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Abstrakt

Pro řešení a popis chování elektromagnetických vln v různých strukturách je

často používaná metoda konečných prvků (MKP). Software COMSOL Multiphysics

řeší pomocí MKP široké spektrum fyzikálních úloh. Vedená elektromagnetická vlna

na rozhraní mezi kovem a dielektrikem se nazývá povrchový plasmon polariton.

Světlo je koncentrováno do oblasti, která je menší než difrakční limit, a jeho chování

je silně závislé na změnách v materiálu. Povrchové plasmony jsou nejvíce využívány

v oblasti senzorů, popřípadě v integrované optice pro konstrukci malých a rych-

lých fotonických čipů, kde je světlo vedeno pomocí plasmonických vlnovodů (např.

architektura kov - izolátor - kov).

Tato diplomová práce by měla čtenáři poskytnout základní informace o plasmon-

ice a především o možnostech modelování 2D plasmonických nanostruktur pomocí

softwaru COMSOL Multiphysics. Práce obsahuje několik příkladů, na kterých jsou

ukázány základní postupy při modelování. Jako pokročilé struktury jsme zvolili

struktury využívající magnetooptické jevy.

Klíčová slova: povrchový plasmon polariton, COMSOL Multiphysics, RF module,

plasmonický vlnovod, elektromagnetismus
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Abstract

Finite element method (FEM) is used to solve the behavior problem of electro-

magnetic (EM) waves in various structures. COMSOL is widely used commercial

software solving range of problems by application of FEM. Guided electromagnetic

waves on the boundary between metal and dielectric is called the surface plasmon

polariton (SPP). The light is concentrated into smaller area than the diffraction

limit and this effect is extremely sensitive to changes in materials. The use of SPP

lies mainly in sensor technology. Another possible use is in integrated optics for

construction of smaller and faster photonic chips where light is guided by surface

plasmon waveguides (e.g. metal-insulator-metal architecture).

This diploma thesis should provide the reader with the fundamentals of the plas-

monics and especially the possibilities of modeling 2D nanostructures in COMSOL

Multiphysics software. The thesis contains several model examples on which the

modeling process is shown. As advanced nanostructures we choose the nanostruc-

tures that use magneto-optics efects.

Keywords: surface plasmon polariton, COMSOL Multiphysics, RF module, plas-

monic waveguide, electromagnetism
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1 Introduction
Classical optics stretches into prehistory and is one of the oldest fields of human

inquiry. Its subdisciplines micro and nanooptics are at best century old and most

of these fields developed significantly at the beginning of the 21st century. Present-

day applications range from medicine to entertainment and are widely used in a

day-life. Optical devices are known from the dawn history: the Babylonians used

lenses made from quartz, Egyptian had mirrors (1200 BCE) and similar technologies

were found by archaeologists all over the world. The Lycurgus cup from Byzantine

empire dating back to the 4th century A.D. shown in Figure 1.1 appears green under

normal lighting, however, when illuminated from within it becomes vibrant red in

colour. The effect is the consequence of a presence of tiny proportions of gold and

silver nanoparticles dispersed in colloidal form throughout the glass material. This

phenomenon was not described properly until the 20th century and today we called

this effect plasmonic excitations and it is part of nanooptics [1].

Figure 1.1: The Lycurgus cup illuminated under normal external lighting (left)
and from within (right) [1].

As scientific and engineering developments have made the micro and nano worlds

more accessible, new aspects of optics have come to light and nanooptics has consid-

erable promise for novel and still unknown science and engineering. Field that rep-

resents the convergence of microoptics, photonics, nanooptics and nanotechnology

is called nanophotonics and is expected to yield significant technical and scientific

impact. One of the developments of the late 20th century of the nanophotonics is

the photonic crystal, which is a spatially repeating structure with periods in the

sub-wavelength regime, so, as a result, the photonics crystal can exhibit a photonic

band gap, and the transmission of photons in certain energy ranges is inhibited in it.

These crystals are employed for enhancing the emission of microoptical light emit-

ters, waveguides with interesting dispersive properties, excellent mirrors for wide

1



1 INTRODUCTION 2

range of wavelengths or photonic crystal fibers. Moreover, new nanophotonics stud-

ies are also focusing on the development of metamaterials - structured media not

found in nature, often with customizable propagation characteristics. A very attrac-

tive property that can be realized is the negative index of refraction. Lenses based

on this property can also focus the evanescent field and may result in a perfect

focus, beyond the diffraction limit; in the future we can invent invisibility cloak,

which bends light around an object such that it is not visible to an observer [2].

Another great field of nanophotonics is plasmonics. It represents one of the

most active research areas at the interface of nanophysics and optics. Plasmon is

quasiparticle which is characterized as the quantized collective excitation of electrons

and is typically found at the surface of metals. It consists of charges that interact

with an electromagnetic field and may be highly localized and propagate along

the surface. The electromagnetic field is tightly concentrated at the surface and

decay exponentially in the surface-normal direction. Essential for the generation

of surface plasmons (SPs) is the presence of free electrons at the interface of two

materials which in practice means that one of these materials is conductive. That

implies that surface plasmons can be considered as propagating electron density

waves occurring at the interface between metal and dielectric or SPs can be viewed

as electromagnetic waves strongly bound to this interface [3].

The use of plasmons in optics is not new. The first studies in which surface

plasmons were observed date back to the beginning of the 20th century. In 1902 prof.

Robert W. Wood discovered an unexplained phenomenon that on many diffraction

gratings narrow spectral regions showed a sharp change of energy diffracted. In

his work, he said “I was astounded to find that under certain conditions, the drop

from maximum illumination to minimum occurred within a range of wavelengths

not greater than the distance between the sodium lines” [5]. The main point of

Wood’s discovery was that these lines were present only when the magnetic field is

parallel to the grating grooves (this light is p−polarized, see Chapter 2.2), although

he was unable to provide any interpretation to these phenomena [6].

By the year 1904, Maxwell Garnett studied the bright colors observed in metal-

doped glasses [7] and described the effect examined on Lycurgus cup using newly

developed Drude theory of metals (see Chapter 2.4) and the electromagnetic proper-

ties of small spheres as derived by Lord Rayleigh. He developed a theory of effective

dielectric constant - the Maxwell-Garnett theory. Garnett’s work was extended by

Gustav Mie in 1908 who develops theory of light scattering by spherical particles

[8]. The solution of Maxwell’s equations that had a “surface wave” property was
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Figure 1.2: Spectra of a continuous light source obtained by Wood for some values
of the angle of incidence. The wavelength in nanometers is obtained by multiplying
by factor of 10 to the numbers shown at the top of the figure. On the left are shown
angles of incidence. On No.1 the narrow line appeared in the yellow (λ ≈ 610 nm),
while the larger dark line was observed in the green (λ ≈ 520 nm). Decreasing the
angle of incidence, these lines approached one another, and at normal incidence,
the lines brought together and a uniform illumination was observed. Then, with
an incidence on the other side of the normal, lines separated again. These lines
were extremely bright up to a certain wavelength where the intensity very suddenly
dropped to values close to zero, this fall occurring within a range not greater than
the distance between the sodium lines [4].

analyzed in 1907 by Jonathan Zenneck. Surface plasmon was theoretically described

fifty years later in 1957 in the study by Rufus Ritchie [9] on electron energy losses in

thin films and nearly seventy years after Wood’s original observations, Rufus Ritchie

described anomalous phenomena of metal gratings regarding surface plasmons reso-

nances excited on gratings [10]. In 1968 Andreas Otto and Erich Kretschmann with

Heinz Raether presented first methods for optical excitation of surface plasmons on

metal films [11, 12].

Since then, the field of plasmonics (the science and technology of metal-based

optics and nanophotonics) have experienced quick development which is clearly re-

flected in the scientific literature as is shown in Figure 1.3. The surface plasmon
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has unique properties and may overcome current technologies that are approaching

fundamental physical limits. For researchers in the field of optics, one of the most

attractive aspects of surface plasmons is the way in which they help us to concentrate

and channel light using sub-wavelength structures. Concentrated light can be used

to manipulate light-matter interactions and boost non-linear phenomena. A wide

range of plasmon-based optical elements and techniques have been developed – we

can fabricate extremely compact plasmonics waveguide structures, couplers, active

switches, lithographic masks and so on. For example, a technique called surface-

enhanced Raman spectroscopy (SERS) can detect a single molecule and is based

on metallic structures much smaller than the wavelength of light that are vital for

massive signal enhancement [13].

Figure 1.3: The number of scientific articles published from 1955 to 2005 containing
the phrase “surface plasmon” in either the title or abstract illustrates the growth of
the field of metal nanophotonics. Since 1990 the annual number of publications has
been increasing almost exponentially [6].

Another well-known plasmonic effect, called surface plasmon resonance (SPR), is

widely used in various physical, chemical and biological applications, mostly in very

sensitive detectors [3]. At present, an estimated 50 % of all publications on surface

plasmons involve the use of plasmons for biodetectors [6]. SPR method is very

powerful tool for many types of interference studies and is excellent for monitoring
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changes of the refractive index in the near vicinity of the metal surface, and it is

suited to measure the difference between two states and also to monitor the change

in time. These sensors investigate a very limited vicinity or fixed volume at the metal

surface. They use only evanescent field with low penetration depth at which a signal

is observed (not more than few hundred nanometers), decaying exponentially with

the distance from the metal layer at the sensor surface [3].

The growth of plasmonics is also based on the development of bottom-up and

top-down techniques for fabricating metallic nanostructures, such as electron-beam

lithography [14], focused ion beam milling [15] and various chemical synthesis meth-

ods [16]. Recent development of relatively cheap numerical simulations tools helps

to visualize the electromagnetic fields on metallic nanostructures and to develop new

ones.

One of the advanced topics of plasmonics is the use of the magneto-optics at

terahertz range for adjustment of the signal. Materials exhibiting a magneto-optical

(MO) behavior at this range are for example graphene[17], hexaferrites [18] and

semiconductors [19, 17]. We discuss the use of magneto-optics for surface plasmon

resonance and waveguide structures in Chapter 4.2 and 5.2.
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1.1 Organization of the thesis

The thesis contains six chapters divided into four major topics which are indicated

below.

The first chapter contains brief history, trends and applications of plasmonics.

Chapter 2 reviews the theoretical foundations of the electromagnetics, the first

part of this chapter provides an analysis of Maxwell’s equations and is followed by

analysis of a reflection and refraction of a plane electromagnetic wave at the single

interface and the thin film. In the second part, a qualitative introduction to the

fundamentals of surface plasmons is given. At last, the model describing material

properties are investigated.

Chapter 3 demonstrates the benefits of numerical methods, especially Finite

elements method which is a headstone of COMSOL Multiphysics software. The

basic numeric model of the rectangular waveguide is illustrated and, in the latter

part of the chapter, the main steps in modeling with COMSOL Multiphysics are

summarized.

In Chapter 4 models of structures used for excitation of plasmons are shown.

Reflectance as a function of variable parameters in Kretschmann-Raether and Otto

configuration is computed by COMSOL Multiphysics and compared with analyt-

ical results. The Otto configuration with the external magnetic field is discussed

compared with the experiment.

Basic surface plasmon waveguide models created with COMSOL Multiphysics

are presented in Chapter 5. The application of external magnetic field on the metal

cylinder waveguide is investigated.

Finally, Chapter 6 summarizes and concludes the thesis.
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2 Electromagnetics Background

2.1 Maxwell’s equations

The Maxwell equations are very well known. They are presented in one of two forms,

differential or integral. We will use the differential form. The first - Faraday’s law

of electromagnetic induction - states that the curl of the electric field vector E is

proportional to the time derivative of the magnetic flux density vector B

∇× E = −∂B
∂t
. (2.1)

The second equation is based on Ampere’s circuit law and it relates a spatial deriva-

tive of the magnetic field strength H to the time derivative of the electric displace-

ment vector D

∇×H = J +
∂D

∂t
. (2.2)

We assume that source-current density J = 0, so we can write

∇×H =
∂D

∂t
. (2.3)

Next two equations are attributed to Gauss. First of them called the law of elec-

trostatic relates the divergence of the electric displacement vector to the charge

density

∇D = ρ, (2.4)

and because we assume the charge density is zero we can write this equation in the

form

∇D = 0. (2.5)

The last Maxwell’s equation is called Gauss’s law for magnetic fields and relates the

divergence of the magnetic flux density to the density of the magnetic monopoles.

Because these monopoles do not exists we write

∇B = 0. (2.6)

Two electric vectors (D and E) with two magnetic vectors (B and H) can be con-

nected by constitutive relations, so we can separate the contributions to B and D

into free-space parts and parts related to the material properties [20]
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D = εE = ε0E + P, (2.7)

B = µH = µ0H + M, (2.8)

where ε = ε0εr is the permittivity of medium, ε0 = 8.8542 · 10−12Fm−1 is the

permittivity of vacuum, P is the vector of polarization, µ = µ0µr is the permeability

of medium, µ0 = 4π · 10−7Hm−1 is the permeability of vacuum and M is the vector

of magnetization. We also may define the electric susceptibility χe and the magnetic

susceptibility χm
D = ε0εrE = ε0(1 + χe)E, (2.9)

B = µ0µrH = µ0(1 + χm)H. (2.10)

We write the boundary conditions of Maxwell’s equation on interface of two media

in case of ρ = 0 and J = 0 in the form

n · (D1n −D2n) = 0, (2.11a)

n · (B1n −B2n) = 0, (2.11b)

n× (E1t − E2t) = 0, (2.11c)

n× (H1t −H2t) = 0. (2.11d)

In our case, we consider absence of current densities and nonmagnetic materials

µr = 1. The Maxwell’s equations (2.1) and (2.3) can be combined, as

∇×∇× E = −µ0
∂2D

∂t2
(2.12)

∇(∇ · E)−∇2E = −µ0ε
∂2E

∂t2
. (2.13)

Because there are no external charges, we get

∇(−1

ε
∇ε)−∇2E = −εr

c2

∂2E

∂t2
, (2.14)

where c = 1√
ε0µ0

is the speed of light in free space. The variation of the dielectric

profile ε = ε(r) over distances on the order of one optical wavelength is negligible.
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In general, for assuming a harmonic time dependence of the electric field, we can

write

∇2[E(r)eiωt]− ε

c2

∂2[E(r)eiωt]

∂t2
= 0, (2.15)

so we obtain the time-independent form of the wave equation which is known as

Helmholtz equation

∇2E + k2
0εrE = 0, (2.16)

where k0 = ω
c

= 2πν
c

= 2π
λ

is referred to as the wavenumber of the propagating wave

in the free space, λ = c
ν

as the wavelength and ν as a frequency.

2.2 Reflection of a plane wave and polarization modes

Solutions of Maxwell’s equations can be classified into two orthogonal linear polar-

ization modes, which are referred to as transverse magnetic and transverse electric

mode. Transverse magnetic (TM) since the magnetic field is orthogonal to the plane

of incidence, or the parallel polarization (p − polarization) since the electric field

is parallel to the plane of incidence. Transverse electric (TE) because the electric

field is orthogonal to the plane of incidence. TE mode is also called s−polarization
from the German senkrecht which means perpendicular.

When a plane wave from one medium meets a different medium it can be reflected

or transmitted or both. A transmitted wave proceeds into the second medium and

a reflected wave propagates back into the first medium. The proportion depends on

the constitutive parameters which were mentioned before. Uniform incident plane

wave takes the general form of

Ei = E0,ie
i(kir−ωit), (2.17)

where ki = kxi + kyi + kzi is the propagation vector (or wave vector) as is depicted

in Figure 2.1 and is always in the direction of wave propagation and r = x+y+z is

the position vector [21]. The magnitude of the propagation vector is tightly related

to the frequency of wave ω by dispersion relation

k2
i = k2

ix + k2
iy + k2

iz = ω2µε (2.18)
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Maxwell’s equations for source-free region for the plane wave can be expressed as

k× E = ωµH, (2.19a)

k×H = −ωεE, (2.19b)

k · E = 0, (2.19c)

k ·H = 0. (2.19d)

The scalar product shows that E,H and k are perpendicular to each other. The

electric field vector E and the vector of the magnetic field strengthH lie on the plane

kr = constant. The plane defined by the propagation vector k and a unit normal

vector n to the boundary is called the plane of incidence. The angle between k and

n is the angle of incidence. We write the incidence, the reflected and the transmitted

wave as

Ei = E0,ie
i(kix+kiy+kiz−ωit), (2.20a)

Er = E0,re
i(krx+kry+krz−ωrt), (2.20b)

Et = E0,te
i(ktx+kty+ktz−ωtt). (2.20c)

Figure 2.1: Reflection and refraction at a planar optical interface between two
semi-infinite media.

The tangential component of E must be continuous as well as tangential com-

ponents of propagation vectors which imply that the frequency of the incident, the

reflected and the transmitted wave is unchanged (ωi = ωr = ωt = ω) and vectors ki,
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kr and kt lie in the plane of incidence, so we can derive from these conditions

kisinα = krsinγ, (2.21)

kisinα = ktsinβ, (2.22)

where α, β and γ angles of incidence, transmission, and reflection. We shall write:

ki = kr = 2πωn1 and kt = 2πωn2, where n1 and n2 are refractive indexes of the

media and we easily obtain the law of reflection

α = γ, (2.23)

as well as Snell’s law of refraction

n1sinα = n2sinβ. (2.24)

(a) (b)

Figure 2.2: Reflection and refraction for TM and TE polarization (p− and s−
polarization) at the planar optical interface. Electric field, magnetic field and their
tangential components are depicted [22].

The electric field on incident light can be decomposed into orthogonal and lin-

early polarized waves with parallel (Ep) and perpendicular (Es) components with

respect to the plane of incidence. From amplitude comparison (Ei)tang. + (Er)tang.

=(Et)tang., (Hi)tang. +(Hr)tang. = (Ht)tang. Fresnel coefficients can be derived:
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rs =
Es,r
Es,i

=
n1cosα− n2cosβ
n1cosα + n2cosβ

, (2.25a)

rp =
Ep,r
Ep,i

=
n2cosα− n1cosβ
n2cosα + n1cosβ

, (2.25b)

ts =
Es,t
Es,i

=
2n1cosα

n1cosα + n2cosβ
= 1 + rs, (2.25c)

tp =
Ep,t
Ep,i

=
2n1cosα

n2cosα + n1cosβ
=
n1

n2

(1 + rp), (2.25d)

where rs and rp are forward reflection coefficients for s− and p− polarization and ts
and tp are forward transmission coefficients for s− and p− polarization. The trans-

mission coefficient measures how much of the electromagnetic wave passes through

an optical element while the reflection coefficient describes how much of the wave is

reflected. From symmetries we can define backward coefficients for electromagnetic

waves traveling in the reverse direction

r̃s = −rs, (2.26a)

r̃p = −rp, (2.26b)

t̃s = 1− rs, (2.26c)

t̃p =
n2

n1

(1− rp), (2.26d)

where ts,pt̃s,p − rs,pr̃s,p = 1. The fraction of the incident electromagnetic power

that is reflected or transmitted at an interface is called reflectance or transmittance

respectively. For both s− and p− polarization the reflectance is defined as

Rs,p =

∣∣∣∣Er

Ei

∣∣∣∣2
s,p

= |rs,p|2 (2.27)

and the transmittance is defined as

Ts,p =
n2 cos β
n1 cosα

|ts,p|2. (2.28)

Thin-film interference

The presence of two optical interfaces, each with characteristic Fresnel coefficients for

reflection and transmission, leads to division of the incident beam into a multitude

of coherent waves as shown in the Figure 2.3. The superposition of these coherent
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Figure 2.3: Reflection and transmission on a thin film [22].

waves results in the interference. Higher order reflected waves contribute to the

result which is dependent on the thickness of the film and refractive indexes of media.

The resultant amplitude is equal to the vector sum of the individual amplitudes, so

we distinguish the constructive and the destructive interference. The constructive

(or destructive) interference occurs when the phase difference between the waves

is an even (or an odd) multiple of π. Propagation in thin film is given by eikyd =

eik0n1cosαd, where ky = 2πωn1cosα.

For partial reflected wave applies Fresnel formula r(01)s,p and for partial transmitted

wave applies t(01)s,p t
(12)
s,p eikyd. With use of geometric series we can write the transmission

coefficient as

t(012)s,p =
t
(01)
s,p t

(12)
s,p eikyd

1− r
(01)
s,p r̃

(12)
s,p ei2kyd

=
t
(01)
s,p t

(12)
s,p eikyd

1 + r
(01)
s,p r

(12)
s,p ei2kyd

. (2.29)

The reflection coefficient can be obtained analogically

r(012)s,p = r(01)s,p +
t
(01)
s,p r

(12)
s,p t̃

(10)
s,p ei2kyd

1− r̃
(10)
s,p r

(12)
s,p ei2kyd

=
r
(01)
s,p + r

(12)
s,p ei2kyd

1 + r
(01)
s,p r

(12)
s,p ei2kyd

. (2.30)

2.3 Fundamentals of surface plasmons

We consider a classical model consisting of two semi-infinite nonmagnetic media

with local frequency-dependent dielectric functions ε1 and ε2 separated by a planar

interface at y = 0 and p−polarized electromagnetic wave. For an ideal isotropic, non-
magnetic surface, waves propagating along interface must necessarily have a com-

ponent of electric field normal to the surface, so s−polarized surface oscillations do
not exist [3].

Choosing the x-axis along the propagating direction, we can set amplitudes of

the components of the magnetic field H and electric field E

Hj = (0, 0, Hzj), (2.31)
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Ej = (Exj, Eyj, 0), (2.32)

and we shall write

Hj = (0, 0, Hzj)e
i(kxjx+kyjy−ωt), (2.33)

Ej = (Exj, Eyj, 0)ei(kxjx+kyjy−ωt). (2.34)

Introducing these equations into equation (2.3) with use of constitutive relations

(2.9) and (2.10), we obtain

∇×H = ε
∂E

∂t
, (2.35)

so

−Hzjkxj = εjEyjω, (2.36)

Hzjkzj = εjExjω, (2.37)

where j = 1 or 2. The boundary conditions (2.11) imply that the component of the

electric and magnetic fields parallel to the surface must be continuous. Tangential

components Hz1 = Hz2 ≡ Hz, Ex1 = Ex2 ≡ Ex and normal component ε1Ey1 =

ε2Ey2 have to be conserved, so we obtain from (2.36)

−Hzkx1 = ε1Ey1ω, (2.38)

−Hzkx2 = ε1Ey1ω, (2.39)

and we get interface condition

kx1 = kx2 ≡ kx. (2.40)

From equation (2.37) together with the continuity relations follows

Hzky1 = ε1Ex1ω, (2.41)

Hzky2 = ε2Ex1ω, (2.42)

so
ky1

ε1

=
ky2

ε2

, (2.43)

which is the condition of the surface plasmon and we obtain the equation of the

wave number

k2
j = εj

ω2

c2
= k2

x + k2
yj. (2.44)
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From Figure 2.1 we can set components kx1 = k1 sinα =
√
ε1

ω
c
sinα, ky2 =

√
k2
2 − k2

x2 =√
ε2k2

0 − k2
x and ky1 =

√
ε1k2

0 − k2
x and introduce them to the equation (2.43)√

ε1k2
0 − k2

x

ε1
=

√
ε2k2

0 − k2
x

ε2
. (2.45)

Hence, we obtain the expression for propagating constant of surface plasmon wave

kx = β =
ω

c

√
ε1ε2

ε1 + ε2
. (2.46)

Similarly, using (2.43), we get expression for component kyj

kyj =
ω

c

√
ε2j

ε1 + ε2
, (2.47)

where ω
c
= k0 represents the magnitude of the light wave vector and βSP is the

propagation constant of a surface plasma wave. These equations are the sought

SPR dispersion equation (see Figure 2.4) for an interface between two half-infinite

media. We assume ω and ε2 is real, β is complex because the permittivity is complex

ε1 = ε′1 + iε′′1 (for more information about the permittivity see Chapter 2.4).

Figure 2.4: The dispersion relation for bulk plasmons, free-space electromagnetic
waves, electromagnetic waves in dielectric and surface plasmons. The permittivity
of the dielectric is denoted as εd, the permittivity of the metal as εm and ωp is plasma
frequency (see Chapter 2.4).
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As the surface plasmon propagates along the surface, its intensity sharply decays.

We define the propagation distance as the distance for the surface plasmon intensity

to decay to 1/e of its original value,

Lp =
1

2Im(kx)
, (2.48)

where kx is the propagation constant. Likewise, the electric field falls off evanescently

perpendicular to the metal surface, but in the dielectric the field decays far more

slowly.

Sometimes is useful to define νx as kx/k0

νx =

√
ε′1ε2

ε′1 + ε2

, (2.49)

If we assume that νx is real, the expression under the square root has to be non-

negative number
ε′1ε2

ε′1 + ε2

> 0, (2.50)

so for real νx and one needs ε′1 < 0 and |ε′1| > ε2, which can be fulfilled in a metal

and also in a doped semiconductor below plasma frequency. Metals such as gold,

silver and aluminum exhibit considerable imaginary parts of the permittivity, which

causes the propagation constant of a surface plasmon to have a non-zero imaginary

part that is associated with the attenuation of the surface plasmon in the direction

of propagation. The field perpendicular to the surface decays exponentially with

distance from the surface and is said to be evanescent field. It is consequence of the

bound, non-radiative nature of SPs, which prevents power from propagating away

from the surface [23].

2.4 Material properties

Lorentz oscillator

Maxwell’s equations are great way how to describe electromagnetic field, but they

provide no insight into the mechanism of the interaction of light with matter in the

optical domain which occurs primarily with electrons.

In 1895 Hendrik A. Lorentz introduced a model of an electron as a mass on a

set of springs [24]. This model is designed for insulators, or, at least for electrons
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which are bound by some force to an atom or ion in the solid and can be applied to

lattice vibration in compound crystals. Localized electrons in atoms are considered

as classic oscillators.

Figure 2.5: Lorentz oscillator. Electrons are considered as charged masses attached
to springs.

The dipole moment is generated between an electron with negative charge and

the nucleus of atom with positive charge when the electron is shifted from equilib-

rium position and spring provide a restoring force that returns the electron to it.

The solid is considered as a group of independent harmonic oscillators. We will view

the potential for these bound electrons as harmonic and the spring constant will be

the same for all the electrons in a particular orbital.

The equation of the motion of localized electrons in one dimension x is

F = mea = me
d2x

dt2
, (2.51)

where me = 9.11 · 10−31kg denotes the electron mass and F is the force acting on

the electron. We can set

F = −eE − κx− Γv. (2.52)

E in the first term represents the external oscillating electric force acting on the

electron of the charge e: E = E0e
iωt. The molecule has zero dipole moment without

an external field.

The second term is attracting harmonic force of atomic core, which is propor-

tional to deviation x (with respect to the equilibrium) and the “spring” constant

κ = meω
2
L, where ωL is the oscillator resonant frequency. The electron is considered

to be bound to the zero position by this force.

The third term denotes damping force which is proportional to the velocity where

Γ is the damping constant and v = dx
dt

. Now, we can easily obtain the equation of

motion of localized electrons

−eE0e
iωt = me

d2x

dt2
+ Γ

dx

dt
+meω

2
Lx. (2.53)
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We expect the solution of this equation in the form x = x0e
iωt. Taking the first

derivate and the second derivate, equation (2.53) for displacement x0 becomes

x0 = − eE0

me(ω2
L − ω2)− iΓω

. (2.54)

With this displacement, the dipole moment is p = −ex0 and the polarization is

P = Np =
e2N

me

E0

ω2
L − ω2 − i Γ

me
ω
, (2.55)

where N denotes a number of dipole moments of electrons (charged particles). The

electric susceptibility χe = pN
ε0E

can be expressed in the form

χe =
e2N
ε0me

κ
me
− ω2 − iω Γ

me

=
ALω

2
L

ω2
L − ω2 − iωγL

, (2.56)

where A = e2N
ε0me

= ALω
2
L, AL is the oscillator amplitude, ω2

L = κ
me

is the oscillator

resonant frequency and γL = Γ
me

is the oscillator damping [25, 26].

Drude model for free electrons

In metals, conductive electrons are not strictly localized; they can move in whole

conduction band. In n-type semiconductors, free electrons are in conductive band.

We assume that all atoms contribute to electron gas by the same number of elec-

trons, electron gas is ideal gas with Maxwell-Boltzmann distribution of velocities

and electrons are free and independent. We come out from equation of force

F = mea = me
d2x

dt2
, (2.57)

where me = 9.109 · 10−31kg is the mass of electron and force F denotes effect of

Coulomb field on the charge, so we shall write

F = −eE − Γv. (2.58)

e = 1.602 ·10−19C is charge of the electron, γ is the decay constant and v = dx
dt

is the

electron speed. The first term of equation represents monochromatic electric force

E = E0e
iωt acting on electron and second term is decaying force. From equations
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(2.57) and (2.58) we obtain kinetic equation of motion of free electrons easily

me
d2x

dt2
+ Γ

dx

dt
= −eE0e

iωt. (2.59)

The solution of this equation is expected in the form x = x0e
iωt, so we can simply

express x0

x0 =
−eE0

meω2 − iΓω
. (2.60)

Dipole moment can be also obtained from the displacement of electron

p = −ex0. (2.61)

Polarization is volume density of dipole moments, so we can write

P = Np =
Ne2E0

me(ω2 − i Γ
me
ω)
, (2.62)

where N is carrier concentration. The equation of polarization is used for the ex-

pression of electric susceptibility χe, because

χe =
P

ε0E
. (2.63)

Relative permittivity is associated with the electric susceptibility

εr = ε∞ + χe = ε∞ +
e2N

meε0

1

ω2 − iΓω
me

== ε∞ +
ω2
p

ω2 − iγDω
, (2.64)

where ωp =
√

e2N
meε0

is the plasma frequency, γD = Γ
me

is the damping term, ε∞ is the

high frequency permittivity and me = meffm0 is effective mass of charge carriers (m0

is the mass of electron in vacuum). Plasma frequency corresponds to the frequency

of oscillations of electron gas with given density N [27].

Thus, the Drude dielectric function is given by

εr = ε∞ +
ω2
p

ω(ω − iγ)
. (2.65)

Since the electric permittivity is a complex quantity, we can separate a real and

an imaginary part

εr = ε∞ +
ω2
p

ω2 + γ2
D

+ i
ω2
pγD

ω(ω2 + γ2
D)
. (2.66)
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The Drude model is elementary classical treatment of optical properties of met-

als but it is also used for semiconductors which behave similarly to simple metals

(sufficiently doped).

Drude-Lorentz model

For cases where we can use nor Drude model of free electron conductivity neither

Lorentz model of dipole oscillators we use Drude-Lorentz model which combines

both and describes the dielectric function of semiconductors in the frequency range

properly. The proposed dielectric function is given by

εr = ε∞ −
ω2
p

ω(ω − iγ)
+

Aω2
L

ω2
L − ω2 − iωγL

, (2.67)

where the first term describes high frequency permittivity (background permittiv-

ity), the second term is the Drude term and the last term is the Lorentz term.

Permittivity

The permittivity is a constant of proportionality between electric displacement D

and electric field density E (see Equation (2.7)). The isotropic materials with the

same optical properties in all directions can be easily described by complex permit-

tivity ε = ε′ + iε′′, where ε′ is the real part and ε′′ is the imaginary part as shows

the Figure 2.6. The imaginary part describes the loss in the material so for lossless

materials we can write only the real part.

Anisotropic materials have not the same optical properties in all directions and

their D, E and P are not parallel, so the permittivity has to be expressed as a tensor

ε̂ with nine components

ε̂ =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz


︸ ︷︷ ︸

ε̂r

· ε0, (2.68)

where ε̂r is the relative permittivity tensor and ε0 is the permittivity of free space

(ε0 = 8.854 · 10−12F/m) [21].

The optical anisotropy can be achieved in several ways, e.g. in anisotropic crys-

tals is caused by the character of their structure. These crystals exhibit properties
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Figure 2.6: Experimental data of permittivity of a gold obtained by Johnson and
Christy [28].

such as birefringence which means that their refractive index depends on the polar-

ization and propagation direction of the electromagnetic wave.

In this thesis we discuss the optical anisotropy caused by applying external mag-

netic field (Chapter 4.2) according to the experiments by Chochol et al. [29].

We apply magnetic flux density B in transversal direction, so the permittivity

tensor changes with respect to the direction to:

• Bx :

ε̂r =


εd 0 0

0 εmd −εoff

0 εoff εmd


.

(2.69)

• By :

ε̂r =


εmd 0 εoff

0 εd 0

−εoff 0 εmd


.

(2.70)

• Bz :

ε̂r =


εmd −εoff 0

εoff εmd 0

0 0 εd


.

(2.71)
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For diagonal elements εd, magnetic diagonal elements εmd and for off-diagonal ele-

ments εoff we write

εd = ε∞ −
ω2
p

ω(ω − iγ)
+

Aω2
L

ω2
L − ω2 − iωγL

, (2.72)

εmd = ε∞ −
ω2
p(ω

2 + iγDω)

(ω2 + iγDω)2 − ω2
cω

2
+

Aω2
L

ω2
L − ω2 − iωγL

, (2.73)

εoff = −i
ω2
pωcω

(ω2 + iγDω)2 − ω2
cω

2
. (2.74)

Parameters ωp, ω, γD were described before; the cyclotron frequency ωc is defined

as

ωc =
eBx

me

. (2.75)

The diagonal components of the permittivity cause the plasmonic behavior, and

the off-diagonal components are responsible for non-symmetrical response with the

change of the orientation of the external magnetic field [29].



3 Finite Element Method in COMSOL

Multiphysics
Analytical solutions tend to be restricted to regular geometries and simple boundary

conditions. In more complicated physical problems the numerical simulations are

practical and needed.

The description of the laws of physics for space-dependent and time-dependent

problems are mostly expressed in terms of partial differential equations. Instead of

analytical method, we use different types of discretizations that approximate the

partial differential equations with numerical model equations, which can be solved

using numerical methods [30].

The finite element method (FEM) is a technique for finding approximate solu-

tions to boundary value problems of mathematical physics. FEM has been devel-

oped and applied extensively to problems of structural analysis and problems of

other fields and subdivides a large (physical) problem into smaller simpler parts

called finite elements. One of the benefits of using the FEM is that it offers great

freedom in the selection of discretization in the elements that may be used to dis-

cretize space and the basis functions. The solution of the boundary value problems

that arise in the mathematical modeling of physical systems, has long been a ma-

jor topic in mathematical physics and the most widely used methods are the Ritz

(Rayleigh-Ritz) method and the Galerkin method [31, 30].

3.1 Basic principles of FEM

The finite element method is a numerical technique designed to seek approximate

solutions to problems described by a system of partial differential equations (PDEs),

reducing them to a system of algebraic equations.

First, we discretize the problem in a proper number of elements and then we find

solutions in specific points of those elements which are called nodes. Finally, the

general solution is given by interpolating the solution on the nodes. The number of

elements has to be considered accurately because more and smaller elements mean

more precise model but the model needs more computation time which has to be

taken into account.

By solving the differential equations in a domain of interest we can obtain the

real solution of our problem only if the model is described properly. Every domain

(except only a few special cases) is delimited by boundary which is described by

23
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boundary conditions. To find real solution we have to know them because to com-

plete description both differential equations and boundary conditions are needed.

The nature of this conditions depends on the physics of our problem. Generally,

we distinguish between two basic types of conditions. The first, Dirichlet conditions,

specifies the value of state variable at the boundary and only interior nodes in the

problem are unknown. The second condition – Neumann condition – specifies the

normal derivative of the state variable and can be implemented by adding additional

equations at the boundary. Other boundary conditions can be more complicated.

For example, Perfectly matched layer (PML) is a type of absorbing boundary con-

dition for wave equations which act as a lossy material (or layer) and is used for

perfect absorptions and domain isolation.

At the start, our physical problem is expressed in the strong form and then is

translated in the variational form (which is also called weak form) to solve. The first

step of variational methods that reduce the original problem in variational form is

finding the energy functional of the problem. The finite element methods obtains

the correct solution for any finite element model by minimizing an energy functional.

Based on the law of conservation of energy the energy functional must equal to zero.

In general, the application of the FEM involves followings [32]:

1. Discretization or subdivision of the domain.

2. Defining the governing algebraic equations for a generic element.

3. Formulation of the system of equations (Ritz or Galerkin method), assembling

of all elements in the solution region and determination of the total energy.

4. Solution of the system of equations.

The first step, which can be completely separated from the other steps and usu-

ally is considered as a preprocessing, is perhaps the most important step because the

manner in which the domain is discretized will affect the accuracy of the numerical

results. For one dimensional domain, the elements are often short line segments.

For a two dimensional domain, the elements can be triangles or rectangles. Trian-

gular elements fill better the surfaces of the most varied forms while rectangular

ones are best suited for discretizing rectangular regions. In a three dimensional

case, the domains are subdivided into triangular prisms, tetrahedra or rectangular

bricks. Tetrahedra elements are the simplest and best suited for arbitrary-volume

domains. If the boundary is curved, the elements represent only an approximation

of the original geometry [32].
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3.2 Weak formulation of a waveguide

In this section, we illustrate how to obtain the weak formulation of dielectric rect-

angular waveguide with sides of length x1 and x2. This process corresponds to the

point two in the previous page and is executed directly by the software in COMSOL

Multiphysics.

As a generic element we take a cross-section Ω with specified boundary condi-

tions. Our governing equation is the wave equation (2.15).

We start from the wave equation which is for clarity rewritten to form

∆u(x1, x2, t)−
1

c2

∂2u(x1, x2, t)

∂t2
= 0 (3.1)

in Ω ∈ R, where Ω is the area of cross section, with the Dirichlet boundary condition

u(x, t) = 0 on Γ ∈ R, where Γ is the boundary of the area Ω. We need to find a

solution in a form u(x, t) = û(x, t)eiωt, so by the introducing the relation

∂2u

∂t2
= û(x) · eiωtω2 (3.2)

to the wave equation (3.1) we get our problem in the form

∆û(x) = −ω
2

c2
û(x) (3.3a)

û(x) = 0 (3.3b)

For a derivation of the weak formulation of (3.3) we use the Green’s theorem∫
Ω

∑
i

(
∂u

∂xi
· v + u · ∂v

∂x

)
dxi =

∫
Γ

∑
i

u · v · nidS. (3.4)

Left side of the equation (3.3a) we multiply by the test function v(x), integrate over

the area Ω ∫
Ω

∆û(x) · v(x) · dx =

∫
Ω

∑
i

∂

∂xi
[∇û(x)]i · v(x)dx (3.5)

and apply Green’s theorem∫
Ω

∑
i

∂

∂xi
[∇û(x)]iv(x)dx = (3.6)

=
∑
i

{∫
Γ

[∇û(x)]i · v(x) · ni · dS +

∫
Ω

[−∇û(x)]i ·
∂v(x)

∂xi
dx
}
.
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The first term is equal to zero since the test function condition is v(x) = 0, and

for the second term, we write

−
∫

Ω

∑
i

∂û(x)

∂xi
· ∂v(x)

∂xi
dx = −

∫
Ω

∇û(x)i · ∇v(x)dx. (3.7)

Now, for the right side of the equation (3.3a), we proceed in the same way∫
Ω

−
(ω
c

)2

· û(x) · v(x) · dx = −
∫

Ω

λiû(x) · v(x) · dx (3.8)

and compare it with the left side

−
∫

Ω

∇û(x) · ∇v(x) · dx = −
∫

Ω

λiû(x) · v(x) · dx. (3.9)

We are looking for the eigennumber λ = K2 and the eigenvector û 6= 0 of

V := {v : Ω→ R|
∫

Ω

v2 <∞;

∫
Ω

‖∇v‖2 <∞; v = 0 on Γ} (3.10)

∫
Ω

∇û(x)∇v(x)dx = K2

∫
Ω

û(x) · v(x)dx ∀v ∈ V := H1
0 (Ω),

which is the weak formulation of the rectangular waveguide. In the next steps the

weak formulation is transfered to the matrix form to obtain local matrices. All these

steps are done by software in COMSOL Multiphysics.

3.3 Modeling in COMSOL Multiphysics

COMSOL Multiphysics software is a powerful finite element and partial differen-

tial equation solution engine with integrated modeling environment which provides

multi-physics modeling. Generally, there are five stages in setting up a model in

COMSOL Multiphysics [33]:

• Geometry modeling: Geometry operations are organized in a parametric

sequence of operations in the Model Tree. COMSOL Multiphysics enables

1D, 2D and 3D geometry modeling with native geometry kernel. For more

complicated models boolean operations can be used such as union, difference

and intersection. All models can be created in external CAD systems and

imported.

Although COMSOL Multiphysics fully supports 3D geometries the simplifica-
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tion to 2D geometry with use of symmetries is desirable if is possible. This is

because 3D models require more computer memory and time to solve. More-

over, the solutions in 2D are often more accurate because much denser mesh

can be used. But not every model can be expressed as a two dimensional. The

need of modeling of some structures in 3D was shown by doc. Richter in his

work dealing with advanced subwavelength photonic and plasmonic waveguide

nanostructures [34].

• Mathematical equations and properties definition: Specifying the equa-

tions satisfied internally within the geometries (subdomain physics) and those

on the boundaries or vertices (boundary and point physics). For defining ma-

terials and properties the library of predefined materials and chemical elements

is available. COMSOL Multiphysics provides several physical modules with

dedicated physics interfaces and tools for electrical, mechanical, chemical, fluid

flow, and more applications.

• Meshing: COMSOL Multiphysics has powerful default automatic and semi-

automatic mesh generator tools built-in. The default algorithm is automatic

tetrahedral meshing for physics defined in solids and a combination of tetra-

hedral and boundary layer meshing for fluids. One model can contain many

types of mesh, COMSOL Multiphysics permits considerable user control over

customization.

Physics-controlled mesh is set as a default and is adapted to the current physics

settings in the model. The mesh generator automatically generates a finer

mesh where there are more geometrical details.

In various physical models, there are some problem-dependent factors that

determine the required mesh resolution. In modeling of the electromagnetic

wave, it is a wavelength. To proper resolution, it is necessary to use more

than 10 linear elements per wavelength. In our models, we use more than

30 elements per wavelength due to the strong damping in the metal domains.

The propagation length is discussed in Chapter 2.3. and is given by Equation

(2.48). The detail of the mesh around the interface between metal domain and

dielectric domain is shown in Figure 5.4.
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• Solving: The physics software runs the analysis together with adaptive mesh-

ing and error control using a variety of numerical solvers. One study can hold

a sequence of solvers, such as for stationary, eigenfrequency, frequency-domain

and time-domain analysis.

• Post-processing: COMSOL Multiphysics enables to visualize almost any

quantity of interest related to the simulation results. Built-in visualization

tools include surface, slice, isosurface, cut plane, arrow and streamline plots,

as well as graphs. Post-processing tools allow computing the maximum, min-

imum, average, etc. COMSOL Multiphysics provides a method of automati-

cally creating MATLAB m-file source code. Exporting solutions to MATLAB

also makes post solution analysis more flexible.

This software offers several modules (AD/DC Module, Structural Mechanics

Module, Heat Transfer Module. . .). For simulations, we use the Radio frequency

(RF) module which is optimized for the analysis of electromagnetic waves and is

very useful for design antennas, waveguides, optical fibers, photonic crystals and

so on. RF module offers set of boundary conditions specified for electromagnetic

waves. Their use and characteristics will be discussed with the studied models.



4 Surface Plasmon Resonance
The most common approach to the excitation of the surface plasmon polaritons uses

a prism coupler and the attenuated total reflection method (ATR). There are two

configurations of the ATR method, Kretschmann-Raether configuration and Otto

configuration, that are shown in Figure 4.1.

Among the other methods belongs e.g. electron beam excitation or grating cou-

pling [9].

Figure 4.1: Kretschmann-Raether (a) and Otto (b) configuration.

4.1 Kretschmann-Raether configuration

In the Kretschmann-Raether configuration, the metal film is deposited directly on

the prism crystal. The wave of incident infra-red light passes through a high refrac-

tive index prism (np) and is totally reflected at the base of the prism. A part of the

light is reflected back and a part propagates in the metal film in the form of the

evanescent wave.

The penetration depth of the evanescent wave is typically tens of nanometers

so if the film is sufficiently thin, the wave penetrates it and couples with a surface

plasmon at the outer side of the film.

The surface plasmon propagates along film with the propagation constant β that

is influenced by the presence of the dielectric on the outer side of the film [35]. So

that the coupling between the evanescent wave and the surface plasmon can exists,

the propagation constant of the wave βEW and of the surface plasmon β have to

be equal [35]. For each wavelength, the matching condition is satisfied for a single

angle of incidence φ which increases with decreasing wavelength

2π

λ
np sinφ = Re(β) = βEW , (4.1)

29



4 SURFACE PLASMON RESONANCE 30

where λ is the wavelength of the incident electromagnetic wave [36]. In the process

of optical excitation of surface plasmon polariton, a portion of the energy of the

electromagnetic wave is transferred into the energy of a surface plasmon and dissi-

pated in the metal film which results in a drop of intensity of the light wave as we

can see in the Figure 4.4.

Our model consists of three layers - air, gold (thickness 50nm) and silica (SiO2)

layer. We use the permittivity of gold obtained from Johnson and Christy εAu =

−11.74 − 1.2611i [28] and the refractive index of silica ns = 1.5426 obtained from

Ghosh [37]. The wavelength of Helium-Neon laser (λ = 632.8nm) has been consid-

ered. The wave vector k1 and k3 with x− and y− components has to be defined as
shown in the Table 4.1.

Figure 4.2: Geometry of the Kretschmann-Raether configuration

Electromagnetic Waves, Frequency Domain physics is used to solve governing

Maxwell’s equation in frequency domain

∇× 1

µr

(∇× E)− k2
0(εr −

jσ

ωε0
)E = 0. (4.2)

Electric field components are solved for In-Plane as the electric field components are

in the modeling plane and there is no electric field perpendicular to the plane. User
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defined Port boundary conditions are applied on the upper and the lower boundary.

Wave excitation is ”On” on the upper boundary to launch the guided wave, and

”Off” at the lower boundary to avoid back-reflection and to absorb perfectly all

electromagnetic waves. There is no reflection directly on any port. The waves on

the Port 1 and Port 2 are defined by Magnetic mode field H0 = e−i·k1x·x with the

propagation constant β = |k1y| (H0 = e−i·k3x·x with the propagation constant β =

|k3y|, respectively). The use of Ports on the upper and lower boundary is necessary

to obtain scattering parameters (S-parameters) which are complex-valued, frequency

dependent matrices describing the reflection (and transmission) of electromagnetic

waves at different ports of devices. For our problem with two ports, the S-parameters

are

S =

 S11 S12

S21 S22

 , (4.3)

where S11 is the input port voltage reflection coefficient, S21 is the reverse voltage

gain (the voltage transmission coefficient from Port 1 to Port 2), S12 is the forward

voltage gain and S22 is the output port voltage reflection coefficient. By |Sij|2 the

time average power reflection (or transmission) coefficients can be obtained [38].

The reflectance computed with the use of S-parameters is shown in Figure 4.4.

On the left and right boundaries are applied Periodic Condition with Floquet

periodicity which is typically used for models involving plane waves interacting with

periodic structures [38].

Table 4.1: List of variables for Kretschmann-Raether and Otto configuration

Name Expression Unit

k1 npk0 rad/m

k1x k1sinφ rad/m

k1y −k1cosφ rad/m

k3 (ndk0)2 − k2
3x 1/m2

k3x k1x rad/m

k3y Re(k3) < 0, Im(k3) = 0 : −i
√
k3 1/m

else :
√
k3 1/m

For computing the reflectance, we use the mesh which is depicted in Figure 4.3.

Several meshes are needed. Edge mesh, Copy edge mesh which makes possible to

copy the mesh from already meshed entity to an unmeshed entity and Free Triangu-

lar mesh. For computing the field profiles near the interface between the metal and
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Figure 4.3: Meshing of Kretschmann-Raether configuration for computing the
reflectance. Several types of mesh were used: Edge mesh, Copy edge mesh, and
Free Triangular mesh. Letters S and D indicate the source and the destination
boundary for Copy Edge meshes.

the dielectric we add the Boundary Layers mesh and another Free triangular mesh

to the metal domain with high resolution of approximately 50 nodes per wavelength.

Study set up consists of Parametric Sweep over the angle of incidence and Fre-

quency Domain study. The range of angle values starts at 35 degrees and with a

step 0.02 degree and ends at 50 degrees.

Figure 4.4 shows the reflectance as a function of the angle of incidence. We can

see that the curve has the minimum just under 44 degrees, specifically at 43.73 de-

grees, which indicates the existence of the plasmon. The result from COMSOL

Multiphysics is at good agreement with the analytical results from MATLAB where

the equations (2.25b), (2.27) and (2.30) were used. Figures 4.5 and 4.6 shows the

dependence of the x component of the electric field and z component of the magnetic

field on the angle of incidence, respectively. In Figures 4.5(a) and 4.6(a) we can see
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that the incident electromagnetic wave is reflected, there are no plasma resonances

and the energy is concentrated in the prism. With increasing angle of incidence,

more energy is concentrated in the dielectric. When the angle reaches the λ = 43.73

degrees, the coupling is the strongest and we can observe surface plasmon resonance.

The minimum amount of the energy is concentrated in the prism as is depicted in

Figures 4.5(e) and 4.6(c). These figures corresponds with the minimum of the re-

flectance in the Figure 4.4. Another increasing of the angle of incident causes that

the plasmon ceases to exist and the wave is reflected again as is illustrated in Figures

4.5(i) and 4.6(f).

Figure 4.4: Reflectance as a function of the angle of incidence in Kretschmann-
Raether configuration. The drop of the intensity of the reflected wave is caused by
excitation of surface plasmon polariton. Data computed by COMSOL Multiphysics
are compared against the analytical results obtained from MATLAB.
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(a) λ = 40 deg (b) λ = 42 deg (c) λ = 43 deg

(d) λ = 43.5 deg (e) λ = 43.73 deg (f) λ = 44 deg

(g) λ = 45 deg (h) λ = 46 deg (i) λ = 50 deg

Figure 4.5: Dependence of the electric field (x component) on the angle of inci-
dence. Figure (e) agrees with the minimum of the reflectance (depicted in Figure
4.4) where the plasmon exists.
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(a) λ = 40 deg (b) λ = 43 deg

(c) λ = 43.73 deg (d) λ = 44 deg

(e) λ = 45 deg (f) λ = 50 deg

Figure 4.6: Dependence of the magnetic field (z component) on the angle of in-
cidence. Figure (c) agrees with the minimum of the reflectance (depicted in Figure
4.4) where the plasmon exists.
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4.2 Otto configuration

In contrast with the Kretschmann-Raether configuration, in the Otto configuration

there is a distance between the metal and the prism. This space is filled with a lower

refractive index medium, so we can say that the prism is interfaced with a dielectric-

metal waveguide which consists of a thin dielectric film and a semi-infinite metal.

The electromagnetic wave incidents on the prism-dielectric film interface with the

angle that is larger than the critical angle for these two materials. The produced

evanescent wave propagates along the interface between the prism and the film. The

wave and surface plasmon at the dielectric-metal interface can couple if the thickness

of the film is chosen properly. Likewise the Kretschmann-Raether configuration, the

coupling can occur if the propagation constants of the evanescent wave and of the

surface plasmon are equal [35].

The set up in COMSOL Multiphysics for Otto configuration is very similar to the

set up of Kretschmann-Raether configuration (same physics and meshing, analogous

geometry). In this section, we study the behavior of Otto configuration for different

gap width.

Our model geometry consists of three layers as before, but the material of the

middle layer is air which is surrounded by the glass and the gold. We use the

frequency of He-Ne laser, and for comparison with the previous model we set the

angle of incidence to the 43.73 degrees.

With respect to the architecture of the Otto configuration, we set Parametric

Sweep over the thickness of the air layer from 450 nm to 650 nm. The dependence

of the reflectance to the thickness of this layer is depicted in Figure 4.7. As shown,

the minimum of the reflectance is for the thickness 542 nm. In Figures 4.8 and 4.9

we can observe the penetration of the magnetic field to the gold region which is less

than 100 nm.
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Figure 4.7: Dependence of the reflectance to the thickness of the middle layer for
the angle of incidence of 43.73 degrees. Result obtained by Comsol (blue line) is
compared with an analytic result (red crosses).

(a) t = 400 nm (b) t = 650 nm

Figure 4.8: Dependence of the magnetic field (z component) on the thickness of
the air layer for Otto configuration. The upper layer is the silica layer, the middle
is the air layer, and the lowest is the gold layer. The penetration of the magnetic
filed to the metal layer is explicit.
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Figure 4.9: Amplitude of the magnetic field calculated on the cross-section of the
Otto configuration for the thickness of the air layer t= 542nm where the minimum
of reflectance occurs. We can observe the penetration of the magnetic field to the
gold layer.

Otto configuration with external magnetic field

According to experiment by Chochol et al. [29] we apply external magnetic field

to shift the frequency position of the plasmonic resonance. In this configuration we

use the same architecture as in the experiment. As a conductor we use InSb with

parameters given in Table 4.2, the angle of incidence is α = 35 degrees and the

wavelength of the electromagnetic wave is λ = 650nm. The thickness of the middle

layer is 23.4nm. The refractive index of the first dielectric layer (silicon prism) is

n1 = 3.4164 and of the second dielectric layer is n2 = 1.625.

Table 4.2: List of material parametres for InSb [29]

ωp γL γD ωL AL ε∞ me

rad/s s−1 s−1 rad/s – – kg

5.58 · 1013 5.3 · 1011 1.938 · 1012 3.37 · 1013 1.9484 15.386 1.5395 · 10−32

The InSb material is loaded to the COMSOL Multiphysics with the use of Ana-

lytic Functions. We define the Drude-Lorentz model (see Equation 2.72) as a func-

tion which depends on the frequency and, in the next step in defining the physics,
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we put this function toWave equation for description of the permittivity of the InSb

domain.

External magnetic field can be added to the model through the equations dis-

cussed at the end of Chapter 2.4. We define new function for each of all five compo-

nents of the relative permittivity tensor ε̂r given by Equation (2.71). In the Wave

equation we choose User defined Anisotropic relative permittivity where we set the

proper form of the tensor ε̂r. The magnetic flux density Bz was added as a new

parameter that is a part of the cyclotron frequency ωc (see Equation (2.75)). We

observe the changes in the surface plasmon resonance for the external magnetic field

Bz = ±0.25T in the transversal configuration.

In Figure 4.10 are illustrated the results computed by COMSOL Multiphysics

which are in good agreement with the experimental data (cross lines) obtained by

Chochol et al. [29]. As it shown, the external magnetic field has strong effect to

the InSb. The positive value of the magnetic flux density causes the strong shift to

the lower values of wavenumber (about 5 cm−1) and vice versa. The corresponding

value of shift in the frequency range is more than 100GHz. The application of the

magnetic field can be used in the semiconductor based SPR THz sensors for tuning

the surface plasmon resonance, so we are able e.g. to find stronger coupling of SPR

for selected thickness and refractive index of the dielectric [29].

Figure 4.10: The effect of the magnetic flux density Bz to the surface plasmon
resonance in the Otto configuration for InSb. Experimental data are obtained by
permission from Chochol et al. [29].



5 Plasmonic Waveguides
In this chapter, basic plasmonic waveguides will be investigated. Development of

metal waveguides is one of the straightforward applications of surface plasmons.

These waveguides have a great potential e.g. for telecommunications as a circuit

interconnections or for subwavelength circuitry as key elements [39].

There are numerous waveguide architectures, such as layered structures, metallic

nanowires, metallic nanoparticle arrays, hybrid wedge plasmonic waveguides, avail-

able in the literature [40, 41] which utilizes the concept of surface plasmon polaritons

by storing part of light’s energy as electron plasma oscillation at the interface be-

tween metal and dielectric.

Plasmonic waveguides with ability to confine light at sub-wavelength scale have a

large number of applications in the field of nanophotonic devices [42], biological and

chemical sensors [35], holography [43] and other that we mentioned in Chapter 1.

5.1 Planar waveguides

There are two types of basic planar plasmonic waveguides that will be discussed

in this section. The structure consists of a thin metal film sandwiched between

two dielectric media is called dielectric–metal–dielectric (DMD) or insulator–metal–

insulator (IMI) waveguide. This waveguide can support two TM modes in case that

the metal film is much thicker than the penetration depth of a surface plasmon at

each metal/dielectric interface which corresponds to two surface plasmons at the

opposite boundaries of the metal film.

Coupling between two surface plasmons occurs with a decrease of the thickness.

For any thickness of the metal film there are two coupled surface plasmons which are

referred as to symmetric and antisymmetric surface plasmons based on the symmetry

of the magnetic field distribution. The symmetric mode exhibits a lower attenuation

than antisymmetric and as referred is to a long-range surface plasmon, while the

antisymmetric mode is referred to a short-range plasmon. At certain metal film

thickness we can observe the mode cut-off when the symmetric mode ceases to exist

as a guided mode [35].

Metal–dielectric–metal (MDM) structure (or metal–insulator–metal MIM) is com-

plementary to the structure described above. Since the field is bounded by metal

layers and absolute values of the real parts of the permittivity of the metal are quite

large, the penetration of the field into the metal layer is small [40].

40
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These types of waveguides were investigated many times as well as possibilities

of modeling them with the use of numeric methods. Very good and precise analysis

a of MIM and IMI waveguides in COMSOL Multiphysics and comparisons with the

analytical solutions was presented by Yushanov et al. in COMSOL conference in

Boston in 2015 [44]. Further, Y. Chowdhury presented a comprehensive study of

plasmonic waveguides and their design in COMSOL Multiphysics [45]. We have

selected MIM structure as an example of the surface plasmon planar waveguide.

(a) (b)

Figure 5.1: (a) Structure of the MIM and IMI planar waveguides with used bound-
ary conditions. (b) Detail of the mesh. Boundary Layers and two Free Triangular
meshes were applied. Axis represent the width and length in µm.

The architecture of the MIM waveguide consists of two metal layers and one

dielectric layer which is sandwiched between them. The model is studied in the

longitudinal cross section and is infinite in the z– direction. As materials we use the

silica obtained from Ghosh [37] and the gold obtained from Johnson and Christy

[28]. These materials were input to the model through the Interpolation functions.

The Electromagnetic Waves and Frequency Domain is used as in the previous

models. On the left boundary we apply the Numeric Port with the wave excitation

”On” because the wave is launched here. On the opposite side we apply the same

Numeric Port but we set the wave excitation to ”Off”. On the upper and lower

boundary we apply Scattering Boundary condition and set No incident field. The

application of Numeric Ports requires Boundary Mode Analysis for each of them.

This type of study determines the electric field on the port boundary and finds waves

that propagate in a direction normal to the port. Boundary Mode Analysis steps

are followed by Frequency Domain which is the final step. The distribution of the
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electric and the magnetic field is illustrated in Figure 5.2. All three figures show

the attenuation of the guided mode. The mode penetrates to the metal domain but

decays exponentially.



5 PLASMONIC WAVEGUIDES 43

(a)

(b)

(c)

Figure 5.2: Fields distribution for the wavelength of the He-Ne laser λ = 628nm
for MIM structure. Figure (a) shows amplitude of the magnetic field, Figure (b)
and (c) represents the electric field (x -component) distribution. The attenuation of
the electromagnetic wave is noticeable as well as its penetration to the metal region.
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5.2 Metal cylinder waveguides

The structure of metal cylinder waveguide is composed of a gold [28] [46] (εm)

cylinder with radius rg embedded in silica glass [37] (εd) with radius rd and is very

similar to the single dielectric-metal interface with cylindrical or curved surface.

Illustration of waveguide geometry is shown in Figure 5.3, in fact, the outer radius rd
is far greater than inner radius rg. The dimension of the waveguide in z− direction,
where wave is guided, is extended to infinite.

Figure 5.3: Illustration of the geometry of metal cylinder waveguide which is
composed of a gold cylinder embedded in silica glass. In practice, the outer radius
rd is far greater than radius rg.

Electromagnetic Waves, Frequency Domain physics is used. Electric field com-

ponents are solved for Three-component vector. Electric and magnetic filed of the

waveguide drops off exponentially in x– and y– direction, so the fields can be as-

sumed to be zero at some distance away from the core. At outer side of the cladding

we applied Scattering boundary condition with no incident field. We used two Free

Triangular meshes with different size of elements for the core and remaining domain

and Boundary Layers mesh with respect to the frequency of the electromagnetic

wave (more than 30 nodes per wavelength). Study set-up consists of only one Mode

Analysis step. In this study COMSOL Multiphysics solves propagation constant of

waveguide

E(r, t) = Re
(
E(r)e

jωt−jβz)
)
, (5.1)

where β is the propagation constant. It should be noted that in comparison with

classical waveguides (e.g. photonic crystals, all-dielectric coupled silicon waveguides)

they have limited propagation length (range of few µm) because of intrinsic losses
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(a) (b)

Figure 5.4: Mesh of the circular waveguided consisted of two Free Triangular
meshes and Boundary layers mesh. The layers are well visible in Figure (b).

imposed by the use of metals. Operating free-space wavelength was the wavelength

of He-Ne laser λ0 = 0.628µm.

For the investigation of the dependence of the propagation constant β to the

radius of the waveguide core rg, we set Parametric Sweep from 5 nm to 350 nm. The

outer radius changes proportionally. In Figure 5.5 we can see that after the radius

reaches the critical value about 33 nm the propagation constant quickly begins to

decrease and approaches the value of the plasmon on the planar interface. When

the radius is smaller than the critical value, the symmetric mode disappears which

is shown in Figure 5.7.

In Figure 5.8 the distribution of electric and magnetic field of the fundamental

mode for different radii is illustrated. The fields extend into the dielectric but also to

the gold core and are confined to distances that are less than free-space wavelength.

With increasing radius rg the extension to the metal region descend but the power is

still confined to the circumference of the cylinder which is consistent with the graph

in Figure 5.5.

For computing the dependence of the propagation constant to the wavelenght

of incident electromagnetic wave, we use the same geometry and same materials as

in previous case. In the Study we set Parametric Sweep over the wavelength from
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650nm to 10µm. The dispersion characteristic of the circular waveguide is shown

in Figure 5.6. We can see that the fundamental mode is guided for a broad range of

wavelengths but for the hight wavelengths (low frequencies) is very weakly guided.

Figure 5.5: Dependence of the propagation constant β to the radius of the waveg-
uide core. The dashed blue line represents the value of the propagation constant for
the plasmon at planar interface. Profiles of electric and magnetic field in points A,
B, C and D are shown in Figures 5.7 and 5.8.

Figure 5.6: The dispersion curve for the circular waveguide. The propagation
constant is decreasing function of the wavelength.
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Figure 5.7: Distribution of the electric field in the waveguide for the radius of the
gold core rg = 25nm illustrates that the symmetric mode does not exist in such
small radius. The radius corresponds to the point A in Figure 5.5.
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(a) rg = 30 nm (b) rg = 30 nm

(c) rg = 200 nm (d) rg = 200 nm

(e) rg = 450 nm (f) rg = 450 nm

Figure 5.8: Distribution of the electric and magnetic field in the waveguide for
different radius of the waveguide core. In Figures (a) and (b) we can see that the
electromagnetic wave extends into the whole metal core. With the increasing radius,
less wave propagates into the gold. Graphs (a) and (b) corresponds to the point B
in Figure 5.5, graphs (c) and (d) to the point C and graphs (e) and (f) to the point
D in the same figure.



5 PLASMONIC WAVEGUIDES 49

Metal cylinder waveguide with external magnetic field

As in Chapter 4.2, we apply the external magnetic field to the metal cylinder waveg-

uide. In this set-up we use InSb as a material of the waveguide core. The core has a

radius rcore = 40nm, and the frequency near the minimum of the reflectance curve

in Figure 4.10 that is f = 1.6491 ·1012Hz and that corresponds to the k0 = 50cm−1,

where k0 is the wavenumber. We apply magnetic flux density B = 0.5T to the x

direction and to the z direction as illustrated in Figure 5.9(a). External magnetic

field causes the anisotropy in the InSb which is described by the relative permittivity

tensor ε̂r given by Equation (2.71) that has been already discussed in Chapter 2.3.

Table 5.1: List of propagation constants

B = 0T Bx = 0.5T Bz = 0.5T

β 1.7238 + 0.12063i 1.6127 + 0.12649i 1.7279 + 0.12885i

(a) Bx (b) Bz

Figure 5.9: Direction of the external magnetic field.

By applying the magnetic flux density Bx to the transversal direction (Figure

5.9(a) and 5.10) we can change the propagation constant of the waveguide without

greater changes in the absorption (Table 5.1) and, in addition, we can influence the

distribution of the electromagnetic field in the waveguide (Figure 5.11(b)) based on

the orientation of external magnetic field.

In contrast, as Figure 5.11(c) illustrates, when we apply the magnetic flux density

Bz to the longitudinal direction (Figure 5.9(b)), there are no noticeable changes

in the distribution of the electric field in the waveguide. Only small change in

propagation constant occurs (see Table 5.1).

As we seen in Chapter 4.2 in the Otto configuration in the external magnetic

field, the largest modulation of the surface plasmon properties is when the magnetic
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field is in the transversal direction (perpendicular to the propagation of the surface

plasmon). In the circular waveguide this would mean the magnetic field is along the

circumference.

Figure 5.10: The effect of the magnetic flux density on the distribution of the
electric field in the metal cylinder waveguide.
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(a) B = 0T

(b) Bx = 0.5T

(c) Bz = 0.5T

Figure 5.11: The effect of the magnetic flux density on the distribution of the
electric field in the metal cylinder waveguide. The external magnetic field is in
opposite direction than in Figure 5.11(b).



6 Conslusion
In this work, I have shown on several examples that COMSOL Multiphysics is a valid

tool for the modeling of plasmonic nanostructures with advanced functionality.

The topic of plasmonics was introduced, along with the necessary optical prop-

erties of metals and semiconductors. The Finite element method has been presented

as tool for the modeling of structures with arbitrary shape. The modeling in COM-

SOL Multiphysics has been show in a tutorial manner, to allow readers to easily

replicate and study the examples.

The examples shown are the typical components of plasmonics.

The Surface Plasmon Resonance in the prism coupled structures has been demon-

strated in both Kretschman-Raether and Otto architecture, where both results were

compared to analytical models. The Otto configuration has been extended for the

use of InSb in the Terahertz regime, where a strong tuning of resonance using the

magnetic field has been shown in the numerical simulation and compared to exper-

imental data.

The ability of COMSOL Multiphysics to model planar waveguides has been

illustrated on a plasmonic MIM waveguide.

One of the main contributions in the analysis of propagating modes on circular

plasmonic waveguide, both in the dependence on the diameter of the waveguide

and the wavelength (dispersion) on the gold nanowire. The propagation of surface

plasmon has also been shown on InSb waveguide, along with symmetry breaking

due to external magnetic field. This example provides an excellent testbed for the

study of magneto-plasmons.
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