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Distributed estimation and control for two-target
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FEducation Ministry of China, Huazhong University of Science and Technology, Luoyu Road
1037, Wuhan 430074, China
b Department of Mechanical Engineering, The University of Hong Kong, Hong Kong.

Abstract

In this paper, we investigate a new estimation and .control strategy for two-
target tracking mobile sensor networks. Different from the single-target track-
ing problem, the two-target tracking one has to consider the interaction between
followers in different groups. Based on a new flocking control algorithm and dis-
tributed filter, all mobile sensors can split into two groups to track their own
target and form a cohesive flock with their neighbors. Stability analysis is con-
ducted based on cascading Lyapunov methodrand matrix theory. Furthermore,
a sufficient condition for the convergence is given in the form of the bound-
ary conditions of feedback gains. Finally, a'numerical example is presented to
illustrate the validity of the proposed.theoretical results.

Keywords: Distributed filter, flocking, two-target tracking, mobile sensor
network

1. Introduction

Recently, due to,the flexibility of deployment and low cost, sensor networks
have appealed|to researchers and practitioners in many areas, which is widely
applied/in surveillance systems, target tracking, information processing and so
on [15 [2]343]. JEach sensor in mobile sensor networks can process information,
communicate with its neighbors and move with the target. Generally speaking,
¢very sensor uses a distributed estimation algorithm to estimate the uncertainty
target and utilizes a control algorithm to move close to the target.

As an important part of sensor networks, filtering algorithms have been
widely studied [4], [5], [6]. In particular, consensus algorithms have been proved
to be effective tools for performing distributed computation tasks [7]. Inspired
by consensus algorithms in multi-agent systems [8], [9], distributed Kalman
filters have been proposed, which can help the estimation value of every sensor
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reach consensus effectively and reduce the mean square error of the estimation
[10], [11], [12].

Compared with static sensor networks, the mobile sensor network has better
mobility and better performance, which is more attractive to researchers. In
[13], a novel theoretical framework is introduced for mobile sensor networks,
and sensors based on a flocking algorithm move with a single target. Flocking
portrays the collective behavior derived from the interacting individuals using
only limited local information [14]. In [15], Reynolds introduced three rules
for flocking: 1) flocking centering, 2) collision avoidance, 3) velocity match-
ing. In Olfati-saber’s work, the estimation of the target that is processed by
a distributed filtering algorithm is directly used as the feedback term=of-the
flocking algorithm. By applying this cascade estimation and cgntrol algerithm,
followers construct a mobile sensor network. In [16], mobile sensor/networks
have been investigated with time delay. Mobile sensor nétworksswith a single
target have been used in large-scale surveillance systems"[17].However, com-
pared with the single-target case, the multiple-target tracking-problem is more
valuable in the surveillance systems. In fact, manysscenarios in real life have
multiple-target tracking problems. In [18], multi-target'problem has been stud-
ied for the flocking of multi-agent systems. Itishould:be pointed out that there
may exist interaction between the targets when, they are close to each other,
which motivates the researches focus on'\the,coupled multiple-target tracking
problems[19], [20].

According to the above discussion; flocking-based mobile sensor networks
with two coupled targets will beleonsidered in this paper. Generally speaking,
this paper extends static sensor networks with two coupled targets [20] to the
case of mobile sensor netwerkyand extends the mobile sensor network with one
target [13] to the case with two coupled targets. To the best of our knowledge,
this problem does not/attract enough attention in spite of its evident importance
in application. Therefore, ithis paper intends to fill such a gap. It should be
pointed out that”the interaction between two sensors in different groups may
lead the system to.be unstable, and how to use local information to design an
effective algorithm igra crucial problem. Overall, the main contribution of this
paper is to design a new flocking control algorithm to achieve two-target tracking
and coinbine it with a distributed filter to construct a mobile sensor network to
estimate‘the targets. By applying the proposed control and estimation strategy,
mobile sensors can form flock with their neighbors in the same group and track
their own' target successfully.

This paper is organized as follows: In Section II, the mathematical model
of this problem will be introduced. In Section III, the main result will be given
and several definitions and assumptions will be presented. In Section VI, by
constructing a Lyapunov function, the stability of this system will be proved.
In Section V, a numerical example will be presented to illustrate the validity of
the proposed flocking algorithm. Finally, conclusions are drawn.

Notations: In this paper, 7 f is the gradient of the function f, and 0 is the
zero matrix. Amqq(A) represents the maximum eigenvalue of matrix A. || - ||
means the Euclidean norm and ® refers to the Kronecker product.
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2. Model Description

Consider two targets, labeled as a and 8 moving in an n dimensional Eu-
clidean space, with dynamics as follows:

{ @5 () = p5 (1),
B5(t) = Baf (05 (1), 45 (1)) + Cap5 (1), 8
{ ¢y (t) = pi(t),

S(t) = Baf(05(t), a5 (1)) + Cops (1),

where q,‘;‘,p%qu,pf € R™ are the states of targets. B,,Bg € R"*". The
nonlinear function f : Rt x R"® — R™. (C, and Cs are/two matrices which
represent the interaction between two targets.

Suppose there are N + M followers splitting into twosgroups: a-group which
measures the state of target o and S-group which.measures the state of target
B. Without loss of generality, let the first NV followers be'in a-group and the
remaining followers be in [S-group, then two.sets can be represented as S, =
{1,2,..,N}, Sg ={N+1,N+2,...., N + M} \The signals, which the follower
sensors receive, can be described as follows:

2(t) = DPso(t) SHLE (), i€ Sa,
(t) (t) ()) € @

2 (t) = D sglt) H\H' (t j e S,

where s4(t) = [¢%,pS] € R%2s5(t) ={q2, p5] € R?" are the states of the targets.
And z¢ € R! is the state(received by the ith follower in a-group. zj € R!is the

target state received/by, theyjth follower in S-group. Dy, Dﬁ RY™ are two

output matrices ofrthyand jth follower, respectively. v(t) € R” and v’ (t) € R"
are zero-mean Gaussianpfoises. H,, Hg € R™™™ denote the strengths of the
noises.

All thefsensors can use the filtering algorithm mentioned in [20] to estimate
the states ofithe targets, which is presented as follows:

Consider there are two kinds of sensors in each group. The first type of
sensSors is more powerful, which can broadcast its information to all sensors.
And the second type of sensors’ communication ability is limited, which only
communicate with the neighbors. Without loss of generality, let the first sensor
in each group be the powerful one. The distributed filtering protocol is designed
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as follows:

(1) =BiF(x:(8)) + Y gijlaj(t) — 2s(t)] + Ca[wn ()]
€S,

+ 2 — Dita;(t),
§i(t) =BaF(y;(t)) + Y _ i [y; (t) — vi(t)] + Ca[z1(2)]
JESy

where z(t) = [2i1(£), 2i2(t), ..., Tion (£)]T = [¢57, pST]" is the estimiation.of tar-
get state s, (t) by the ith sensor in a-group and y; () = [yi1(t), yis(t); -, Yaan (1)) T
[(j{fT,ﬁgT]T is the estimation of target state sg(t) by the ith sensor iny S-group.

The sets of neighbors N2, Nf is defined as:

Nia :{Z7j € Soc : Hqt - q]H < 7’}, (4)
NP ={i,j € S |la: — qill <},

where 7 > 0 is the interaction range of every.sensors> G, = {gi;},4,7 € Sq if
j € NP gy =1lelse g;; =0and Gg = {g;j}%,5 € Spif j € Niﬁ7 gij =1
else g;j = 0. By, By € R?"*?" and By = diag{dyB.}, Bs = diag{I, Bg}. And
F(sa(t)) = (07, flag,p)"]" € R¥, F(35(1) = [(05)7, (a5, p5)"]" € R*™.
In this way, C; and Cs can be presentedhas Tollows:

c-fuDes 81

Suppose each follower/which tracks the state of targets moves with dynamics as

follows:
4i = pi;
{ (6)

Pi = Uj.

Each follower applies the following distributed control strategy:

U?:_Vql U(ql)+fl,c+f;{7 ZESOH

B _ Y . (7)

Uy == Va U(Qi)+fi,c+fi7 ZESﬁ,
where U (g;) is the collective potential function of the ith agent, which is defined
the same as that in [21]. Figure 1 shows an example of this potential function.
The potential function is used to regulate position between the ith agent and
its neighbors.
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Figure 1: A smooth artificial potential function.

The second term f; . is the velocity consensus term of4he system:

fi,c :Baf(‘ii,’yvpi) + Capny1 + Z gij(pj _pi)v i€ Sa,

JESa
. . (8)
fie =Bsf(Ginpi) + Copr+ > gij(p—pi), i€ Ss.
jGSﬁ
The third term f] is a target trackifgytermy which is designed as follows:
[l =—c(a <@ ca(pi — p5,), i€ Sa (©)

I =—alg— (Lﬁﬁ) — ca(pi —ﬁfﬁ) i€ Sg,

where g7, pf, qf’j , and ﬁf) Jare the estimations of target state by the ith sensor
in «a, B group respectively, and ¢y, co are feedback gains.

Since the estimation generated by (3) is directly used in the control input
(7), this system isicalled’a cascading distributed estimation and control system.
The stability=of the eascading mobile sensor networks requires the collision-free
of mobile“sensors and the tracking of mobile targets using a combination of the
flocking and the filtering algorithms. In next section, we will give the stability
analysis of this algorithm. Figure 2 shows the structure of the mobile sensor
nétwork.

3. Main Result

Definition 1. Give the definition that L, = Go — NGy) and Lg = Gg —
A(Gg), where A(Go) and A(Gg) represent the degree matriz of G, Gg respec-
tively. Give the definition of Lag = {gij},% € Sasj € S, Lga = {gij},7 €
Sg,j € Sa, are the communication matrices between a-group and B-group. Ac-
cording to the definitions the row sum of Lo, Lg is 0 and Lng, Lgs can be de-
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Figure 2: Mobile sensor network. The triangle represents tMcircle represents follow-

ers.

scribed as follows: v
1 0 . 1

0 .0
1 0 1 0 .0
Laﬂ B Lﬁa - .. .. .. .. ’ (10)
1 0 .0
Definition 2. [20] F irreducible square matriz H with nonnegative

ition of B(H) is showed as follows: H is decom-
posed uniquely , where F' is a diagonal matriz and P is a zero row
sum matriz. = [£1,€2, ..., EN]T be the normalized left eigenvector P with re-
spect to th nvalwe zero satisfying Zf\;l & =1, and = = diag{&1,&2, ..., EN -
Amaz(EH + HTE).

off-diagonal eleme

J[13] For a matric M € R™™ and two vectors x € R" and
following inequation holds

20T My < aTx +yTMT My.

Assumption 1. [22] There are two nonnegative constants p; and ps for the
onlinear function, such that:

ILf (2, y2,t) — f(z1, 91,0 < prllze — 1]l + pallye — vl (11)

This is a Lipschitz-like condition, which is satisfied by many well known func-
tions.
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Lemma 1. For A = [a;;] € R"*", let

n

RZ(A) = Z |aij|7 i=12..,n, (12)
=1

denote the absolute row sum of A without diagonal elements. All the eigenvalues
of A are located in the set of n discs:

n

U{z € C i1z = ail < Ri(A)}. (13)

i=1

Theorem 1. [20] Suppose that the nonlinear function satisfiés Assumption 1.
Consider a sensor network with a sensing model in (2), and_each sensor applies
the distributed estimation algorithm (3). When the noise is zero, the sensor
network can track the targets s, (t) and sg(t), if it satisfies the following LMI:

Uy EQLQB +L5aE’6

P = - -
LQBZQ + :’BLBQ U2

<0, (14)

where Uy = [/\max(BaBg)—F/\max(LfLA)—l—ﬁ(gaa)}f and Uy = [/\max(BBBBT)—l—
Amaz (L5 Lx) + B(Lgg)ll. E* = diag{¢f, €5, g}, E° = = diag{¢}, €}, ... €0}
Loo = Laa — D, Lgg = Lgg — DP.

The dynamics of the estimation‘erromes = x; —sq, ef = y; — S can be presented
as follows:

éia :Baf(xz(t)) B f Sa(t Z LU j Z Ll] j Da a | Sa

jESa jE€Ss
¢; =Baf(yi(t))= Bgf (sglt)) + Y Lise](t) + ) Lijef(t) — Def i € 5.
JESH j€Sa
(15)
Constructsa Lyapunov function for this system :
N Mo
Vo(t) = Ver () + Vea(t) = D> ef e +> e el (16)
i=1 i=1
where ¢ = (68,655, E8:]T, @ = (60,65, -, €R:]T. Moreover, it can be

proved that V(¢) < 0, if the LMI (14) is satisfied. Moreover, the conclusion that
all estimators asymptotically reach a consensus can be reached. The detailed
proof can be found in [20].

Theorem 2. Consider a mobile sensor network which is composed of N + M
sensors with dynamics (8) and each mobile sensor applies the estimation algo-
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rithm (8). If the following condition is satisfied:

Co Z max{pl )\maw(Boc)7 pl)\maw(Bﬁ)} + max{)\max (Ca) + Amaz(cﬁ)} + 17 (17)

U+ In®@PIPy E°Lag + Lga=Y
e g <0, (18)
Lagz +.:yLBa \I/2+IM®P2 P

_|mBgt+al p1Ba + a1l Lo =
where P, = 0 e I , Py = 0 21 And U, U BT, =

is defined the same as Theorem 1. p1 and ps are the Lipschitz” constants.
Amaz(A) Tefers to the biggest eigenvalue of A.

Then, the following statements hold:

(1) The sensors form two cohesive flocks.

(2) All estimators in the same group can asymptotically réach comsensus on the
state of the target.

(8) The cascade system is stable.

Remark 1. Compared with Theorem 1, Theorem_2 extends the static sensor
network to the mobile case . The range of thesfeedback gains is given to make
sure the system is stable when there exists a dymamical error.

4. Stability analysis

In this section, the detailed proef of Theorem 2 will be presented.
The dynamics of followers in a~group can be written as follows:

4 =ps,
19
{p?=—vqiv<q?>+fi,c+f:, i € S (19)

Let ¢; = q; — gj{and & =/p; — p;, and the cascade system can be rewritten as
follows:

X {Cla =& (20)
5?2—V§iU(Cq)+fic+f;’, i € Sa,
Yo et =B (wi(t) = Baf(sa(t) + D Lijej(

JESa

+ E Lz]; Dye, i€ Sq.
JESE

(21)
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And the dynamics of the agent in 8-group can be written as follows:

BB
Z{Czﬂ S s )

Ze:é? =Bsf(yi(t) — Baf(ss(D) + Y Liel (1)
Jj€ESp

+ Z Lije‘?(t) — D?e?, 1€ Sﬁ.

JESa \(
Consider a Lyapunov function for this cascade system: %’

VGen= Y H@+ Y s+ Y e v, ()

1€Sa U Ss 1€Sq i€Ss

where HZ(Q) = UZ(Q) + %cl||qi — q,y||2,i € Sq US[;.
By directly differentiating, we obtain:

V(& 1) = Z Hi(Ci)'i"

i€Sa U Ss 1€Sa i€Sp

Let the definition of ¢; in a-group be:

fi,c+fga)a iESOH

170

= (@], p)) + Cabnir + Y (& — &),

JESa
©i3 c1(qi — Gi) — c2(pi — Pis))-
Accordin ), @iz can be rewritten as follows:
viz <& (Ba(p1(Giy — @) + p2(pi — 7)) + Cabnst
+ D 95§ - &)

JESa

<&/ (Ba(prein + p2&i) + Cabnir + Y 6ii(& — &),
v JESa
where e; = x; — 54 = [en T, €T |’ € R*™,i € S,, which €%, e% € R™.

(25)

(26)

(28)
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The third part of ¢; can be written as:

pis =& (—ci(qi — qf +a] —4) — ca(pi — 0] + 1] — P,))
=¢T (16 — e28i + creq + caegn).

(29)

Combine this three parts, then the following can be obtained:

— & Ve, U(G) + & (Balprein + pa&i) + Cabnia
+ 3 9i(& — &) + & (—e1Gi — 28 + creq + caein)
jESa
=—& L UC) - a&l G+ & (Ba-pI&i+ Y gis
JESa

— 28] &+ & Cobnyr + & (Ba - prlen + creqa ¢ éae;

s For all the sensors in 8 group, ¢; can be obtained in a
i = — ng Ve U(G) — ClgTCz + £T (Bg - p2I&; )

(31)
— &l &+ 8 Cpey + €8 (Bg - prlenn +erein + 0261'2), i € 5p,
where e; = y; — sg = lein”,
Now, calculate the Lypunov function
viys Y (vl
€S USs
+> (= ) = c1Gi+ Ba - p2I&i + > gi (& — &)
i€5a JESa
N1+ Ba - pileq + cieqi + caeiz)
U(G) =16+ Bs - pol&i + Y | g1 (&5 — &)
J€Ss
(32)

&+ Cg&i+ Bg - pilejn + crein + caein)

& (Ba - pal&i+ Y 9i(& — &) — 2& + Cabnia
JESa

+ Bo - pilein + crein + coeio)

S & (Bs-pal&i+ > 916 — &) — cabi + Cp&a

i€Ss JESp

+ Bg - prle; + ciei + caeie) + Ve(t).

10
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Then, V (t) can be written as follows:

+ &5 (In ® p1Bgés + Lg ® Inég — c2€p + Lpa ® Cpéa)

+ 3 & (B + cxl)ei + caein)
1€Sq

+ Z & ((p1Ba + c1l)eir + c2ei) + Ve(2)
iGS/3

Ség((pl)‘maac(Ba) - CQ)Iana + /\maac(ca)Laﬂ ® Infﬁ)
+ gg((plAmax(Bﬁ) - C2)InN§B + )\mam(cﬁ)Lﬁa ® I7L§a)
+ Y da+ > da+ > e"PlPiei+ Y e P Poey+ Vi(t)

€S i€Sp i€Sa i€Sp
<My + Z e;" Pl Pre; + Z e;" Py Pye; +V.(8)
i€Sq i€Sg

<MY€ + exoe,
(33)
where ¢ = [¢],¢T ...,§J€+M]T, e = [elT,eQT,...,e%JrM]T, Py, P, and 15 are de-
fined in Theorem 2 and 7 is shown as follows:

¢ _ (pl)\mam(Ba) + 1- CQ)InN )\mam(ca)Laﬁ X In (34)
te )\'rnal'(CB)LBa & In (pl)\nLal'(BB) +1- 02)I7L]W ’
The row sum of ¢, is less than zerojif c; > max{p1 Mnaz(Ba); P1Amaz(Bs)} +
max{Amaez(Ca) + Amaz(Cs)} +1. The matrix can be decomposed into two
matrices H; and Hs.»Sinee the row sum of H; is zero and all the diagonal
elements are negative acecordind to Lemma 1, H; is negative semi-definite, and
H, is a diagonal/matrix with semi-negative elements, ¥ < 0 is satisfied when
¢z > max{p1 Mnaw(Ba)s P1Amaz (Ba)} + max{ ez (Co) + Amaz(Cs)} + 1. This
completes theyproof: g

5. Numerical’Example

In thisisection, a numerical example will be presented to illustrate the valid-
ity of the proposed estimation and control strategy. Consider a mobile sensor
network with twelve agents moving on a plane. There are six agents in a-group,
and six agents in S-group. The dynamical parameters of the targets are:

0 05 0 -03
B“_[OB 0 }’Bﬁ_[m 0 } (35)

The nonlinear function f can be described as f:f(z) = [cos(x1), sin(x2)]T. This

function can satisfy Assumption 1. So the Lipschitz constants p; = 1 and ps = 1.
The communication distance is 20. If the distance between two followers is

11
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Figure 3: The trajectory of all agents: (a),(c),(e) sensors controlled by (7). (b),(d),(f) con-

trolled by the algorithm proposed in [21].

12
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less than 20, they can exchange information. The initial distances among all
followers are less than 20. The feedback gains of (7) are ¢; = 2,c2 = 2.

0 =01 —0.16 0
C"‘_[O.l 0 ]’Cﬂ_{ 0.1 0]' (36)

In Fig. 3, it compares the proposed flocking algorithm (7) with flockin,
gorithm proposed in [21]. By applying this strategy, all followers in th
20 group can form flock and track its target. But in Figs. 3(b), 3(d), 3(f), i
seen clearly, sensors in different groups do not separate and track thei
Figure 4 shows all followers in the same group reach velocity ¢
their targets. In Fig. 5, followers do not reach the same veloci
by applying the flocking algorithm proposed in [21]. And therg is a bi

205 mean square error in the group. :

The agent's first dimension velocity in x group N The agent's second dimension velocity in x group

— target x's velocity trajectory — target x's velocity trajectory

The agent's first dimension velocity in y group N The agent's second dimension velocity in y group

— target y's velocity trajectory — target y's velocity trajectory
25

(c) (d)

ure 4¢ The velocity of every mobile sensors: (a),(c) sensor’s velocity in a-group. (b),(d)
sen! velocity in B-group.

In Fig 6, it compares the trajectory of the flock’s centre with the trajectory

of the target. In this figure, it can be seen that the flock’s centre tracks the
target well by adopting (7).

13



Figure 5: The comparison between two strategies
proposed in [21]. (b) mean square error for distributed target
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The agent's first dimension velocity in y group

— target y's velocity trajectory

~— Trajectory of flock's centre
— Trajectory of target

— The proposed flocking algorithm
— Ordinary flocking algorithm

: (a)

~— Trajectory of flock's centre
— Trajectory of target

s’ velocity by using strategy

igure 6: The flocking centre in two situations. (a) Followers are controlled by the (7). (b)
Followers are controlled by the flocking algorithm proposed in [21].
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6. Conclusion

In this paper, we have investigated the mobile sensor networks with two

coupled targets. By introducing a new flocking algorithm, all followers in the
same group can form a flock and followers in different group are separated.
Furthermore, this paper presents the range of feedback gains to make system
stable with dynamical estimation errors. Finally, simulations show that, by
employing this estimation and control strategy, followers in the same group can
be controlled to form a flock and track their target.
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