin Grötschel, László Lovász, and Alexander Schrĳver. Geometric

algorithms and combinatorial optimization. Vol. 2. Springer Science & Business

Media, 2012.

[31] Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair.

“Cuts, trees and l/sub 1/-embeddings of graphs”. In: 40th Annual Sympo-

sium on Foundations of Computer Science (Cat. No. 99CB37039). IEEE. 1999,

pp. 399–408.

[32] David Hartvigsen. “Compact representations of cuts”. In: SIAM Journal on

Discrete Mathematics 14.1 (2001), pp. 49–66.

[33] REFAEL HASSIN. “ON NETWORK FLOWS.” PhD thesis. Yale University,

1978.

[34] Refael Hassin. “Solution bases of multiterminal cut problems”. In: Mathe-

matics of operations research 13.4 (1988), pp. 535–542.

http://www.mathprog.org/Optima-Issues/optima64.pdf

BIBLIOGRAPHY 252

[35] Satoru Iwata and Kiyohito Nagano. “Submodular function minimization

under covering constraints”. In: 2009 50th Annual IEEE Symposium on

Foundations of Computer Science. IEEE. 2009, pp. 671–680.

[36] David R Karger. “Minimum cuts in near-linear time”. In: Journal of the

ACM (JACM) 47.1 (2000), pp. 46–76.

[37] David Ron Karger. “Random sampling in graph optimization problems”.

PhD thesis. stanford university, 1995.

[38] Anna Karlin, Nathan Klein, and Shayan Oveis Gharan. “A (Slightly)

Improved Bound on the Integrality Gap of the Subtour LP for TSP”. In:

CoRR abs/2105.10043 (2021). arXiv: 2105.10043. url: https://arxiv.org/

abs/2105.10043.

[39] Bernhard H Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial opti-

mization. Vol. 1. Springer, 2011.

[40] Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in

combinatorial optimization. Vol. 46. Cambridge University Press, 2011.

[41] Eugene L Lawler and Charles U Martel. “Computing maximal “polyma-

troidal” network flows”. In:Mathematics of Operations Research 7.3 (1982),

pp. 334–347.

[42] Eugene L Lawler and Charles U Martel. “Flow network formulations

of polymatroid optimization problems”. In: North-Holland Mathematics

Studies. Vol. 66. Elsevier, 1982, pp. 189–200.

[43] James R Lee and Prasad Raghavendra. “Coarse differentiation and multi-

flows in planar graphs”. In: Discrete & Computational Geometry 43.2 (2010),

pp. 346–362.

[44] Hendrik W Lenstra Jr. “Integer programming with a fixed number of

variables”. In:Mathematics of operations research 8.4 (1983), pp. 538–548.

[45] JasonLi andDebmalyaPanigrahi. “DeterministicMin-cut inPoly-logarithmic

Max-flows”. In: 2020 IEEE 61st Annual Symposium on Foundations of Com-

puter Science (FOCS). IEEE. 2020, pp. 85–92.

[46] Nathan Linial, Eran London, and Yuri Rabinovich. “The geometry of

graphs and some of its algorithmic applications”. In: Combinatorica 15.2

(1995), pp. 215–245.

[47] László Lovász. An algorithmic theory of numbers, graphs and convexity. SIAM,

1986.

[48] László Lovász. “Submodular functions and convexity”. In:Mathematical

programming the state of the art. Springer, 1983, pp. 235–257.

https://arxiv.org/abs/2105.10043
https://arxiv.org/abs/2105.10043
https://arxiv.org/abs/2105.10043

BIBLIOGRAPHY 253

[49] Jiri Matousek and Bernd Gärtner. Understanding and using linear program-

ming. Springer Science & Business Media, 2007.

[50] S Thomas McCormick. “Submodular function minimization”. In: Hand-

books in operations research and management science 12 (2005), pp. 321–391.

[51] AndrewMcGregor and Bruce Shepherd. “Island hopping and path colour-

ing with applications to WDM network design”. In: Proceedings of the eigh-

teenth annual ACM-SIAM symposium on Discrete algorithms. 2007, pp. 864–

873.

[52] RanMendelson, Robert E Tarjan,Mikkel Thorup, andUri Zwick. “Melding

priority queues”. In: ACM Transactions on Algorithms (TALG) 2.4 (2006),

pp. 535–556.

[53] Guyslain Naves, F Bruce Shepherd, and Henry Xia. “Maximum weight

disjoint paths in outerplanar graphs via single-tree cut approximators”.

In:Mathematical Programming (2022), pp. 1–19.

[54] Satish Rao. “Small distortion and volume preserving embeddings for pla-

nar and Euclidean metrics”. In: Proceedings of the fifteenth annual symposium

on Computational geometry. 1999, pp. 300–306.

[55] Richard Santiago and F Bruce Shepherd. “Multi-agent submodular opti-

mization”. In: arXiv preprint arXiv:1803.03767 (2018).

[56] Richard Santiago and F Bruce Shepherd. “Multivariate submodular opti-

mization”. In: International Conference on Machine Learning. PMLR. 2019,

pp. 5599–5609.

[57] Alexander Schrĳver. Combinatorial optimization: polyhedra and efficiency.

Vol. 24. Springer Science & Business Media, 2003.

[58] Alexander Schrĳver. Theory of linear and integer programming. John Wiley &

Sons, 1998.

[59] F. Bruce Shepherd. “Single-Sink Multicommodity Flow with Side Con-

straints”. In: Research Trends in Combinatorial Optimization, Bonn Workshop

on Combinatorial Optimization, November 3-7, 2008, Bonn, Germany. Ed. by

William J. Cook, László Lovász, and JensVygen. Springer, 2008, pp. 429–450.

doi: 10.1007/978-3-540-76796-1_20. url: https://doi.org/10.1007/978-

3-540-76796-1%5C_20.

[60] FB Shepherd and A Vetta. “Visualizing, finding and packing dĳoins”. In:

Graph Theory and Combinatorial Optimization. Springer, 2005, pp. 219–254.

[61] Éva Tardos. “A strongly polynomial algorithm to solve combinatorial

linear programs”. In: Operations Research 34.2 (1986), pp. 250–256.

https://doi.org/10.1007/978-3-540-76796-1_20
https://doi.org/10.1007/978-3-540-76796-1%5C_20
https://doi.org/10.1007/978-3-540-76796-1%5C_20

BIBLIOGRAPHY 254

[62] Éva Tardos. “A strongly polynomial minimum cost circulation algorithm”.

In: Combinatorica 5.3 (1985), pp. 247–255.

[63] Alexander Toshev. Submodular Function Minimization. Preliminary exam

report, University of Pennsylvania. Available at https://drive.google.

com/file/d/1Wkv6uH0BSXCGHQUwSVEJ9LKUfLuyzpY0/view?usp=sharing. 2010.

[64] Vĳay V Vazirani. Approximation algorithms. Springer Science & Business

Media, 2013.

[65] Vĳay V. Vazirani. A Proof of the MV Matching Algorithm. 2020. arXiv:

2012.03582 [cs.DS].

[66] Jan Vondrák. “Submodularity in combinatorial optimization”. In: (2007).

[67] David P Williamson. Network flow algorithms. Cambridge University Press,

2019.

[68] Peter Winkler and Lisa Zhang. “Wavelength assignment and generalized

interval graph coloring”. In: Proceedings of the fourteenth annual ACM-SIAM

symposium on Discrete algorithms. 2003, pp. 830–831.

[69] Laurence A Wolsey. “Heuristic analysis, linear programming and branch

and bound”. In: Combinatorial Optimization II. Springer, 1980, pp. 121–134.

https://drive.google.com/file/d/1Wkv6uH0BSXCGHQUwSVEJ9LKUfLuyzpY0/view?usp=sharing
https://drive.google.com/file/d/1Wkv6uH0BSXCGHQUwSVEJ9LKUfLuyzpY0/view?usp=sharing
https://arxiv.org/abs/2012.03582

	Introduction and Motivation
	Network Flow
	Bipartite Matchings
	General Graph Matchings

	Matchings in Non-Bipartite Graphs
	Tutte-Berge Formula for (G)
	Polynomial-time Algorithm for Maximum Cardinality Matching

	Polyhedra and Linear Programming
	Basics
	Polyhedra, Polytopes, and Cones
	Fourier-Motzkin Elimination
	Linear Programming
	Implicit equalities and Redundant Constraints
	Faces of Polyhedra
	Facets
	Minimal Faces and Vertices
	Decomposition of Polyhedra

	Complexity of Linear Programming
	Polynomial-time Algorithms for LP

	Integer Programming and Integer Polyhedra
	Integer Polyhedra
	Integer Polyhedra and Combinatorial Optimization

	TU Matrices and Applications
	Examples and Network Matrices
	Integer Decomposition Property
	Applications of TUM Matrices
	Bipartite Graph Matchings
	Single Commodity Flows and Cuts
	Interval graphs

	Network Flow: A Quick Overview
	Preliminaries
	Maximum Flow and the Residual Network

	Augmenting Path Algorithms
	Augmenting along high-capacity paths
	Shortest augmenting path: a strongly polynomial-time algorithm
	Blocking Flows

	Minimum Cost Flow
	Successive Shortest Path Algorithm
	Cycle cancelling and a strongly polynomial time algorithm

	Gomory-Hu Tree for Connectivity in Graphs
	A Detour through Submodularity
	Algorithmic Proof of Gomory-Hu Tree

	Perfect Matching and Matching Polytopes
	Separation Oracle for Matching Polytope
	Edge Covers and Matchings

	Edmonds-Gallai Decomposition and Factor-Critical Graphs
	Factor-Critical Graphs
	Edmonds-Gallai Decomposition
	Ear Decompositions and Factor-Critical Graphs

	Primal-Dual Algorithms for Weighted Matching
	Primal-Dual Method for Linear Programs
	Weighted Matching Problems
	Minimum Weight Perfect Matching in Bipartite Graphs
	Min Cost Perfect Matching in Non-Bipartite Graphs
	Notation
	Recap of Edmonds-Gallai Decomposition
	Algorithm
	Example
	Proof

	Total Dual Integrality and Cunningham-Marsh Theorem
	The Cunningham-Marsh Theorem

	T-joins and Applications
	Algorithms for Min-cost T-joins
	Negative costs
	Polyhedral aspects

	Applications
	Chinese Postman
	Shortest Paths and Negative lengths
	Max-cut in planar graphs
	Approximating Metric-TSP

	Matroids
	Introduction to Matroids
	Representation of Matroids
	Base, Circuit, Rank, Span and Flat
	Operations on a Matroid

	Maximum Weight Independent Set in a Matroid
	Greedy Algorithm

	Matroid Polytope
	Spanning Set Polytope
	Separation Oracle
	Primal proof for Matroid Polytope

	Facets and Edges of Matroid Polytopes
	Further Base Exchange Properties

	Matroid Intersection
	Min-max Theorem for Maximum Cardinality Independent Set
	Weighted Matroid Intersection
	Matroid Intersection Polytope

	Matroid Union
	Motivation
	A Lemma of Nash-Williams
	Matroid Union Theorem and Applications
	Algorithmic and Polyhedral Aspects

	Spanning Trees and Arborescences
	Spanning Trees
	Branchings and Arborescences
	Polyhedral Aspects

	Arc-Disjoint Arborescences

	Submodular Set Functions and Polymatroids
	Examples of submodular set functions
	Unconstrained Submodular Set Function Optimization

	Polymatroids
	Digression on connection to matroids

	Greedy for optimizing over a polymatroid
	Operations on Submodular Functions
	Submodular Function Minimization via Ellipsoid
	Submodularity on Restricted Families of Sets

	Continuous Extensions of Submodular Set Functions
	The convex and concave closure
	The Lovász extension and convexity for submodular set functions
	Submodular set function maximization and the Multilinear extension

	Two Theorems Related to Directed Graphs
	Nash-Williams Graph Orientation Theorem
	Directed Cuts and Lucchesi-Younger Theorem

	Polymatroid Intersection
	Submodular Flows and Applications
	Applications
	Circulations
	Polymatroid Intersection
	Nash-Williams Graph Orientation Theorem
	Lucchesi-Younger theorem

	The polymatroidal network flow model

	Multiflows
	Integer Multiflow and Disjoint Paths
	Cut Condition, Sparsest Cut, and Flow-Cut Gaps
	When is cut condition sufficient?
	Okamura-Seymour Theorem
	Sparse Cuts, Concurrent Multicomodity Flow and Flow-Cut Gaps

