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A B S T R A C T

The indoor positioning service is one of the essential services needed in the Internet of Things ecosystem.
Recently, many researchers have focused on the fingerprinting method, which is a method based on signal
mapping with the Received Signal Strength Indicator (RSSI) values obtained from the WiFi access points.
However, the fingerprinting method is particularly challenging due to some difficulties, such as RSSI variance
over time, device diversity, and similarities of fingerprints in indoor networks. For this reason, machine
learning and deep learning methods are used for many purposes, such as estimating the location of the
building, floor, or the rooms. Detecting the location of a room or more than one reference point in a room
becomes a more difficult problem because neighboring reference points’ fingerprints are very similar to each
other. This study proposes a WiFi-based XAI-empowered deep learning architecture to predict the reference
points in a room or corridor. We present a hybrid deep learning-based method that uses Long-Short-Term
Memory to capture long-term dependencies between the signal features, and Convolutional Neural Network
to extract local spatial signal patterns. Our deep learning aims to enrich fingerprinting data of each sample to
capture more meaningful feature maps coming from different angles. Moreover, the method applies effective
filtering and dimension scaling on the data to regulate the RSS values and capture more discriminative
patterns using particle filter and sparse autoencoder. To provide local and global explanations for indoor
localization estimations, the proposed architecture comprises two Explainable Artificial Intelligence techniques
as Interpretable Model-Agnostic Explanations, and SHapley Additive exPlanations. The experimental results
demonstrate that the proposed architecture achieves higher accuracy values for all datasets than the baseline
deep learning methods.
1. Introduction

The Internet of Things (IoT) is a popular communication concept
that entered our lives with the promise that all objects can commu-
nicate with each other. It has rapidly realized its commitments since
the first mention of Kevin Ashton in 1999 [1]. The Internet of Things
ecosystem, which we encounter in many places, from logistics facilities
to smart home designs, from museum visits to hospital administrations,
has rapidly evolved from a network technology that makes life easier
to an indispensable infrastructure. The Internet of Things is the key
infrastructure of our assistants, who can inform our mobile phone of
the location of our lost car key, remind the expiration dates of our
products left in the refrigerator, transmit the data received from our
pacemaker, and mobile phone to our doctor, and limit their services
only to our dreams and needs. What an IoT (Internet of Things)
ecosystem can offer is directly related to the services it contains. For
this reason, the usage of many different services are needed in IoT
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environments with their dynamic structure that can change at any time
in the ecosystem. The environment offered by services such as content
management service, mobility management service, data management
service, reliability service, energy management service, and location
determination service brings ‘‘smartness’’ to every environment. Smart
buildings, smart hospitals, smart schools, smart home design, and every
area, including indoor areas, especially, need an indoor positioning
system. The indoor positioning system will be able to track the location
of patients and people in need of help in smart homes, show the shortest
route to the artworks that visitors want to see from where they are
in smart museums, determine the location of the product needed in a
smart factory and may bring it by smart robots in a smart hospital,
will be able to initiate the necessary process for the destruction of
expired products. Creating indoor positioning systems is particularly
challenging due to the inability to use GPS signals, which provide
precise solutions in outdoor areas, and the characteristics of indoor
areas, which include different approaches [2]. Indoor spaces have high
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dynamics: the number of objects and people in indoor locations can
change, and the signal values collected for location detection can be
exposed to different effects. They can take a very different value from
their original values in every time period. All the effects that may
encounter during signal communication in indoor areas are challenges
for indoor localization approaches.

Positioning approaches in any indoor location are generally divided
into deterministic and probabilistic approaches [3–5]. Deterministic
methods have different approaches such as trilateration, triangulation,
proximity, and dead reckoning [6]. At least three devices must be
located in an enclosed space to successfully use techniques such as
trilateration, which is based on the principle of using signal timestamps
from three devices, and triangulation, which is based on the principle
of using the arrival angles of signal values from three devices. It may
require extra hardware costs, and at the same time, the performance of
these techniques is directly affected by the effects of the signal. Dead
reckoning is based on the approach of estimating a user’s location from
the last known point, and in case of possible deviations, the error in
the predicted location grows with each step. Proximity requires the
presence of reference devices because it works on the principle of find-
ing proximity to an existing signaling device. Fingerprinting method,
which is one of the probabilistic methods, is a method that includes two
stages, online and offline, and is based on the extraction of the signal
map of the area where the location is desired to be determined [6].
In the offline phase, a signal map is created by collecting the signal
values in the area to be positioned. The areas where the signal values
will be collected are usually divided into areas called grids, and signal
samples are taken from the middle, side, or both the middle and sides
of the grids. Technologies that can be found indoors, such as WiFi,
and Bluetooth Low Energy, can be used to create the signal map. In
particular, WiFi technology is frequently used in fingerprinting-based
studies due to the presence of WiFi access points in almost every
building. Regardless of the technology used, effects such as distortions,
scattering, multi-path effects, and internal noises of signal-collecting
devices may cause the original signal value not to be obtained [7]. For
this reason, the creation of the signal map free of effects in the offline
stage is the first difficulty of fingerprint-based studies. The online stage
is based on positioning by comparing the signal values obtained from
the mobile device of the mobile user with the signal map created in the
offline stage.

Traditionally, the main idea of RSSI fingerprint-based approaches is
first to create a database of RSSI fingerprints, to implement a learning
phase using generally machine learning approaches, then to assign a
location estimate by matching the fingerprints reported by the user. At
this stage, while some studies transform the problem into a regression
problem for estimating three-dimensional location coordinates, includ-
ing longitude, latitude, and altitude, some studies convert the problem
to a classification problem defining each reference point as a class for
the learning model [8]. Some of these methods focus on estimating
building location, some on both building and floor location, and some
on room location in more detail. Considering the proximity between
the rooms and corridors on the floor, the problem of estimating the
room location is very difficult since neighboring reference points have
very similar RSSI signals. Although regression-based methods provide
a more generalized approach (only) that does not consider the number
of floors or buildings since they only estimate the three-dimensional
location coordinates during the learning phase, it has been observed in
the literature that more effective results are obtained when the indoor
location estimation problem is considered as a classification problem
in general [9–12]. In particular, if a smart indoor localization system is
to be used for a single smart building with a known floor number (for
example, a shopping mall consisting of a single building or a company),
or only a single flat (smart home) in a building, the problem can be
designed as a classification problem.

The fingerprinting-based localization has some challenges [13].
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During the fingerprinting phase, RSSI values fluctuate over time due
to non-line-of-sight propagation or environmental dynamics, and the
RSSI variance may differ over time. Since different devices may have
different technological designs, they may not have the same propa-
gation power. Therefore, RSS readings may differ from each other.
In the indoor environment, walls, furniture, and living things can
greatly reduce the WiFi signals. The strength of the signals that are
expected to be discriminative at some points may not be obtained
at the desired level. Moreover, similar RSS values are frequently ob-
served at different reference points in the same room or the same
corridor. Therefore, fingerprints of neighboring reference points are
difficult to distinguish. To deal with these difficulties, recently, some
researchers have focused on estimating indoor positions using deep
learning-based methods [9,14] that apply deep feature engineering to
capture the most relevant and meaningful patterns by mapping the
data to the latent spaces. These models aim to learn low-level latent
representations that comprise local discriminative signal patterns as
well as long-term correlations between time steps of signal samples.
To increase the performance of deep learning models, many methods
utilize a feature extraction process as data normalization or filtering.
The studies demonstrate that the filtering and normalization steps
effectively obtain higher accuracy [15,16]. Moreover, to reveal more
meaningful patterns, many existing models [10,17] use an autoencoder
at a layer earlier than deep learning architectures such as Convolutional
Neural Network (CNN) [18,19] and Long Short Term Memory Networks
(LSTM) [20]. While the usage of these deep learning methods is cer-
tainly not new, developing new architectures that can achieve higher
accuracy performance in estimating indoor locations compared to basic
deep learning architectures is still an open problem.

In this study, we present a new XAI-empowered hybrid deep archi-
tecture for a WiFi-based indoor localization system on WiFi fingerprint-
ing. Our model defines each grid that is determined by fingerprinting
as a separate class and transforms the indoor localization problem as a
localization classification problem. Our model is capable of predicting
the location of reference points independently of floors. The method
runs the proposed system in parallel to determine the floor number.
It returns the specified reference point and floor number to the user.
The model uses two different main layers simultaneously, which are
Long-Short-Term Memory (LSTM) to capture long-term dependencies
between the signal features, and a convolutional layer to extract local
spatial signal patterns. Different hidden representations are produced
for the same dataset with different deep learning layers, CNN and
LSTM, which have different expression capabilities. With the deep
feature fusion approach, the model combines and enriches the different
feature maps obtained. To capture the more meaningful and distinctive
low-dimensional representations from the enriched feature maps, the
proposed method applies a second convolutional layer and pooling
layer. The proposed method implements a main feature extraction
phase using a particle filter and sparse autoencoder (SAE) for elimi-
nating potential noise in data, revealing discriminative representations
of the samples, and dimension scaling. To interpret and explain in-
door position predictions generated by our deep learning model, two
different XAI approaches: Interpretable Model-Agnostic Explanations
(LIME) and SHapley Additive exPlanations (SHAP), are integrated into
the proposed architecture. By implementing LIME, our system aims to
provide detailed information about the location where new incoming
data is allocated, the distribution of the prediction probabilities, and
the feature distribution belonging to WiFi signals that play a role in this
estimation. The SHAP model is leveraged to provide global interpreta-
tions about the feature distributions, which our deep learning model
mainly uses in determining reference points. The main contributions of
this work are presented as follows:

• The proposed model uses a new hybrid deep feature fusion model
that implements CNN and LSTM on the same data simultane-
ously to obtain different representations of the data and uses

a final convolutional and pooling layer to capture distinctive
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low-dimensional representations of WiFi data. The model reveals
long-term dependencies between signal properties with LSTM,
while capturing local distinctive patterns with CNN. It provides
data enrichment with feature maps coming from both different
angles, thus enabling us to reveal more distinctive patterns with
simultaneous deep feature engineering. Therefore, for reference
points in the same room or same corridor with similar RSSI
values, the model gains the ability to capture low variations in
WiFi signals.

• Our deep architecture implements a sparse autoencoder before
the deep feature fusion learning model. By applying a bottleneck,
SAE aims to focus on extracting the compressed information
representation of the original input and eliminate potential noise
and redundant and irrelevant features within the data. In the
study, apart from the advantage of SAE to capture the more
meaningful and distinctive part of the data, SAE was also used
to apply size expansion and reduction in the feature space. Deep
learning architectures may not be expected to work successfully
in indoor environments with a limited number of access points
(APs), for example, in an indoor with only 5 APs, which means a
limited-length vector representation, for example considering the
convolutional operations. On the other hand, location detection in
indoors with a large number of APs entails higher computational
costs. In the proposed model, by using the feature representations
taken from the bottleneck layer of SAE, For interiors with a
relatively small number of APs, the feature space is expanded,
while for indoor areas with a large number of APs, the feature
space is reduced in dimension.

• Our method utilizes an effective filtering phase on WiFi signals
using particle filter to regulate the RSSI values that fluctuate over
time, which cannot be obtained with the same propagation power
due to different technological designs, and which are obtained at
a very low frequency than expected due to obstacles in the indoor
environment.

• We integrate two different explainable AI models into our deep
learning model for providing local/global explanations of the
trained model and generated predictions and interpreting the
outputs of the model. Thus, our model can be used to identify
which access points are more effective on each grid. This provides
an explanation of how grids with very similar fingerprints are pre-
dicted correctly by the model. Because it presents the attributes
(access points) and the reference values of the attributes that
the model has learned for each grid. In this case, it also makes
it easier for us to analyze which situations are effective in the
mispositioning of a new sample.

• We present a comprehensive experimental analysis of different
deep learning architectures used in indoor location estimation
using three different WiFi-based indoor datasets. We demonstrate
that our model works efficiently for environments where the
number of access point devices is greater than the number of
grids and for areas where the number of grids is greater than the
number of access point devices.

The remainder of the paper is organized as follows. Related works
re presented in Section 2. In Section 3, the proposed XAI-empowered
eep learning system is presented. The experimental setup and ex-
erimental results are given in Section 4. Finally, the conclusions are
iscussed in Section 5.

. Related works

Many indoor location detection approaches based on different ap-
roaches have been proposed in the literature [2,36]. In related studies,
ifferent types of signals have been used besides the use of images.
arth’s magnetic field values, Bluetooth, RFID, and Infrared signals
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re some of the signals used for this purpose [36]. However, WiFi is
the key technology to offer a ubiquitous indoor localization system
with low additional hardware costs. The collection and processing of
image data require the use of devices with high processing power
and storage capacity compared to the use of electromagnetic signals.
Earth’s magnetic field signals produce very similar values in close fields
and are subject to an effect called the hard iron effect [37]. When
the magnetic field values of the Earth are collected, results that are
pretty different from the original signal values can be encountered due
to the presence of substances such as copper, nickel, and cobalt in
the environment. The signal coverage of technologies such as RFID
and infrared is low and causes the use of many hardware. On the
other hand, WiFi technology reduces hardware costs. WiFi access points
are used in the Internet infrastructure of almost every building. For
this reason, WiFi signals have been frequently used as the primary
technology in indoor localization approaches.

Indoor localization is a widely accepted subject of study with many
sub-problems. Studies in the literature are presented in Table 1. After
reviewing the studies in the literature on indoor positioning, it was
found that there are numerous distinct approaches for the sub-problems
in indoor positioning. These studies encompass selecting between de-
terministic and probabilistic approaches [21], coping with difficulties
arising from changes in hardware infrastructure in dynamic environ-
ments [22], offering data augmentation techniques due to distortions
occurring in signal collection [23], relying on AP selection to overcome
signal distortions [24], using technologies other than WiFi [26,30], and
developing algorithms for existing machine learning, artificial neural
networks, and statistical techniques [27,28,31]. This study presents
a Hybrid Deep Learning Architecture based on fingerprinting using
WiFi technology. Therefore, Table 1 also presents deep learning studies
based on fingerprinting using WiFi technology [10,14,17–20,35].

Orujov et al. [21] have developed an indoor localization approach
based on Bluetooth Low Energy (BLE). In this approach, location is
determined based on the techniques of Proximity Localization, Centroid
Localization, Weighted Centroid Localization, Weight-Compensated
Weighted Centroid Localization Based on RSSI, Fingerprinting, and
Trilateration Localization. A fuzzy logic-based selection determines
which technique to use for location determination in any given area,
considering factors such as room width and signal strength. The highest
accuracy was achieved with Fingerprinting. KNN and NN were used as
classifiers for Fingerprinting-based localization. Li et al. [22] proposed
a fingerprinting-based localization approach for environments where
hardware infrastructure changes are possible. They presented a study
that could work in areas with dynamic hardware infrastructure. They
suggested using Long Short-Term Indoor Positioning (LSTP) as a so-
lution to address both the challenge of working with heterogeneous
feature spaces and the issue of dealing with continuous environmental
dynamics at different time scales simultaneously. Sulaiman et al. [23]
focused on the challenges encountered in the creation of a signal map
in their fingerprinting-based study. To overcome the difficulties of
dealing with signal readings during offline scans, they expanded the
signal map using biharmonic spline interpolation. The authors used a
feedforward backpropagation (FFBP) neural network and generalized
regression neural network (GRNN) to perform location tracking in the
online phase of their study. They trained their models with a semi-
interpolated dataset, where the desired output was determined by the
reference point’s (X, Y) coordinates. They utilized two types of data as
their inputs: the first being the RSSI values collected from 17 access
points (APs), with three of them supporting both 2.4 and 5 GHz bands,
and the second input consisted of a specific set of APs that produced
acceptable RSSI levels and their respective coordinates. Chen et al. [24]
propose a new algorithm called restricted weighted k-nearest neighbor
(RWKNN) for determining the location of a mobile user using the
fingerprinting technique. They aim to overcome the challenges of RSS
instability and spatial ambiguity by modifying the traditional weighted
k-nearest neighbor algorithm. The proposed algorithm considers in-

door mobility constraints and uses searching rectangles and trajectory
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Table 1
Different indoor localization studies in the literature.

Study Techology(ies) Method Dataset (Conditions) Result

Orujov et al. [21] BLE Beacons Fuzzy logic for selection KNN,
NN

Office rooms and corridors 0.67 m LE

Li et al. [22] WiFi BS Knowledge Transfer Office: 1460 m2, 210 grid points. 0.84 m MLE
Library: 308.4 m2, 48 grid points 2.18 m ME

Sulaiman et al. [23] WiFi APs FFBP, GRNN 37 × 32 m2 area, 17 APs 0.48 m LE

Chen et al. [24] WiFi APs RWKNN Tampere dataset [25] 6.5 m average error

Kumar and Rajawat [26] GSM, WiFi APs Dictionary Learning
Hidden Markov Model

Map1: grids around tables
Map2: grids separated by 1 m
Map3: grids separated by 25 cm
Map4: grids separated by 50 cm

50% reduction in MLE.

Guo et al. [27] USRP, RSS MUCUS
SWIM

9.8 × 6.3 m2, 18 grids MSE between 1 m and 4.5 m

Li et al. [28] WiFi APs TWKNN Building: 3000 m2, 322 RP
APs: 97
UJIIndoorLoc [29]

2.93 MLE

Huo et al. [30] FILS15.4 LQI 7 rooms, and RPs Higher than 97% accuracy

Xue et al. [31] WiFi APs BPNN 53 RPs, 1.2 m intervals
47 TPs, 0.6 m intervals
60 RPs, 1.2 m intervals

0.87 m MLE

Mendoza-Silva et al. [32] WiFi APs Support Vector Regression Library dataset [33]
Mannheim dataset [34]

Accuracy below 4 m.

Chen et al. [20] WiFi APs LF, DLSTM Lab: 35.3 m × 16.0 m. Office: 55.0
m × 50.0 m.
353 RP, 20 APs.

under 1.48 and 1.75 m MLE.

Hsieh et al. [35] WiFi APs LSTM WiFi Fingerprinting Dataset [33] 99.7% floor accuracy

Song et al. [17] WiFi APs SAE, CNN UJIIndoorLoc dataset [29] 96.03% floor accuracy
Tampere dataset [25] 94.22% floor accuracy
UTSIndoorLoc dataset [17] 94.57% floor accuracy

Khatab et al. [10] WiFi APs SAE, DELM (ADELM) Lab: 40.4 m × 28.8 m, 15 APs, 19
RPs.

94.75%

Kim et al. [19] WiFi APs SAE, DNN UJIIndoorLoc dataset [29] 99.8% building hit rate
91.27% floor hit rate

Hernandez et al. [18] WiFi APs CNN 3600 m2 campus, 113 APs, 67 RPs. 3.5 MLE

Jia et al. [14] WiFi APs PGSE, LSTM UJIIndoorLoc dataset [29]
Library 1000 m2 [14]

4 m MLE
limitations to reduce spatial uncertainty. Additionally, a confidence
level is introduced to mitigate the effects of RSS instability on the
iteration-based approach. Kumar and Rajawat [26] have proposed
a positioning algorithm using signals obtained from GSM and WiFi
access points. The algorithm used for learning a dictionary has been
modified to prevent similarity between neighboring areas and to assign
appropriate weights to the sparse coefficients. Moreover, they have
incorporated a tracking algorithm based on hidden Markov models that
take into account the recent history to estimate the user’s location. To
test their proposed approach, they used four maps containing grids of
different shapes. They tested a wide range of scenarios and achieved
a 50% reduction in the average error. Guo et al. [27] focused on
group fingerprinting in their study. They proposed a fusion algorithm
called MUCUS, which combines multiple classifiers and samples to
improve localization accuracy. In addition, they introduced windowing
and sliding techniques in their approach, referred to as SWIM, to
enhance the efficiency of localization. They minimized the entropy of
either multiple classifiers or multiple samples to obtain a more precise
estimate of the user’s location. Li et al. [28] proposed a new approach
called TILoc to achieve effective location determination while avoiding
the effects of RSSI signals in wireless networks. In this approach,
they filtered out unstable access points (APs) and used online RSSI
fingerprints. The authors used a part of robust APs to construct an RP
torus and considered the RPs in the intersection of RP tori as the nearest
RPs. They trained offline and online fingerprints using robust principal
component analysis (RPCA) to reduce sparse spikes noise. Additionally,
they took into account the AP’s effect when positioning a mobile target.
For the positioning step, they employed a weighted nearest neighbor
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strategy on target estimation (TWKNN) that assigns AP weight on
target estimation. Huo et al. [30] presented a technique to optimize
parameters in an indoor localization system that uses fingerprints based
on IEEE802.15.4 (FILS15.4) to ensure the correct identification of
fingerprints. Their approach involves an iterative process to modify
fingerprint values to improve the system’s room detection accuracy
based on a newly defined score function. Additionally, the number
of fingerprints for a particular room is automatically increased if the
accuracy drops below a certain level. Xue et al. [31] introduced a
new approach called high-adaptability indoor localization (HAIL) in
their study, which combines the advantages of relative RSS values and
absolute RSS values to improve the robustness and accuracy of the
system. They use a backpropagation neural network (BPNN) in the
HAIL approach to determine the similarity of fingerprints based on
absolute RSS values, resulting in an average localization error (MLE) of
0.87 m. In their study, Mendoza-Silva [32] provided recommendations
for selecting locations to collect WiFi samples and proposed a new
model to predict received signal strength. The proposed model gen-
erates vectors that describe any obstructions between an access point
and the collected samples. The distance between the access point and
sample positions, along with the collected data, are also used to train
a Support Vector Regression in the associated research.

Another feature sought in WiFi-based indoor localization systems
based on fingerprinting technique is to offer a system with high per-
formance by using as few access points as possible. Offering a highly
accurate positioning system from a small number of access points
inherently offers an overcomplete network structure [38]. To increase
positioning accuracy in such networks, deep learning architectures
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Fig. 1. The XAI-powered hybrid deep architecture for indoor localization.
form the basis of many studies with their powerful computing infras-
tructures. Chen et al. [20] suggested a local feature-based deep long
short-term memory (LF-DLSTM) approach in their study. They collected
data from two different indoor environments, a research lab, and an
office. Accordingly, they collected signals from 353 uniformly placed
reference points using a total of 20 access points. In the proposed
method, they extracted local features from the raw data they collected,
and the obtained raw features were classified using Deep LSTM - DL-
STM architecture. Hsieh et al. [35] aimed to evaluate the effectiveness
of Recurrent Neural Network (RNN) in indoor positioning systems and
compared RNN and LSTM architectures. For this purpose, they used
the Long Term WiFi Fingerprinting dataset and 46 800 of the data in
the dataset for testing and 16 704 for training purposes. The data in
the dataset is labeled according to the 𝑥 and 𝑦 coordinate information.
Song and et al. [17] used three different datasets in their study. They
normalized the existing data in the datasets and performed dimension
reduction using stacked autoencoders. Thus, they aimed to preserve the
necessary features of the data. In their work, the authors presented
a CNN-based deep learning architecture and tested the performance
of different optimizers. Khatab et al. [10] presented a deep extreme
learning machine with a feature extraction using an autoencoder -
ADELM. In order to test their work, the authors created a dataset from
a laboratory environment covering an area of 40.4 m× 28.8 m. There
are 19 access points and a total of 10 000 data in the created dataset.
Kim et al. [19] presented a scalable deep neural network architecture
for multi-building and multi-floor indoor localization in their study. For
this purpose, they used the UJIIndoorLoc dataset, which contains many
building and floor information. 3 floors and 5 different buildings were
classified by using stacked autoencoders for feature extraction. The
authors obtained 99.82% for the building hit rate and 91.27% for the
floor hit rate. Hernandez et al. [18] presented a CNN-based approach,
which they called WiFiNet in their work. The proposed CNN approach
includes 13 convolutional layers, a Batch Normalization (BN) layer and
a ReLU layer (Rectified Linear Unit) every three Conv+BN layers. The
method was tested using SVM and subspaceKNN using ResNet18 and
AlexNet for feature extraction. Accordingly, the highest accuracy was
obtained by reaching 3.5 MLE for existing positions with WiFiNet. Jia
et al. [14] proposed a WiFi fingerprint-based localization algorithm
based on Long Short-Term Memory Network (LSTM). The authors used
a sample expansion algorithm (PGSE) based on principal component
analysis and sparse-sample Gaussian process regression. In particular,
when the number of collected reference points is limited, principal
component analysis is used to select access points, and Gaussian pro-
cess regression is used to extract the reference point coordinates and
corresponding received signal strength values in the training samples.

3. Proposed XAI-based deep architecture

In this section, we present the proposed XAI-powered deep learning
architecture. First, we give explanations about the pre-processing pro-
cess. Second, we present the architecture of our hybrid deep learning
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model for indoor localization. Then, we describe the XAI models that
we use for interpreting and explaining the outputs of our deep learning
model. Fig. 1 shows the overall system architecture for indoor localiza-
tion. Each phase in the given architecture is explained in detail in the
sub-sections.

3.1. Pre-processing: Particle filter

To remove the unwanted effects from the signal values in the signal
data and to explore a space that converges to the original values, we
use a particle filter to data as a pre-processing phase. A particle filter
is a Bayesian theory-based filter based on approximations that find
the most likely candidate to implement the system. Particles in the
particle filter are assigned weight values that represent possible solu-
tions. The weight values indicate how strongly the solution represented
by the particles affects the posterior density function. The posterior
distribution is calculated by updating the particle weights and re-
sampling, considering the measurements performed. The particle filter
includes two recursive steps, a prediction step, and an update step. At
each step, the estimation process is assigned weights that indicate the
significance of particles representing multiple copies of the variable of
interest [39]. The estimation step is performed using the weighted sum
of all particles. The particle filter algorithm mimics the iterative steps
found in nature. After each operation, each particle value is updated by
adding random noise that is re-evaluated according to observations [9].
In a recursive operation, particles with lower weights are removed from
the system, while particles with higher weights remain in the system
until convergence is maximized.

3.2. Proposed hybrid deep learning model

Fig. 2 shows the overall architecture of the proposed deep learning
model for indoor localization. The proposed architecture is a hybrid
deep learning method that comprises a sparse autoencoder for feature
extraction and filtering process, two convolutional layers and maximum
pooling layers to capture local patterns, one LSTM layer to consider
long-term dependencies, and the two-layer fully connected neural net-
work and softmax layer for classification. In this section, these phases
are explained in detail, respectively.

Sparse autoencoders (SAEs) provide representative learning using
neural network-based models that simply consist of an encoder, a
bottleneck, and a decoder [40]. Autoencoders provide a bottleneck
in the network that provides focusing on extracting the compressed
information representation of the original input, capturing the more
meaningful and distinctive part of the data, and eliminating potential
noise, redundant and irrelevant features within the data. Therefore, au-
toencoders can also act as a filter that takes into account the correlation
between features, especially for signal data [41]. Sparse autoencoders
generally employ a greater number of hidden nodes compared to the
input layer. In particular, it is an over-complete autoencoder example
that is used to identify significant features within data that possess a
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Fig. 2. The architecture of proposed hybrid deep learning model for indoor localization.
limited number of features. By applying a sparsity constraint to the
hidden units, the autoencoder can reveal noteworthy patterns in the
data, even with a large number of hidden units. Since neural networks
cannot set a flexible number of nodes in hidden layers, the autoen-
coder achieves this by penalizing the activation of certain neurons in
hidden layers. This is done by introducing a penalty term to the loss
function, encouraging only a few neurons to be active within a layer.
There are two primary methods to implement the sparsity penalty: 𝐿1
regularization and KL-divergence.

A SAE generates a compressed latent representation of an input
vector 𝒙 ∈ 𝑅𝐷𝑥 , using the encoder and decoder units without the
label information. Given an input vector 𝐱, the activation of all hidden
neurons are calculated as

ℎ1(𝒙) = 𝑓 1(𝑾 1𝒙 + 𝒃1) (1)

where 𝑓 1 ∶ 𝑅𝐷1
→ 𝑅𝐷1 is a transfer function of the encoder for first

layer (1), 𝑾 1 ∈ 𝑅𝐷1 × 𝑅𝐷𝑥 is a weight matrix, and 𝒃1 ∈ 𝑅𝐷1 is a bias
vector. The output vector 𝒙̂ is then calculated as

𝒙̂ = 𝑓 2(𝑾 2ℎ1(𝒙) + 𝒃2) (2)

where 𝑓 2 ∶ 𝑅𝐷𝑥 → 𝑅𝐷𝑥 is the transfer function of the decoder for
second layer (2), 𝑾 2 ∈ 𝑅𝐷𝑥 ×𝑅𝐷1 is a weight matrix, and 𝒃2 ∈ 𝑅𝐷𝑥 is a
bias vector. To minimize the reconstruction error, the weight matrices
𝑊 1 and 𝑊 2 and the bias vectors 𝑏1, 𝑏2 are adjusted by the back
propagation algorithm. The cost function 𝐽 of SAE is given as follows:

𝐽 = 1
𝑁

𝑁
∑

𝑖=1
‖𝒙𝑖 − 𝒙𝑖‖ + 𝜆 ∗ 1

2

2
∑

𝑖=1
‖𝑾 𝑖

‖

2 + 𝛽 ∗
𝐷1
∑

𝑘=1
𝐾𝐿(𝑝 ∥ 𝑝̂𝑖) (3)

The cost function of a sparse autoencoder is an adjusted mean
squared error function. The first term is the average squared error
between all input data and output data for all 𝑁 input data. The second
term comprises a weight decay parameter 𝜆 that is the coefficient to
tune the weights decay between the hidden and output units, and the
𝐿2 regularization term that provides a regularization on the weights to
the cost function to control the decrease of the output values depending
on the values of the weights when training SAE. The last term consists
of sparsity penalty that is the Kullback–Leibler (KL) divergence between
the desired sparsity level and the actual average activation of each
hidden unit. The hyperparameter 𝛽 is used for controlling the strength
of the penalty. Adding sparsity to an autoencoder is possible by adding
a regularizer to the cost function that imposes a constraint on the
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sparsity of output from the hidden layer. Sparseness is achieved by
using a sparsity regularization term that takes a large value to maintain
low mean activation values when the average activation value 𝜌̂𝑖 of
a neuron 𝑖 is not close to the desired value 𝜌. The equation of the
Kullback–Leibler divergence is given as follows:

𝐾𝐿(𝜌 ∥ 𝜌̂𝑖) = 𝜌 ∗ 𝑙𝑜𝑔(
𝜌
𝜌̂𝑖
) + (1 − 𝜌) ∗ 𝑙𝑜𝑔(

(1 − 𝜌)
(1 − 𝜌̂𝑖)

) (4)

This penalty function outputs zero when 𝜌̂𝑖 and 𝜌 are equal, and
otherwise outputs larger value that increases monotonically as they
diverge from each other. In the process of optimizing the cost function,
this term is reduced so that 𝜌̂𝑖 and 𝜌 converge. A large sparsity penalty
encourages the activation of only a small subset of hidden units, sup-
porting the discovery of higher-level features. However, the error rate
may increase as the expressive capacity of the model is reduced during
the input reconstruction process. On the other hand, a small sparsity
penalty allows for more hidden unit activation, enhancing accurate
reconstruction but potentially making the model more sensitive to noise
and less interpretable.

The training process of an SAE takes place by minimizing the cost
function 𝐽 with a certain number of iterations. After reducing the cost
function to a very small desired value, automatic feature extraction
is provided with SAE. In the next phase, the output of SAE is passed
to a 1𝐷 convolutional layer. 1𝐷 convolution layer is generally used in
Natural Language Processing applications for extracting the most influ-
ential multi-terms and capturing local features. Similarly, the proposed
method applies a convolutional layer to extract the most discriminative
local patterns for the features obtained from the feature extraction
process with SAE [42]. The convolutional layer applies a set of 𝑘 filters
the sub-matrices of the output matrix 𝑿̂ of SAE. Each filter 𝐹 ∈ 𝑅 of
size 𝑙×𝑤, where 𝑙 and 𝑤 refer to the height and width of the convolution
filter, is applied to a window of 𝑙 words to generate a new feature 𝑣𝑖
from a window of vectors 𝑿̂𝑖∶𝑖+𝑙−1 as follows:

𝑣𝑖 = 𝑓 (𝐹 ∗ 𝑿̂𝑖∶𝑖+𝑙−1 + 𝑏) (5)

where 𝑏 ∈ 𝑅, 𝑓 and 𝑿̂𝑖∶𝑖+𝑙−1 is the bias, the nonlinear activation
function Rectified Linear Unit (𝑅𝑒𝐿𝑈 ) and the concatenation of 𝑿̂𝑖,… ,
𝑿̂𝑖+𝑙−1, respectively. The filter scans each possible window of the matrix
𝑿̂ and performs convolution operations to produce a feature map 𝑚
where 𝑚 corresponds to [𝑣0, 𝑣1,… , 𝑣𝑛−𝑙+1]. By applying 𝑘 convolution
filters, 𝑘 different feature maps are produced. For the last component
of the convolutional layers, ReLU function is used as an activation
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function to increase the non-linearity in the outputs. ReLU function sets
all negative values in the vectors to zero keeping all positive values. The
zero padding is applied to preserve the original size of all sequences
when applying a convolutional filter. Afterwards, the feature maps are
combined 𝑀 = {𝑚1, 𝑚2,… , 𝑚𝑘} as the output of the convolutional and
onlinear layer.

To reduce the dimension of feature maps, it is common practice
o use a pooling layer. The proposed system utilizes a pooling layer
hat applies max-pooling operation over the feature map 𝑚 and extracts
he maximum value 𝑚̂ = 𝑚𝑎𝑥(𝑚) as the final feature. This pooling

process provides discovers the most dominating feature of each filter.
After capturing 𝑘 features from the feature map, the pooling results are
combined 𝑚̂ = 𝑚1, 𝑚2,… , 𝑚𝑘 as the output of the CNN layer.

Meanwhile, the proposed method applies the LSTM layer in parallel
ith the CNN layer to capture long-term dependencies between SAE-
erived features. This layer aim to capture high-order data correlations
nd patterns considering previous outputs as inputs. LSTM layer is fed
y the input matrix 𝑿̂. It treats each feature of the sample as a separate
nput occurring at time 𝑡. At time-step 𝑡, the memory 𝑐𝑡 and the hidden
tate ℎ𝑡 are updated with the following equations:

𝑡 = 𝜎(𝑿̂𝑡𝑊
𝑓 + ℎ𝑡−1𝑈𝑓 + 𝑏𝑓 )

𝑖𝑡 = 𝜎(𝑿̂𝑡𝑊
𝑖 + ℎ𝑡−1𝑈𝑖 + 𝑏𝑖)

𝑜𝑡 = 𝜎(𝑿̂𝑡𝑊
𝑜 + ℎ𝑡−1𝑈𝑜 + 𝑏𝑜)

𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑿̂𝑡𝑊
𝑖 + ℎ𝑡−1𝑈𝑐 )

𝑐𝑡 = 𝜎(𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡)

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝐶𝑡) ∗ 𝑜𝑡

(6)

where 𝑊𝑓 , 𝑊𝑖, and 𝑊𝑜 are the weight matrices, and 𝑏𝑖, 𝑏𝑓 and 𝑏𝑜
are biases. 𝑈𝑓 , 𝑈𝑖, and 𝑈𝑜 are weight matrices that provide recurrent
connection between the previous hidden layer and the current hidden
layer. 𝐶 is the new candidate state that is created by 𝑡𝑎𝑛ℎ layer busing
the current input and the previous hidden state, and 𝑐 is the value
of the memory unit that is computed using the previous memory,
multiplied by the forget gate, and the newly generated candidate state,
multiplied by the input gate. 𝜎 and 𝑡𝑎𝑛ℎ refer to the sigmoid function
and the hyperbolic tangent function, respectively. The first step is to
decide which information should be retained and which should be
removed from the cell. In forget gate layer, the current input 𝜙𝑡 and
the previous hidden state ℎ𝑡−1 are passed through the sigmoid function.
The function outputs a number between 0 and 1. If the value is close
to 1, the information is kept completely. If the value is close to 0, the
information is completely forgotten. Input gate passes ℎ𝑡−1 and 𝑿̂𝑡 into
a sigmoid function to determine which information to be updated. The
new candidate cell 𝐶𝑡 is determined using a 𝑡𝑎𝑛ℎ function. Thereafter,
the output value is determined by the cell state 𝑐𝑡. The input from
the previous cell state 𝑐𝑡−1 is multiplied by the forget gate output 𝑓𝑡.
This output is added with the input gate output 𝑖𝑡 to update the new
candidate cell state 𝐶𝑡. The output gate passes ℎ𝑡−1 and current input 𝑿̂𝑡
to the sigmoid function. To create the present hidden state, this output
is multiplied by the output of the 𝑡𝑎𝑛ℎ function of 𝐶𝑡. The current state
𝑐𝑡 and the present hidden state ℎ𝑡 are the final outputs of the LSTM
network. The weight matrices of the forget, input, and output of the
LSTM are represented by 𝑈𝑓 , 𝑈𝑖, and 𝑈𝑜, respectively.

In the next step, the feature maps obtained from both convolutional
and LSTM layers are concatenated to form a single feature matrix as
follows:

𝐿 = [𝑀̂ ⊕𝐻] (7)

To extract discriminative spatial features from the merged feature
map, the same convolutional layer and maximum pooling layer de-
scribed above are applied. The output of pooling layer is then passed
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to a flatten layer to convert the multi-dimensional maps into a sin-
gle dimensional vectors. In the next phase, two-layer fully connected
feed-forward neural networks are performed with ReLU activation
function. The layers consist of 1024 and 512 hidden units, respectively.
Last hidden layer is followed by a softmax layer that returns the
probability score of each class. To train the network using the back-
propagation algorithm, we use Adam stochastic optimizer, which is
an algorithm for first-order gradient-based optimization of stochastic
objective functions.

3.3. Explainable artificial intelligence models

Explainable Artificial Intelligence models aim to reveal the decision-
making mechanisms of learning models and thus provide transparency
and interpretability to these models [43]. In particular, deep learning
architectures developed with the aim of achieving high accuracy in the
learning and prediction phases for many problems are getting more and
more complex, and therefore, it becomes impossible for both users and
experts in order to analyze the decision stages of these models. Simi-
larly, for indoor localization problem, it is important to understand and
interpret which access points cause the model to predict the location
correctly or incorrectly, or the contribution of the WiFi signal values
received from these points to the prediction. The proposed framework
uses two main XAI techniques such as Interpretable Model-Agnostic
Explanations (LIME), and SHapley Additive exPlanations (SHAP) to
generate both local and global explanations of the decisions of our
hybrid deep learning method for all existing and new coming indoor
data.

LIME uses local and interpretable model to explain each specific
prediction. It does not give a general explanation of the common
decision mechanisms that the model learns by considering all the
data, but rather explains according to which local features a particular
observation is categorized [44,45]. More formally, for an observation 𝑥,
the explanations generated by LIME can be obtained by the following:

𝜙(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑔∈𝐺𝛿(𝑓, 𝑔, 𝜑𝑥 +𝛺(𝑔)) (8)

where 𝑔 ∈ 𝐺 is the explanation model and 𝐺 is a set of interpretable
models (e.g. decision tree, convolutional neural network). 𝛺(𝑔) corre-
sponds to the complexity of the explanation of all 𝑔 ∈ 𝐺. 𝜑𝑥 refers to

proximity weight between the prediction of the explanation model
nd the original model. The aim is to minimize the loss function 𝛿 that
easures the proximity between model 𝑔 and the original model 𝑓 that

s used for classification.
Unlike LIME, instead of just revealing local decisions, SHAP calcu-

ates Shapley values that denote the average of the marginal contri-
utions of all possible features, taking into account the contribution
f each feature to the final decision [46]. In this way, it provides
eneral interpretability of model decisions. The Shapley values for a
iven model 𝑓 are calculated as follows:

𝑖(𝑓, 𝑥) =
∑

𝑠⊆𝐹

|𝑠|!(𝑀 − |𝑠| − 1)!
𝑀!

[𝑓𝑥(𝑠 ∪ 𝑖) − 𝑓𝑥(𝑠)] (9)

where 𝜁𝑖(𝑓, 𝑥) is the Shapley value of feature 𝑖 of a given observation
𝑥 for model 𝑓 , 𝑠 denotes the subset of features, and 𝐹 is the set of all
eatures available in the original set.

. Experimental setup and results

In this section, first, we give the details of datasets and the ex-
erimental setup for our proposed method and evaluation methods.
econd, we present the experimental results of the proposed XAI-
mpowered deep model by comparing it to different deep learning
odels. The datasets used in the experiment, the evaluation methods,

he experimental setup, and performance comparisons are described

elow, respectively.
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Table 2
The details of datasets.

Features (Number of) Halic RFKON UJIIndoorloc

Training samples for each fold 8896 4320 4199
Test samples for each fold 2224 1080 1050
Access points 12 37 520
Reference points 123 54 256
Floors N/A N/A 4

4.1. Datasets

The experiments have been conducted on publicly available three
different indoor localization datasets using the fingerprinting method.
This study was carried out using datasets created by the fingerprinting
method, which is one of the deterministic-based scene analysis tech-
niques. The relevant method consists of two stages; offline and online.
Accordingly, the fingerprinting method is based on the mapping of the
signal in the offline phase of the area where the location is desired
to be determined and positioning by comparing the signals received
from the mobile user in the online phase. The most important step in
fingerprint methods is to present an algorithmic approach that enables
the successful interpretation and learning of the created signal map.

We give the details of the datasets in Table 2. HALIC, RFKON, and
UJIIndoorLoC datasets which are commonly used in the literature [9,
29,47] were examined and arranged in accordance with the purpose
of the study, and sub-datasets HALIC, RFKON, UJIIndoorLoc datasets
containing only WIFI signals were created or used. The 5-fold cross-
validation is used for creating training and test data from the training
sets belonging to the datasets.

In the pre-processing stage, the grids in the datasets where the signal
could not be collected were examined. If the points where the signal
cannot be collected are expressed using positive integers, the relevant
value is changed to ‘‘0’’. Then, a particle filter was used to estimate the
original signal values by eliminating the effects caused by collecting the
data from indoor areas on the top.

4.1.1. HALIC dataset
HALIC dataset has been collected in a university environment by the

author in this paper [9]. A sub-dataset was created by selecting the WiFi
signals in the HALIC dataset, and all experiments were performed on
the relevant dataset. HALIC dataset is created using a single floor from
HALIC University Sutluce Campus. There are 4 offices of different sizes,
a corridor area, a kitchen, and two bathrooms belonging to academic
members on the floor where data collection is carried out. There are
12 access points in the building. In the division of the grid areas where
the WiFi RSSI values are collected, the places where people are likely
to be found are based. Therefore, no reference point has been assigned
to places where things can be found (bookshelves, refrigerators, etc.)
and where people cannot be found. Empty areas that are not occupied
by furniture and mobile people can be found are divided into grid areas
of 4 m × 4 m, and their midpoints are chosen as reference points.
Classes containing offices, kitchen, hallway, and bathroom areas, the
total regions they cover, the number of reference numbers, the number
of access points they have, and the brands/models of the relevant access
points are presented in Table 3.

4.1.2. RFKON dataset
The RFKON dataset has been created to be used in indoor position-

ing studies and contains different sub-datasets [47]. In this study, the
which contains only WiFi signals were used. The RFKON dataset was
created using two of the Eskisehir Technopark buildings. The dataset,
which includes 37 access points in total, contains 54 reference points
on the first floor. Reference points are assigned to the midpoint of the
1.2 m × 1.2 m grid zones. In this study, the location of the mobile user
s determined by using the RFKON dataset, which contains a total of
400 data.
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Table 3
The details of HALIC dataset.

Clas number Reference
number range

Access point
number (IDs)

Location
determined area

1 (open office) 1–47 4 (0,1,2,3) 188 m2

2 (open office) 48 – 48 m2

3 (open office) 49 1 (4) 49 m2

4 (open office) 50–69 3 (5,6,7) 76 m2

5 (open office) 70–104 3 (8,9,10) 136 m2

6 (hallway) 105–107 – 8 m2

7 (kitchen) 108 – 4 m2

8 (hallway) 109–111 – 8 m2

9 (hallway) 112–123 1 (11) 44 m2

4.1.3. UJIIndoorLoc dataset
It is a dataset created with WiFi RSSI values collected from 520

access points from many buildings and many floors. It contains only
RSSI information of WiFi signals. In the relevant dataset, there are Lon-
gitude, Latitude, Floor, BuildingID, SpaceID, RelativePosition, UserID,
PhoneID and Timestamp information presented with the RSSI values
of the access points. In this study, the sub-dataset was created by
selecting the data with a BuildingID of 0. Sub-dataset contains a total
of 256 reference points. In UJIIndoorLoc, the SpaceIDs of the data are
assigned considering the office, corridor, and classroom information.
The selected building has 4 floors. Reference points were determined
independently of floors. Separate id assignments were made for loca-
tions with the same space ID but different floor numbers. In the new
created dataset, different labels are given to each floor’s office, corridor,
and space zones. Thus, a new sub-dataset was created, allowing the
determination of each region on each floor in building number 0. The
dataset contains only assigned labels and RSSI values from 520 access
points.

4.2. Experimental setup and evaluation methods

Five different deep learning models and two machine learning meth-
ods are selected as baseline methods for evaluating the performance
of the proposed method. We use Random Forest (RF) and Extreme
Gradient Boosting (XGBoost) as machine learning methods. DNN, CNN,
LSTM, and CNN-LSTM which are frequently used methods for indoor
localization in the literature [20,48] were implemented. For the CNN
model, we performed multiple versions of CNN by varying the number
of convolution layers from 1 to 3. The best results for all datasets
were obtained by CNN which consists of one convolutional layer and
one pooling layer. We tested the number of filters in the range of
[16, 32, 64], and the kernel size in the range of [3, 5, 7]. Thereafter,
we empirically set the number of filters and the kernel size as 32
and 3, respectively. For the LSTM network, we tested the number of
hidden units in the range of [16, 32, 64]. Considering the accuracy
performance in experimental tests, we set the number of memory units
to 32. CNN-LSTM includes one convolutional layer, one max-pooling
layer, and then a LSTM layer, respectively. For the CNN-LSTM network,
we used the same settings as aforementioned.

Similarly, we used the same parameter settings for convolutional
and LSTM layers in our model as given in Table 4. For the SAE, the
number of hidden units was fixed to 60, and the sparsity penalty
proportion was set to 0.3. The value of the sparsity penalty proportion
is adjusted depending on the dataset, the complexity of the task, and the
desired sparsity level. Finding the appropriate value for this parameter
usually requires experimentation and adjustment by grid search, de-
pending on domain knowledge and prior experience. The values used
for the SAE are set by applying grid search. The activation functions for
the encoder and decoder are selected as satlin and purelin, respectively.
The number of epochs was set to 1300. The number of hidden layer for
dense fully connected network is set to 2. The size of hidden units is
set to 1024 and 512, respectively. The softmax activation function is
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Table 4
Experimental setup for the proposed model.

SAE Convolutional (CL) and LSTM Layer (LL) Dense and output layers

Number of epochs 1300 CL: Number of kernels 32 Number of neurons 1000, 500
Sparsity regularization 2.5 CL:Kernel size 3 Activation Function ReLU
Sparsity penalty proportion 0.3 CL:Activation function ReLU Output Activation Function Softmax
Number of neurons 60 CL:Pooling MaxPooling Optimizer Adam
Encode transfer function Satlin LL: Number of hidden units 32 Learning Rate 0.001
Decode transfer function Purelin Number of neurons for output 123, 54, 256
Table 5
Output shape of each layer in the proposed method.

Layers Output shape

SAE input layer (12), (37), (520)
SAE bottleneck (60)
SAE output layer (12), (37), (520)
Convolutional layer (60,32)
LSTM layer (60,32)
Concatenate layer (60,64)
MaxPooling layer (30,64)
1 convolutional layer (28,32)
MaxPooling layer (14,32)
Flatten layer (448)
Dense layer (1000)
Dense layer (500)
Output layer (123), (54), (256)

selected as the multi-label classification. The training batch size and
epoch are set to 32 and 200, respectively. To prevent overfitting, early
stopping with monitoring validation loss in max mode with patience of
5 is used in the training process.

Output shape of each layer in the proposed method is given in
Table 5. For each dataset, the output shape of input layer and output
layer is different. The output shapes are 12, 37 and 520 for HALIC,
RFKON, UJIIndoorLoc, respectively. Similarly, the output shapes of
output layer are 123, 54, 256 for HALIC, RFKON, UJIIndoorLoc, respec-
tively. We use the representation obtained from bottleneck of SAE for
dimensionality scaling. Thus, the output shape of convolutional layer
after SAE output layer is obtained as (60,32) with 32 kernels.

Experiments were implemented on a 64-bit operating system run-
ning on the Intel Core i7-5930K CPU working 3.5 GHz processor and
24 GB memory.

4.3. Classification results for indoor locations

In this section, we present the accuracy (ACC), F-score, Precision
(PREC), and Recall (REC) values belonging to the different methods
for indoor location classification. We analyze the performance of our
model and the other models on three different datasets.

We evaluate the results under related subsection for each dataset.

4.3.1. HALIC dataset
According to Table 6, it is observed that higher accuracy results are

obtained with the filtering process for HALIC dataset when compared
to results obtained from the raw version of dataset. The accuracy value
of DNN increases from about 0.1790 to 0.8814. These results confirm
that the particle filter is very effective to regulate the RSSI values.

The highest accuracy performance was obtained with RF method
using filtered version of HALIC dataset. XGBoost achieves the sec-
ond highest accuracy. Among the deep learning architectures applied
directly to the data after the filtering step, the highest performance
was obtained with DNN and the second highest performance with
CNN-LSTM for HALIC dataset. However, it is seen that deep learning
methods achieve 8 percent lower performance than RF and XGBoost.
We assume that the most important reason for this is the limited
number of features as there are only 12 APs in the HALIC dataset. It
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is concluded that a 1 × 12 space is not sufficient for convolutional and
Table 6
Performance comparison of the proposed method and baseline methods for HALIC
dataset.

Methods ACC F-SCORE PREC REC

Raw

RF 0.2109 0.2448 0.2124 0.2143
XGBoost 0.2001 0.2339 0.2014 0.2036
DNN 0.1790 0.2277 0.1801 0.1743
CNN 0.1665 0.2179 0.1686 0.1593
LSTM 0.1955 0.2461 0.1968 0.1941
CNN-LSTM 0.1938 0.2393 0.1945 0.1898

Filtered

RF 0.9669 0.9676 0.9674 0.9664
XGBoost 0.9562 0.9576 0.9569 0.9558
DNN 0.8814 0.8912 0.8808 0.8763
CNN 0.8676 0.8693 0.8640 0.8575
LSTM 0.8702 0.8688 0.8677 0.8611
CNN-LSTM 0.8766 0.8849 0.8757 0.8718

Filtered and SAE

RF 0.9701 0.9712 0.9704 0.9694
XGBoost 0.9563 0.9568 0.9571 0.9553
DNN 0.9688 0.9693 0.9846 0.9808
CNN 0.9737 0.9751 0.9730 0.9727
LSTM 0.9739 0.9749 0.9738 0.9731
CNN-LSTM 0.9764 0.9768 0.9764 0.9757

Proposed method 0.9852 0.9851 0.9858 0.9849

similar operations that deep learning models use for deep feature engi-
neering. When the sparse autoencoder is applied to the data after the
filtering step, it has been determined that the accuracy performances of
these deep learning architectures increase remarkably. With the usage
of SAE with models, it is observed that the classification performances
of the deep learning methods for HALIC dataset can improve by an
average of at least 11%. There are two major reasons why SAE can
significantly improve performance. Firstly, this may be because the
input size has been increased from 12 to 60 using SAE. HALIC dataset
contains 12 APs and 123 reference points. It is an example of an
over-complete network where the size of the output is larger than the
size of the input. Autoencoders generally provide high performance in
over-complete networks that represent obtaining high precision from
a small number of features. SAE provides dimension expansion for
the dataset having limited features. Thus, a more suitable space is
created for applying the operations of deep learning models. The second
reason may be that SAE generates more meaningful representation by
eliminating potential noise, redundant and irrelevant features within
the data.

The results show that CNN-LSTM with SAE achieves better perfor-
mances than the other models using SAE in terms of accuracy and
f-score. However, in general, the results demonstrate that the deep
models with SAE achieve very similar performances. The best results
are achieved by the proposed method. The results verify that the deep
feature fusion approach that uses enriched feature space obtained from
both CNN and LSTM is more effective at capturing distinctive features
for reference points with similar RSSI values in the same room or
corridor.

4.3.2. RFKON dataset
The results given in Table 7 show the classification performance of

the methods for RFKON dataset. Similarly, by applying the filtering pro-
cess, higher accuracy results were obtained than all the basic methods.

The accuracy value of DNN increases from about 0.6817 to 0.9690. The
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Table 7
Performance comparison of the proposed method and baseline methods for RFKON
dataset.

Methods ACC F-SCORE PREC REC

Raw

RF 0.7768 0.7857 0.7711 0.7687
XGBoost 0.8999 0.8982 0.8953 0.8933
DNN 0.6817 0.6847 0.6800 0.6755
CNN 0.7106 0.7151 0.7094 0.7042
LSTM 0.7391 0.7404 0.7339 0.7302
CNN-LSTM 0.7167 0.7162 0.7113 0.7068

Filtered

RF 0.9766 0.9755 0.9759 0.9747
XGBoost 0.9755 0.9744 0.9740 0.9733
DNN 0.9690 0.9670 0.9680 0.9659
CNN 0.9731 0.9716 0.9701 0.9695
LSTM 0.9612 0.9578 0.9571 0.9545
CNN-LSTM 0.9688 0.9626 0.9654 0.9624

Filtered and SAE

RF 0.9759 0.9741 0.9757 0.9741
XGBoost 0.9758 0.9742 0.9741 0.9730
DNN 0.9722 0.9709 0.9708 0.9694
CNN 0.9746 0.9756 0.9738 0.9736
LSTM 0.9607 0.9611 0.9577 0.9563
CNN-LSTM 0.9741 0.9738 0.9725 0.9721

Proposed method 0.9842 0.9905 0.9984 0.9901

best result is achieved by RF and XGBoost for the filtered version of the
dataset. The performance of these methods is followed by that of CNN
and CNN-LSTM.

SAE increases the performances of DNN, CNN and CNN-LSTM by
approximately between 0.03% and 0.05%. Unlike the HALIC dataset, it
is observed that the sparse autoencoder does not make a significant con-
tribution to this dataset. Although RFKON presents an over-complete
network, the difference between the number of access points and refer-
ence numbers are approximately balanced and lower than HALIC. For
this dataset, the proposed method also outperforms the baseline meth-
ods. The proposed method increases the performance by approximately
1.52% in terms of F-score.

4.3.3. UJIIndoorLoc dataset
Table 8 presents the classification performance results for UJIIn-

doorLoc dataset. LSTM achieves higher performance than the other
methods for the raw version of the dataset. The accuracy value of
LSTM increases from about 0.6905 to 0.9308 when the model takes the
filtered version of the dataset as input. Significant increases at different
levels are also observed for other learning models. CNN with SAE model
obtains higher performances in terms of accuracy, precision, recall, and
f-score. The performance of this model is followed by CNN-LSTM with
SAE model. It is seen that the contribution of SAE to performance is not
notable. Therefore, the deep learning methods with SAE and without
SAE obtain very similar accuracy results. However, for this dataset,
it provides computationally contribution as it performs a dimension
reduction by reducing the feature space of 520 to 60. Moreover, it
is observed that all basic methods obtain almost the same accuracy
values as each other. The proposed method outperforms all baseline
methods by increasing the accuracy by approximately 2% over the
filtered version of the dataset.

Our method learns the locations in the UJIIndoorLoc dataset regard-
less of the floor information. The method runs the proposed system in
parallel to determine the floor number. It returns the specified reference
point and floor number to the user in this way. Building 0 has 4 floors.
Therefore, we use four neurons in softmax layer. Table 9 shows the
floor classification result of the methods. Even with the original values
of the dataset for floor classification, 99.60% accuracy is reached with
the XGBoost algorithm. The accuracy scores obtained after the filtering
process are found to be 100% with deep learning models.
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Table 8
Performance comparison of the proposed method and deep learning methods for
UJIIndoorLoc dataset.

Methods ACC F-SCORE PREC REC

Raw

RF 0.5925 0.6084 0.5952 0.5641
XGBoost 0.7369 0.7387 0.7352 0.7093
DNN 0.4390 0.4507 0.4345 0.4100
CNN 0.4622 0.4496 0.4603 0.4159
LSTM 0.6905 0.6904 0.6918 0.6993
CNN-LSTM 0.5881 0.5983 0.5858 0.5536

Filtered

RF 0.9148 0.9107 0.9093 0.8961
XGBoost 0.9261 0.9225 0.9201 0.9102
DNN 0.9167 0.9172 0.9116 0.8998
CNN 0.9337 0.9303 0.9296 0.9176
LSTM 0.9308 0.9263 0.9244 0.9144
CNN-LSTM 0.9293 0.9269 0.9237 0.9127

Filtered and SAE

RF 0.9190 0.9150 0.9130 0.9022
XGBoost 0.9178 0.9118 0.9107 0.8974
DNN 0.9178 0.9159 0.9124 0.9004
CNN 0.9339 0.9307 0.9301 0.9182
LSTM 0.9318 0.9272 0.9254 0.9175
CNN-LSTM 0.9327 0.9297 0.9266 0.9166

Proposed method 0.9533 0.9446 0.9563 0.9417

Table 9
Floor classification results of the proposed method and baseline methods for
UJIIndoorLoc dataset.

Methods ACC F-SCORE PREC REC

Raw

RF 0.9703 0.9700 0.9710 0.9705
XGBoost 0.9960 0.9960 0.9959 0.9960
DNN 0.9409 0.9417 0.9421 0.9416
CNN 0.9857 0.9859 0.9860 0.9859
LSTM 0.9970 0.9968 0.9970 0.9969
CNN-LSTM 0.9970 0.9968 0.9970 0.9969

Filtered

RF 0.9990 0.9991 0.9991 0.9991
XGBoost 0.9990 0.9991 0.9991 0.9991
DNN 1 1 1 1
CNN 1 1 1 1
LSTM 1 1 1 1
CNN-LSTM 1 1 1 1

Proposed method 1 1 1 1

4.3.4. Overall results
In Tables 6–8, it is observed that higher accuracy results are ob-

tained with the filtering process for all datasets, when compared to
results obtained from the raw version of datasets. The highest per-
formance increase with the filtering process is observed in the HALIC
dataset. The most important reason for such low performance from the
raw version of this dataset is that the HALIC dataset has open office
areas where mobility is very high. This human activity detracts the
signals from the original values. Fig. 3 shows the effects of particle
filter on RSSI values for HALIC dataset. Fig. 3 contains samples of
the raw signal collected from room 5 and the particle-filtered results.
Access point 9, access point 10 and access point 11 are in room 5. On
the other hand, RSSI values received from access points 9, 10, and 11
in class 5 are equal to zero at some time intervals. Receiving values
close to −100 or −100 consecutively from an access point and zero
values immediately after these values indicate that there may exist
some measurement errors or various effects on the signal values such
as signal blocks or obstacles. In addition, while the RSSI values from
AP 9 fluctuate mostly between −100 and –50, the values from AP 10
and AP 11 are more intensely close to −100. This may indicate the
presence of an obstacle that weakens the signals obtained from AP
9. It was observed that the range of the signal values changed after
the use of the particle filter, and the signal values equal to zero were
regulated according to the high RSSI values obtained before. These
results confirm that the particle filter is very effective to regulate the
RSSI values that fluctuate over time, which cannot be obtained with
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Fig. 3. The effects of particle filter on RSSI values for HALIC dataset.
Fig. 4. The effects of dimension expansion for the HALIC dataset using SAE on the
accuracy performance of the proposed model.

the same propagation power due to different technological designs,
and which are obtained at a very low frequency than expected due to
obstacles in the indoor environment.

When an autoencoder step is used, it is seen that the accuracy
values that are obtained from both machine and deep learning methods
for HALIC notably increases. However, no significant effect was ob-
served for the RFKON and UJIIndoorLoc datasets. The most important
reason for this is that SAE expands the limited-length feature space,
providing a wider scope for the application of deep learning models’
operations. Moreover, the reference points in the HALIC dataset have
more similar fingerprints compared to other datasets. The Building 0 in
UJIIndoorLoc dataset contains 256 reference points collected from an
area of 1600 m2 [29]. The RFKON dataset contains 54 reference points
collected from an area of 800 m2. The grids are quite far for RFKON and
UJIIndoorLoc. However, for HALIC dataset, there exist 123 reference
points determined for an area of 492 m2. Thus, fingerprints are quite
close to each other for HALIC dataset. According to the results obtained,
we can say that while SAE expands the feature space, it also produces
more distinctive representations for reference points that are very close
to each other. The results of the dimension expansion using SAE for the
HALIC dataset are given Fig. 4 as the change in the accuracy values of
the proposed model according to the selected size increase amount. The
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best accuracy results are obtained for our method when the dimension
is equal to 60.

According to Tables 6–8, the highest classification results are ob-
tained by the proposed method. The results show that the proposed
hybrid deep model outperforms the baseline methods in terms of
accuracy, precision, recall, and F-score. The possible reason for the
success of the proposed method is that it leverages two different main
layers, CNN to extract local patterns and LSTM to capture long-term
correlations. By creating a combined enriched feature space containing
information from two different angles, it enables to reveal the more
discriminative patterns in indoor position prediction.

Our method achieves higher accuracy results from the other meth-
ods for floor classification. Compared to the reference points classi-
fication, considerably floor classification provides higher results for
UJIIndoorLoc. The most important reason for this is that the changes
in the signals received from the APs occur more clearly on the floors.
Fig. 5 shows the variation of RSSI signals received from APs for a
selected reference point. For the area labeled with SpaceID number 102
in the 0th building in the UJIIndoorLoc dataset, the signal values read
from each floor of this area are presented. We selected only twenty
observations for this illustration. Although the relevant area has the
same area feature (for example, office, kitchen, etc.), it is located on
different floors. Signals were received from a total of 67 access points
on 4 floors in the relevant area. Although no signal was received from
access point 13 on the 0., 1. and 2. floors, RSSI values above –80
dB were read on the 3rd floor. Considering access point number 452,
although RSSI values are read from this access point on each floor, it is
seen that its value is equal to 0 for some observations. This may be due
to environmental factors. In particular, considering that RSSI values
over –90 dB are read from this access point on the 3rd floor, it may
result that this access point is within this floor. However, since signal
values are not obtained in many observations, it can be concluded that
an obstacle weakens the signal considerably.

To show the loss and accuracy performances of the proposed ar-
chitecture over 200 epochs, Figs. 6 and 7 are presented. The figures
contain the results of both the training and validation datasets. For all
datasets, the loss values of the models decrease, and the accuracy values
of the models increase when the number of epochs increases. However,
it is seen that there is a convergence in test loss and accuracy values
after approximately the 150th epoch. In general, the validation loss
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Fig. 5. Variation of RSSI signals received from APs according to floors for a selected reference point.
Fig. 6. The loss performances of the proposed model.
Fig. 7. The accuracy performances of the proposed model.
value was observed to be higher than the training loss value. Figs. 6
and 7 show that there does not exist an over-fitting condition within
200 epochs for all three datasets.

To measure the reliability of the model even when very few samples
are used for training, Kappa scores of the proposed method for different
datasets are given in Fig. 8 [49]. To train the classifier, the training rate
(TR) was set as percentiles of 20, 40, 60, and 80, respectively, and the
remaining samples were used as the test set. The results show that the
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proposed method achieves high kappa values for the entire dataset even
when very few samples are used for training (20 percent).

4.3.5. Comparison with other existing methods
We compare the proposed method with some state-of-the-art meth-

ods in the literature. The comparison results of the studies based
on the classification performances are presented in Table 10. The
proposed method provides the highest localization performances for
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Table 10
Accuracy performance results of the proposed method and other methods in the literature.

Study Method Dataset Classification Result

Turgut et al. [50] Stacked autoencoder RFKON Grid based 0.9595
Keser et al. [51] Optimal decision tree RFKON Grid based 0.8773
Keser et al. [52] Extreme learning machine RFKON Grid based 0.72
Proposed method Explainable Hybrid deep learning RFKON Grid based 0.9842

Turgut et al. [9] Stacked sparse autoencoder HALIC Grid based 0.7260
Proposed method Explainable hybrid deep learning HALIC Grid based 0.9852

Bozkurt et al. [53] Sequential minimal optimization UJIIndoorLoc Grid based 0.81
Akram et al. [54] Gaussian mixture model soft clustering + Random decision forest UJIIndoorLoc Grid based 0.83
Proposed method Explainable hybrid deep learning UJIIndoorloc Grid based 0.9533

Kim et al. [55] Stacked autoencoder + DNN UJIIndoorLoc Floor based 0.9298
Elmokhtar et al. [56] Recurrent neural networks UJIIndoorloc Floor based 0.9523
Qin et al. [57] Convolutional denoising autoencoder + CNN UJIIndoorLoc Floor based 0.953
Seçkin and Çoşkun [58] Feature generation + Hierarchical fusing machine learning UJIIndoorLoc Floor based 0.96
Zhang and Xu [11] Stacked denoising autoencoders + MLP UJIIndoorLoc Floor based 0.9874
Alitaleshi et al. [59] Extreme learning Machine autoencoder + CNN UJIIndoorLoc Floor based 0.9894
Singh et al. [60] PCA + XGBoost UJIIndoorLoc Floor based 0.992
Etiabi et al. [61] Federated learning + Hierarchical MLP UJIIndoorLoc Floor based 0.9955
Proposed method Explainable hybrid deep learning UJIIndoorloc Floor based 0.9995
Fig. 8. Kappa values of the proposed model for datasets according to different training
and testing rates.

all datasets when compared to competitive indoor localization meth-
ods. For RFKON dataset, the second highest result is obtained by
the method [50] that implements a stacked autoencoder for feature
extraction phase. The authors [50] emphasize that they achieved higher
localization performances by expanding the feature space that consists
of a few APs using stacked autoencoder. However, in the learning
phase after the feature extraction process, they use a simple multi layer
perceptron. The other classification performances were presented by
the authors in the papers [51,52]. They use optimal decision tree and
extreme machine learning for indoor localization. For HALIC dataset,
the proposed method significantly achieves better localization perfor-
mances than the method that uses a sparse autoencoder [9,62] and
MLP. Our method improves the performance by at least 36%. While ex-
treme learning machines provide faster learning, generally deep neural
networks can achieve higher accuracy for highly nonlinear data. The
possible reason why the proposed model obtains higher results from
these methods may be that it applies a learning process over many
hidden layers using both CNN and LSTM, compared to decision trees,
extreme learning machines, and MLP. Moreover, it is observed that the
filtering process used in the proposed method is an important factor in
increasing the accuracy performances.

UJIIndoorLoc is one of the fundamental datasets used extensively
in indoor positioning studies. Studies in the literature provide classi
fication-based approaches and perform position determination based
on 𝑥 and 𝑦 coordinates using the relevant dataset. It is possible to
realize building, floor, and space-based positioning on the UJIIndoor-
Loc dataset. This study presents building, floor, and grid (space) based
208
localization performances. Accordingly, with the proposed method,
building detection is determined with 100% accuracy. Recent studies
based on grid-based (room or space) and floor-based classification in
UJIIndoorLoc are included in the Table 10. There are very few studies
in the literature on grid-based classification. Our method outperforms
the methods that use Sequential Minimal Optimization (SMO), and
Random Decision Forest based on Gaussian Mixture Model (GMM)
Soft Clustering. SMO may not produce very effective results for highly
nonlinear data. For the UJIIndoorLoc dataset with a large number of
AP points, and RP points, a lower accuracy rate may therefore be
achieved. With GMM clustering, the authors aim to reveal subsets
containing similar observations. However, since the Wi-Fi propagation
characteristics and GMM distributions are not always perfectly aligned,
the key attributes of the data may not be captured accurately, although
the approach aims to distinguish different RP groups.

Recent studies based on floor estimation for UJIIndoorLoc are in-
cluded in the Table 10. There are three different buildings in the related
dataset and a total of 13 floors, with 4 or fewer floors in each building.
In the literature, there are studies on the determination of floors in a
single building, as well as studies on the determination of a total of
13 floors with a multi-label approach. In order to make an inclusive
comparison, a study for multi-label classification and the detection of
13 floors is carried out in this study. The results demonstrate that
our method achieves better accuracy results than the state-of-the-art
methods. The second highest result is obtained by the method [61] that
uses hierarchical deep learning architecture. The model aim to capture
the hierarchy between floors and buildings. The third highest result
is obtained by the method [60] that uses PCA for handling sparsity,
reducing dimensionality, and removing noise, and XGBoost for the
learning phase. The most important possible reason why our method
produces more successful results than these methods is the particle filter
used in the preprocessing process and making an effective mapping. In
addition, it uses the advantage of two different architectures CNN and
LSTM on the features obtained as a result of filtering, and performs
both local and global learning. In this respect, it is more capable of
distinctive feature engineering than XGBoost and MLP architecture.
Table 10 also presents the methods for obtaining localization estimation
by reducing noise and size, with different preprocessing processes
as stacked autoencoder, denoising autoencoder and Extreme Learning
Machine autoencoder as preprocessing steps. However, it can be dif-
ficult for the denoising autoencoder to choose an appropriate noise
level if the data was obtained quite noisy. At this stage, the Stacked
Autoencoders may produce better results as they do not involve adding
noise during training. However, if the observed signal values in WiFi
signals are quite small due to noise, the stacked autoencoder may

reduce the importance of low-frequency features in the layer hierarchy.
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Fig. 9. The local explanations generated from LIME for a given test sample in HALIC dataset.
Fig. 10. The local explanations generated from LIME for a given test sample in RFKON dataset.
At this stage, the proposed method rearranges the noisy observed signal
values as different from the expected WiFi values for the reference point
according to the values obtained in the previous and next observation
using the particle filter.

4.4. Explainable indoor localization results

SHAP and LIME techniques were used in the proposed approach and
the contribution of the location of the access points to the regional
determination was measured. In the tests carried out, adjacent areas,
areas not adjacent to each other but on the same floor, and areas on
different floors were examined.

The results obtained with the proposed model were analyzed using
LIME for three datasets. The local explanations of the model for the
datasets are presented in Figs. 9–11, respectively. Only one sample
from all three datasets was chosen for generating LIME explanations.
Accordingly, the results obtained by LIME include the features and their
values that enable the sample selected as a test to be classified into
existing grids (reference points).

Considering the result of the HALIC dataset given in Fig. 9, it is
seen that the related sample is assigned to grid 24 with the highest
probability. Since the ground-truth label of the selected sample is grid
24, the model obtains a correct classification result. The second highest
probability for that sample is obtained for grid 23. Since grid 23 and
grid 24 are reference points located very close to each other, some
similarities can be expected in the collected AP values. Except for the
2nd, 5th, and 3rd access points, the reference values for the access
points listed in grid 23 and grid 24 appear to be in the same range in
both grids. This is because the distance between these two reference
points is approximately 2 m. In this case, it is concluded that the
prediction probabilities obtained by the model are consistent. The top
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ten features and their values that are decisive in the prediction results
for grid 24 and grid 23 are included in Fig. 9. For this example, it is seen
that the values of ten different features of this sample are compatible
with the expected reference values of grid 24. The selected sample is
allocated to grid 24, especially since the values from the 2nd, 5th, and
3rd access points are not compatible with the expected reference values
of grid 23.

Similarly, Fig. 10 presents the explanations about feature weights
used in the position prediction using a single sample for RFKON. For
the given test sample belonging to RFKON dataset, the highest class
probability is obtained for grid 15. Although the model finds a very low
probability for grid 14, it is observed that the signal attribute values
of this sample are compatible with the expected reference attribute
values of grid 14. However, here it is concluded that the attribute
values, which are decisive for assigning the example to grid 15, are
quantitatively closer to the reference attribute values of grid 15. For
this example, it can be seen that the access points that differentiate
grid 15 from grid 14 are the signal values obtained from 15th, 24th,
and 35th access points.

Fig. 11 provides the explanations of classification for a selected sam-
ple from UJIIndoorLoc datasets by the proposed method. The selected
sample is assigned to grid 0 with the proposed method. It is compatible
with the reference values of grid 0 and the reference values of the signal
values of the sample. It is seen that the reference points affecting both
grid 0 and grid 1 are quite different from each other. In this case, it
is concluded that the distance between these two grids is reasonably
large.

We also provide the global interpretation of the proposed model
using SHAP. The results for grid 1 and grid 70 as adjacent grids in
the HALIC dataset are presented in Fig. 12. The related analysis was

carried out using 10 samples belonging to these grids. Grid 1 and grid
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Fig. 11. The local explanations generated from LIME for a given test sample in UJIIndoorLoc dataset.
Fig. 12. The global interpretation of the proposed method for some specific reference points in HALIC dataset using SHAP.
Fig. 13. The global interpretation of the proposed method for some specific reference points in RFKON dataset using SHAP.
70 are not located in the same open office. Grid 1 is in 1nd office, while
grid 70 is in 5th office. Access points 0, 1, 2, and 3 are placed in the
1nd office as given in Table 3. In the 5th office, there are three access
points numbered as 8, 9, 10. In the classification of the ten selected
samples, it is seen that the access points that are more distinctive for
grid 1 are 4, 10, 5, and 2, respectively. It is observed that only AP 2 is
effective from the access points in the room where grid 1 is located. On
the other hand, APs in the 3rd (AP 4), 4th (AP 5), and 5th office (AP
10) seem to be more effective. The most important reason for this may
be that similar signal values are obtained from the APs in this office for
almost all the grids in the 1st office. In this case, the signal values that
are distinctive for the grids in this office are taken from other APs in
the vicinity. For grid 70, similarly, the most distinctive access point is
210
AP 4, located in the 3rd office. However, the 9th and 10th APs in the
same room as this grid are also effective in classifying the samples.

In Fig. 13, the proposed model is explained on the RFKON dataset
by using the SHAP model in grids located in the same building but not
adjacent to each other. Accordingly, the results for Grid 1 and grid 6
in the RFKON dataset are presented. Grid 1 and grid 6 are located in
the same floor. As expected, there are intersections between the access
points that offer the most important features in areas within the same
building. A total of 7 APs are common, which are decisive for grid 1
and grid 6. However, the effectiveness of these APs in separating grids
differs. For instance, while AP 24 is the most effective access point for
grid 6, the impact of this access point for grid 1 is lower than other
APs.
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Fig. 14. The global interpretation of the proposed method for some specific reference points in UJIIndoorloc dataset using SHAP.
Table 11
Comparisons of model size and complexity.

Methods Without SAE With SAE

Flops Params Model size Testing time Flops Params Model size Testing time

DNN 238 × 104 1190k 4663 kB 15 × 10−2 ms 114 × 104 719k 2851 kB 14 × 10−2 ms
CNN 184 × 105 9145k 35,868 kB 35 × 10−2 ms 323 × 104 1608k 6812 kB 18 × 10−2 ms
LSTM 355 × 105 17,701k 69,165 kB 2 ms 526 × 104 2628k 11,181 kB 68 × 10−2 ms
CNN+LSTM 185 × 105 9186k 35,904 kB 1.3 ms 329 × 104 1649k 6848 kB 64 × 10−2 ms
Our method 227 × 104 1126k 6734 kB 69 × 10−2 ms
s
C

In addition, the results using SHAP on UJIIndoorLoc are presented
n Fig. 14. The ten APs that are most decisive in allocating selected
amples to grid 1 or grid 5 are given. These grids are located on
ifferent floors. The results show that there are only two access points
AP 9 and AP 61) common to the most efficient APs listed for these
rids. Except for these APs, the APs that are effective for separating
hese two grids are quite different. The most important reason for this
s that the signal values received from the APs differ significantly at
ifferent floors since these grids are located on different floors.

.5. Analysis of computational complexity

To show the efficiency of the models, the floating point operations
er second (Flop), number of parameters (Params), and model size of
he models are given in Table 11. These complexity results are reported
or the UJIIndoorLoc dataset since this dataset has a larger input and
utput size when compared to the other datasets. All parameter settings
re used the same, only the batch size is set to 1 for flops calculation.
he overall complexity of the models may vary depending on the input
ize, number of layers, layer types (CNN, LSTM or pooling), number of
ense layers, number of neurons, and output layer. The results given
n Table 11 show that the baseline methods without SAE have higher
LOPs, the number parameters, and model size when compared to
he results obtained from the models with SAE. This is because the
nput size is equal to the number of sensors. Since the UJIIndoorLoc
ataset has 520 sensor data, it increases the number of floating-point
alculations of models and increases the connections between layers.
s we reduce the input size to 60 using SAE, naturally the models have

ower Flops, number of parameters, and model size. Table 11 shows
hat DNN has the smallest FLOPs, the number of parameters, and model
ize. This is because DNN contains only dense layers and softmax layers.
he performance of DNN is followed by that of our method. Since our
ethod has two convolutional and pooling layers, the size of the feature
aps generated within the model is reduced in several steps. In this

ase, the input size transmitted to the dense layer is lower than the
NN, LSTM, and CNN-LSTM models.

The testing times of the models for a single sample are given in
able 11. Since the filtering process is applied for each new incoming
ata, the time required for the filtering process is also important. The
211

W

filtering process of one sample is approximately 0.010 s Considering
the filtering and testing times, the proposed architecture has a high
potential to be used for real-time indoor localization.

5. Conclusion

In this study, an explainable hybrid deep learning architecture
is presented to provide mobility management in indoor areas, one
of the fundamental services in the Internet of Things ecosystem. In
order to test the proposed method, three different datasets containing
RSSI data collected by fingerprint method belonging to WiFi signals
were used: HALIC, RFKON, UJIIndoorLoc. In the selected datasets, the
signal distortions caused by the effects encountered in indoor areas
are removed by using a particle filter, and the original signal values
are estimated. Due to the different forms of the network structures
formed in the studies carried out using the signal map, all network
types; in order to create an approach that can cover overcomplete
and undercomplete networks, the features of the datasets are evaluated
using sparse autoencoders. The proposed architecture uses a sparse au-
toencoder for feature extraction and then applies Convolutional Neural
Network (CNN) and Long-Short-Term Memory (LSTM) simultaneously
for indoor localization. We present the effectiveness of the proposed
hybrid model by providing comprehensive benchmarks using different
deep learning architectures such as DNN, CNN, LSTM. The highest
positioning accuracy was achieved using our approach with 98.52 in
the HALIC dataset, 98.42 in the RFKON dataset, and 95.33 in the
UJIIndoorLoc dataset. In order to analyze the effects of the positions
of the APs and values of the APs on the position estimation of the
proposed model, the results from two XAI methods as LIME and SHAP
are presented.

We focus our future work on two aspects. Firstly, we plan to
transform our method for the problem of estimating three-dimensional
location coordinates. Secondly, we aim to improve the proposed deep
learning model by applying different filtering processes in real time.
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