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Abstract

In this paper, we investigate a new estimation and control strategy for two-
target tracking mobile sensor networks. Different from the single-target track-
ing problem, the two-target tracking one has to consider the interaction between
followers in different groups. Based on a new flocking control algorithm and dis-
tributed filter, all mobile sensors can split into two groups to track their own
target and form a cohesive flock with their neighbors. Stability analysis is con-
ducted based on cascading Lyapunov method and matrix theory. Furthermore,
a sufficient condition for the convergence is given in the form of the bound-
ary conditions of feedback gains. Finally, a numerical example is presented to
illustrate the validity of the proposed theoretical results.

Keywords: Distributed filter, flocking, two-target tracking, mobile sensor
network

1. Introduction

Recently, due to the flexibility of deployment and low cost, sensor networks
have appealed to researchers and practitioners in many areas, which is widely
applied in surveillance systems, target tracking, information processing and so
on [1], [2], [3]. Each sensor in mobile sensor networks can process information,5

communicate with its neighbors and move with the target. Generally speaking,
every sensor uses a distributed estimation algorithm to estimate the uncertainty
target and utilizes a control algorithm to move close to the target.

As an important part of sensor networks, filtering algorithms have been
widely studied [4], [5], [6]. In particular, consensus algorithms have been proved10

to be effective tools for performing distributed computation tasks [7]. Inspired
by consensus algorithms in multi-agent systems [8], [9], distributed Kalman
filters have been proposed, which can help the estimation value of every sensor
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reach consensus effectively and reduce the mean square error of the estimation
[10], [11], [12].15

Compared with static sensor networks, the mobile sensor network has better
mobility and better performance, which is more attractive to researchers. In
[13], a novel theoretical framework is introduced for mobile sensor networks,
and sensors based on a flocking algorithm move with a single target. Flocking
portrays the collective behavior derived from the interacting individuals using20

only limited local information [14]. In [15], Reynolds introduced three rules
for flocking: 1) flocking centering, 2) collision avoidance, 3) velocity match-
ing. In Olfati-saber’s work, the estimation of the target that is processed by
a distributed filtering algorithm is directly used as the feedback term of the
flocking algorithm. By applying this cascade estimation and control algorithm,25

followers construct a mobile sensor network. In [16], mobile sensor networks
have been investigated with time delay. Mobile sensor networks with a single
target have been used in large-scale surveillance systems [17]. However, com-
pared with the single-target case, the multiple-target tracking problem is more
valuable in the surveillance systems. In fact, many scenarios in real life have30

multiple-target tracking problems. In [18], multi-target problem has been stud-
ied for the flocking of multi-agent systems. It should be pointed out that there
may exist interaction between the targets when they are close to each other,
which motivates the researches focus on the coupled multiple-target tracking
problems[19], [20].35

According to the above discussion, flocking-based mobile sensor networks
with two coupled targets will be considered in this paper. Generally speaking,
this paper extends static sensor networks with two coupled targets [20] to the
case of mobile sensor network and extends the mobile sensor network with one
target [13] to the case with two coupled targets. To the best of our knowledge,40

this problem does not attract enough attention in spite of its evident importance
in application. Therefore, this paper intends to fill such a gap. It should be
pointed out that the interaction between two sensors in different groups may
lead the system to be unstable, and how to use local information to design an
effective algorithm is a crucial problem. Overall, the main contribution of this45

paper is to design a new flocking control algorithm to achieve two-target tracking
and combine it with a distributed filter to construct a mobile sensor network to
estimate the targets. By applying the proposed control and estimation strategy,
mobile sensors can form flock with their neighbors in the same group and track
their own target successfully.50

This paper is organized as follows: In Section II, the mathematical model
of this problem will be introduced. In Section III, the main result will be given
and several definitions and assumptions will be presented. In Section VI, by
constructing a Lyapunov function, the stability of this system will be proved.
In Section V, a numerical example will be presented to illustrate the validity of55

the proposed flocking algorithm. Finally, conclusions are drawn.
Notations: In this paper, 5f is the gradient of the function f , and 0 is the

zero matrix. λmax(A) represents the maximum eigenvalue of matrix A. ‖ · ‖
means the Euclidean norm and ⊗ refers to the Kronecker product.
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2. Model Description60

Consider two targets, labeled as α and β moving in an n dimensional Eu-
clidean space, with dynamics as follows:

{
q̇αγ (t) = pαγ (t),

ṗαγ (t) = Bαf(pαγ (t), qαγ (t)) + Cap
β
γ (t),

{
q̇βγ (t) = pβγ (t),

ṗβγ (t) = Bβf(pβγ (t), qβγ (t)) + Cβp
α
γ (t),

(1)

where qαγ , p
α
γ , q

β
γ , p

β
γ ∈ Rn are the states of targets. Bα, Bβ ∈ Rn×n. The

nonlinear function f : R+ × Rn → Rn. Cα and Cβ are two matrices which
represent the interaction between two targets.65

Suppose there are N +M followers splitting into two groups: α-group which
measures the state of target α and β-group which measures the state of target
β. Without loss of generality, let the first N followers be in α-group and the
remaining followers be in β-group, then two sets can be represented as Sα =
{1, 2, ..., N}, Sβ = {N + 1, N + 2, ..., N +M}. The signals, which the follower70

sensors receive, can be described as follows:

żαi (t) = Dα
i sα(t) +Hαv

α
i (t), i ∈ Sα,

żβj (t) = Dβ
j sβ(t) +Hβv

β
j (t), j ∈ Sβ ,

(2)

where sα(t) = [qαγ , p
α
γ ] ∈ R2n, sβ(t) = [qβγ , p

β
γ ] ∈ R2n are the states of the targets.

And zαi ∈ Rl is the state received by the ith follower in α-group. zβj ∈ Rl is the

target state received by the jth follower in β-group. Dα
i , D

β
j ∈ Rl×n are two

output matrices of ith and jth follower, respectively. vαi (t) ∈ Rn and vβi (t) ∈ Rn75

are zero-mean Gaussian noises. Hα, Hβ ∈ Rl×n denote the strengths of the
noises.

All the sensors can use the filtering algorithm mentioned in [20] to estimate
the states of the targets, which is presented as follows:

Consider there are two kinds of sensors in each group. The first type of80

sensors is more powerful, which can broadcast its information to all sensors.
And the second type of sensors’ communication ability is limited, which only
communicate with the neighbors. Without loss of generality, let the first sensor
in each group be the powerful one. The distributed filtering protocol is designed

3
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as follows:85

ẋi(t) =B1F (xi(t)) +
∑

j∈Sa
gij [xj(t)− xi(t)] + C1[xN+1(t)]

+ zαi −Dα
i xi(t),

ẏi(t) =B2F (yi(t)) +
∑

j∈Sb
gij [yj(t)− yi(t)] + C1[x1(t)]

+ zβi −Dβ
i yi(t),

(3)

where xi(t) = [xi1(t), xi2(t), ..., xi2n(t)]T = [q̂αTγ , p̂αTγ ]T is the estimation of tar-

get state sα(t) by the ith sensor in α-group and yi(t) = [yi1(t), yi2(t), ..., yi2n(t)]T =
[q̂βTγ , p̂βTγ ]T is the estimation of target state sβ(t) by the ith sensor in β-group.

The sets of neighbors Nα
i , N

β
i is defined as:

Nα
i ={i, j ∈ Sα : ‖qi − qj‖ < r},

Nβ
i ={i, j ∈ Sβ : ‖qi − qj‖ < r},

(4)

where r > 0 is the interaction range of every sensor. Gα = {gij}, i, j ∈ Sα if90

j ∈ Nα
i , gij = 1 else gij = 0 and Gβ = {gij}, i, j ∈ Sβ if j ∈ Nβ

i , gij = 1
else gij = 0. B1, B2 ∈ R2n×2n and B1 = diag{I,Bα}, B2 = diag{I,Bβ}. And
F (sα(t)) = [(pαγ )T , f(qαγ , p

α
γ )T ]T ∈ R2n, F (sβ(t)) = [(pβγ )T , f(qβγ , p

β
γ )T ]T ∈ R2n.

In this way, C1 and C2 can be presented as follows:

C1 =

[
0 0
0 Cα

]
, C2 =

[
0 0
0 Cβ

]
. (5)

Suppose each follower which tracks the state of targets moves with dynamics as95

follows: {
q̇i = pi,

ṗi = ui.
(6)

Each follower applies the following distributed control strategy:

uαi = −5qi U(qi) + fi,c + fγi , i ∈ Sα,
uβi = −5qi U(qi) + fi,c + fγi , i ∈ Sβ ,

(7)

where U(qi) is the collective potential function of the ith agent, which is defined
the same as that in [21]. Figure 1 shows an example of this potential function.
The potential function is used to regulate position between the ith agent and100

its neighbors.

4
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Figure 1: A smooth artificial potential function.

The second term fi,c is the velocity consensus term of the system:

fi,c =Bαf(q̂i,γ , pi) + CαpN+1 +
∑

j∈Sα
gij(pj − pi), i ∈ Sα,

fi,c =Bβf(q̂i,γ , pi) + Cβp1 +
∑

j∈Sβ
gij(pj − pi), i ∈ Sβ .

(8)

The third term fγi is a target tracking term which is designed as follows:

fγi = −c1(qi − q̂αi,γ)− c2(pi − p̂αi,γ), i ∈ Sα
fγi = −c1(qi − q̂βi,γ)− c2(pi − p̂βi,γ) i ∈ Sβ ,

(9)

where q̂αi,γ , p̂
α
i,γ , q̂

β
i,γ and p̂βi,γ are the estimations of target state by the ith sensor

in α, β group respectively, and c1, c2 are feedback gains.105

Since the estimation generated by (3) is directly used in the control input
(7), this system is called a cascading distributed estimation and control system.
The stability of the cascading mobile sensor networks requires the collision-free
of mobile sensors and the tracking of mobile targets using a combination of the
flocking and the filtering algorithms. In next section, we will give the stability110

analysis of this algorithm. Figure 2 shows the structure of the mobile sensor
network.

3. Main Result

Definition 1. Give the definition that Lα = Gα − 4(Gα) and Lβ = Gβ −
4(Gβ), where 4(Gα) and 4(Gβ) represent the degree matrix of Gα, Gβ respec-115

tively. Give the definition of Lαβ = {gij}, i ∈ Sα, j ∈ Sβ , Lβα = {gij}, i ∈
Sβ , j ∈ Sα, are the communication matrices between α-group and β-group. Ac-
cording to the definitions the row sum of Lα, Lβ is 0 and Lαβ , Lβα can be de-

5
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Figure 2: Mobile sensor network. The triangle represents targets and circle represents follow-
ers.

scribed as follows:

Lαβ =




1 0 .. 0
1 0 .. 0
.. .. .. ..
1 0 .. 0


 , Lβα =




1 0 .. 0
1 0 .. 0
.. .. .. ..
1 0 .. 0


 . (10)

Definition 2. [20] For an N×N irreducible square matrix H with nonnegative120

off-diagonal elements, the definition of β(H) is showed as follows: H is decom-
posed uniquely as H = P +F , where F is a diagonal matrix and P is a zero row
sum matrix. Let ξ = [ξ1, ξ2, ..., ξN ]T be the normalized left eigenvector P with re-

spect to the eigenvalue zero satisfying
∑N
i=1 ξi = 1, and Ξ = diag{ξ1, ξ2, ..., ξN}.

Then, β(H) = λmax(ΞH +HTΞ).125

Definition 3. [13] For a matrix M ∈ Rn×m and two vectors x ∈ Rn and
y ∈ Rm, the following inequation holds

2xTMy ≤ xTx+ yTMTMy.

Assumption 1. [22] There are two nonnegative constants ρ1 and ρ2 for the
nonlinear function, such that:

‖f(x2, y2, t)− f(x1, y1, t)‖ ≤ ρ1‖x2 − x1‖+ ρ2‖y2 − y1‖. (11)

This is a Lipschitz-like condition, which is satisfied by many well known func-
tions.

130
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Lemma 1. For A = [aij ] ∈ Rn×n, let

Ri(A) =
n∑

j=1,j 6=i
|aij |, i = 1, 2, ..., n, (12)

denote the absolute row sum of A without diagonal elements. All the eigenvalues
of A are located in the set of n discs:

n⋃

i=1

{z ∈ C : |z − aii| < Ri(A)}. (13)

Theorem 1. [20] Suppose that the nonlinear function satisfies Assumption 1.
Consider a sensor network with a sensing model in (2), and each sensor applies135

the distributed estimation algorithm (3). When the noise is zero, the sensor
network can track the targets sα(t) and sβ(t), if it satisfies the following LMI:

Φ =

[
Ψ1 ΞαLαβ + LβαΞβ

LαβΞα + ΞβLβα Ψ2

]
< 0, (14)

where Ψ1 = [λmax(BαB
T
α )+λmax(LTλLλ)+β(L̄αα)]I and Ψ2 = [λmax(BβB

T
β )+

λmax(LTλLλ) + β(L̄ββ)]I. Ξα = diag{ξα1 , ξα2 , ..., ξαn}, Ξβ = diag{ξβ1 , ξβ2 , ..., ξβn}.
L̄αα = Lαα −Dα, L̄ββ = Lββ −Dβ.140

The dynamics of the estimation error eαi = xi−sα, eβi = yi−sβ can be presented
as follows:

ėαi =Bαf(xi(t))−Bαf(sα(t)) +
∑

j∈Sα
Lije

a
j (t) +

∑

j∈Sβ
Lije

β
j (t)−Dα

i e
α
i , i ∈ Sa

ėβi =Bβf(yi(t))−Bβf(sβ(t)) +
∑

j∈Sb
Lije

β
j (t) +

∑

j∈Sa
Lije

α
j (t)−Dβ

i e
β
i , i ∈ Sb.

(15)
Construct a Lyapunov function for this system :

Ve(t) = Ve1(t) + Ve2(t) =
N∑

i=1

eαi
Tϕαi e

α
i +

M∑

i=1

eβi
T
ϕβi e

β
i , (16)

where ϕαi = [ξα1i, ξ
α
2i, ..., ξ

α
Ni]

T , ϕβi = [ξβ1i, ξ
β
2i, ..., ξ

β
Ni]

T . Moreover, it can be

proved that V̇ (t) < 0, if the LMI (14) is satisfied. Moreover, the conclusion that145

all estimators asymptotically reach a consensus can be reached. The detailed
proof can be found in [20].

Theorem 2. Consider a mobile sensor network which is composed of N + M
sensors with dynamics (3) and each mobile sensor applies the estimation algo-150
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rithm (8). If the following condition is satisfied:

c2 ≥ max{ρ1λmax(Bα), ρ1λmax(Bβ)}+max{λmax(Cα) +λmax(Cβ)}+ 1, (17)

[
Ψ1 + IN ⊗ PT1 P1 ΞxLαβ + LβαΞy

LαβΞx + ΞyLβα Ψ2 + IM ⊗ PT2 P2

]
< 0, (18)

where P1 =

[
ρ1Bβ + c1I 0

0 c2I

]
, P2 =

[
ρ1Bα + c1I 0

0 c2I

]
. And Ψ1,Ψ2, Ξx,Ξy

is defined the same as Theorem 1. ρ1 and ρ2 are the Lipschitz constants.
λmax(A) refers to the biggest eigenvalue of A.155

Then, the following statements hold:
(1) The sensors form two cohesive flocks.
(2) All estimators in the same group can asymptotically reach consensus on the
state of the target.
(3) The cascade system is stable.160

Remark 1. Compared with Theorem 1, Theorem 2 extends the static sensor
network to the mobile case . The range of the feedback gains is given to make
sure the system is stable when there exists a dynamical error.

4. Stability analysis

In this section, the detailed proof of Theorem 2 will be presented.165

The dynamics of followers in α-group can be written as follows:

{
q̇αi =pαi ,

ṗαi =−5qiU(qαi ) + fi,c + fγi , i ∈ Sα.
(19)

Let ζi = qi − qγi and ξi = pi − pγi , and the cascade system can be rewritten as
follows:

Σ :

{
ζ̇αi =ξαi ,

ξ̇αi =−5ζiU(ζαi ) + fi,c + fγi , i ∈ Sα,
(20)

Σe : ėαi =Bαf(xi(t))−Bαf(sα(t)) +
∑

j∈Sα
Lije

α
j (t)

+
∑

j∈Sβ
Lije

β
j (t)−Dα

i e
α
i , i ∈ Sα.

(21)

8
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And the dynamics of the agent in β-group can be written as follows:

Σ :

{
ζ̇βi =ξβi ,

ξ̇βi =−5ζiU(ζβi ) + fi,c + fγi , i ∈ Sβ ,
(22)

Σe : ėβi =Bβf(yi(t))−Bβf(sβ(t)) +
∑

j∈Sβ
Lije

β
j (t)

+
∑

j∈Sα
Lije

α
j (t)−Dβ

i e
β
i , i ∈ Sβ .

(23)

Consider a Lyapunov function for this cascade system:

V (ζ, ξ, t) =
∑

i∈Sα
⋃
Sβ

Hi(ζi) +
∑

i∈Sα

1

2
ξTi ξi +

∑

i∈Sβ

1

2
ξTi ξi + Ve(t), (24)

where Hi(ζi) = Ui(ζi) + 1
2c1‖qi − qγ‖2, i ∈ Sα

⋃
Sβ .

By directly differentiating, we obtain:

V̇ (ζ, ξ, t) =
∑

i∈Sα
⋃
Sβ

Ḣi(ζi) +
∑

i∈Sα
ξTi ξ̇i +

∑

i∈Sβ
ξTi ξ̇i. (25)

Let the definition of ϕi in α-group be:

ϕi =ξTi ξ̇i

=ξTi (−5ζxi U(ζαi ) + fi,c + fγi,α), i ∈ Sα,
(26)

which can be separated into three parts:170

ϕi1 =− ξTi 5ζi U(ζi),

ϕi2 =ξTi (Bαf(q̂i,γ , pi)− f(qγi , p
γ
i ) + CαξN+1 +

∑

j∈Sα
gij(ξj − ξi)),

ϕi3 =ξTi (−c1(qi − q̂αi,γ)− c2(pi − p̂αi,γ)).

(27)

According to (11), Φi2 can be rewritten as follows:

ϕi2 ≤ξTi (Bα(ρ1(q̂i,γ − qγi ) + ρ2(pi − pγi )) + CαξN+1

+
∑

j∈Sα
gij(ξj − ξi))

≤ξTi (Bα(ρ1ei1 + ρ2ξi) + CαξN+1 +
∑

j∈Sα
gij(ξj − ξi)),

(28)

where ei = xi − sα = [ei1
T , ei2

T ]T ∈ R2n, i ∈ Sα, which eαi1, e
α
i2 ∈ Rn.

9
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The third part of ϕi can be written as:

ϕi3 =ξTi (−c1(qi − qγi + qγi − q̂αi,γ)− c2(pi − pγi + pγi − p̂αi,γ))

=ξTi (−c1ζi − c2ξi + c1ei1 + c2ei2).
(29)

Combine this three parts, then the following can be obtained:

ϕi ≤− ξTi 5ζi U(ζi) + ξTi (Bα(ρ1ei1 + ρ2ξi) + CαξN+1

+
∑

j∈Sα
gij(ξj − ξi)) + ξTi (−c1ζi − c2ξi + c1ei1 + c2ei2)

=− ξTi 5ζi U(ζαi )− c1ξTi ζi + ξTi (Bα · ρ2Iξi +
∑

j∈Sα
gij(ξj − ξi))

− c2ξTi ξi + ξTi CαξN+1 + ξTi (Bα · ρ1Iei1 + c1ei1 + c2ei2).

(30)

For all the sensors in β group, ϕi can be obtained in a manner:175

ϕi =− ξTi 5ζi U(ζi)− c1ξTi ζi + ξTi (Bβ · ρ2Iξi +
∑

j∈Sβ
gij(ξj − ξi))

− c2ξTi ξi + ξTi Cβξ1 + ξTi (Bβ · ρ1Iei1 + c1ei1 + c2ei2), i ∈ Sβ ,
(31)

where ei = yi − sβ = [ei1
T , ei2

T ]T ∈ R2n, i ∈ Sβ , which ei1, ei2 ∈ Rn.
Now, calculate the Lypunov function V (t)

V (t) ≤
∑

i∈Sα
⋃
Sβ

ξTi (5ζiU(ζi) + c1ζi) + Ve(t)

+
∑

i∈Sα
ξTi (−5ζi U(ζi)− c1ζi +Bα · ρ2Iξi +

∑

j∈Sα
gij(ξj − ξi)

− c2ξi + CαξN+1 +Bα · ρ1Iei1 + c1ei1 + c2ei2)
∑

i∈Sβ
ξTi (−5ζi U(ζi)− c1ζi +Bβ · ρ2Iξi +

∑

j∈Sβ
gij(ξj − ξi)

− c2ξi + Cβξ1 +Bβ · ρ1Iei1 + c1ei1 + c2ei2)

=
∑

i∈Sα
ξTi (Bα · ρ2Iξi +

∑

j∈Sα
gij(ξj − ξi)− c2ξi + CαξN+1

+Bα · ρ1Iei1 + c1ei1 + c2ei2)
∑

i∈Sβ
ξTi (Bβ · ρ2Iξi +

∑

j∈Sβ
gij(ξj − ξi)− c2ξi + Cβξ1

+Bβ · ρ1Iei1 + c1ei1 + c2ei2) + Ve(t).

(32)

10
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Then, V (t) can be written as follows:

V (t) ≤ξTα (IN ⊗ ρ1Bαξα + Lα ⊗ Inξα − c2ξα + Lαβ ⊗ Cαξβ)

+ ξTβ (IM ⊗ ρ1Bβξβ + Lβ ⊗ Inξβ − c2ξβ + Lβα ⊗ Cβξα)

+
∑

i∈Sα
ξTi ((ρ1Bβ + c1I)ei1 + c2ei2)

+
∑

i∈Sβ
ξTi ((ρ1Bα + c1I)ei1 + c2ei2) + Ve(t)

≤ξTα ((ρ1λmax(Bα)− c2)InNξα + λmax(Cα)Lαβ ⊗ Inξβ)

+ ξTβ ((ρ1λmax(Bβ)− c2)InNξβ + λmax(Cβ)Lβα ⊗ Inξα)

+
∑

i∈Sα
ξTi ξi +

∑

i∈Sβ
ξTi ξi +

∑

i∈Sα
ei
TPT1 P1ei +

∑

i∈Sβ
ei
TPT2 P2ei + Ve(t)

≤ξTψ1ξ
T +

∑

i∈Sα
ei
TPT1 P1ei +

∑

i∈Sβ
ei
TPT2 P2ei + Ve(t)

≤ξTψ1ξ
T + eψ2e,

(33)
where ξ = [ξT1 , ξ

T
2 , ..., ξ

T
N+M ]T , e = [eT1 , e

T
2 , ..., e

T
N+M ]T , P1, P2 and ψ2 are de-

fined in Theorem 2 and ψ1 is shown as follows:180

ψ1 =

[
(ρ1λmax(Bα) + 1− c2)InN λmax(Cα)Lαβ ⊗ In

λmax(Cβ)Lβα ⊗ In (ρ1λmax(Bβ) + 1− c2)InM

]
, (34)

The row sum of ψ1 is less than zero if c2 ≥ max{ρ1λmax(Bα), ρ1λmax(Bβ)} +
max{λmax(Cα) + λmax(Cβ)} + 1. The matrix can be decomposed into two
matrices H1 and H2. Since the row sum of H1 is zero and all the diagonal
elements are negative accordind to Lemma 1, Hi is negative semi-definite, and
H2 is a diagonal matrix with semi-negative elements, ψ < 0 is satisfied when185

c2 ≥ max{ρ1λmax(Bα), ρ1λmax(Bβ)}+ max{λmax(Cα) + λmax(Cβ)}+ 1. This
completes the proof. �

5. Numerical Example

In this section, a numerical example will be presented to illustrate the valid-
ity of the proposed estimation and control strategy. Consider a mobile sensor190

network with twelve agents moving on a plane. There are six agents in α-group,
and six agents in β-group. The dynamical parameters of the targets are:

Bα =

[
0 0.5

0.8 0

]
, Bβ =

[
0 −0.3

0.1 0

]
. (35)

The nonlinear function f can be described as f :f(x) = [cos(x1), sin(x2)]T . This
function can satisfy Assumption 1. So the Lipschitz constants ρ1 = 1 and ρ2 = 1.
The communication distance is 20. If the distance between two followers is195
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(a) (b)

(c) (d)

(e) (f)

Figure 3: The trajectory of all agents: (a),(c),(e) sensors controlled by (7). (b),(d),(f) con-
trolled by the algorithm proposed in [21].
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less than 20, they can exchange information. The initial distances among all
followers are less than 20. The feedback gains of (7) are c1 = 2, c2 = 2.

Cα =

[
0 −0.1

0.1 0

]
, Cβ =

[
−0.16 0

0.1 0

]
. (36)

In Fig. 3, it compares the proposed flocking algorithm (7) with flocking al-
gorithm proposed in [21]. By applying this strategy, all followers in the same
group can form flock and track its target. But in Figs. 3(b), 3(d), 3(f), it can be200

seen clearly, sensors in different groups do not separate and track their target.
Figure 4 shows all followers in the same group reach velocity consensus with

their targets. In Fig. 5, followers do not reach the same velocity with its target
by applying the flocking algorithm proposed in [21]. And there is a big velocity
mean square error in the group.205

(a) (b)

(c) (d)

Figure 4: The velocity of every mobile sensors: (a),(c) sensor’s velocity in α-group. (b),(d)
sensor’s velocity in β-group.

In Fig 6, it compares the trajectory of the flock’s centre with the trajectory
of the target. In this figure, it can be seen that the flock’s centre tracks the
target well by adopting (7).
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(a) (b)

Figure 5: The comparison between two strategies : (a) sensors’ velocity by using strategy
proposed in [21]. (b) mean square error for distributed target tracking.

(a) (b)

Figure 6: The flocking centre in two situations. (a) Followers are controlled by the (7). (b)
Followers are controlled by the flocking algorithm proposed in [21].
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6. Conclusion

In this paper, we have investigated the mobile sensor networks with two210

coupled targets. By introducing a new flocking algorithm, all followers in the
same group can form a flock and followers in different group are separated.
Furthermore, this paper presents the range of feedback gains to make system
stable with dynamical estimation errors. Finally, simulations show that, by
employing this estimation and control strategy, followers in the same group can215

be controlled to form a flock and track their target.
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