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ABSTRACT: Controlling the thermal emission characteristics of a
thermophotovoltaic (TPV) emitter can effectively reduce the thermal
losses in a photovoltaic cell. Moreover, selective TPV emitters can
facilitate the generation of electricity from a variety of high-temperature
waste heat sources. To overcome the challenge of achieving perfect
spectral selectivity of TPV emitters, the development of artificial
intelligence provides a vision for the optimization of selective TPV
emitters beyond the conventional paradigm. In this work, we demonstrate
that a highly selective, aperiodic TPV emitter with a high figure of merit
(FOM) can be achieved with the help of Bayesian optimization. The
design of the selective TPV emitter is optimized over 5.23 × 109 candidate
structures in multilayers consisting of multiple components to maximize
the FOM. The maximum FOM could be realized within calculations for
less than 0.67% of the total candidate structures, which is much better than
other machine learning algorithms. As for the gallium antimonide photovoltaic cell, the resulting optimal structure is an aperiodic
multilayer structure with an FOM of 82.16%. The optimal structure is then fabricated by a multi-target sputtering system, and the
experimental result of the emission characteristics is achieved with an FOM of 81.35%, which is significantly better than those of
multilayers with similar material designed and fabricated based on previous studies. What is more, we have analyzed the efficiency of
the TPV system and measured the thermal stability of the fabricated samples. The results demonstrate that Bayesian optimization is
efficient in designing selective TPV emitters, and the machine-learning-based design of metamaterials can be extended for the
expensive black-box global optimization problems in other field applications.

KEYWORDS: machine learning algorithm, selective TPV emitter, Bayesian optimization, aperiodic multilayer metamaterials,
thermal stability

1. INTRODUCTION

A large amount of wasted energy in the world is discharged
into the environment every day in the form of cooling water,1

hot exhaust gases,2 and thermal losses from thermal equip-
ment.3,4 Recycling and utilizing this waste heat energy is
important for improving the energy efficiency and reducing
global warming.3,5 At present, one of the effective solutions for
this aim is thermophotovoltaic (TPV) systems,6 for example,
waste heat recovery in high temperature industries such as
melting processing.7 In a TPV system, photons are radiated
from a thermal emitter and received by a photovoltaic (PV)
cell and then photons are converted into electrical energy by
the photoelectric effect.8−10 What is more, various kinds of
heat sources can be used for TPV systems. Controlling the
thermal emission characteristics of a TPV emitter can
effectively reduce the thermal losses in a photovoltaic cell, in
principle leading to a TPV system with an efficiency greater
than the Shockley−Queisser limit.11,12 Also, the system
efficiency can be further improved by employing the near-
field TPV systems13−15 due to the near-field effects.16−18

However, despite many decades of research, the TPV system
efficiencies of existing TPV systems remain far lower than the
theoretical maximum because of the challenge of achieving
perfect spectral selectivity of TPV emitters.19

In the design of selective TPV emitters, a knotty problem
that researchers usually face is to decide the choices of desired
materials and structural parameters.20 In practice, selective
TPV emitters are usually fabricated as simple periodic
structures, although in fact these periodic structures are a
very small fraction of the set of possible multilayer
structures.21−23 Only a few studies have reported the
regulation of the emissivity of thermal emitters by aperiodic
multilayer structures,24,25 and the design of aperiodic structures
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with the expected emission spectrum is highly demanding
because the number of possible candidate multilayer structures
is enormous. However, the development of artificial
intelligence26 provides a new concept for the optimization of
selective TPV emitters beyond the strictly theoretical
approach.27,28 A variety of machine learning algorithms have
been described in the literature to design thermal emitters,29

such as genetic algorithms,30 adversarial autoencoder net-
work,31 and particle swarm optimization.32 However, these
methods usually require large data sets of evaluation samples
over the objective function, either time-consuming calculations
or expensive experiments. Moreover, the main disadvantage of
these methods is that they are “exploitation only”. It should be
noted that methods that balance exploitation and exploration
are more efficient than exploitation only methods.33 Recently,
Bayesian optimization34,35 has attracted attention as a method
to accelerate the design of the desired metamaterials. By
making use of Bayesian inference to quantify uncertainties, the
Bayesian optimization method achieves the best balance
between exploration and exploitation.36,37 Bayesian optimiza-
tion is successfully applied in the metamaterial design, for
instance, designing ultranarrow-band thermal emission with
metamaterials through the Bayesian optimization method.38

In this work, we employ the Bayesian optimization method
to design the highly wavelength-selective, aperiodic multilayer
TPV emitters. Based on the combination of the Bayesian
optimization method and the transfer matrix method (TMM),
the selective TPV emitter is optimized over 5.23 × 109

candidate structures to maximize the figure of merit (FOM).
As for the gallium antimonide (GaSb) PV cell, the optimal
structure of aperiodic multilayers consists of silicon (Si), silica
(SiO2), and tungsten (W) with the global maximum FOM,
which is 82.16%. The optimal structure is fabricated by an
automatic multi-target sputtering system; then, we measure the
emission spectrum to compare with the predicted emission
spectrum. What is more, the thermal stability of the selective
TPV emitters at high operating temperatures is an important
factor for the TPV system; thus, we measure the emission
spectrum of the fabricated samples after heating at different
temperatures and for different times. This is the first time that

the Bayesian optimization algorithm is used to design an
efficient selective TPV emitter. Our approach shows that
Bayesian optimization is powerful in designing multilayer
structures for other applications.

2. THEORY AND METHODS
In this section, we introduce how the Bayesian optimization approach
is applied to design an aperiodic multilayer selective TPV emitter.
First of all, let us discuss the ideal emission spectrum for selective
TPV emitters. The current availability of high-quality, low-band gap
PV cells are from the III−V family of compound semiconductors and
alloys.39 PV cells made of GaSb are widely used in TPV systems.40,41

It is mainly due to the fact that the GaSb PV cells have excellent
external quantum efficiency (EQE) at infrared wavelengths and
therefore does not require the operation of the TPV system at
extremely high temperatures. In the case of a GaSb PV cell at T = 300
K, the band gap energy is about 0.726 eV,42 the corresponding band
gap wavelength is 1.708 μm. The top right corner in Figure 1 shows
the EQE of the GaSb PV cell43 and the ideal emission spectrum for
selective TPV emitters. It means that the ideal selective TPV emitter
has high emissivity for wavelengths (0.6−1.708 μm) shorter than the
band gap wavelength of the PV cell and minimizes emissivity
otherwise.

Figure 1 displays the flowchart for design optimization of the
selective TPV emitter. The structure of the selective TPV emitter is
divided into N unit layers with different thicknesses h. Each unit layer
can be either W, Si, or SiO2. These structural component materials are
easy to process and frequently used materials for their high melting
point, making them excellent for high-temperature TPV emitters. And
W is highly lossy in the visible and near-infrared wavelengths, which
can enhance the emissivity at the target wavelength region. The
optimization process is mainly composed of four parts: a descriptor,
an evaluator, a calculator, and an optimization method.

The descriptor is mainly used to describe possible candidate
structures in the optimization process. In the optimization process, we
employ the text flag to represent each material: “1”, “2”, “3”, and “4”
represent the air, W, Si, and SiO2, respectively, and the value of
thickness of each layer can be used directly in the Bayesian
optimization.

The ideal selective TPV emitter has high thermal emissivity at the
target wavelength region and low thermal emissivity in the other
wavelength region, as illustrated in Figure 1. For the evaluator of the
desired emission spectrum of the selective TPV emitter, an FOM can
be defined as follows:44

Figure 1. Flowchart for design optimization of the selective TPV emitter. The EQE of the GaSb PV cell and the ideal emission spectrum for the
GaSb PV cell of the TPV system is in the upper right corner.
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where Ebλ indicates the spectral blackbody intensity. ελ denotes the
spectral normal emissivity. λ0 and λ2 are the minimum and maximum
wavelengths considered for this optimization process. In this work, we
assume that λ0 = 0.5 μm and λ2 = 5 μm. λpv is the band gap
wavelength of the GaSb PV cell. According to Planck’s law, when the
operating temperature of the selective TPV emitter is below 2000 K,
we find that the emissive intensity of the blackbody below the λ1 = 0.6
μm is little; thus, we can minimize emissivity between 0.5 μm and 0.6
μm.
As shown in the equation of FOM, in order to calculate the spectral

normal emissivity, we employ the TMM.45 In the TMM, the field
amplitude of each layer can be calculated by its relative permittivity,
and the total transfer matrix connects the field amplitude of different
layers, which can be written as:46

i

k
jjjjj

y

{
zzzzz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

M M

M M
V P V ,

n

N

n n n n N N
11 12

21 22 0

2

, 1 , 1 1,∏=
=

−

+ + −
(2)

where the transmission matrix
Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ

V
r

r
1

1n n t
n n

n n, 1
1 , 1

, 1n n, 1
=+

+
++

refers to

the amplitudes of the waves at the interface s of layer n and layer n +
1, tn, n + 1 and rn, n + 1 denote Fresnel’s transmission and reflection
coefficients, respectively. The propagation matrix of layer n can be
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=λ . The dielectric functions of Si, SiO2, and W are

obtained from the handbook of optical constants.47 The spectral
directional emission spectrum can be obtained by employing
Kirchhoff’s law, i.e., ελ = 1 − Rλ, where Rλ is the reflectivity obtained
from the TMM. Therefore, enhancing the emissivity of a multilayer
structure is equivalent to minimizing reflectivity because the
transmission and scattering are so small.
As for the optimization method, Bayesian optimization is an active

optimization method. An open-source package (COMmon Bayesian
Optimization)48 is used throughout the optimization process. The
framework of the Bayesian optimization mainly contains two core
parts: the probabilistic surrogate model and the acquisition function.49

The probabilistic surrogate model is mainly used for surrogating
unknown functions. The model starts from an a priori hypothesis,
iteratively increases the amount of prior information, and modifies the
prior model to obtain a more accurate surrogate model. The
probabilistic model in this optimization is a Gaussian process.
Gaussian processes use a prior over functions, which can incorporate
prior beliefs about the objective function. On the other hand, we use
the acquisition function to propose the next sampling point. The
acquisition function in this optimization is based on an upper
confidence bound. In the optimization process, the scikit-learn model
is used for the Gaussian processes and Python modules (NumPy and
SciPy) are used to implement the acquisition function.

3. RESULTS AND DISCUSSIONS
3.1. Performance of Bayesian Optimization. In this

work, the temperature of the selective emitter in the
optimization process is 1200 K. First, we calculated the
candidate structures with different number of layers or
different thicknesses (10, 30, 50, 70, and 90 nm) by Bayesian
optimization or traversal calculation, as illustrated in Figure 2.
We can find that when the number of layers is 10, further
increase in the number of layers does not increase the
maximum FOM. It explains that the optimal selective TPV

emitters can be obtained in less than 10 unit layers. Therefore,
we think n = 10 is enough to optimize the selective TPV
emitter. Note that the air can be only on the top layer, so the
number of possible candidate structures with the same
thickness of each layer is 88,572 rather than 410, and the
best thickness in the structures is between 50 and 70 nm.
Therefore, we plan that the thickness of each layer has three
different choices (45, 55, and 65 nm), and the number of
possible candidate structures is 88,572 × 310 = 5,230,147,077.
The computational load is too heavy to calculate all of the
candidate structures in one round. In order to reduce the
computational load, the optimization process is calculated step
by step. The overall candidate structures are randomly divided
into 10,000 groups. First, we optimize each group and then
rank these 10,000 local best FOMs to find the optimal
structure of all candidate structures. The weakness of the
approach of grouping is that the computational time becomes
relatively large, because Bayesian optimization should be
performed in each group.
For verifying the performance of the Bayesian optimization

method, we calculate different rounds of optimization. Figure
3a,b display the search histories of the FOM with the number
of calculated structures for different groups and the same group
with different random seeds, respectively. As shown in Figure
3b, our chosen group of candidate structures includes the
global optimized structure. Figure S1a,b show the number of
calculated candidate structures needed to find the optimal
FOM for different groups and the same group with different
random seeds, respectively. We can find that all the rounds of
optimization converged to the maximum FOM by calculating
less than 3500 candidate structures, which indicates that only
0.67% of the candidate structures needed to be evaluated to
identify the optimal structure. This demonstrates that Bayesian
optimization is much better than other machine learning
algorithms for designing of the selective TPV emitters.50

Through Bayesian optimization, the maximum FOM of the
selective TPV emitter can be found, which is 82.16%, and the
text flag of the optimal selective TPV emitter is “2 2 2 2 3 2 3 4
4 1” and the flag of thickness is “55 65 65 55 55 45 55 45 55
45”. The inset of Figure 3b shows the sketch map of the
optimal structure, we can see that the materials of the best
selective TPV emitter are SiO2/Si/W/Si/W from the top to
the bottom, and the thickness of each layer is 100, 55, 45, 55,
and 240 nm from the top to the bottom. The total thickness of
the aperiodic multilayer is 495 nm. Note that the structure of

Figure 2. Maximum FOM with different numbers of layers or
different thicknesses.
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the optimal selective TPV emitter is 5 layers rather than 10
layers since some adjacent layers are the same material or the
top layer is air. Obviously, the optimal structure is an aperiodic
multilayer metamaterial which is different from the traditional
periodic multilayer selective TPV emitter. As illustrated in
Figure S1c,d, we have calculated all candidate structures of two
random groups. As a result, the optimal structure of the
selective TPV emitter obtained by the Bayesian optimization
method is proved to be exactly the same as that with the largest
FOM.
3.2. Fabricated Samples and Spectral Selectivity of

the Optimal Selective TPV Emitter. After finding the
optimal structure by Bayesian optimization, we fabricated the
sample by an automatic multi-target sputtering system,51 and
the substrate is a 3 inch single throw Si wafer with a thickness
of 370 μm. Figure 4a displays the sample of the optimal

structure. After cutting and embedding the sample with a triple
ion-beam cutter (Leica EM TIC 3X), the cross-section of the
fabricated sample can be observed. Then, the cross-section
scanning electron microscopy (SEM) image of the fabricated
sample for the optimal structure is shown in Figure 4b by
scanning with the a field-emission scanning electron micro-
scope (FE-SEM JSM-7800F). We can see the thickness of each
layer is 100, 54, 48, 52, and 239 nm from the top to the
bottom. The mean square error (MSE) of the fabricating error
can be defined as: MSE (measurement design )

n i
n

i i
1

1
2= ∑ −= ,

where n is the number of layer, and n = 5 for the fabricated
sample of the optimal structure. Therefore, we can get the
fabricating error MSE = 4. The fabricating error is mainly
caused by processing errors, since the thicknesses of layers may
differ due to the fabrication conditions such as the sputtering
rate.

Figure 3. Histories of the FOM with respect to the number of calculated structures during the 10 random optimization rounds for (a) different
groups and (b) same group with different random seeds, respectively.

Figure 4. (a) Fabricated sample of the optimal selective TPV emitter. (b) Cross-sectional SEM image of the fabricated sample for the optimal
structure. (c) Simulated emissivity of the optimal structure, the experimentally measured emissivity of the fabricated sample, and simulation results
from a recent paper52 on TPV emitters for the GsSb PV cell. (d) Simulated emissivity of the optimal structure and simulation results from ref 24 on
TPV emitters for the InGaAsSb PV cell.
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The reflectivity of the fabricated sample is recorded in the
wavelength region of 500−2000 nm by using a UV/VIS/NIR
spectrophotometer and in the target wavelength region of
2000−5000 nm by using Fourier-transform infrared (FTIR)
spectroscopy. Therefore, the emissivity can be measured using
Kirchhoff’s law, i.e., ελ = 1 − Rλ. Figure 4c shows the
comparison of the simulated emissivity of the optimal structure
and the measured emissivity of the fabricated sample. It can be
found that the simulated values are consistent with the
measured values for emission spectrums. According to the
measured emissivity, the optimal performance is achieved with
an FOM of 81.35%. As for the slight discrepancy in the range
of the short wavelength, there might be three possible reasons:
the first point is that the thicknesses of each layer have a few
processing errors as shown in Figure 4b. The second point is
that when the thickness of each layer changes, the
corresponding optical properties will change slightly. The
third point is that during the fabrication process, nanostruc-
tures will be formed at the interface of the composite layer,
which will affect the emission spectrum, and these nanostruc-
tures cannot be considered through the TMM. Figure 4c
shows that the fabricated sample of the optimal selective TPV
emitter has high emissivity that is higher than 0.98 in the
broadband spectral ranges of 1.18−1.58 μm, and emissivity of
the fabricated sample is lower than 0.1 at the long wavelengths
above 2.58 μm. The purple dotted line in Figure 4c shows the
simulated emission spectrum of the Si3N4-W-Si3N4 selective
TPV emitter.52 It is a theoretically designed three-layer
structure with a fixed thickness. As can be clearly seen, the

obtained optimal selective emitter has higher emissivity at the
wavelength region below the band gap wavelength of the GaSb
PV cell. Although some selective TPV emitters with a two-
dimensional structure can further enhance the spectral
selectivity, due to the complexity of fabrication, the
experimental results are often unsatisfactory to the designed
structures.53,54

In order to further verify the performance of the Bayesian
optimization method, we designed new aperiodic multilayer
structures by the Bayesian optimization method for the
different PV cells. For instance, at 300 K, the band gap energy
of the indium gallium arsenide antimonide (InGaAsSb) PV cell
is 0.53 eV,55,56 which corresponds to a band gap wavelength of
2.4 μm. We can find the maximum FOM of the optimal
selective TPV emitter by Bayesian optimization, which is
78.44%, and the text flag of the optimal structure is “2 3 3 3 3 3
2 4 3 3”. In the inset of Figure 4d, we can see that the materials
of the optimal structure are Si/SiO2/W/Si/W from the top to
the bottom, and the thickness for each layer is 50, 35, 25, 125,
and 25 nm from the top to the bottom. The total thickness of
the aperiodic multilayer is 260 nm. What is more, the spectral
selectivity of the optimal structure is better than the TPV
emitter with the periodic multilayer structure designed by
theoretical design,24 as illustrated in Figure 4d. Therefore, we
can quickly and accurately get the optimal structure
corresponding to different PV cells by Bayesian optimization.

3.3. Mechanism of the Spectral Selectivity of the
Optimal Selective TPV Emitter. We now discuss the
mechanism of the spectral selectivity of the optimal selective

Figure 5. (a) Emission spectrum of the structures compared with the optimal structure without the SiO2 layer, Si layer, and W layer, respectively.
The red dashed line shows the real part of the refractive index of pure W. (b) Emission spectrum as a function of thickness of the W layer and Si
layer of 10 nm and 100 nm, respectively. Contour plots of the magnetic field intensity at the wavelengths of (c) 1291 nm and (d) 1518 nm,
respectively.
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TPV emitter. The blue solid line in Figure 5a shows the
simulated emissivity of the optimal structure of the selective
TPV emitter. There are two peaks with an enhanced emissivity
significantly up to about 1 at around λ = 1291 nm and λ =
1518 nm corresponding to the two peaks of the real part of the
refractive index of pure W, as illustrated in Figure 5a. It can be
observed that the two peaks shift to the longer wavelength due
to the influence of the metal−dielectric structure. Figure 5c,d
depict the contours of the magnetic field intensity at
wavelengths of 1291 and 1518 nm. In the metal−dielectric
structure, a strong magnetic field enhancement exists in the
interface of the Si layer (the second layer) and the W layer (the
third layer). The SiO2 layer on the top acts as an antireflection
layer to reduce visible and near-infrared light reflection and
thereby enhance emissivity in the corresponding wavelengths.
It can be seen that the emissivity of the optimal structure in the
broadband spectral ranges of 1.18−1.58 μm is enhanced when
the thickness of the SiO2 layer is 100 nm compared with a
structure without the SiO2 layer (orange dotted line with
pluses in Figure. 5a). What is more, the thickness of the SiO2
layer agrees with the theory of the quarter-wave stack, as given
by: λanti = 4nantihanti, where nanti is the refractive index of SiO2 at
λanti. Therefore, the first peak of the orange dotted line with
pluses shifts to the shorter wavelength compared with the
emission spectrum of the optimal structure. The yellow dashed
line with triangles and the green dashed line with squares in
Figure 5a are the emission spectrums of the structures
compared with the optimal structure without the Si layer
and W layer, respectively. It is obvious that the emission
spectrums of structures without the Si layer and W layer
decrease rapidly at wavelengths below the band gap wavelength
of the GaSb PV cell. Therefore, the Si layer and W layer are
important to the optimal structure. Figure 5b shows the effects
of the thickness of the Si layer and W layer. It can be seen that
the average emissivity of a spectral band from 0.6 to 1.708 μm
decreases when the thickness of the Si layer is thinner at 10 nm
or thicker at 100 nm. When the thickness of the W layer
changes from 45 to 10 nm, the average emissivity of a spectral
band from 0.6 to 1.708 μm decreases rapidly. When the
thickness of the W layer changes from 45 to 100 nm, although
the emissivity peaks do not show clearly preferred direction of
the shifts, the spectral band of high emissivity becomes
narrower. In order to make the structure of the selective TPV
emitter thinner, as a result, a relatively high and broad
emissivity band from 0.6 to 1.708 μm can be achieved with a
thickness of the W layer around 45 nm.

3.4. TPV System Efficiency of the Optimal Selective
TPV Emitter. The efficiency of the TPV system is calculated
by the energy balance analysis. The incident photon energy
from the experimentally measured emission spectrum of the
fabricated sample is

P E dbin
0

∫ ε λ= λ λ

∞

(3)

In addition, the absorbed photon energy is

P E d
bg

babs

0

quantum,

bg

∫ λ
λ

ε η λ=
λ

λ λ λ
(4)

where ελ is the measured emissivity of the fabricated sample.
ηquantum, λ denotes the EQE of the GaSb PV cell. The useful
power of the PV cells can be expressed as the difference
between the absorbed photon energy and the nonradiative
energy loss, which can be written as:

P P P P qVRuse abs loss abs= − = − (5)

where q denotes the elementary charge. R denotes the
nonradiative recombination rate inside the PV cell. We
consider the ideal case for the TPV system, where we ignore
the contributions from nonradiative recombination. Therefore,

the TPV system efficiency can be calculated as
P
P

P
P

use

in

abs

in
η = = .

The blackbody spectral emissive power and incident spectral
energy at 1200 K are shown in Figure 6a. The incident spectral
energy calculated by the measured emissivity or simulated
emissivity compared with the blackbody spectral emissive
power is almost 100% when the wavelengths are less than the
band gap wavelength. Note that the emissivity of the
wavelengths less than 1 μm contributes little to increasing
the incident spectral energy because the blackbody spectral
emissive power is small in this wavelength region. Compared
with the emission spectrum of the blackbody, the spectrally
selective thermal emissivity can effectively suppress unwanted
thermal radiation beyond the target wavelength region.
According to the measured emissivity of the fabricated sample,
we can obtain the efficiencies of the TPV system at different
temperatures with ignoring the contributions from non-
radiative recombination, as shown in Figure 6b. The maximum
system efficiency is 42.92% at 3445 K. With the increase in
temperature, the incident spectral energy per unit area
increases and the peak value of the blackbody curve shifts to
a shorter wavelength. The reason is that only photons having

Figure 6. (a) Blackbody spectral emissive power and incident spectral energy at 1200 K. (b) TPV system efficiencies at different temperatures with
ignoring the contributions from nonradiative recombination.
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energy above the band gap energy of the PV cell can be
converted to electric energy. Therefore, as the temperature
increases, we can see that the TPV system efficiency rapidly
increases at the temperature lower than 3445 K. When the
temperature is higher than 3445 K, the system efficiency
decreases at higher temperature.
3.5. Thermal Stability and Failure Mechanisms of the

Optimal Selective TPV Emitter. According to the analysis of
TPV system efficiency, the efficiency is greatly affected by
operating temperature of the selective TPV emitter. In order to
improve and the TPV system efficiency, the long-term thermal
stability of the selective TPV emitter at high operating
temperature is an important factor for TPV application. We
measured the emission spectrum of the fabricated samples after
heating at different temperatures and times, as shown in Figure
7a. We can see that the emission spectrum of the fabricated

sample after heating at 1200 K for 12 h is almost the same as
the emission spectrum before heating (room temperature).
What is more, when the heating time is further increased to 24
h, the emission spectrum differs only slightly. This indicates
that there is good thermal stability at 1200 K, or even higher.
The sample was then heated up to 1300 K, which is the highest
heating temperature of a muffle furnace. We can see that the
peaks of the emission spectrum have shifted and the highest
emissivity becomes lower compared with the emissivity of the
sample after heating at 1200 K. Figure 7b−d shows the SEM
images of the top surface of the samples before heating, after
heating at 1200 K for 24 h, and after heating at 1300 K for 12
h, respectively. Note that no thermal deformation of the
sample after heating at 1200 K for 24 h is observed and the
excellent spectral selectivity is maintained after heating.
However, we can see that some damage or protrusions appear

Figure 7. (a) Simulated emissivity of the optimal structure and the experimentally measured emissivity of the fabricated sample after heating at
different high temperatures and times. The SEM images of the fabricated aperiodic multilayer selective TPV emitter samples: (b) before heating
(room temperature); (c) after heating at 1200 K for 24 h; and (d) after heating at 1300 K for 12 h. The surface roughness of the fabricated samples
characterized by AFM (e) after heating at 1200 K for 12 h and (f) after heating at 1300 K for 12 h. The inset of figure f shows the height of the
sample surface with line AB and line CD.
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on the surface of the sample after heating at 1300 K for 12 h.
There is an obvious damage on the sample surface, as
illustrated in Figure 7d. In order to confirm the degree of
destruction of these surface deformations, the surface rough-
ness of the samples is measured by atomic force microscopy
(AFM), as shown in Figure 7e,f. The surface roughness of the
sample after heating at 1200 K for 12 h is less than 5 nm,
which is almost the same as the sample before heating, and in
the AFM image of the sample after heating at 1300 K for 12 h,
we can see that the surface roughness is about 75 nm, as
illustrated in Figure 7f. The inset in Figure 7f depicts the height
of the sample surface, which corresponds to line AB and line
CD in Figure 7f. The height is almost 75 nm in the protrusion.
It means that thermal deformations mainly occur in parts of
the sample surface and mainly destroy the top layer because
the thickness of the SiO2 layer is 100 nm. Although the
maximum temperature of our experimental facility is limited,
repeated thermal tests give a good measure of thermal stability
at high temperatures. What is more, the thermal stability can
be further improved by using the heat-resisting materials like
silicon nitride (Si3N4), hafnium dioxide (HfO2), and so on.

4. CONCLUSIONS
In this work, we use Bayesian optimization to design the highly
wavelength-selective, aperiodic multilayer nanocomposite
selective TPV emitters. Based on the combination of Bayesian
optimization and the TMM, the design of the selective TPV
emitter is optimized over 5.23 × 109 candidate structures to
maximize the FOM. The maximum FOM could be realized
within calculations for less than 3500 structures of each group.
This means that only 0.67% of the total candidate structures
needs to be calculated to determine the optimal structure,
which is much better than the other machine learning
algorithms. As for the GaSb PV cell, the optimized structure
is an aperiodic multilayer structure with an FOM of 82.16%.
The optimal structure is then fabricated, and the measured
FOM is 81.35%, which is significantly higher than the
structures designed and fabricated by experience. What is
more, we have analyzed the theoretical efficiency of the TPV
system and measured the thermal stability of the fabricated
samples. The presented optimal structure of the selective TPV
emitter is very encouraging and demonstrate the viability of
Bayesian optimization toward obtaining a highly selective,
aperiodic TPV emitter. Our results also demonstrate the
possibility of automatically designing the metamaterials for
specific applications via Bayesian optimization.
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