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Abstract—Recently, model-free power control approaches have been
developed to achieve the near-optimal performance of cell-free (CF) massive
multiple-input multiple-output (MIMO) with affordable computational
complexity. In particular, deep reinforcement learning (DRL) is one of such
promising techniques for realizing effective power control. In this paper,
we propose a model-free method adopting the deep deterministic policy
gradient algorithm (DDPG) with feedforward neural networks (NNs) to
solve the downlink max-min power control problem in CF massive MIMO
systems. Our result shows that compared with the conventional convex
optimization algorithm, the proposed DDPG method can effectively strike a
performance-complexity trade-off obtaining 1,000 times faster implemen-
tation speed and approximately the same achievable user rate as the optimal
solution produced by conventional numerical convex optimization solvers,
thereby offering effective power control implementations for large-scale
systems. Finally, we extend the DDPG algorithm to both the max-sum and
the max-product power control problems, while achieving better perfor-
mance than that achieved by the conventional deep learning algorithm.

Index Terms—Beyond 5-G network, cell-free massive MIMO, deep rein-
forcement learning, power control, DDPG, downlink.

I. INTRODUCTION

Cell-free (CF) massive multiple-input multiple-output (MIMO) is
a promising technique providing ubiquitous communications for the
beyond fifth-generation (5 G) wireless systems, where all access points
(APs) cooperate among each other to simultaneously serve all users
exploiting the same time-frequency resources via time-division duplex
(TDD) [1], [2]. As there are no cells or cell-boundaries in CF massive
MIMO, this special feature offers the potential of providing uniformly
good throughput for all user equipments (UEs) [3].

To unleash its potential, proper power control is necessary for
optimizing the CF massive MIMO user rate and mitigating inter-user
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interference that requires the application of advanced optimization
techniques [4]. Indeed, the conventional optimization-based power
control method has been well-studied at the expense of high time
complexity, which limits their practical implementation [5]. On the
other hand, model-free machine learning-based approaches can signif-
icantly reduce the computational complexity while achieve almost the
same performance as the optimization-based approaches [6]. However,
most of the existing model-free machine learning-based studies focus
on supervised learning [5], which are also impractical since the prior
optimal output data is hard to obtain in reality.

Reinforcement learning (RL) is a disruptive method that does not
require a training data set a priori such that it is suitable for dynamic
wireless environments. In particular, RL is concerned with optimizing
the policy of a goal-oriented agent that learns from interactions with
its environment directly [7]. In recent years, RL-based solutions have
been studied for various power control problems. For example, [8] pro-
posed a deep Q-learning (DQN) power control method with imperfect
channel state information. Also, the authors of [9] proposed a scalable
distributive multi-agent DQN approach that can apply to large networks
in real-world scenarios. Despite the promising performance brought
by the application of the DQN algorithm, this approach is limited to
discrete optimization problems only. As such, performing downlink
continuous power control with directly DQN applying would undoubt-
edly decrease a considerable amount of achievable rate. As a remedy,
in this paper, we propose a deep deterministic policy gradient (DDPG)
algorithm framework that can be adopted for continuous-valued control
for solving various types of downlink power control problems in CF
massive MIMO systems [10]. Due to the shortcomings of overfitting in
DRL [10], we introduce feedforward neural networks (NNs) attached
to the output layer of the DDPG algorithm such that the proposed
algorithm is adaptive to environments. The major contributions of this
paper are two-fold:
� We first develop a DDPG framework with NNs for addressing the

CF massive MIMO downlink max-min power control problem
that approaches the performance produced by the convex opti-
mization solver while greatly reducing the computational time
complexity.

� We then extend the DDPG framework to the max-sum and max-
product power control problems of CF massive MIMO downlink,
which shows that the proposed algorithm has better performance
than conventional deep learning algorithms.

Notations: Boldface letters denote column vectors. The superscripts
T , ∗, and H denote transpose, conjugate, and conjugate transpose,
respectively. E{·} denotes the statistical expectation operators. The cir-
cularly symmetric complex Gaussian distribution and real-valued Gaus-
sian distribution are denoted by CN (0, σ2) andN (0, σ2), respectively.

II. SYSTEM MODEL

We consider a CF massive MIMO network with M single-antenna
APs and K single-antenna UEs, where the APs are connected to a
central processing unit (CPU) via the perfect fronthaul links. All K
UEs are simultaneously served by all M APs within the coverage of
the network.

Note that the use of different channel models would not affect the
development of our proposed algorithm. For simplicity, we assume
Rayleigh fading. The channel coefficient between the m-th AP and the
k-th UE is modeled as

gmk = β
1/2
mkhmk, ∀m ∈ {1, . . .,M} , k ∈ {1, . . .,K} , (1)
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where βmk ∈ R andhmk ∈ C are the large- and the small-scale fading,
respectively. We assume that hmk are independent and identically
distributed (i.i.d.) CN (0, 1) random variables (RVs) [1].

A. Uplink Pilot Transmission

To estimate the channel, the UEs simultaneously send pilot se-
quences to the APs during the training phase. The pilot sequence ϕk

with sample size τp used by the k-th UE is denoted as
√
τpϕk ∈ Cτp×1,

||ϕk||2 = 1. Thus the τp × 1 pilot signal vector received at the m-th
AP yields

yp,m =
√
τpρu

K∑
k=1

gmkϕk +wp,m, (2)

where ρu denotes the uplink normalized transmission power for each
pilot symbol and wp,m ∼ CN (0, 1) denotes the additive white Gaus-
sian noise at the m-th AP. To obtain the best estimate channel from the
AP to the k-th UE, we first project yp,m onto ϕH

k and obtain:

y̌p,mk =
√
τpρugmk +

√
τpρu

K∑
k′ �=k

gmk′ϕ
H
k ϕk′ +ϕH

k wp,m. (3)

Then, the typical MMSE estimate of gmk
ul is denoted as

ĝmk =
E
{
y̌∗p,mkgmk

}
E
{
|y̆p,mk|2

} y̌p,mk

=

√
τpρuβmk

τpρu
∑K

k′=1 βmk′ |ϕH
k ϕk′ |2 + 1

y̌p,mk. (4)

B. Downlink Payload Data Transmission

We assume that the APs treat the uplink channel estimations as
downlink channels exploiting the channel reciprocity [11]. Besides,
known for its low computational complexity and the ability to maximize
the power of the desired signal [1], the conjugate beamforming is used.
In the downlink, the APs transmit signals to the K UEs, which is given
by

xm =
√
ρd

K∑
k=1

η
1/2
mkĝ

∗
mkqk, (5)

where qk ∈ C satisfying E{|qk|2} = 1 is the symbol intended for the
k-th UE. Variable ηmk is the power control coefficients satisfying the
following power allocation constraint:

E
{
|xm|2

}
≤ ρd. (6)

Then, the power constraint can be formulated as

K∑
k=1

ηmkγmk ≤ 1,m = 1, . . .,M, (7)

where

γmk � E
{
|ĝmk|2

}
=

τpρu (βmk)
2

τpρu
∑K

k′=1 βmk′ |ϕH
k ϕk′ |2 + 1

.

The corresponding downlink signal received at the k-th UE is given
by

rk =
√
ρd

M∑
m=1

η
1/2
mkgmkĝ

∗
mkqk

+
√
ρd

M∑
m=1

K∑
k′ �=k

η
1/2
mk′gmkĝ

∗
mk′qk′ + wk, (8)

where wk ∼ CN (0, 1) denotes the noise at the k-th UE.

III. DOWNLINK POWER CONTROL : PROBLEM DEFINITION

In this section, we formulate the downlink power control problem
into three proportional fairness problems for the following evaluation.
Exploiting the channel hardening in CF systems [1], the downlink
signal-to-interference-plus-noise ratio (SINR) of the k-th UE is (9)
shown at the bottom of this page. According to [1], the achievable rate
of the k-th UE [10] is given by

Rk = log2(1 + SINRk). (10)

Then, the downlink power control optimization problem can be formu-
lated as follows:

maximize
{ηmk}

U {R1, . . .,RK}

s.t.
K∑

k=1

ηmkγmk ≤ 1,m = 1, . . .,M,

ηmk ≥ 0,m = 1, . . .,M, k = 1, . . .,K, (11)

where the objective funtion is given by

U {R1, . . .,RK}

=

⎧⎪⎨
⎪⎩

∑K
k=1 Rk, for Max sum rate,

min {R1, . . .,RK} , for Max-min fairness,∏K
k=1 SINRk, for Max product SINR.

(12)

The max-min power control objective function in (12) is quasi-concave
that can be addressed by a bisection method that involves solving a
sequence of convex programs in [1] to obtain the globally optimal
solution. Moreover, the max-sum and max-product problems are non-
convex due to the non-convex objective functions [12], which compli-
cate the solution development. The feasible supervised learning-based
methods need to obtain prior data that is difficult to obtain in reality.
Therefore, we will propose a DRL-based on the DRL model that
overcomes the above shortcomings in the following section.

IV. DDPG-BASED POWER CONTROL ALGORITHM

In RL, a goal-oriented agent interacts with an environment and
obtains feedback to develop the optimal policy. At each step, the agent
takes an action based on the policy and receives the reward while
moving to the next state. In each episode, the APs take numerous
actions. In general, DRL is studied by means of Markov decision

SINRk =
ρd

(∑M
m=1 η

1/2
mkγmk

)2

ρd
∑K

k′ �=k

(∑M
m=1 η

1/2
mk′γmk′

βmk

βmk′

)2 ∣∣ϕH
k′ϕk

∣∣2 + ρd
∑K

k′=1

∑M
m=1 ηmk′γmk′βmk + 1

. (9)
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Fig. 1. The proposed DDPG-based power control design.

processes (MDPs) characterized by a tuple (S,A,P,R, ζ), where S
andA are the state space and the action space of the agent, respectively.
VariablesP andR are the transition probability matrix and the expected
reward, respectively. ζ denotes the reward’s discount factor.

DRL algorithms can be divided into three implementation forms:
value-based approaches, policy-based approaches, and actor-critic
(AC) approaches.

(1) For value-based approaches, a Q table is constructed and main-
tained to find an optimal strategy to maximize the expected return
of all subsequent actions starting from the current state, where each
item Q(s, a) in the Q table represents the expected return of taking
action a at state s. Such algorithms have a high data utilization rate
and have been proven to converge stably [13]. Since each (s, a) tuple
needs to correspond to a Q value, it can only solve the problem that
states and actions are countable and the number is small. In general,
the value-based DQN algorithm maps the state-action to Q-values by
the deep neutron networks, which makes it effective at continuous
state space S . However, since the optimal state-action value Q(s, a)
is unknown, DQN is not applicable to the continuous action space A.

(2) For policy-based approaches, a policy function μ(s) is con-
structed, where a state s maps the corresponding action a or the
probability distribution of action a directly. Since there is no need to
estimate the maximum Q value, it can be used in continuous action space
A. However, the basic policy gradient algorithm requires a complete
sequence of states and iteratively updates the policy function separately,
which makes it difficult to converge.

(3) For AC approaches, the actor networks exploit the policy
function, which is responsible for generating actions and interact-
ing with the environment. Besides, critic networks exploit the value
function, which is responsible for evaluating the performance of the
actor and guiding the next following action of the actor. Since the
critic networks fit the action-value function in the continuous space
and the action networks do not require finding the optimal action-
value function, the AC is suitable for the continuous optimization
space.

Due to the continuous optimization space in the downlink power
control problem, we design the DDPG algorithm under the category
of AC. In the following, we will propose a DDPG-based approach to
address the downlink power control problem in (11) and summarize
them as shown in Fig. 1.

We choose the DDPG algorithm with a policy network μ(s | θu)
and a value network Q(s, a | θQ), where Q(s, a)u is the action-value
function following a strategy that obeys the following Bellman equa-
tion [13]:

Q(s, a)u = E(s,a,r,s′)∈B

[
r(s, a) + ζmax

a′
Qu (s′, a′)

]
, (13)

where B is a set of the experience namely replay buffer and Qu(s′, a′)
is the value at the next state and action. At each step, the transition
(st, at, rt, st+1) will be stored in the replay buffer while sampling
mini-batch of transitions from B randomly to update the networks,
which greatly improves the efficiency of data utilization. Note that
in the considered case of limited computational resources, the DDPG
algorithm with high data utilization is more suitable for CF systems
in this paper than the algorithms that use additional computational
resources for parallel computation acceleration, e.g., A3C. Due to the
fact that r(s, a) + ζmaxa′ Q

u(s′, a′) would change as the parameters
are updated, the parameters is hard to converge in general. As such,
DDPG adopts a critic target network with parameters θQ

′ ∈ R and a
policy target network with parameters θμ

′ ∈ R to address this issue.
Using the process as follows, the two networks update their parameters
by Poylak averaging [13]:

θQ
′ ← σθQ + (1− σ)θQ

′
,

θμ
′ ← σθμ + (1− σ)θμ

′
, (14)

whereσ ∈ (0, 1) is the soft coefficient that determines the change speed
of the target network parameters.

The critic network needs to evaluate the outputted actions by the
action network, thus the output of the network needs to be as close
as possible to the true value of the action. In order to ensure the
stability of the value function, the critic network regards the output
value of the criticized target network as the true value and tries to
reduce the distance between the output value of the critic network
and the output value of the critic target network. By minimizing
the following loss function, the critic network updates its parameters
as

L =
1
N

∑
i

(
ri + ζQ′

(
si+1, μ

′
(
si+1 | θμ′

)
| θQ′

)
−Q (si, ai)

)2
,

whereN is the batch size. The policy network needs to adjust the output
policy to output the optimal action. It updates the parameters and finds
the optimal policy through the output value of the policy network and
the output action. To train the policy networks, DDPG maximizes the
expected return as

J (θμ) = Eu

{
r1 + ζr2 + ζ2r3 + · · ·+ ζn−1rn

}
(15)

and follows the gradient of (16) to update the weights θμ:

∇θμJ(θ) ≈ ∇aQ(s, a)∇θμμ(s). (16)

where the term ∇aQ(s, a) is obtained from the backpropagation of
the critic network Q(s, a | θQ) w.r.t. the action input μ(s | θμ), which
follows the deterministic policy gradient theorem [14]. The DDPG
learning process is summarized in Algorithm 1.

Since it has been shown that DRL algorithms are prone to overfitting
as it interacts with the same environment for a long time to obtain the
data [9], we introduce a NN with parameters θω after the output layer
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Fig. 2. CDF of the per-user rate for the max-min power control problems.

Fig. 3. CDF of the sum user rate.

of the DDPG algorithm, which updates the parameters by minimizing
the following loss:

minimize
θω

1
Ns

Ns∑
n=1

�
(
â(n),a

�(n)
)
, (17)

where Ns is the number of samples input into the NN, �(·, ·) can be
any measure method for distance, and â,a� are the output from DDPG
algorithm and from the NN in each environment, respectively. Note
that the different environments are the CF system with different UE
positions. Since the reward would change significantly when the same
DDPG network interacts with different environments, it is generally
difficult for the network to converge. As a remedy, we run different
DDPG networks in parallel in different environments. As NN only
needs to reduce the distance of its outputs and the output of all the
converged actor networks, it alleviates the convergence issues caused by
the rapid changes in the reward and avoids the overfitting issues caused
by a single DDPG network interacting with a stationary environment. In
Table I, we summarize the specific design parameters of the DRL model
in CF massive MIMO.κ is a hyperparameter that affects the exploration
ability of the algorithm. Note that positive rewards encourage the agent
to select the corresponding action that has been selected. Thus, we
need to subtract the hyperparameter κ as the baseline from the reward
to prevent the agent from being satisfied with doing so. In order to

Algorithm 1 DDPG-Based Power Control Design
1: Randomly Initialize ne environments.
2: for ne = 1 to Max-number-environments do
3: Randomly initialize the value network Q(s, a | θQ), the

policy network μ(s | θμ) and the NN with weights θQ, θμ,
and θω .

4: Initialize the target value network Q′ the target policy
network μ′ with weights θQ

′
= θQ and θμ

′
= θμ.

5: Initialize replay buffer B.
6: for episode = 1 to Max-number-episodes do
7: Randomly Initialize process N for action exploration.
8: Set the initial state s1.
9: for t = 1 to Max-episode-steps do

10: Take action at = μ(st) +Nt and record the next state st+1

and the reward rt.
11: Store the transition (st, at, rt, st+1) in B.
12: Sample mini-batch of N transitions from B randomly.
13: Minimizing the loss to update the critic network:
14:

Loss =
1
N

∑
i

(
yi −Q

(
si, ai | θQ

))2
, (18)

yi = ri + ζQ′
(
si+1, μ

′
(
si+1 | θμ′

)
| θQ′

)
. (19)

15: Using sampled stochastic policy gradient ascent to update the
actor policy:

∇θμ ≈ 1
N

∑
i

∇aQ
(
s, a | θQ)

∣∣∣∣∣
s=si,a=μ(si)

∇θμμ (s | θμ)
∣∣∣∣∣∣
s=si

16: Update the target value network and the target policy network
as

17:

θQ
′ ← σθQ + (1− σ)θQ

′
, (20)

θμ
′ ← σθμ + (1− σ)θμ

′
, (21)

18: end for
19: end for
20: end for
21: The NN receive the output from the actor networks in each

environment and updates the θω by minimizing the cost using
(17)

adapt to different environments, we let the algorithm set the value of κ
automatically in two steps. Specifically, we first set κ to zero and train
1000 episodes for the model. Then, the obtained result is set as the value
for κ in the next initialization. Such κ is suitable for environments of
different characteristics. The typical value of σ is 0.001 to 0.01, thus
we choose σ to be 0.005 to ensure that the network updates as fast as
possible while ensuring stability.

V. NUMERICAL RESULTS

A. Large-Scale Fading Model and Simulation Setup

In numerical analysis, we consider a network with M = 15 and
K = 5, where UEs and APs are uniformly distributed at random in a
square of size 1 × 1 km2 at a carrier frequency 1.9 GHz. We follow
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Fig. 4. CDF of the product user SINR.

Fig. 5. Run time comparison.

the three-slope model in [1], to model the large-scale fading coefficient
βmk. The important parameters are summarized in Table II.

To verify the performance of the proposed DDPG algorithm, we
will compare it with the solution obtained by the convex optimization
solver and the conventional deep learning algorithm. For the max-sum
and max-product power control problems, since the supervision data
is unable to be obtained due to the non-convex objective function, we
compare the proposed DDPG algorithm with the conventional deep
learning algorithm that has been shown to perform well in the existing
literature [15]. Such an unsupervised learning algorithm maximizes
the objective function by some gradient ascent algorithm, i.e., reverse
gradient descent. We trained 2000 episodes for the proposed model,
each with 1000 steps. The networks have fully-connected layers with
size 400× 300. TheRelu activation function is used for each layer. The
NNs were trained based on a dataset of 90000 samples of independent
realizations of the UEs’ positions and power allocations, obtained by the
outputs from the DDPG networks in different environments by solving
(12). Particularly, 90% percent of the samples were used for training
and 10% for validation. Other 10000 samples formed the test dataset,
which is independent of the training dataset.

TABLE I
PARAMETERS IN DRL MODEL

TABLE II
SYSTEM PARAMETERS

B. Results and Discussions

As shown in Fig. 2, the DDPG algorithm can approximate the
optimal solution returned by the convex optimization solver, while the
performance loss is negligible. Notice that traditional deep learning
algorithms can also approximate the optimal solution well, since per-
forming the gradient descent search on the quasi-concave objective
function would not fall into numerous local optimal solutions.

In Fig. 3 and Fig. 4, the DDPG algorithm is used to address both
the max-sum and max-product problems. It is easy to observe that the
DDPG algorithm is better than the traditional deep learning algorithm
in both cases and is far better than equal power control. In particular, the
DDPG algorithm brings 10.3% and 30.2% improvement at 95%-likely
compared with the deep learning algorithm for the max-sum and
max-product power control, respectively. In fact, the update rule (16)
guarantees that the performance fluctuation at the initial training stage
increases the possibility of exploring a better performance solution
that reduces the chances of having the poorer performance solution
following the deterministic policy gradient theorem [14]. In contrast,
the traditional deep learning algorithm is based on gradient descent,
which can not avoid getting trapped in some local optimal solutions.

C. Complexity Analysis

Note that the convex optimization solver (i.e., CVX) can only be used
in the max-min power control problem. In this section, we compare
the running time on the ordinary computing platform in solving the
max-min power control problem as a proxy for the complexity in Fig. 5.
It is easy to observe that the DDPG algorithm is around three orders
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of magnitude faster than that of the convex optimization solver. Note
that since retraining is only done occasionally when the environment
or the system changes significantly, training time is not an issue in the
considered system.

VI. CONCLUSION

In this correspondence, we studied the optimization problem of
downlink power control in CF massive MIMO networks. We proposed
a DDPG-based approach to solve the downlink power control problem.
Three power control strategies were considered, namely max-min, max-
sum, and max-product. The simulation results showed that the DDPG
algorithm can approximate the global optimal solution for the case
of the max-min power control while being three orders of magnitude
faster. Besides, the proposed scheme is better than the conventional
deep learning algorithm in terms of increasing user data rate in the
three studied application scenarios. In particular, the DDPG algorithm
can achieve a more effective solution more easily than traditional deep
learning when the objective function is non-convex.
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