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Abstract This paper aims to speed up the response and alleviate the computing load of model pre-

dictive control (MPC) of permanent magnet synchronous machine (PMSM). For this purpose, the

Laguerre functions were extended to MPC, creating novel linear controller (LMPC) for the PMSM

model. Firstly, the differences of control variables between adjacent sampling periods were regarded

as a unit impulse response of a stable system, which can be approximated by a few terms of

Laguerre polynomials. In this way, the difference of control variables can converge to zero quickly

through parameter adjustment. Then, the current and voltage constraints in the form of Laguerre

functions were applied on PMSM to improve the current response to sudden changes of speed or

load. Furthermore, the torque load was applied to the state space model of PMSM to optimize the

response to external load. Simulation results show that the proposed LMPC controller can effec-

tively reduce the computing complexity that restricts the application of MPC on PMSM.
� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Recently, the permanent magnet synchronous machine
(PMSM)has been widely used in electric vehicles (EVs), owing
to its high power density, large torque, and excellent efficiency

[1–6]. To adapt to the high performance, new or improved
algorithms must be designed for the control of PMSM.

There are many approaches for PMSM control [7,8]. As a
classical approach, field-oriented control (FOC) integrates

multiple proportional-integral (PI) controllers, namely, speed
loop, current loop, and torque loop [9–11]. Since each control
loop runs independently, it is impossible to implement the con-

trol from the global perspective. Besides, the current and volt-
age constraints cannot be applied to all loops at once, causing
the current to soar during the initial, speed-change, or load-

change processes. Furthermore, the uncertain factors (e.g.,
nonlinearity, time-varying parameters, and interference of load
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torque) make it difficult to automatically adjust the parameters
of PI controllers.

Model predictive control (MPC) is a conventional strategy

in control engineering. In recent years, MPC has been intro-
duced to industrial control, thanks to its various advantages
[12–15]: First, discrete MPC can effectively deal with multi-

variable systems based on the state space model, including
both single-input single-output (SISO)system and multi-input
multi-output (MIMO) system. Second, MPC can simultane-

ously process the constraints of state, control, and output vari-
ables in multivariable systems. Third, MPC supports the
optimal control of constraints and global control of the target,
without needing the extra controllers as FOC [16–20]. In gen-

eral, MPC is implemented in three steps: predictive model,
receding horizon control and feedback control. If applied to
PMSM, MPC will derive a cost function from the PMSM

model and parameters in each sampling period, and use the
function to optimize the control variables of the system [21,22].

With the development of hardware, MPC has now been

adopted for high sampling, fast PMSM. For example, Liu et al.
[7] and Mynar et al. [8] relied on the explicit MPC to optimize
the control variables of PMSM, and successfully improved the

predictive effect and receding horizon level; but the success is
achieved with a rising workload of seeking the optimal region.
Preindl and Bolognani [23] realized model predictive direct tor-
que control, using finite control set (FCS). SomeMPCalgorithms

are directly rooted inmultiparametric quadratic program, featur-
ing offline calculation and online update of optimal control vari-
ables. For instance, Bolognani et al. [24] incorporated the

multiparametric quadratic program into MPC to optimize the
control variables throughbinary search, speededup the execution
of MPC algorithm, and completed the computation offline.

This paper details the application of Laguerre functions in
MPC for PMSM. These functions have been extensively used
for signal analysis, parameter identification [25], and recently

for MPC [26]. The main contributions are as follows:

(1) In order to predict the results more accurately, the MPC
predictive period is usually longer, so the computation

of MPC is large. In order to reduce the predictive period
number of MPC, Laguerre functions were introduced to
MPC. By adjusting the parameters of Laguerre function,

to reduce the period of predictive. Meanwhile, the cur-
rent and voltage constraints in the form of Laguerre
functions were applied on PMSM to improve the current

response to sudden changes of speed or load.
(2) A novel state space model was used for LMPC: the tor-

que load was applied to the state space model of PMSM
to optimize the response to external load.

The remainder of this paper is organized as follows: Section 1
introduces the basic theories onMPC and PMSMmodel; Section 3

implements PMSM control based on LMPC; Section 4 presents
the simulation results; Section 5 puts forward the conclusions.

2. Method

2.1. PMSM model

In the dq0 rotating reference frame, the continuous-time elec-
trical dynamics equations of a PMSM can be described by:
did
dt
¼ � Rs

Ld
id þ Lq

Ld
Pxmiq þ ud

Ld

diq
dt
¼ � Ld

Lq
Pxmid � Rs

Lq
iq � /f

Lq
Pxm þ uq

Lq

dxm

dt
¼ 1

J
ð1:5P/fiq þ ðLd � LqÞidiqÞ � Bxm � Tl

ð1Þ

The electromagnetic differential equation can be expressed
as:

Te ¼ 3

2
P½/fiq þ ðLd � LqÞidiq� ð2Þ

The mechanical dynamic differential equations can be

described by:

dxm

dt
¼ � f

J
xm þ 1

J
Te� 1

J
Tl

dhm
dt

¼ xm

dTl

dt
¼ 0

ð3Þ

where, xm is the mechanical angular speed of rotor; hm is the
position of rotator; f is the friction coefficient; J is the moment
of inertia; Tl is the load torque; /f is the electromotive force

constant; Rs is the stator winding resistance; Ld is the stator
inductance component of axis d; Lq is the stator inductance

componentof axis q; P is the number of pole pairs; ud is the sta-
tor voltage component of axis d; uq is the stator voltage com-

ponent of axis q; id is the stator current component of axis d; iq
is the stator current componentof axis q; Te is the electromag-
netic torque.

To design a discrete MPC controller, the PMSM system
must be discretized in advance. Thus, formula (1) can be con-
verted into a set of formulas:

idðkþ 1Þ ¼ Ld�TRs

Ld
idðkÞ þ TP

Lq

Ld
xmiqðkÞ þ T

Ld
udðkÞ

iqðkþ 1Þ ¼ Lq�TRs

Lq
iqðkÞ � TP Ld

Lq
xmidðkÞ

�TP
/f

Lq
xmðkÞ þ T

Lq
uqðkÞ

xmðkþ 1Þ ¼ xmðkÞ þ T
J
ð3
2
½/fiqðkÞ þ ðLd � LqÞidiqðkÞ�Þ

� T
J
TlðkÞ

ð4Þ

It is well known that MPC must be implemented in a linear
system. However, there are nonlinear coupling terms in for-
mula (4): xmidðkÞ;xmiqðkÞ; idiqðkÞ. Bolognani et al. [24] pro-

vided three approaches for removing these nonlinear terms:
If the PMSM is surface mounted with null or low saliency,

i.e. Ld ¼ Lq, the third formula of set (4) naturally becomes lin-

ear; if the PMSM is an interior system with different induc-
tances on axes d and q, the nonlinear terms can be
considered as measurement disturbances, and added to the
state model; the rotor speed can be assumed to be constant

xm ¼ X to eliminate nonlinear mathematical operations.
This paper selects the second approach to linearize the

PMSM system. xmidðkÞ;xmiqðkÞ; idiqðkÞ were deemed as mea-

surement disturbances updated by idðkÞ; iqðkÞ;xmðkÞ, which

can be measured in each sampling period. In this way, the for-
mulas in set (4) were linearized. However, parameter Tl cannot

be adjusted or generated by PMSM, but assigned by the user.
Here, an extended Kalman filter (EKF) observer is introduced
to estimate Tl based on the model (3). The load torque can be

observed precisely based on the measured mechanical position
hm. Thus, all obstacles in the application of MPC in PMSM
model have been removed. Then, the state variables can be

selected as:
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xðkÞ ¼ idðkÞ; iqðkÞ;xmðkÞ;
idxmðkÞ; iqxmðkÞ; idiqðkÞ;Tl

� �
ð5Þ

If it is the PMSM is surface mounted, the state variables
idiqðkÞ can be neglected automatically.

2.2. MPc

This subsection briefly introduces the MPC theory [27,28]. The
target system is a discrete-time linear time-invariant PMSM:

xoðkþ 1Þ ¼ AoxoðkÞ þ BouðkÞ
yoðkÞ ¼ CoxoðkÞ

ð6Þ

Subject to:

ymin 6 yoðkÞ 6 ymax; umin 6 uoðkÞ 6 umax ð7Þ
where, k is the k-th sampling period; xoðkÞ is an n-dimensional
state variable vector are the state variable vectors; uðkÞ is an m-
dimensional control variable vector; yoðkÞ is a q-dimensional

output variable.
To predict the future state of the system, MPC searches for

the optimal input control signal that minimizes the cost func-

tion of the state variables. Without loss of generality, the cost
function can be defined as:

Jðu; xÞ ¼ xoðkþNpÞTPxoðkþNpÞ

þ PNp�1

i¼0

½xT
o ðkþ iÞQxoðkþ iÞ þ uðkþ iÞTRuðkþ iÞ� ð8Þ

Subject to:

ymin 6 yoðkÞ 6 ymax k ¼ 1;:::;Np

umin 6 uðkÞ 6 umax k ¼ 0;:::;Nc

uðki þ jÞ ¼ Kxoðki þ jÞ Nc 6 j 6 Np

xoðki þ jþ 1Þ ¼ Aoxðki þ jÞ þ Bouðki þ jÞ
0 6 j 6 Np � 1

ð9Þ

where, Np and Nc are the predictive and control horizon
lengths, respectively; Q, R, and P are the weighting matrices
of the current, input, and final states, respectively.

The following can be derived from the first formula in set

(6):

xoðki þ 1Þ ¼ AoxoðkiÞ þ BouðkiÞ
xoðki þ 2Þ ¼ A2

oxðkiÞ þ AoBouðkiÞ þ BouðkiÞ

xoðki þ jÞ ¼ Aj
oxoðkiÞ þ

Pj�1

i¼0

Ai
oBouðki þ j� 1� iÞ

ð10Þ

Substituting (10) into (8) and (9):

yoðki þ jÞ ¼ CoXxoðki þ jÞ þ Cosuðki þ jÞ
J½u; x� ¼ xoðki þ jÞTðQþ XTPXÞ
þuðki þ jÞTðsTPsþ RÞuðki þ jÞ
þ2xoðki þ jÞTXTPsuðki þ jÞ

ð11Þ

where

X ¼

Ao

A2
o

:::

ANp
o

2
6664

3
7775; s ¼

Bo 0 ::: 0

AoBo Bo ::: 0

::: ::: ::: 0

ANp�1
o Bo ANp�2

o Bo ::: Bo

2
6664

3
7775 ð12Þ

For readability, the following symbols were introduced:
Y ¼ 2ðQþ XTPXÞ
H ¼ 2ðsTPsþ RÞ

F ¼ XTPs

E ¼ CoX

G ¼ Cos

ð13Þ

Through the above transform, the cost function can be con-

verted into:

J½u; x� ¼ 1

2
xTðkÞYxðkÞ þ 1

2
uTHuþ xT

kFu ð14Þ

Subject to

ExðkÞ þ Gu 6 W ð15Þ
Now, the MPC becomes a multiparametric quadratic pro-

gramming problem (MPQP). The optimal solution of the
problem can be found with modern control theories.

2.3. Laguerre functions

The Laguerre functions in the z-domain can be specified as

[29,30]:

LNðzÞ ¼
ffiffiffiffiffiffiffi
1�a2

p
1�az�1 ð z�1�a

1�az�1ÞN�1

¼ LN�1ðzÞ z�1�a
1�az�1

ð16Þ

where, a 2 [0, 1] is the time scale factor. This user-defined fac-
tor can regulate the system stability [26].

Another version of Laguerre functions in time domain with
inverse z-transform can be expressed as:

Lðkþ 1Þ ¼ AlLðkÞ
LðkÞ ¼ fl1ðkÞ; l2ðkÞ:::lNðkÞg

ð17Þ

where

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p

Al ¼

a 0 ::: 0 0

b a ::: 0 0

�ab b ::: 0 0

a2b �ab ::: 0 0

::: ::: ::: ::: :::

ð�1ÞN�2
aN�2 ð�1ÞN�3

aN�3 ::: b a

2
666666664

3
777777775

ð18Þ

It is well known that the impulse response of a linear system
can be expressed through discrete Laguerre expansion:

hðkÞ ¼
X1
i¼1

ciliðkÞ ð19Þ

where, ci is the Laguerre coefficient.
Taking the differences of control variables between adja-

cent sampling periods as the impulse response of a stable sys-

tem, u in (6) was replaced with _u to produce the augmented
model, i.e., new state equations [31]:

xðkþ 1Þ ¼ Dxoðkþ 1Þ
yðkþ 1Þ

� �
;A ¼ Ao OT

o

CoAo 1

" #

B ¼ Bo

CoBo

� �
;C ¼ Oo 1½ �

ð20Þ

where
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xðkþ 1Þ ¼ Dxoðkþ 1Þ
yðkþ 1Þ

� �
;A ¼ Ao OT

o

CoAo 1

" #

B ¼ Bo

CoBo

� �
;C ¼ Oo 1½ �

ð21Þ

Let ki be the initial sampling period, and j be the future
sampling period. Substituting the Laguerre expansion (19) into
model (20), the new state equations can be obtained [31]:

xðki þ jÞ ¼ AjxðkiÞ þ
Pj�1

l¼0

Aj�l�1BLðlÞTg

yðki þ jÞ ¼ CAjxðkiÞ þ
Pj�1

l¼0

CAj�l�1BLðlÞTg
ð22Þ

where, g is the Laguerre function coefficient vector, containing
N ci values [26]:

g ¼ ½c1; c2; :::; cN�T ð23Þ
Substituting (22) into the cost function (14) and its constraints
(15) and neglecting the terminal term [26]:

J ¼ gTð
XNp

j¼1

/ðjÞQ/ðjÞT þ RLÞgþ 2gTð
XNp

j¼1

/ðjÞQAjÞxðkiÞ ð24Þ

Subject to:

Mg 6 b ð25Þ
where /ðjÞT ¼Pj�1

i¼0A
j�i�1BLðiÞT; M and b are constraints

matrices of g.

3. LMPC-Based PMSM control

In this section, the original PMSM model is replaced with the
augmented model, and controlled by the algorithm of
Laguerre functions in MPC (LMPC).
B ¼
T
Ld

0 0 0 0 0 0 T
Ld

0 0

0 T
Lq

0 0 0 0 0 0 T
Lq

0

" #T

C ¼
0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

2
4

3
5

A ¼

Ld�TRs

Ld
0 0 0

TPLq

Ld
0 0 0

0
Lq�TRs

Lq
� TP/f

Lq
� TPLd

Lq
0 0 0 0

0
1:5TP/f

J
BTþJ

J
0 0

1:5TPðLd�LqÞ
J

� T
J

0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0
Ld�TRs

Ld
0 0 0

TPLq

Ld
0 0 1

0
Lq�TRs

Lq
� TP/f

Lq
� TPLd

Lq
0 0 0 0

0
1:5TP/f

J
BTþJ

J
0 0 � 1:5TPðLd�LqÞ

J
� T

J
0

2
666666666666666666664
3.1. Augmented PMSM model

As mentioned in Section 2, the original state variables can be
selected as:

xoðkÞ ¼
idðkÞ; iqðkÞ;xmðkÞ;
idxmðkÞ; iqxmðkÞ; idiqðkÞ
� �

ð26Þ

To track the PMSM performance, the currents of axis d
and q, as well as speed were added to the output variables:

yoðkÞ ¼ idðkÞ; iqðkÞ;xmðkÞ
� �T ð27Þ

Thus, the coefficient matrix Ao;Bo;Coð Þ of variables (26)
(27) can be obtained:

Bo ¼
T
Ld

0 0 0 0 0

0 T
Lq

0 0 0 0

" #

Co ¼
1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

2
64

3
75

Ao ¼

Ld�TRs

Ld
0 0 0

TPLq

Ld
0 0

0
Lq�TRs

Lq
� TP/f

Lq
� TPLd

Lq
0 0 0

0
1:5TP/f

J
BTþJ

J
0 0

1:5TPðLd�LqÞ
J

- T
J

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

2
6666666666664

3
7777777777775

ð28Þ

According to the theory of Laguerre functions, the aug-
mented model of (26) can be derived:

xðkÞ ¼
DidðkÞ;DiqðkÞ;
DxmðkÞ;DidxmðkÞ;DiqxmðkÞ;
DidiqðkÞ;DTl; idðkÞ; iqðkÞ;xmðkÞ

2
64

3
75

yðkÞ ¼ idðkÞ; iqðkÞ;xmðkÞ½ �

ð29Þ
0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1

3
777777777777777777775

ð30Þ
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3.2. Laguerre-based MPC on PMSM

The PMSM is an asymptotical system. Once the system is sta-
bilized, the differences of control variables Dud and Duq
between adjacent sampling periods will become zero after a
few sampling periods. Therefore, the difference of control vari-
ables can be regarded as the impulse response of a stable

dynamic system, and described by a set of Laguerre functions
according to prior knowledge:

eqalign

Duðki þ jÞ ¼ udðki þ jÞ
uqðki þ jÞ
� �

¼ LudðjÞ 0
0 LuqðjÞ
� �

gud
guq

� �
¼ LðjÞTg

ð31Þ

And

LðjÞT ¼ lud1 ðjÞ ::: ludNi
ðjÞ 0 0 0

0 0 0 luq1 ðjÞ ::: luqNj
ðjÞ

" #

g ¼ cud1 ::: cudNi
cuq1 ::: cuqNj

h iT ð32Þ

where, ki is the current sampling period; j is the j-th sampling
period; Ni and Nj are the number of Laguerre coefficients of

Dud and Duq, respectively.
Besides the PMSM Model, a proper cost function is also

needed to optimize control variables. Taking (24) as the state
weighting matrix, the following control variable weighting
matrix can be designed to improve the PMSM performance:

Q ¼ CT

1:2 0 0

0 1:2 0

0 0 1000000

2
64

3
75C;RL ¼ 0:1 0

0 0:1

� �
ð33Þ

Fig. 1 shows the voltage of d- and q-axis. In (a), using the
algorithm of LMPC with Np = 5, a1 = a2 = 0.5,

N1 = N2 = 4. In (b), using the algorithm of MPC with
Np = 55. Let the PMSM running from 0 to 100 rad/s with
load 4Nm, the voltage under LMPC fluctuates during the

starting phase, while at the steady phase, the difference of volt-
age between LMPC and MPC are small. So, the voltage can be
approximate by Laguerre function but with smaller predictive

number.
It is also important to ascertain the constraints of state,

input, and output variables of the cost function. It is well
known that the stator voltage and stator current of PMSM

must respectively satisfy the voltage circle and current circle:

u2d þ u2q6U2
max

i2d þ i2q 6 I2max

ð34Þ

The two linear constraints above cannot be directly used.
Through space vector pulse width modulation (SVPWM),
the voltage and current constraints can be approximated in lin-

ear form [4]:
�1 � 1ffiffi
3

p

�1 1ffiffi
3

p

0 2ffiffi
3

p

0 � 2ffiffi
3

p

1 � 1ffiffi
3

p

1 � 1ffiffi
3

p

2
66666666664

3
77777777775

udðkÞ
uqðkÞ
� �

6

umax

umax

umax

umax

umax

umax

2
666666664

3
777777775
;

� 1ffiffi
3

p �1

1ffiffi
3

p - 1

2ffiffi
3

p 0

- 2ffiffi
3

p 0

- 1ffiffi
3

p 1

1ffiffi
3

p 1

2
66666666664

3
77777777775

idðkÞ
iqðkÞ
� �

6

imax

imax

imax

imax

imax

imax

2
666666664

3
777777775

ð35Þ
For simplicity, the above inequality can be rewritten as

vectors:

Mv

udðkÞ
uqðkÞ
� �

6 Umax

Mi

idðkÞ
iqðkÞ
� �

6 Imax

ð36Þ

Using (23), (32), and (36), the PMSM constraints can be

described as:

Mv

Pk�1
j¼0 L

T
ud
ðjÞ 0

0
Pk�1

j¼0 L
T
uq
ðjÞ

 !
6 Umax �Mv

uudðkiÞ
uuqðkiÞ
� �

MiMCB
LT

ud
ð0Þ 0

0 LT
uq
ð0Þ

" #
6 Imax �MiMCAxðkiÞ

ð37Þ
Since id; iq and xmwere selected as the output variables, and

the constraints are only applied on input voltage and current,
the constraint variables can be obtained by:

M ¼ 1 0 0

0 1 0

� �
ð38Þ
4. Stability analysis

As analyzed in the former section, the model predictive control

is also a multiparametric quadratic program problem, the using
of Laguerre functions in model predictive control will infect
the stability of the PMSM system. Fig. 2 shows the poles under

different parameters a and N.
Because of the dimension of PMSM system described in

(30) is ten, thus, ten poles exist in the map. Among them, four

poles located on the unit circle, which represent the constant
state variables DxmidðkÞ, DxmiqðkÞ,DiqidðkÞ; and TlðkÞ at each

sample period in PMSM model. Besides, the remaining com-
plex conjugate couples are all located in the unit circle, the
smaller a, the position of poles closer to the origin, the system

will more stable.



(a) LMPC

(b)MPC

Fig. 1 The voltage based on LMPC and MPC.
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5. Result and discussion

To reveal the superiority of LMPC algorithm for PMSM, the

LMPC was compared with the MPC without Laguerre func-
tions. Fig. 3 shows the block diagram of LMPC for PMSM.
The PMSM parameters are listed in Table 1.

Assuming that the axis d current id is zero, two simulations

were carried out. During the first simulation, the speed was
changed from 0 to 90 rad/s, and a constant load of 4Nm was
applied to PMSM at 0.5 s. Then, the PMSM operated at

90 rad/s under the 4Nm load, and controlled by LMPC and
MPC, respectively. During the second simulation, the PMSM
was controlled by LMPC with different Laguerre parameters.

The simulation results are displayed in Figs. 4–8.
5.1. Comparison between LMPC and MPC

(1) Operating efficiency

To verify the efficiency of LMPC, the parameters and

results of LMPC and MPC for PMSM are recorded in Table 2.
It can be seen that the predictive horizon length Np of LMPC
was set to 4, while that of MPC must be set to 55 to include the

most relevant part of system dynamics. The greater length in
MPC increases the computing load of the controller.

By MPC, it took 11,281 ls to find the optimal voltage _u in

each sampling period. The time consumption was reduced by
437 times with LMPC. Therefore, LMPC can greatly lower
the computing load, and apply better to PMSM control.



Fig. 2 Pole map under different a and N.

Fig. 3 The block diagram of LMPC for PMSM.

Table 1 The PMSM parameters.

Symbol Parameter Value

Rs Stator resistance 0.9585X
Ld Axis d inductance 0.004987mH

Lq Axis q inductance 0.005513mH

/f Permanent flux linkage 0.1827Wb

P Number of poles 4

Umax Maximum voltage 171 V

Imax Maximum current 20A

Ts Sampling periods 0.000005 s

(a)LMPC 

(b)MPC 

Fig. 4 The speed response curves of LMPC and MPC.

(a)LMPC 

(b)MPC 

Fig. 5 The current id response curves of LMPC and MPC.

A novel method of model predictive control on permanent magnet synchronous machine with Laguerre functions 5491
(2) Performance

Figs. 3–5 present the response curves of speed, axis d cur-
rent, and axis q current under LMPC with Np = 4, Nc = 2,

N = 2, and a = 0.2, and MPC with Np = 55 and Nc = 2,
respectively. It can be seen that, regardless of LMPC or
MPC, the speed remained stable after PMSM arrived at the
set point, an evidence of good speed response without

steady-state error.
As shown in Fig. 4, LMPC made faster adjustment and

achieved smaller speed error than MPC, when the load chan-

ged at 0.5 s. As shown in Figs. 5 and 6, the LMPC had a rel-
atively low current overshoot during start-up, while MPC
brought a noticeable damped oscillation. This is because the
current constraints in LMPC affect axis q current iq.

To reveal the superiority of LMPC, the speed errors and

currents of LMPC and MPC under external load are com-
pared in Tables 3 and 4, respectively.

The above analysis shows that LMPC with N= 2 and

a = 0.2 achieved comparable performance as MPC with pre-
dictive horizon length Np = 55, while greatly reducing the
computing load. This fully demonstrates the excellence of

LMPC for PMSM.



(a)LMPC

(b)MPC

Fig. 6 The current iq response curves of LMPC and MPC.

(a) LMPC with a=0.5 and N=2 

(b) LMPC with a=0.5 and N=4 

(c) LMPC with a=0.9 and N=6 

Fig. 7 The speed response curves of LMPC with different

Laguerre parameters.

(a) LMPC with a=0.5 and N=2 

(b)LMPC with a=0.5 and N=4 

(c) LMPC with a=0.9 and N=6 

Fig. 8 The current id response curves of LMPC with different

Laguerre parameters.

Table 2 The comparison of operating efficiency.

Method Np Nc

MPC 55 5

LMPC 4 2

Table 3 The comparison of speed error.

Method Maximum speed error(rad/s) Time(s)

MPC 2 0.02

LMPC 1.5 0.04
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5.2. Comparison between different Laguerre parameters

Table 5 and Figs. 7–9 illustrate the effects of PMSM control by
LMPC control algorithms with different a and N values. From
these figures, it can be noted that the speed responses were

good during start up and loading. The most striking difference
lies in the optimization time of control variables (Table 5). The
greater the values of N and a, the longer the time it took to find

the optimal control variables in each sampling period.
Moreover, the parameter change led to significant variation

in current responses. Under a = 0.5 and N= 2, the maximum
N a Time (ls)

– – 11,281

2 0.2 25.8



Table 5 The comparison of LMPC performance with differ-

ent Laguerre parameters.

a N Time

(ls)

Maximum errorof id
(A)

Maximum errorof iq
(A)

0.2 2 25.8 2 8.5

0.5 2 31.7 6 12

0.5 4 37.2 2 11.5

0.9 6 40 2.3 8.5

(a) LMPC with a=0.5 and N=2

(b) LMPC with a=0.5 and N=4

(c) LMPC with a=0.9 and N=6

Fig. 9 The current iq response curves of LMPC with different

Laguerre parameters.

Table 4 The comparison of current.

Interval(s) Method Max id (A) Max iq (A)

0–0.1 MPC 1.5 8.8

LMPC 0.65 8.8

0.5–0.6 MPC 1.5 9

LMPC 1 5.5
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iq was about 12A; under a = 0.9 and N = 6, the maximum iq
was about 8A. This means the PMSM performance can be reg-
ulated by adjusting the parameters of the Laguerre functions.

6. Conclusions

To improve the performance of MPC on PMSM control, this

paper proposes a MPC algorithm with Laguerre functions. In
the proposed algorithm LMPC, the optimal control variables
were resolved by Laguerre functions. And by the adjustment

of Laguerre parameter, the convergence speed of increment
voltage can be adjusted with shorter predictive control period
compared to the MPC. Simulation results confirm that the

LMPC has better control performance than MPC. The future
research will investigate the impact of changing internal
parameters of PMSM on LMPC.
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(2020) 95–102.

[7] J. Liu, C. Gong, Z. Han, H. Yu, IPMSM model predictive

control in flux-weakening operation using an improved

algorithm, IEEE Trans. Ind. Electron. 65 (12) (2018) 9378–9387.

[8] Z. Mynar, L. Vesely, P. Vaclavek, PMSM model predictive

control with field-weakening implementation, IEEE Trans. Ind.

Electron. 63 (8) (2016) 5156–5166.

[9] F. Niu, B. Wang, A.S. Babel, K. Li, E.G. Strangas, Comparative

evaluation of direct torque control strategies for permanent

magnet synchronous machines, IEEE Trans. Power Electron. 31

(2) (2015) 1408–1424.

[10] G. Chandaka, G. Prasanth, Direct torque control and field

oriented control of PMSM using SVPWM Technique, Int. J.

Adv. Res. Sci. Eng 3 (11) (2014).

[11] C.S. Lim, E. Levi, M. Jones, N.A. Rahim, W.P. Hew, A

comparative study of synchronous current control schemes

http://refhub.elsevier.com/S1110-0168(21)00190-3/h0005
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0005
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0005
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0010
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0010
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0010
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0010
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0015
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0015
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0015
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0015
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0020
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0020
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0020
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0020
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0020
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0025
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0025
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0025
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0030
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0030
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0030
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0030
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0035
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0035
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0035
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0040
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0040
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0040
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0045
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0045
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0045
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0045
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0050
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0050
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0050
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0055
http://refhub.elsevier.com/S1110-0168(21)00190-3/h0055


5494 L. Gao et al.
based on FCS-MPC and PI-PWM for a two-motor three-phase

drive, IEEE Trans. Ind. Electron. 61 (8) (2013) 3867–3878.

[12] A.E.H.M. Elbeltagy, A.M. Youssef, A.M. Bayoumy, Y.Z.

Elhalwagy, Fixed ground-target tracking control of satellites

using a nonlinear model predictive control, Math. Model. Eng.

Problems 5 (1) (2018) 11–20.
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